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Abstract: The present paper reports an exact approach quantifying the electromagnetic contribution
to the anomalous magnetic moment occurring in isolated system comprised of non-composite
particle carrying elementary electric charge. Essential averaging procedure and regularization of the
electromagnetic field potentials necessary when quantifying the electromagnetic self-interactions
and when deriving equations of motion without singularities and obeying the conservation laws are
thoroughly discussed. The study shows that the dynamics of the considered system is associated
to unique classical transcendental equations of motion satisfied by the particle’s velocity and the
electromagnetic contribution to the anomalous g-factor known from the quantum electrodynamics.
The equations of motion lead to an exact analytical expression for the anomalous g-factor that
provides more accurate result than that calculated with the aid of quantum electrodynamics. It
matches the experimentally measured value reported in the literature to a one part per trillion. We
obtain a, = 0.00115965218000(65) thus reveling the potential of non-perturbative, non-probability
methods in predicting the electron’s anomalous g-factor.

Keywords: self-interaction; self-energy; anomalous magnetic moment; electrodynamics

1. Introduction

The anomalous magnetic moment and the intrinsic dynamics of non-composite particles have been
considered as unique features of the quantum field theory since the beginning of its elaboration [1-5].
The electron’s anomalous magnetic moment and its fundamental properties are the first to be
studied and realized. With the aid of quantum electrodynamics the value of corresponding g-factor
was predicted with a stunning accuracy [6-13], leaving no space for mistrusting its effectiveness.
Determining with high accuracy the dynamics of the two remaining massive leptons carrying
elementary charge, the muon and tau, is an active field of research. The muon’s anomalous magnetic
moment [14,15] is still puzzling the community aiming to reduce the gap between theory and
experiment [16-22], recently known to be of about 0.58%. On the other hand, having a very short
lifetime and being the massive among all leptons, measuring and predicting tau anomalous magnetic
moment is a challenging task requiring great efforts [23-29]. Although, there is a serious discrepancy
between theory and experiment, such efforts may have the potential to shed more light on the
contribution of high order hadronic terms thus aiding in resolving the inconsistency in the muon data.

The microscopic electrodynamics underlying the occurrence of anomalous component in the
intrinsic magnetic moment of the elementary particles is indispensably related to a singularity-free
radial dependence of the effective mass density and corresponding self-energy [1,30-35]. The latter are
believed to be uniquely addressable by the regularization and renormalization methods of quantum
theory [36—41], with no classical analog. Yet, even within the standard methods of quantum mechanics,
the evaluation of self-Coulomb energy in multi-electron systems still poses a challenge [42,43].

The quantum and classical theories are believed to have no interconnection pertaining to the
occurrence of anomalous magnetic moment in the dynamics of non-composite particles and to the
corresponding self-energy divergence problem. Therefore, a classical method with the potential
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to quantify the above mentioned anomalous magnetic moment and self-energy in the absence of
singularities and electromagnetic radiation may contribute significantly in establishing a better
interrelationship between both theories.

The present paper propose an exact approach quantifying the electromagnetic contribution to the
anomalous g-factor and related dynamics of isolated non-composite particle carrying elementary
electric charge. The approach build on the methods of classical electrodynamics in studying
the microscopic dynamics of self-symmetric systems, like the considered one, by removing all
singular points. It incorporates a particular spatial averaging procedure and regularization of the
electromagnetic field potentials confining the field to the particle itself. Accordingly, the effect of
self-repulsion is accounted for without singularity, or violation of the conservation laws, allowing
a complete microscopic description of the system’s energy state. Two types of self-interactions are
predicted, the self-Coulomb and self-Zeeman ones. Essentially, the considered approach results
in a system of transcendental equations of motion satisfied by the particle’s velocity and the
anomalous g-factor of electromagnetic origin. The derived system of equations ensure fast and
accurate computational results and predicts the value of anomalous g-factor with the same success the
perturbative approach of quantum electrodynamics does. In the present work, the computations are
carried out with accuracy matching one prat in a billion.

The rest of the paper is organized as follows. The mathematical notation of all
fundamental physical quantities characterizing the system under consideration along with essential
interrelationships between the introduced observables are presented in Section 2. Furthermore, the
section discusses the occurrence of self-interactions and their explicit representation. Lagrangian and
Hamiltonian density representations are also given. The main results are outlined in Section 3, with
computations carried out on Wolfram Mathematica. Section 4 summarizes the used approach and
obtained results.

