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Abstract: Let (Ω, µ), (∆, ν) be measure spaces. Let ({ fα}α∈Ω, {τα}α∈Ω) and ({gβ}β∈∆, {ωβ}β∈∆) be

continuous 1-Schauder frames for a Banach space X . Then for every x ∈ X \ {0}, we show that

µ(supp(θ f x)) ≥
1

sup
α∈Ω,β∈∆

| fα(ωβ)|
, ν(supp(θgx)) ≥

1

sup
α∈Ω,β∈∆

|gβ(τα)|
.

where

θ f : X ∋ x 7→ θ f x ∈ L1(Ω, µ); θ f x : Ω ∋ α 7→ (θ f x)(α) := fα(x) ∈ K,

θg : X ∋ x 7→ θgx ∈ L1(∆, ν); θgx : ∆ ∋ β 7→ (θgx)(β) := gβ(x) ∈ K.

This solves a problem asked by K. M. Krishna in the paper ’Functional Continuous Uncertainty

Principle’ [arXiv:2308.00312v1].
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1. Introduction

Given a collection {τj}
n
j=1 in a finite dimensional Hilbert space H over K (R or C), let

θτ : H ∋ h 7→ θτh := (〈h, τj〉)
n
j=1 ∈ K

n.

Following is the most general form of discrete uncertainty principle for finite dimensional Hilbert

spaces.

Theorem 1 ((Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle) [2,3,7]). Let

{τj}
n
j=1, {ωj}

n
j=1 be two Parseval frames for a finite dimensional Hilbert space H. Then

(

‖θτh‖0 + ‖θωh‖0

2

)2

≥ ‖θτh‖0‖θωh‖0 ≥
1

max
1≤j,k≤n

|〈τj, ωk〉|
2

, ∀h ∈ H \ {0}.

Recently, Theorem 1 has been greatly improved to continuous families in Banach spaces (even

infinite dimensions). To state the result, we need a notion.

Definition 1 ([4]). Let (Ω, µ) be a measure space. Let {τα}α∈Ω be a collection in a Banach space X and

{ fα}α∈Ω be a collection in X ∗. The pair ({ fα}α∈Ω, {τα}α∈Ω) is said to be a continuous p-Schauder frame

for X (1 < p < ∞) if the following holds.

(i) For every x ∈ X , the map Ω ∋ α 7→ fα(x) ∈ K is measurable.
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(ii) For every x ∈ X ,

‖x‖p =
∫

Ω

| fα(x)|p dµ(α).

(iii) For every x ∈ X , the map Ω ∋ α 7→ fα(x)τα ∈ X is weakly measurable.
(iv) For every x ∈ X ,

x =
∫

Ω

fα(x)τα dµ(α),

where the integral is weak integral.

Note that condition (i) in Definition 1 says that the map

θ f : X ∋ x 7→ θ f x ∈ Lp(Ω, µ); θ f x : Ω ∋ α 7→ (θ f x)(α) := fα(x) ∈ K

is a linear isometry.

Theorem 2 ((Functional Continuous Uncertainty Principle) [4]). Let (Ω, µ), (∆, ν) be measure spaces.

Let ({ fα}α∈Ω, {τα}α∈Ω) and ({gβ}β∈∆, {ωβ}β∈∆) be continuous p-Schauder frames for a Banach space X .

Then for every x ∈ X \ {0}, we have

µ(supp(θ f x))
1
p ν(supp(θgx))

1
q ≥

1

sup
α∈Ω,β∈∆

| fα(ωβ)|
, ν(supp(θgx))

1
p µ(supp(θ f x))

1
q ≥

1

sup
α∈Ω,β∈∆

|gβ(τα)|
,

where q is the conjugate index of p.

Corollary 1 ((Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle)

[5]). Let ({ f j}
n
j=1, {τj}

n
j=1) and ({gk}

m
k=1, {ωk}

m
k=1) be p-Schauder frames for a finite dimensional Banach

space X . Then for every x ∈ X \ {0}, we have

‖θ f x‖
1
p

0 ‖θgx‖
1
q

0 ≥
1

max
1≤j≤n,1≤k≤m

| f j(ωk)|
and ‖θgx‖

1
p

0 ‖θ f x‖
1
q

0 ≥
1

max
1≤j≤n,1≤k≤m

|gk(τj)|
,

where q is the conjugate index of p.

In paper [4], it is asked that whether we have version of Theorem 2 for p = 1 and p = ∞. In this

paper, we solve the problem for p = 1.

2. Functional Continuous Uncertainty Principle for Continuous 1-Schauder Frames

We clearly have the following definition from Definition 1.

Definition 2. Let (Ω, µ) be a measure space. Let {τα}α∈Ω be a collection in a Banach space X and { fα}α∈Ω

be a collection in X ∗. The pair ({ fα}α∈Ω, {τα}α∈Ω) is said to be a continuous 1-Schauder frame for X if the

following holds.

i For every x ∈ X , the map Ω ∋ α 7→ fα(x) ∈ K is measurable.
ii For every x ∈ X ,

‖x‖ =
∫

Ω

| fα(x)| dµ(α).
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iii For every x ∈ X , the map Ω ∋ α 7→ fα(x)τα ∈ X is weakly measurable.
iv For every x ∈ X ,

x =
∫

Ω

fα(x)τα dµ(α),

where the integral is weak integral.

We note that condition (i) in Definition 2 says that the map

θ f : X ∋ x 7→ θ f x ∈ L1(Ω, µ); θ f x : Ω ∋ α 7→ (θ f x)(α) := fα(x) ∈ K

is a linear isometry.

Theorem 3 (Functional Continuous Uncertainty Principle for Continuous 1-Schauder Frames).

