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Article

Self-Interactions, Self-Energy and the Electromagnetic
Contribution to the Anomalous g-Factor

Miroslav Georgiev

Institute of Solid State Physics, Bulgarian Academy of Sciences, Tzarigradsko Chaussée 72, 1784 Sofia, Bulgaria;
mgeorgiev@issp.bas.bg

Abstract: The present paper reports an exact approach quantifying the electromagnetic contribution
to the anomalous magnetic moment occurring in isolated system comprised of non-composite
particle carrying elementary electric charge. Essential averaging procedure and regularization of the
electromagnetic field potentials necessary when quantifying the electromagnetic self-interactions
and when deriving equations of motion without singularities and obeying the conservation laws are
thoroughly discussed. The study shows that the dynamics of the considered system is associated
to a unique classical transcendental equations of motion satisfied by the particle’s velocity and the
electromagnetic contribution to the anomalous g-factor known from the quantum electrodynamics.
The equations of motion predict a value of the anomalous g-factor that agrees with the experimentally
measured one reported in the literature and that calculated with the aid of quantum electrodynamics.
In the present study the computational accuracy is restricted to match one part in a billion, obtaining
ae = 0.001159652(23), thus reveling the potential of non-perturbative methods in predicting the
electron’s anomalous g-factor.

Keywords: self-interaction; anomalous magnetic moment; electrodynamics

1. Introduction

The anomalous magnetic moment and the intrinsic dynamics of non-composite particles have been
considered as unique features of the quantum field theory since the beginning of its elaboration [1–5].
The electron’s anomalous magnetic moment and its fundamental properties are the first to be studied
and realized. With the aid of quantum electrodynamics the value of corresponding g-factor was
predicted with a stunning accuracy [6–11], leaving no space for mistrusting its effectiveness. Following,
were the properties of the two remaining leptons carrying elementary charge, the muon and tau.
Determining with high accuracy the dynamics of both massive leptons is an active field of research.
The muon’s anomalous magnetic moment is still puzzling the community aiming to reduce the gap
between theory and experiment [12–18], recently known to be of about 0.58%. On the other hand,
having a very short lifetime and being the massive among all leptons, measuring and predicting tau
anomalous magnetic moment is a challenging task requiring great efforts [19–25]. Although, there is a
serious discrepancy between theory and experiment, such efforts may have the potential to shed more
light on the contribution of high order hadronic terms thus aiding in resolving the inconsistency in the
muon data.

The microscopic electrodynamics underlying the occurrence of anomalous magnetic moment is
indispensably related to the nature of self-interactions [1,26,27]. The latter are believed to be uniquely
addressable by the regularization and renormalization methods of quantum theory [28–32], with no
classical analog. Yet, even within the standard methods of quantum mechanics, the evaluation of
self-Coulomb energy in multi-electron systems still poses a challenge [33,34].

The quantum and classical theories are believed to have no interconnection pertaining to the
occurrence of anomalous magnetic moment and self-energy divergence problem. Therefore, a classical
method with the potential to quantify the anomalous magnetic moment and the self-interactions in the
absence of singularities and electromagnetic radiation may contribute significantly in establishing a
better interrelationship between both theories.
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The present paper propose an exact approach quantifying the electromagnetic contribution to the
anomalous magnetic moment and related dynamics of isolated non-composite particle carrying
elementary electric charge. The approach build on the methods of classical electrodynamics in
studying the microscopic dynamics of self-symmetric systems, like the considered one, by removing
all singular points. It incorporates a particular spatial averaging procedure and regularization of the
electromagnetic field potentials confining the field to the particle itself. Accordingly, the effect of
self-repulsion is accounted for without singularity, or violation of the conservation laws, allowing
a complete microscopic description of the system’s energy state. Two types of self-interactions are
predicted, the self-Coulomb and self-Zeeman ones. Essentially, the considered approach results
in a system of transcendental equations of motion satisfied by the particle’s velocity and the
anomalous g-factor of electromagnetic origin. The derived system of equations ensure fast and
accurate computational results and predicts the value of anomalous g-factor with the same success the
perturbative approach of quantum electrodynamics does. In the present work, the computations are
carried out with accuracy matching one prat in a billion.