2. Theoretical background

2.1. General considerations

In the present study all representations are restricted to the mathematical framework of the
classical relativistic mechanics and electrodynamics, overlooking all relevant quantum mechanical
representations except the ones of immense significance. For the sake of clarity, all physical quantities
and equations of motion are represented within the standard three-dimensional vector formalism.
The four-vector convention is omitted, since the representation in Minkowski space with the relevant
Lorentz group is straightforward [44—46].

Consider an isolated system composed of single non-composite particle of type 4, with rest
frame of reference R, rest mass m,; and electric charge e;,t = £e Vg, where e denotes the elementary
charge. Let r,; = aly; be the particle’s electromagnetic radius at rest, where a and A, are the fine
structure constant and reduced Compton wavelength, respectively. Let u,, with |u;| = u,, be the
velocity associated to the considered particle and p; = y;m4u, the corresponding momentum in the
observer’s rest frame O, where 7, is the corresponding Lorentz factor. Furthermore, let r; = A4, with
Ag = Acg\/Bg? — 1, be the particle’s electromagnetic radius in O, where A, is the particle’s intrinsic
wavelength, B, = u,c~! and ¢ denotes the light speed in vacuum. Since the particle alone represents
the only center of symmetry in the system, r; and p, are conjugate intrinsic quantities, satisfying
TgPq = Acgmgc. Accordingly, we have uy; = A,w,, where wj is the particle’s intrinsic frequency.

Let Pl | and py,, with

2
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be the charge and rest mass densities, respectively, such that
Vi =87 / / % — ade)r2drd], )
and
+_ —
e =+ /Qm Plez\dv, g = /ch Py AV, &)
where the spatial domain Q¢ € R3, with a boundary dQ), is such that V; = f Oquv.
Let for all g the system is characterized by an effective rest mass given by
M,y = / omdv, @)
Qg

where the corresponding density pp, = pu, (r) is a smooth function over r € (0, +o0).
The system posses intrinsic angular momentum f; and a corresponding magnetic one y,, with
magnitudes f; and y,, respectively. In accordance to Equation (3), we have

. 1 .
f, = /ch 1y X jmgdv,  p, = 3 /ch g X Gq]eqidv, 4)

where ju, = Y4pm,uq and j o = 740, ¢k |Uq are the system’s mass and charge density currents,
respectively. Here, G, is the integrand g-factor, where the latter reads

+
e
go=—2 [ Gy, G = Jeq lewy
Veg Jog MaPe|

©)
We further have g, = 2(1 + a.), where g, is the electromagnetic contribution to the anomalous g-factor.

Let us point out that according to Equation (5) the fraction Mm, ! is a constant for all g. We
would like to stress, furthermore, that f; is not an orbital angular momentum, since the system does
not posses a center of symmetry independent from the particle. In the vector diagram sketching
the dynamics of the considered system, the position vector r,; associated to the density currents will
remain conjugate to the particle’s momentum for an infinite time, with f; being an invariant. In other
words, the dynamics related to both physical quantities given in Equation (4) is not time and space
independent event for an observer in O and hence it cannot be associated to a free spinning sphere of
radius ¢4, or 74.

2.2. Field observables

Since the system is isolated, 114 is a zero vector and the particle posses elementary electric charge
confined within the time independent spatial domain ()¢, the resulting electric current and its density
are time and spatially independent. Accordingly, the electric E; and magnetic B; components of
the corresponding electromagnetic field in O are time independent and spatially conjugated to the

particle’s momentum. Thus, we have the relations E; = —V¢; and B; = V x A;, where ¢; = ¢,(7)
and A; = A,(r) are the scalar and vector potentials of the electromagnetic field in O. In particular, we
have 1

0= Tab A=y 200 By = (ug xEy), ©®)

where the function ¢; = ¢4(r), given with respect to the observer’s rest frame, is regularized to the
origin of R and reads

et o
pg(r) = —— (1 —e “WM) , ()

Ame,r
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with ¢, denoting the vacuum permittivity. The function given in Equation (7) is solution to the
superposition of Poisson and Helmholtz equations, with constant of integration equal to zero
at the limit » — oo and minimal wavelength associated to the electromagnetic field equal to
(1+ae)Aeqy/1— B3 atr — 0. Graphical representation of the difference between the Coulomb potential
and the one given in Equation (7) is shown in Figure 1.

