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Abstract: Hepatitis B Virus (HBV) is a challenge for global health services, affecting millions and leading 

hundreds to end-stage liver disease each year. This comprehensive review explores the interactions between 

HBV and the host, examining their impact on clinical outcomes. HBV infection encompasses a spectrum of 

severity, ranging from acute hepatitis B to chronic hepatitis B, which can potentially progress to cirrhosis and 

hepatocellular carcinoma (HCC). Occult hepatitis B infection (OBI), characterized by low HBV DNA levels in 

hepatitis B surface antigen-negative individuals, can reactivate and cause acute hepatitis B. The identification 

of diverse HBV genotypes reveals distinct geographical distributions and associations with clinical outcomes. 

Moreover, single nucleotide polymorphisms (SNPs) within the host genome have been linked to several clinical 

outcomes, including cirrhosis, HCC, OBI, hepatitis B reactivation, and spontaneous clearance. The immune 

response plays a key role in controlling HBV infection by eliminating infected cells and neutralizing HBV in 

the bloodstream. Furthermore, HBV can modulate host metabolic pathways involved in glucose and lipid 

metabolism and bile acid absorption, further influencing disease progression. HBV clinical outcomes correlate 

with three levels of viral adaptation. In conclusion, the clinical outcomes of HBV infection could result from 

complex immune and metabolic interactions between the host and HBV. These outcomes can vary among 

populations and are influenced by HBV genotypes, host genetics, environmental factors, and lifestyle. 

Understanding the degrees of HBV adaptation is essential for developing region-specific control and 

prevention measures. 

Keywords: Hepatitis B virus; HBV genotype H; immune response; metabolic interaction; clinical 

outcome; viral adaptation 

 

1. Introduction 

Hepatitis B Virus (HBV) infection remains a significant challenge for healthcare services 

worldwide. In 2019, approximately 296 million people had evidence of chronic hepatitis B, and 820 

000 died due to complications associated with hepatitis B [1]. HBV is highly infectious and can be 

transmitted from mother to child, by sexual contact or contaminated materials [2]. While most cases 

of HBV infection are asymptomatic, around 90% of those infected in childhood and 5% of those 

infected in adulthood may develop chronic hepatitis B [2]. Without proper management, HBV 

infection can lead to serious liver complications, such as liver cirrhosis and hepatocellular carcinoma 

(HCC) [3]. 

In contrast to chronic hepatitis B, acute hepatitis B occurs within six months of exposure to the 

virus and refers to the initial phase of HBV infection [4]. Symptoms of acute hepatitis B include loss 

of appetite, fatigue, abdominal pain, jaundice, nausea, vomiting, fever, and dark urine [4]. While most 

individuals with acute HBV infection recover fully within a few months due to an efficient immune 

response that clears the virus [4], others may experience symptoms ranging from moderate to severe. 

The most severe form of acute hepatitis B is fulminant hepatitis B, which affects about 1%-2% of 

people with hepatitis B [5,6]. Fulminate hepatitis B is rare, but when it occurs, it can progress rapidly 

to life-threatening liver failure. Common complications associated with fulminant hepatitis B include 
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encephalopathy, coagulopathy, and multiorgan failure [7]. These complications are attributed to the 

host’s exaggerated immune response, which rapidly impairs the basic functions of the liver, such as 

detoxification, protein synthesis, and metabolism [7,8]. Dysfunction of these essential body processes 

can affect other organs (kidney, lung, heart, and brain), leading to abnormal personality changes, 

confusion, abnormal bleeding, easy bruising, prolonged bleeding time, and in severe cases, coma 

[7,8]. Without specialized medical care, the survival rate of patients with fulminant hepatitis B is poor 

(~25%), and liver transplantation could be the best hope for survival [8]. 

On the other hand, occult hepatitis B infection (OBI) is characterized by the presence of low 

levels of HBV DNA in the liver or peripheral blood of people who test negative for hepatitis B surface 

antigen (HBsAg) [9]. In OBI, the virus can pass undetected within cells without causing significant 

liver damage [10]. This characteristic favors the long-term survival of both the host and HBV. 

However, under certain circumstances, such as immune suppression or chemotherapy, OBI can 

reactivate, leading to acute hepatitis B [11]. 

