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Abstract: Let (Q, 1), (A, v) be measure spaces. Let ({ fu }acq, {Tafacq) and ({gp}pea, {wp}pea) be
continuous 1-Schauder frames for a Banach space X'. Then for every x € X' \ {0}, we show that

1 1

——— v(supp(Bex)) > —48M—.
swp alwp) VEPPOsR) 2 —
acQ),BeA acQ),BeA

p(supp(05x)) >

where
Op: X 2xm>0x € LY, 1); Orx : QA3 a— (0x) () := fo(x) €K,

Og: X > x> 0gx € L1(A V), Bgx: A3 P (Bx)(B) := gp(x) EK.

This solves a problem asked by K. M. Krishna in the paper "Functional Continuous Uncertainty
Principle’ [arXiv:2308.00312v1].
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1. Introduction

Given a collection {Tj};’:l in a finite dimensional Hilbert space H over K (R or C), let
9*[ : H =] h — th = (<h,’T]>)7:1 S K}’l.

Following is the most general form of discrete uncertainty principle for finite dimensional Hilbert
spaces.

Theorem 1 ((Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle) [2,3,7]). Let
{7j}i1, {wj}j_y be two Parseval frames for a finite dimensional Hilbert space H. Then

Vi e H\ {0}.

<||9rh||0+ [16ehllo
2

2
) = lechlolilo > 5
max (7}, wy)|
1<j,k<n
Recently, Theorem 1 has been greatly improved to continuous families in Banach spaces (even

infinite dimensions). To state the result, we need a notion.

Definition 1 ([4]). Let (Q, u) be a measure space. Let {Ty},cq be a collection in a Banach space X and
{futacq be a collection in X*. The pair ({ fu tucq, {Ta}acq) is said to be a continuous p-Schauder frame
for X (1 < p < o0) if the following holds.

(i) Forevery x € X, themap Q) > « — fo(x) € Kis measurable.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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(ii) Foreveryx € X,
%7 = [ 1fa(0)l dn(e).
Q

(iii) Forevery x € X, the map QY 3 o — fo(x)To € X is weakly measurable.
(iv) Foreveryx € X,

v = [ ful@mdp(e)
Q

where the integral is weak integral.
Note that condition (i) in Definition 1 says that the map
O : X >x—=0mx € LP(Qu); Ox:Q3am (0px)(a) = fu(x) €K
is a linear isometry.

Theorem 2 ((Functional Continuous Uncertainty Principle) [4]). Let (Q), ), (A, v) be measure spaces.
Let ({fu}acq, {Tatacq) and ({gp}pen, {wp}pen) be continuous p-Schauder frames for a Banach space X'
Then for every x € X \ {0}, we have

1 1 1
m/ v(supp(0gx))? u(supp(frx)) m,

acQ),BEA acQ),BEA

=

(supp(6,x)) 7 v(supp(Bx)) T > >

where q is the conjugate index of p.

Corollary 1 ((Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle)
[5]). Let ({f; =1 {’L’j};lzl) and ({gx}i 1, {wi} ) be p-Schauder frames for a finite dimensional Banach
space X. Then for every x € X \ {0}, we have

1

max ilw
1<j<n,1<k<m |f]( k)|

1
max [gx(Tj)|’

1 1 1 1
165§ l165x[lg = and ||0gx]|g [|05x|g >

where q is the conjugate index of p.

In paper [4], it is asked that whether we have version of Theorem 2 for p = 1 and p = co. In this
paper, we solve the problem for p = 1.

2. Functional Continuous Uncertainty Principle for Continuous 1-Schauder Frames

We clearly have the following definition from Definition 1.

Definition 2. Let (), jt) be a measure space. Let {7y } ey be a collection in a Banach space X and { f } e
be a collection in X*. The pair ({ fa } e, {Ta facq) is said to be a continuous 1-Schauder frame for X if the
following holds.

i Forevery x € X, themap Q) 3 o — fo(x) € K is measurable.
ii Foreveryx € X,

Ixll = [ 1fe)ldn(a).
Q
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iii For every x € X, the map QO > « — fo(x)Ty € X is weakly measurable.
iv Forevery x € X,

x= [ fu@mdp(e)
Q

where the integral is weak integral.
We note that condition (i) in Definition 2 says that the map
Op: X 2 x> 0px € LY, n); Orx 1 QA3 a— (0x) () = fu(x) €K
is a linear isometry.