Let (Ω, µ), (∆, ν) be measure spaces. Let ({ fα}α∈Ω, {τα}α∈Ω) and ({gβ}β∈∆, {ωβ}β∈∆) be continuous

1-Schauder frames for a Banach space X . Then for every x ∈ X \ {0}, we have

µ(supp(θ f x)) ≥
1

sup
α∈Ω,β∈∆

| fα(ωβ)|
, ν(supp(θgx)) ≥

1

sup
α∈Ω,β∈∆

|gβ(τα)|
.

In particular,

µ(supp(θ f x))ν(supp(θgx)) ≥
1

(

sup
α∈Ω,β∈∆

| fα(ωβ)|

)(

sup
α∈Ω,β∈∆

|gβ(τα)|

)

and

µ(supp(θ f x)) + ν(supp(θgx)) ≥
1

sup
α∈Ω,β∈∆

| fα(ωβ)|
+

1

sup
α∈Ω,β∈∆

|gβ(τα)|
.

Proof. Let x ∈ X \ {0}. First using θ f is an isometry and later using θg is an isometry, we get
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‖x‖ = ‖θ f x‖ =
∫

Ω

| fα(x)| dµ(α) =
∫

supp(θ f x)

| fα(x)| dµ(α)

=
∫

supp(θ f x)

∣

∣

∣

∣

∣

∣

fα





∫

∆

gβ(x)ωβ dν(β)





∣

∣

∣

∣

∣

∣

dµ(α) =
∫

supp(θ f x)

∣

∣

∣

∣

∣

∣

∫

∆

gβ(x) fα(ωβ) dν(β)

∣

∣

∣

∣

∣

∣

dµ(α)

=
∫

supp(θ f x)

∣

∣

∣

∣

∣

∣

∣

∫

supp(θgx)

gβ(x) fα(ωβ) dν(β)

∣

∣

∣

∣

∣

∣

∣

dµ(α) ≤
∫

supp(θ f x)

∫

supp(θgx)

|gβ(x) fα(ωβ)| dν(β) dµ(α)

≤

(

sup
α∈Ω,β∈∆

| fα(ωβ)|

)

∫

supp(θ f x)

∫

supp(θgx)

|gβ(x)| dν(β) dµ(α)

=

(

sup
α∈Ω,β∈∆

| fα(ωβ)|

)

µ(supp(θ f x))
∫

supp(θgx)

|gβ(x)| dν(β)

=

(

sup
α∈Ω,β∈∆

| fα(ωβ)|

)

µ(supp(θ f x))‖θgx‖ =

(

sup
α∈Ω,β∈∆

| fα(ωβ)|

)

µ(supp(θ f x))‖x‖.

Therefore

1

sup
α∈Ω,β∈∆

| fα(ωβ)|
≤ µ(supp(θ f x)).

On the other way, first using θg is an isometry and θ f is an isometry, we get

‖x‖ = ‖θgx‖ =
∫

∆

|gβ(x)| dν(β) =
∫

supp(θgx)

|gβ(x)| dν(β)

=
∫

supp(θgx)

∣

∣

∣

∣

∣

∣

gβ





∫

Ω

fα(x)τα dµ(α)





∣

∣

∣

∣

∣

∣

dν(β) =
∫

supp(θgx)

∣

∣

∣

∣

∣

∣

∫

Ω

fα(x)gβ(τα) dµ(α)

∣

∣

∣

∣

∣

∣

dν(β)

=
∫

supp(θgx)

∣

∣

∣

∣

∣

∣

∣

∫

supp(θ f x)

fα(x)gβ(τα) dµ(α)

∣

∣

∣

∣

∣

∣

∣

dν(β) ≤
∫

supp(θgx)

∫

supp(θ f x)

| fα(x)gβ(τα)| dµ(α) dν(β)

≤

(

sup
α∈Ω,β∈∆

|gβ(τα)|

)

∫

supp(θgx)

∫

supp(θ f x)

| fα(x)| dµ(α) dν(β)

=

(

sup
α∈Ω,β∈∆

|gβ(τα)|

)

ν(supp(θgx))
∫

supp(θ f x)

| fα(x)| dµ(α)

=

(

sup
α∈Ω,β∈∆

|gβ(τα)|

)

ν(supp(θgx))‖θ f x‖ =

(

sup
α∈Ω,β∈∆

|gβ(τα)|

)

ν(supp(θgx))‖x‖.

Therefore

1

sup
α∈Ω,β∈∆

|gβ(τα)|
≤ ν(supp(θgx)).
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Corollary 2 (Functional Donoho-Stark-Elad-Bruckstein-Ricaud-Torrésani Uncertainty Principle for

1-Schauder Frames). Let ({ f j}
n
j=1, {τj}

n
j=1) and ({gk}

m
k=1, {ωk}

m
k=1) be 1-Schauder frames for a finite

dimensional Banach space X . Then for every x ∈ X \ {0}, we have

‖θ f x‖0 ≥
1

max
1≤j≤n,1≤k≤m

| f j(ωk)|
and ‖θgx‖0 ≥

1

max
1≤j≤n,1≤k≤m

|gk(τj)|
.

In particular,

‖θ f x‖0‖θgx‖0 ≥
1

(

max
1≤j≤n,1≤k≤m

| f j(ωk)|

)(

max
1≤j≤n,1≤k≤m

|gk(τj)|

)

and

‖θ f x‖0 + ‖θgx‖0 ≥
1

max
1≤j≤n,1≤k≤m

| f j(ωk)|
+

1

max
1≤j≤n,1≤k≤m

|gk(τj)|
.

Remark 1. We note that the L1-norm uncertainty principles derived in [1,6,8] differ from our result.
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