2. HBV genotypes and human populations 

Due to the high genetic variability, HBV has been classified into ten genotypes (A to J) and more 

than 40 sub-genotypes [12]. HBV genotypes A, B, C, and D were discovered simultaneously in 1988, 

and four years later, the genotypes E and F were proposed [12,13]. Subsequently, genotypes G and H 

were discovered in 2000 and 2002, respectively [14,15]. In 2000, an aberrant genotype with evidence 

of recombination between genotypes A and C was identified [17]. These HBV sequences were 

classified as genotype I in 2008 [18]. Finally, in 2009, genotype J was identified in an 88-year-old 

patient diagnosed with HCC [19]. With the discovery of all HBV genotypes, it was possible to identify 

that each has a different geographical distribution and shows a close relationship with its host 

populations [20,21]. Genotype A is prevalent in Europe and Eastern-Southern Africa. Genotypes B 

and C are commonly found in Asia, including China, Japan, Korea, and Australia. Genotype D is 

predominant in the Mediterranean, Arab countries, India, and Russia [20,21]. Genotype E is mainly 

found in West-Central Africa, while genotype F predominates in Central and South America [23]. 

Genotype G is mainly detected in the risk group of men who have sex with men (MSM) from Mexico, 

the United States, France, and the Netherlands [23,24]. Genotype H is endemic to the Mesoamerican 

region, including Mexico and Central America [25]. Genotypes I and J have also been reported in 

Southeast Asia [18,19]. 

In each region, HBV genotypes have been linked to several clinical outcomes. In Spain, genotype 

A has a low antiviral response, while genotypes B and C have been associated with HCC in Asia 

[26,27]. In an Alaska native population, the sub-genotype F1 increased 12-fold the risk of HCC 

compared with genotypes B and D [28]. In Europe and Asia, genotype D has been linked with the 

worst rates of acute, fulminate, and chronic liver disease compared with genotype A [29]. In Mexico, 

patients infected with the genotype A2 were more susceptible to resistance mutations than genotypes 

non-A [30]. In a small population residing in the Brazilian Amazon, individuals with genotype D 

exhibited a 7.44-fold higher risk of developing advanced liver disease than genotypes A and F [31]. 

In contrast, most people are asymptomatic to the infection caused by genotype F1b in the Colombian 

Amazon region [32]. In Mexico, genotype H infection is often asymptomatic without significant 

clinical or laboratory manifestations of liver disease. Also, genotype H has been associated with low 

viral loads and OBI, particularly in the indigenous people of Mexico [10,23]. HCC is rare among 

Mexican patients with genotype H [33], but when it is found in another region it has been linked to 

HCC, for example, in Japan [34], suggesting that genotype H has sustained a closer adaptative 

relationship with the Mexican population.  

3. SNPs and HBV clinical outcomes 

In addition to HBV genotypes, some variations in the patient’s genome, known as single 

nucleotide polymorphisms (SNPs), have been linked to different clinical outcomes, such as the risk 

of cirrhosis, HCC, OBI, hepatitis B reactivation, and clearance (Table 1). Cirrhosis-associated SNPs 

are in genes that participate in extracellular matrix production, immune response, intracellular 
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adhesion, and signaling pathways [35–38]. A study in China associated SNPs at codons R241-E469 of 

the Intercellular adhesion molecule-1 (ICAM-1) gene with decompensated cirrhosis [35]. Also, the 

haplotype A874 and A2109 in Gamma Interferon (IFN-γ) gene increases 1.5-fold the risk of cirrhosis 

in the Chinese population [36]. A multivariate analysis found that Korean patients with detectable 

HBV viral load and L/L genotype in the Transforming growth factor (TGF)-b1 gene are at risk of 

developing cirrhosis [37]. In another Chinese study, the presence of rs4796793C-rs2293152G-

rs1053004T haplotype in Signal Transducer and Activator of Transcription 3 (STAT3) significantly 

increases the risk of cirrhosis [38].  

Among genes that increase susceptibility to HCC in chronic HBV patients are STAT4, 

complement component (C2), Protein Phosphatase 1 Catalytic Subunit Beta (PPP1CB), tumor 

suppressor protein (p53), MDM2 proto-oncogene (MDM2), DEP domain containing 5 (DEPDC5), X-

chromosome long arm band 22.1 (Xq22.1), and CD33 molecule (SIGLEC3 or CD33), all studies were 

conducted in Asian populations [39–45]. Based on the odds ratio (OR) value, the most important 

SNPs associated with HCC in HBV Korean patients are rs1042522 in p53 and rs2279744 in MDM2, 

which increases 3.59- and 4.27-fold the risk of HCC, respectively [45]. Combined, the homozygotes 

MDM2C/C (p53: rs1042522) and G/G (MDM2: rs2279744) had a 20.78-fold higher risk of HCC than 

the rest of the genotypes [45].  