Theorem 3 (Functional Continuous Uncertainty Principle for Continuous 1-Schauder Frames).

Let (Q, 1), (A,v) be measure spaces. Let ({fu}acq, {Tatuca) and ({gp}pen, {wp}pea) be continuous
1-Schauder frames for a Banach space X. Then for every x € X \ {0}, we have

1 1
supp(ffx)) > ——————, v(supp(fex)) > —m8 ————.
V( PP( f )) = sup |fa(w/5)| ( PP( g )) sup |g/3(To()|
acQ),BeA acQ),BeA
In particular,
1
p(supp(6yx))v(supp(6gx)) >
( sup Ifa(wﬁ)|>< sup |8ﬁ(Ttx)|>
acQ),BeEA acQ),BeEA
and
(supp(8¢x)) + v(supp(bex)) > L + L
HISIPPY PP = "sup Thlwp)l 7 sup Igp(m)l
xeQ),BeEA aeQ),BeEA

Proof. Let x € X'\ {0}. First using 0y is an isometry and later using 0 is an isometry, we get
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Il = logxll = [ 1)l dn@ = [ 1fa(x)]du(a)
Q

supp((?fx)

_ / fu (/gﬂ(x)wﬁ dV(ﬁ)) dp(a) = /
A

supp(6x)
= [ | [ s@fepa@|d@s [ [ Igeflwp)dv()duta)

supp(Gfx) supp(fgx) supp(Gfx) supp(fgx)

g( sup |fa<wﬁ>|> [ Is@ldv(e)duta)

acQ),BEA
p supp(efx) supp(ng)

=< sup |fa(wﬁ)|> p(supp(6yx)) / gp(x)| dv(B)

acQ),BEA

[ 85)falcwp) du(p)

A

dp(a)

supp(fgx)
—< sup Ifa(wﬁ)|> V(SUPP(Gfx))”ngH_( sup Ifa(w/s)|> p(supp(05x)) | x|.
ac(),BeEA acQ),BeEA
Therefore
< (supp(6,x))
A A
aeQ),BeA

On the other way, first using 6 is an isometry and 6 is an isometry, we get

Il = legxl = [ Igx)av(g) = [ Igp(x)ldv(p)
A

supp(fgx)

= [ s (/fa(X)Tadﬂ(w)) wp) = |
Q

supp(fgx) supp(fgx)

[ Fulx)gp(m) dn(w)| dv(p)

Q

- [ | ] A a@ < [ [ @) du@dve)

supp(fgx) pupp(6sx) supp(fgx) supp(65x)

<< sup |gﬁ(Ta)|> / / |fa(x)| dp(a) dv(B)

acQ),BeA
P supp(6gx) supp(0x)

=< sup Igﬁ(T«)!> v(supp(6gx)) / | fa(x) | dpi(e)

acQ),peA Supp“vx)
=< sup Igﬁm)!) v(supp(fgx))|05x|| :< sup Igp(m)l> v(supp(fgx))|[x]|-
xe0,BeA xe0,BeA
Therefore
1
—————— < v(supp(fex)).
sup Igp(w)] = (supp(fx))

acQ),peEA
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O

Corollary 2 (Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle for
1-Schauder Frames). Let ({f; ;-1:1,{1']- 7:1) and ({g}i1 {wk}iL,) be 1-Schauder frames for a finite
dimensional Banach space X. Then for every x € X \ {0}, we have

1 1
Orxl|lo > and ||6.x||p > .

max ilw
1<j<n1<k<m |f]( k)| 1<j<n,1<k<m

In particular,

1
(. max,_ 560 ) (_ max,_ o))

1<j<n,1<k<m

10 ¢xl|ol|0gx]l0 >

and

1 1

+ .
(o max |fi(wr)] max [gx(T)]

185x[lo + [|6gx[|o =

Remark 1. We note that the L'-norm uncertainty principles derived in [1,6,8] differ from our result.
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