The rest of the paper is organized as follows. The mathematical notation of all
fundamental physical quantities characterizing the system under consideration along with essential
interrelationships between the introduced observables are presented in Section 2. Furthermore, the
section discusses the occurrence of self-interactions and their explicit representation. Lagrangian and
Hamiltonian density representations are also given. The main results are outlined in Section 3, with
computations carried out on Wolfram Mathematica. Section 4 summarizes the used approach and
obtained results.

2. Theoretical Background

2.1. General Considerations

In the present study all representations are restricted to the mathematical framework of the
classical relativistic mechanics and electrodynamics, overlooking all relevant quantum mechanical
representations. For the sake of clarity, all physical quantities and equations of motion are represented
within the standard three-dimensional vector formalism. The four-vector convention is omitted, since
the representation in Minkowski space with the relevant Lorentz group is straightforward [35–37].

Consider an isolated system composed of single non-composite particle of type q, with rest
frame of reference R, rest mass mq and electric charge e±q = ±e, where e denotes the elementary
charge. Let rcq = αλ̄cq be the particle’s electromagnetic radius at rest, where α and λ̄cq are the fine
structure constant and reduced Compton wavelength, respectively. Let uq, with κ · uq = uq and
u̇q = 0, be the velocity associated to the considered particle and pq = γqmquq the corresponding
momentum in the observer’s rest frame O, where γq is the corresponding Lorentz factor. As we will
see later in the discussion, for the considered system uq = 0 ⇔ ∄ e. Furthermore, let rq = λ̄q, with

λquq = λcqc
√

1 − β2
q, be the particle’s relative electromagnetic radius, where λq is the particle’s intrinsic

wavelength, βq = uqc−1 and c denotes the light speed in vacuum. Since the particle alone represents
the only center of symmetry in the system, rq and pq are conjugate intrinsic variables, satisfying
rq pq = λ̄cqmqc.

Let ρ|e±q | and ρmq , with

ρs =
2

Vcq

∫

∞

0
sδ(λ̄ − αλ̄cq)dλ̄, s = {|e±q |, mq},

be the charge and rest mass densities, respectively, such that

Vcq = 8π
∫

∞

0

∫ λ̄

0
δ(λ̄ − αλ̄cq)r

2drdλ̄, (1)
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and
e±q = ±

∫

Ωcq

ρ|e±q |dv, mq =
∫

Ωcq

ρmq dv, (2)

where the spatial domain Ωcq ∈ R3, with a boundary ∂Ωcq, is such that Vcq =
∫

Ωcq
dv.

Let for all q the system is characterized by effective mass given by

Mq =
∫

Ωcq

ρMq dv, (3)

where the corresponding density ρMq = ρMq(r) is a smooth function over r ∈ (0,+∞).
The system posses intrinsic angular momentum fq and a corresponding magnetic one µq, with

magnitudes fq and µq, respectively. In accordance to (3), we have

fq =
∫

Ωcq

rq × jMq dv, µq =
1
2

∫

Ωcq

rq × Gqje±q
dv, (4)

where jMq = γqρMq uq and je±q
= ±γqρ|e±q |uq are the system’s mass and charge density currents,

respectively. Here, Gq is the integrand g-factor, where the latter reads

ge =
∫

Ωcq

Gqdv, Gq = 2
|e±q |ρMq

mqρ|e±q |

. (5)

We further have ge = 2(1 + ae), where ae is the electromagnetic contribution to the anomalous
g-factor.

Let us point out that according to (5), the fraction Mqm−1
q is a constant for all q. We would like to

stress, furthermore, that fq is not an orbital angular momentum, since the system does not posses a
center of symmetry independent from the particle. In the vector diagram sketching the dynamics of
the considered system, the position vector rq associated to the density currents will remain conjugate
to the particle’s momentum for an infinite time. In other words, the dynamics related to both physical
quantities in eq. (4) is not time and space independent event for an observer in O and hence it cannot
be associated to a free spinning sphere of radius rcq. The particle’s momentum and corresponding
currents are intrinsic, not a consequence of independent external action.