Several SNPs have been analyzed in OBI cases and controls. However, only variations in HLA 

have shown a strong association with OBI. A study found that the T allele of HLA-DPA1 (rs3077) 

increases 6.12-fold the risk of OBI in the Indonesian population [46]. In northwest China, HLA-

C*07:01, B*44:03, DRB1*07:01, and DQB1*02:02 were related to OBI with OR values of 4.7, 2.1, 2.0, and 

1.9, respectively [47]. After achieving a sustained viral response, some HBV patients may develop 

reactivation. This can be triggered by immunosuppressive therapy, autoimmune diseases, and organ 

transplants [48]. It has been reported that 51.9% of patients with chronic hepatitis B can present 

reactivation after antiviral treatment [49]. HBV reactivation can be silent, but in patients with 

cirrhosis, it indicates a poor prognosis [49]. Currently, the AA genotype of HLA-DPB2 (rs872956) has 

been associated with HBV reactivation in Japanese treated with immunosuppressive therapy (OR: 

8.27, n=42) [50]. In lymphoma patients (n=14), the SNPs in IL-13 (rs1295686) were associated with the 

reappearance of HBsAg in Chinese patients [51]. 

On the other hand, among the genes associated with spontaneous clearance of HBV infection 

are Sodium taurocholate cotransporting polypeptide (NTCP), Toll-like receptor (TLR), interferon-

induced helicase C domain-containing protein 1 (IFIH1), microRNA 219-1, IL, and HLA [52–57]. Of 

these, one of the most studied is the SNPs in NTCP; this protein is a transporter of bile acids in the 

liver and functions as an entry receptor for HBV. NTCP is encoded by the Solute Carrier Family 10 

member 1 (SLC10A1) gene [52]. A study in Taiwan found that the A allele SLC10A1 rs2296651 is 

associated with HBsAg seronegativity, while the AG or AA alleles are protective factors against HCC 

[57]. Based on a meta-analysis of 9 case-control studies, the A allele of the SLC10A1 rs2296651 shows 

strong evidence of spontaneous clearance [58]. 

Table 1. Single nucleotide polymorphism (SNP) associated with HBV clinical outcomes. 

Clinical outcome and associated 

genes 

Populati

on 
SNP database OR 95% CI 

Refere

nce 

Cirrhosis 

Intercellular adhesion molecule-

1 (ICAM-1)  
China rs1799969 (A) 

4.19

7 

2.550-

7.074 
[35] 

Interferon gamma (IFN-γ) China 
rs2430561 (A) + 

rs1861494 (A) 

1.48

5 

1.065-

2.070 
[36] 

Transforming growth factor 

(TGF)-beta1  
Korea rs1982073 (LL) 

3.40

8 

1.279-

9.085 
[37] 

Signal transducer and activator 

of transcription 3 (STAT3) 
China rs4796793 (GG) 2.17 1.11-4.23 [38] 
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Signal transducer and activator 

of transcription 4 (STAT4) 
China rs7574865 (TG) 1.17 1.03–1.34 [39] 

Complement component 2 (C2) China rs9267673 (TC) 1.37 1.15–1.63 [39] 

Human leukocyte antigen 

(HLA)-DRB1 
China rs2647073 (CA) 1.63 1.29–2.06 [39] 

Human leukocyte antigen 

(HLA)-DRB1 
China rs3997872 (AT) 1.86 1.32–2.62 [39] 

Human leukocyte antigen 

(HLA)-DQ 
China rs9275319 (GA) 1.32 1.06–1.64 [39] 

Hepatocellular carcinoma  

Protein Phosphatase 1 Catalytic 

Subunit Beta (PPP1CB) 
China rs13025377 (AA) 1.54 1.22-1.95 [41] 

Mouse double minute 2 homolog 

(MDM2) 
Korea rs2279744 (G) 4.27 2.23-8.20 [45] 

Tumor protein 53 (p53) Korea rs1042522 (Pro/Pro) 3.59 1.77-7.31 [45] 

MDM2 + p53 Korea 
rs2279744 (G/G) + 

rs1042522 (Pro/Pro) 

20.7

8 
5.25-82.36 [45] 

DEP Domain Containing 5 

(DEPDC5) 
China rs1012068 (CC) 

2.39

7 

1.251-

4.595 
[40] 

X-chromosome long arm band 

22.1 (Xq22.1) 
China rs5945919 (AG) 2.22 1.15-4.30 [43] 

CD33 molecule (SIGLEC3 or 

CD33) 
Taiwan rs12459419 (C) 

1.25

6 

1.027-

1.535 
[44] 

Occult hepatitis B 

Human leukocyte antigen 

(HLA)-DPA1 

Indonesi

a 
rs3077 (CC) 6.12 1.30-28.85 [46] 

Human leukocyte antigen 

(HLA)-DPA1 

Indonesi

a 

rs3077 (T) + 

rs3135021(G) + 

rs9277535 (A) 