2R 1 T T g g
_actyim,
L C= an(i+a,)
- g@ 05F 1 71
@)
\w 1 O h 1 1 d
S 0 1 2 3
r/1q
Cl — YeesAy  —  Coulomb
"~ 4me,(1+a,) — Regularized, Equations (6), (7)
O ul 1 1
0 1 2 3

r/rq

Figure 1. Graphical representations of the regularized electromagnetic scalar potential considered in
the present study and the conventional (Coulomb) one depicted for comparison. For the sake of clarity
both potentials are normalized by C’. The energy of corresponding electromagnetic field as a function
of the distance from the origin of particle’s rest frame of reference is depicted in the inset.

We would like to note that in Cartesian coordinates, the components of the vector potential given
in Equation (6) read A = 'ch—zu;%(ﬁ, v), where T # B # v = {x,y,z} and uj are the components of
u,. The potentials given in Equation (6) satisfy trivially both choices of gauge the Coulomb and Lorenz
one.

Owing to Equation (7), we obtain the analytical expression of the electromagnetic field’s energy,
with density ¢, Eg, for all g. Thus, integrating over R3, we get

A g y_ M Yot o
W.(r) = DCCZ Zm cq 2 _4e (T+ae)Aeq e (T+ae)Acq q e (1+ng)/\cq’ 8
1(r) Y9, + + (14 ac) A ®
where the constant of integration is fixed at r — co. Graphical representation is depicted in the inset in
Figure 1.
From Equations (7) and (8), we obtain two important limits. We have,
2, 2,3
. ,quq . oc ’quq
limg,(r) = ————————— and ImW,(r) = ———,
=0 #4(r) 4710 (1 + ae)Acq r—0 () 471(1 + ac)

respectively. These results point out that the energy of generated electromagnetic field does not
vanish at ¥ — 0 and the potential energy is a constant ensuring that the self-interactions do not
vanish at the given limit and do not associate to singularity points. Hence, on any gradient surface,
including all points on the boundary 9}, the presence of electromagnetic field appears as a steady
electromagnetic veil making the particle to appear as a very round object [47,48]. In addition, for
the corresponding Umov-Poynting vector, we have p;, ! (E; x By) = ngguq, where i, is the vacuum
magnetic permeability.

Note that, the discussed electromagnetic field is consistently confined to the particle. It
depends exclusively on the particle’s intrinsic characteristics and does not obey the Liénard-Wiechert
representation [46,49-51]. Hence, the electromagnetic field does not propagate at speed c independently
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from the particle and does not classify as an on shell coupling between the electric and magnetic field
components. We neither observe spontaneous emission nor absorption of photons. In this regard, the
steady presence of electromagnetic field around the particle can be considered as a classical analog of
the foam of virtual photons presented in quantum electrodynamics.

2.3. Electromagnetic self-energy and self-interactions

Since the system is closed, with the action of no additional fields, the particle exhibits no exchange
of energy and hence momentum. Accordingly, neither external nor net self-forces [46,52,53] are
acting on the particle and the energy of the system remains purely kinetic. However, the considered
system definitely exhibits two types of self-interactions of electromagnetic nature, with average energy
depending only on ug.

The Hamiltonian describing the total energy of electromagnetically self-interacting particle reads

H, = 'quqcz + 24+ 2y, 9)

where the energy terms X; and Z, are associated to the self-Coulomb and self-Zeeman interactions,
respectively.

The self-Coulomb term is the spatial average over the domain ()., of the interaction energy
between the particle’s charge and its own electromagnetic field. It reads

¥y = 7 /Q oM, — Py Y, (10)
cq

where

= oy (147,780 (1= ¢ T (11)
PM; = Pmy Mg ; e ,

g =1+ ,B%. Here, we take into account the relation p,,,c* = |e,:7IE oy | (4rteoreq) L.