All of the above considered relations and definitions hold for uq = vq + ṽq, where vq is the
velocity component characterizing a node moving relative to the origin of O and ṽq is the velocity
component associated to an oscillation occurring along an axis perpendicular to vq, or vq · ṽq = 0. In
this regard, the particle has a standing wave representation that is naturally related to some uncertainty.
The corresponding oscillation dynamics can be further studied within the classical wave theory, or
with the more rigorous methods of the quantum theory. Such studies lie beyond the goals of the
present research and may be discussed elsewhere.

2.2. Field Observables

Since the system is isolated, or uq 6= uq(t), and the particle posses elementary electric charge
confined within the time independent spatial domain Ωcq, the resulting electric current and its density
are time and spatially independent. Accordingly, the electric Eq and magnetic Bq components of the
corresponding electromagnetic field in O are time independent and spatially conjugated to the particle’s
momentum. Thus, under any gauge condition, we have the relations Eq = −∇ϕq and Bq = ∇× Aq,
where ϕq = ϕq(r) and Aq = Aq(r) are the scalar and vector potentials of the electromagnetic field in
O. In particular, we have

ϕq = γqφq, Aq = γq
uq

c2 φq, Bq =
1
c2 (uq × Eq), (6)
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where the function φq = φq(r), given with respect to the observer’s rest frame, is regularized to the
origin of R and reads

φq(r) =
e±q

4πεor

(

1 − e
−

γqr

(1+ae)λcq

)

, (7)

with εo denoting the vacuum permittivity. The function given in eq. (7) is solution to the superposition
of Poisson and Helmholtz equations, with minimal wavelength of the electromagnetic field equal to
the denominator in the exponent.

Owing to eq. (7), we obtain the analytical expression of the electromagnetic field’s energy, with
density εoE2

q , for all q. Thus, we get

Wq(r) = αc2mq
λ̄cq

2r

(

2 − 4e
γqr

(1+ae)λcq + 2e
2

γqr

(1+ae)λcq +
γqr

(1 + ae)λcq

)

e
−2

γqr

(1+ae)λcq . (8)

Moreover, from eqs. (7) and (8), we obtain two important limits. We have,

lim
r→0

ϕq(r) =
γ2

qe±q

4πεo(1 + ae)λcq
and lim

r→0
Wq(r) = 0,

respectively. These results point out that the energy of generated electromagnetic field vanish at r → 0,
but the potential energy is a constant ensuring that the self-interactions do not vanish at the given limit
and do not associate to singularity points. On the other hand, on the boundary ∂Ωcq, the function given
in eq. (8) depends only on the particle’s speed. Therefore, for the considered system, the presence
of electromagnetic field on ∂Ωcq appears as a high-energy electromagnetic veil, with corresponding
Umov-Poynting vector µ−1

o (Eq × Bq) = εoE2
quq, where µo is the vacuum magnetic permeability. As an

example, at uq → c, for all q, the value of Wq(rcq) equals exactly the rest energy of the particle thus
making the latter to appear as a very round object [38].

Note that, the discussed electromagnetic field is consistently confined to the particle. It
depends exclusively on the particle’s intrinsic characteristics and does not obey the Liénard-Wiechert
representation [37,39,40]. Hence, the generated electromagnetic field does not propagate at speed c

independently from the particle and does not classify as an on shell coupling between the electric
and magnetic field components. We neither observe spontaneous emission nor absorption of photons.
The discussed electromagnetic field is a classical analog of the virtual photons presented in quantum
electrodynamics.

2.3. Electromagnetic Self-Energy and Self-Interactions

Since the system is closed, with the action of no additional fields, the particle exhibits no exchange
of energy and hence momentum. Accordingly, neither external nor net self-forces [37,41,42] are
acting on the particle and the energy of the system remains purely kinetic. However, the considered
system definitely exhibits two types of self-interactions of electromagnetic nature, with average energy
depending only on uq.