The self-Zeeman term represents the spatial average over the domain (), of the interaction
energy between the system’s intrinsic magnetic moment presented in Equation (4) and the induced
magnetic field given in Equation (6). Since the self-Zeeman interaction is time independent, the
corresponding integrand satisfies —u, - By = —j15B;, where in accordance to Equation (6), we have
By = ¢~ 2v,4u4| V|- Thus, taking into account Equation (4), according to which

- M, -
Hg = eAggcr— and f; = Aggmyc, (12)
qu
we obtain ~
AegcMgpgq
Jg=———F—" / \% dv. 13
9 2m3n, ch| oyl dv (13)

The self-energy terms given in Equations (10) and (13) are intrinsic to the considered particle and
hence invariant to an external influence. Therefore, represented in terms of quantum theory they will
remain invariant with respect to the particle’s orbital state in many-body systems. That may be of
benefit to the researchers studying multi-electron systems with the aid of computational methods
that fail to account for the self-interactions without generating errors, see for example the case of
Kohn-Sham density functional theory [43,54,55].

2.4. The Lagrangian and Hamiltonian density

In Section 2.3 we discuss the two allowed by the conservation laws types of electromagnetic
self-interactions that take place only within the domain ()4 and have particular energy densities.
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In general, the Hamiltonian (9) has a corresponding density and Lagrangian. The latter reads

~ 2 qug
Ly =pg-0g—74C pom, + 72771317,7 xq.Vpqu, (14)
where s oo
i, = 7/ ug (A)3(A — A,)dA (15)
ch 0

is the generalized velocity, %, is the unit vector of the particle’s velocity and

Tqmqc

_ 77% 4 T 2n(1+ae
PMy = Pmy <1+chpq (1_6 i W)) (16)
is the momentum representation of the effective mass density. Here, we take into account that
- Voo, € Ry for all g, such that [Vw, (rg)| = pi(Acgemy) " xq- Voo, (pg)-

For the corresponding Hamiltonian density, we have

M,p3
Hy = 1420, — —s%q Vo, 17
9= Y9CPM, 23, ®q- VpPum, (17)
where the Hamiltonian’s equations read
a;=V,H,;, and p;=0. (18)

3. Results and Discussion

3.1. Equations of motion

Following the Hamiltonian’s equations (18), the generalized velocity representation (15) and (5),
we obtain the system’s equations of motion.
Working with the magnitude of the particle’s velocity for convenience, we have

Ug = /Q Ky - VyHgydv. (19)
cq

Integrating over the domain ().;, we obtain one of the equations. It is a transcendental equation and
its quadratic form reads

2
~ o Cc —m . Dccuq')/q —m _ 2 — 0 20
*¢1ala (”q (”‘7+ 2n(1 +ae)> ‘ 8721 +a,) =0 G0
where 7j; = 174 4+ 1.5(1 + a,) 7483

On the other hand, taking into account the explicit representation of the effective mass density
(11), from (5) we obtain second equation. For all g, we have

T8
1—¢ Zn(ita) (14 1%
1 e
3, | - — (14 i) —a, =0 @1)

2 Yau 2
( 2r(1+ae) )
The transcendental equations (20) and (21) represent the system’s equations of motion. By solving
these equations, we obtain the exact value of the particle’s energy represented by the Hamiltonian (9)

and essentially to that of the electromagnetic contribution to the anomalous g-factor. In particular, for
all g, mg and t € [0, +0), we have u; = u,, where 1, is an invariant.
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3.2. Effective mass-energy equivalence

Taking into account the contribution only of the electric part of the self-interactions in (9), we
obtain the effective mass-energy relation. Accounting for the first two terms on the right hand side
after the corresponding equality symbol, we obtain

&y = YeMyc?, (22)

where for the self-Coulomb energy term we get %; = a.7.11,c? and for the effective rest mass we have
M, = mg(1+ a.). Here, 7, is a constant, with B, = « for all g, obtained by solving Equations (20) and
(21), see Section 3.1. We would like to point out once more that within the considered mathematical
framework if fle, then 3a,, the transformations given in Equation (25) are no longer applicable and
the particle can be at rest with respect to any observer. Thus, the energy of a free electrically charged
non-composite particle of rest mass 1, is always higher than the energy of a free electrically neutral
non-composite particle of the same rest mass. Furthermore, according to Equation (22) the former will
always be characterized by an effective momentum given by P; = 7, Mju, yielding to the effective

energy-momentum representation
Eq =/ Mzc* + Pic?. (23)

The effective rest mass, energy and momentum related by Equation (23) are physical characteristics of
the spinor field ¥;(x,) that effectively account for the self-Coulomb energy of the g-th particle and
satisfies the Dirac equation

(ihy¥9y — Mye)¥y(xy) = 0. (24)

Here, the free-particle representation of the corresponding field holds ensuing that at the quantum
limit the system under consideration remains isolated and hence the conservation laws are not violated.
Moreover, Equation (24) accounts for the electromagnetic contribution to the particle’s anomalous
g-factor, predicting g = 2(1 + a.) for all q.