The Hamiltonian describing the total energy of electromagnetically self-interacting particle read

Hq = γqmqc2 + Σq + Zq, (9)

where the energy terms Σq and Zq are associated to the self-Coulomb and self-Zeeman interactions.
The self-Coulomb term is the spatial average over the domain Ωcq of the interaction energy

between the particle’s charge and its own electromagnetic field. It reads

Σq = γqc2
∫

Ωcq

ρMq − ρmq dv, (10)
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where

ρMq = ρmq

(

1 + ηq
rcq

r

(

1 − e
−

γqr

(1+ae)λcq

))

, (11)

ηq = 1 + β2
q. Here, we have taken into account the relation ρmq c2 = |e±q |ρ|e±q |(4πεorcq)−1.

The self-Zeeman term represents the spatial average over the domain Ωcq of the interaction energy
between the system’s intrinsic magnetic moment presented in (4) and the induced magnetic field given
in (6). Since the self-Zeeman interaction is time independent, the corresponding integrand satisfies
−µq · Bq = −µqBq, where in accordance to (6), we have Bq = c−2γquq|∇φq|. Thus, taking into account
relations (4), according to which

µq = eλ̄cqc
Mq

mq
and fq = λ̄cq Mqc,

we obtain

Zq =−
fq pq

m2
qηq

∫

Ωcq

|∇ρMq |dv. (12)

The self-energies in eqs. (10) and (12) are intrinsic to the considered particle and hence invariant
to an external influence. Therefore, represented in terms of quantum theory they will remain invariant
with respect to the particle’s orbital state in many-body systems. That may be of benefit to the
researchers studying multi-electron systems with the aid of computational methods that fail to account
for the self-interactions without generating errors, see for example the case of Kohn-Sham density
functional theory [34,43,44].

2.4. The Lagrangian and Hamiltonian Density

In Section 2.3 we discuss the two allowed by the conservation laws types of electromagnetic
self-interactions that take place only within the domain Ωcq and have particular energy densities.

In general, the Hamiltonian (9) has a corresponding density and Lagrangian. The latter reads

Lq = pq · ũq − γqc2ρMq +
Mq p3

q

m3
qηq

κ·∇pρMq , (13)

where

ũq = κ
2

Vcq

∫

∞

0
uq(λ̄)δ(λ̄ − λ̄q)dλ̄ (14)

is the generalized velocity and

ρMq = ρmq

(

1 +
ηq

mq

α

c
pq

(

1 − e
−

γqmqc

2π(1+ae)pq

))

(15)

is the momentum representation of the effective mass density. Here, we take into account that
κ·∇pρMq ∈ R+ for all uq ∈ (0, c), such that |∇ρMq(rq)| → p2

q(λcqcmq)−1κ·∇pρMq(pq).
For the corresponding Hamiltonian density, we have

Hq = γqc2ρMq −
Mq p3

q

m3
qηq

κ·∇pρMq , (16)

where the Hamiltonian’s equations read

ũq = ∇pHq, and ṗq = 0. (17)
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3. Results

3.1. Equations of Motion

Following the Hamiltonian’s equations (17), the generalized velocity representation (14) and (5),
we obtain the system’s equations of motion.

Working with the magnitude of the particle’s velocity for convenience, we have

uq =
∫

Ωcq

κ · ∇pHqdv. (18)

Integrating over the domain Ωcq, we obtain one of the equations. It is a transcendental equation
and reads

αcγqη̃q

(

1 −
(

1 +
c

2π(1 + ae)uq

)

e
− c

2π(1+ae)uq

)

−
αcγ2

q

4π2(1 + ae)
e
− c

2π(1+ae)uq − uq = 0, (19)

where η̃q = ηq + 3(1 + ae)γqβ2
q.

On the other hand, taking into account the explicit representation of the effective mass density (11),
from (5) we obtain second equation. For all q, we have

3ηq







1
2
−







1 − e
−

γqα

2π(1+ae)

(

1 +
γqα

2π(1+ae)

)

(

γqα

2π(1+ae)

)2












− ae = 0. (20)

Equations (19) and (20) represent system of transcendental equations of motion, with uq = ue for
all q and mq, where ue = const., for t ∈ [0,+∞). The solutions yield to the exact value of the particle’s
energy represented by the Hamiltonian (9) and essentially to that of the electromagnetic contribution
to the anomalous g-factor.