3.3. Observation and velocities

Prior to any observation of the system under consideration the particle is in its highest symmetry
state. The associated electric field is centrally symmetric, the surface defined by all points with position
vector 1, is spherically symmetric, the particle’s momentum at each of these points and at the origin
of R is a zero net vector quantity and the system’s energy is observable only as an averaged in space
quantity. In this regard, it is worth mentioning that by solving Equations (20) and (21), for the observed
electromagnetic radius of the electron, we obtain #,; = r},, where r;, is the Bohr radius and g — el. Here,
we take into account that r,; and p,; are conjugate quantities. This result points out that if the particle
is confined by an external centrally symmetric electric field, with energy of the same magnitude as the
corresponding self-Coulomb one (see Equation (10)) and tailored to the origin of R, then the particle
will remain in its highest symmetry state. Without an external influence the resulting system will
neither exchange energy and momentum nor acquire an orbital angular momentum. It will remain
stable for an infinite time. Prominent example of such a system is the hydrogen atom at its ground
state.

When an observation takes place at a particular point in space-time, the four-vector quantities
characterizing the particle obey the Lorentz transformations. Such an act of observation reduces the
particle’ manifesting symmetry thus making its behavior directionally specific. For the considered
system, we have u; = u.x;, with £, = 0 and )_an)q = u, for all g. The unit vector x, is time
independent and the particle’s spatial degrees of freedom are reduced to two. The axis parallel to this
unit vector is the symmetry one and specifies the spatial direction at which the observation takes place.
Accordingly, the dynamics associated to the particle is expanded in a cylindrically symmetric space,
with corresponc}ing time dependent unit vectors p, and ¢, = p,w, ! representing a plane of isotropy.
We have u; = Ayw,, where wy; = wyk, is the corresponding angular velocity. The latter is neither
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related to a rotation nor spinning of the particle’s electric charge and mass, since both are not coupled
to a specific point in space outside the domain (). It is associated to a circularly polarized matter
wave with magnitude r, and phase speed A,wy, such that w; = (p g X P q). We would like to point out
that the frame of reference R remains inertial and the electromagnetic field discussed in Section 2.2
remains confined to the particle abiding by the resultant cylindrical symmetry. The inherent vector
quantities given in Equation (4) and their magnitudes (see Equation (12)) are time independent. The
particle’s magnetic moment now have a specific direction determined by the relation (r; x u;) = Réwq.
In particular, we have

1
Mg = E58elvKy,

where 11, is the Bohr magneton. Here, we take into account that f; = 7 for all 4. The plus-minus sign
results from the charge conjunction.

3.4. Transformation of velocities

Consider a second observer with frame of reference O’ moving relative to O with velocity V.
The particle’s velocity in O’ reads u;, = Aqw;. Accordingly, we have w; = w; + W, and w; =

/!
q: q
w’q + W%’ where wy, w’q and Wy, W; are the respective longitudinal and transverse to the direction of

V components. The magnitudes of these components, wg, wé, and @, w’q, respectively, represent the
directionally specific frequencies, satisfying

! % ~1
w, +wy - %Y \
Wy = /W2 + @2, w, :qi‘iue’ Wy = —1 — [1— (25a)
q q q q wy v q w) v u2
1+ & e 1+ & e ¢
q Ue q Ue
and
1% -
Wy — Wg 7~ w V2
_ /\2 ~1\2 r_ 1 Tue o q _
wg =/ (wh)* + (@})?, W=y Ty =y 1 2 (25b)
Wy Ue Wy Ue €

where V is the magnitude of the relative velocity. Equations (25) demonstrate that for different
observers the particle will have different behavior in space. The most illustrative case follows for
ue = V and w{i — 0. In this case, for an observer in O’ making observation on the same direction
the primed frame of reference is moving relative to the unprimed one the particle will appear as a
slowly moving point-like object. Making an observation on the transverse direction, however, the
same observer will reckon a wave-like behavior, with frequency @; — wg. On the other hand, for an
observer in O the observation of point-like and wave-like behavior will appear the other way around,
with wy; — wj.

In the case u, < V < ¢, the transformations in Equations (25) does not hold, since the particle is
not the center of symmetry in the system. The corresponding boost will be the Lorentz one and for all
q, ug will be a relative quantity, with u; # u.. Note that u, remains invariant and the occurrence of
orbital angular momentum is expected.

3.5. The anomalous g-factor

The computations of the electromagnetic component of the particle’s anomalous g-factor and its
speed are carried out for ¢ = 2.997924584 x 108 ms~! and a = 137.0359990849~!. Note that according
to NIST [56] the value of fine structure constant is « = 137.035999084 1. Solving the transcendental
equation (20), we get u, — «c. As a consequence, from Equation (21), we obtain the analytical
expression

_ B 27(1 a:’)\/ 1—a? o«
5 1-e ' <1 + 27r(1+ae)\/1tx2)
a. =3(1+a%)

; ; (26)
(2n(1+af) V1—a? )
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Compared to the experimentally obtained [12] and calculated with the aid of quantum
electrodynamics [8,9] electron’s anomalous g-factor, the numerical value obtained by solving Equation
(26), with the given value of the fine structure constant, is accurate to a one part per trillion, see
Table 1. To the best of our knowledge, the result given in the second row of Table 1 is the most accurate
evaluation of the electron’s anomalous g-factor reported to the present days. We would like to point
out that for &« = 137.035999206 ! [57] the result for a, is accurate only to a one part per billion.

Table 1. Theoretical and experimental values of the anomalous g-factor of electromagnetic origin.
Second, third and fourth rows show the theoretical results, with prediction of classical electrodynamics
(CED) discussed in the present study (see Section 3.5) and some of the recent results based on
renormalized quantum electrodynamics (QED). The last row shows the most recent experimental
result, with measurements carried out on electrons.

Methods ae Ref.
Exact CED 0.00115965218000(65) (26)
. 0.00115965218178(77) 8]
Perturbative QED 0.001159652181643(25) [9]
Experimental 0.00115965218059(13) [12]
4. Summary

With the aid of essential regularization (Section 2.2) of the electromagnetic field potentials and
spatial averaging procedure (Section 2.3), elaborated within the formalism of classical electrodynamics,
the present paper reports an exact approach quantifying on a microscopic level the electrodynamics of
isolated system comprised of non-composite particle of arbitrary rest mass and possessing elementary
electric charge. The proposed approach overcomes all singularities arising in the conventional
methods of classical electrodynamics thus uncovering in details the physical nature of electromagnetic
self-interactions and the occurrence of anomalous magnetic moment in the system. It quantifies the
particle’s dynamics exactly through system of transcendental equations of motion obtained in the
absence of any approximations and at the classical limit, see Section 3.1. Essentially, the solutions of
these equations give the exact values of the particle’s observable radius, intrinsic magnetic moment,
velocity and the electromagnetic contribution to the anomalous g-factor (see Sections 3.3 and 3.5).
The derived transcendental equations ensure fast computations and provide highly accurate results
competitive to the perturbative method of quantum electrodynamics, see the comparison in Table 1.

In general, the proposed approach may be build on and integrated into the mathematical
framework of the classical and quantum field theories. In that regard, more contributions to
the particle’s magnetic moment may be calculated exactly. With the appropriate gauge fields
and regularization one may introduce additional self-interactions and generalize the system of
transcendental equations discussed in Section 3.1.

In conclusion, it appears that the present study supports the thesis pointing out that the anomalous
magnetic moment may not be a unique feature to the quantum theory and its occurrence may have
a solid classical description. Moreover, it may be the case that the perturbative method of quantum
field theory is not unique to that feature and in addition there exist an exact method for its calculation.
On that account, pushing the boundaries of classical or quantum field theories further to test the
possibility for the exact calculation of even higher contributions in the anomalous magnetic moment
of non-composite particles is worth a shot. The proposed regularization to the scalar potential and
the related self-Coulomb and self-Zeeman interactions, furthermore, may significantly facilitate the
optimization of some computational methods in solid state physics making them self-consistent.
Especially these methods studying multi-electron systems that fail to address the self-interactions
without the consideration of additional corrections.
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