Table 1. Theoretical and experimental (EXP) values of the anomalous g-factor of electromagnetic origin.
Second, third and fourth rows show the theoretical results, with prediction of classical electrodynamics
(CED) discussed in the present study and some of the recent results based on renormalized quantum
electrodynamics (QED). The last row shows the most recent experimental result, with measurements
carried out on electrons. The asterisk symbol indicates that the given result is obtained for a value of
the fine structure constant taken from NIST [45], see also Section 3.3.

Methods ae Ref.

Exact CED 0.001159652(23)∗ (19) & (20)

Perturbative QED
0.00115965218178(77) [7]
0.001159652181643(25) [8]

EXP 0.00115965218059(13) [11]

3.2. Effective Mass-Energy Equivalence

Taking into account the contribution only of the electric part of the self-interactions in (9), we
obtain the effective mass-energy relation. Thus, from the first two terms on the right hand side after
the equality symbol, we get

Eq = γe Mqc2,

where Mq = mq(1 + ae) and γe is a constant for all q. We would like to point out that if ∄e, then
∄ae and the particle’s speed equals zero. Thus, for the self-Coulomb energy term in (10), we have
Σq = aeγemqc2.
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3.3. The Anomalous g-Factor

The computations of the electromagnetic component of the particle’s anomalous g-factor and
the corresponding speed are carried out for α = 137.035999084−1 [45]. For the particle’s speed
we obtain ue = 2.18821606262 × 106 ms−1. The corresponding value of ae is given in the second
row of Table 1. Compared to the experimentally obtained [11] and calculated with the aid of
quantum electrodynamics [7,8] electron’s anomalous g-factor, the numerical value obtained by solving
Equations (19) and (20), with the given value of the fine structure constant, is accurate to a one part per
billion. To the best of our knowledge, the result given in Table 1 is the most accurate classical evaluation
of the electromagnetic contribution to the electron’s anomalous g-factor reported to the present days.
We would like to point out that the obtained accuracy holds further for α = 137.035999206−1 [46],
with ue = 2.18821616430 × 106 ms−1. Furthermore, the accuracy can be improved with additional
refinement of the fine structure constant after the ninth digit behind the decimal point.

4. Summary

With the aid of essential regularization (Section 2.2) of the electromagnetic field potentials and
spatial averaging procedure (Section 2.3), elaborated within the formalism of classical electrodynamics,
the present paper reports an exact approach quantifying on a microscopic level the electrodynamics of
isolated system comprised of non-composite particle of arbitrary rest mass and possessing elementary
electric charge. The proposed approach overcomes all singularities arising in the conventional
methods of classical electrodynamics thus uncovering in details the physical nature of electromagnetic
self-interactions and the occurrence of anomalous magnetic moment in the system. It quantifies the
particle’s dynamics exactly through a system of transcendental equations of motion obtained in the
absence of any approximations and at the classical limit, see Section 3.1. Essentially, the solutions
of these equations give the exact values of the particle’s intrinsic velocity and the electromagnetic
contribution to the anomalous g-factor (see Section 3.3). The derived transcendental equations ensure
fast computations and provide highly accurate results, competitive to the perturbative method of
quantum electrodynamics, see the comparison in Table 1.

In general, the proposed approach may be build on and integrated into the mathematical
framework of the classical and quantum field theories. In that regard, more contributions to
the particle’s magnetic moment may be calculated exactly. With the appropriate gauge fields
and regularization one can introduce additional self-interactions and generalize the system of
transcendental equations discussed in Section 3.1.

In conclusion, it appears that the present study supports a thesis pointing out that the anomalous
magnetic moment may not be a unique feature to the quantum theory and its occurrence may have
a solid classical description. Moreover, it may be the case that the perturbative method of quantum
field theory is not unique to that feature and in addition there exist an exact method for its calculation.
On that account, pushing the boundaries of classical or quantum field theories further to test the
possibility for the exact calculation of even higher contributions in the anomalous magnetic moment of
non-composite particles is worth a shot. The proposed approach to the self-Coulomb and self-Zeeman
interactions, furthermore, may significantly facilitate the optimization of some computational methods
in solid state physics making them self-consistent. Especially these methods studying multi-electron
systems that fail to address the self-interactions without the consideration of additional corrections.
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