4.9 1.12-21.52 [46] 

Human leukocyte antigen 

(HLA)-DQB1 
China NA 2.15 

1.118-

4.161 
[47] 

Human leukocyte antigen 

(HLA)-HLA-C*07:01 
China NA 

2.14

6 

1.070-

4.306 
[47] 

Human leukocyte antigen 

(HLA)-B*44:03 
China NA 

4.69

3 

1.822-

12.086 
[47] 

Human leukocyte antigen 

(HLA)-DRB1*07:01 
China NA 

1.91

9 

1.188-

3.101 
[47] 

Human leukocyte antigen 

(HLA)-DQB1*02:02  
China NA 

2.01

2 

1.303-

3.107 
[47] 

HBV reactivation 

Human leukocyte antigen 

(HLA)-DPB2 
Japan rs872956 (AA) 

8.27

7 

1.540-

51.550 
[50] 

Interleukin 13 (IL-13) Taiwan rs1295686 (AA) 
4.68

3 

1.030-

19.156 
[51] 

Clearance or protection 

Sodium taurocholate 

cotransporting polypeptide 

(NTCP) 

Korea rs2296651(CT) 
0.45

5 

0.220-

0.942 
[52] 

Toll-like receptor (TLR5) Taiwan rs5744174 (T) 1.32 1.03-1.69 [53] 

Interferon-induced helicase C 

domain-containing protein 1 

(IFIH1) 

China rs2111485 (G) 0.47 0.25-0.87 [54] 
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DExD/H-box helicase 58 

(DDX58) 
China 

rs3824456 (C) or 

rs2074160 (A)  
0.69 0.49-0.97 [54] 

Sodium taurocholate 

cotransporting polypeptide 

(NTCP) 

Taiwan rs2296651(AA) 0.13 0.05-0.34 [57] 

NA: Not available; letters in parentheses indicate allele or genotype; OR: Odds ratio; 

95% CI: 95% confidence interval 

4. HBV life cycle and immune response 

The control of HBV infection by immune response is a complex process that includes eliminating 

infected cells and neutralizing HBV in the bloodstream by antibodies (Figure 1). During the initial 

phase of infection, HBV enters hepatocytes (liver cells) through receptor-mediated endocytosis, 

utilizing the NTCP receptor [59]. Once inside the hepatocyte, the virus undergoes uncoating, 

releasing its DNA into the cytoplasm. The viral DNA is then transported to the nucleus and converted 

into covalently closed circular DNA (cccDNA), which can integrate into the host genome [60]. The 

HBV genome serves as a template for the transcription of several messenger RNAs (mRNAs), which 

are transported to the cytoplasm to be translated into proteins. Some of these proteins contribute to 

assembling new viral particles, while others are targeted for degradation within the proteasome 

[61,62]. The resulting peptides can be recognized by pattern recognition receptors (PRRs), initiating 

a signaling cascade that leads to the production of Interferons (IFNs) (Figure 2a) [63]. IFNs activate 

immune response cells such as phagocytes and natural killer cells, while the peptides recognized by 

histocompatibility complexes class I (MHC-I) activate CD8 T cells [64,65]. Immune response cells 

attack infected hepatocytes releasing cytokines (Granzymes, perforin, soluble Fas ligand (SFasL)), 

which induce the programmed cell death through cytoplasmic and nuclear pathways (Figure 2a) [66]. 

Simultaneously, circulating phagocytes capture and destroy the HBVs in the bloodstream. In this 

case, the resulting peptides are presented by MHC-II to CD4 T cells [67]. This interaction stimulates 

the production of interleukin-21 (IL-21) in CD-4 T cells, particularly in follicular Helper T cells (TfH) 

[68]. IL-21 induces the expression of B lymphocyte-induced maturation protein-1 (BLIMP-1), which 

is a transcription factor key for plasma cell differentiation. Also, IL-21 promotes the generation of 

long-lived plasma cells in the bone marrow and continues to secrete antibodies for extended periods 

[69]. Among the most important antibodies produced by plasmatic cells are Immunoglobulin (Ig) M 

and IgG, which neutralize the hepatitis B core antigen (HBcAg); IgG anti-Hepatitis B e Antigen (IgG 

anti-HBe), and IgG anti-Hepatitis B surface Antigen (IgG anti-HBs) (Figure 2b) [70]. Overall, the 

immune response plays a crucial role in the outcome of HBV infection, determining whether it is 

cleared or progresses to chronic infection. Furthermore, the balance between the immune response 

and the low levels of viral replication could promote the long-term coexistence of HBV and its host. 
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Figure 1. Hepatitis B virus cycle. 1) The cycle begins with the specific binding of HBV to its receptor, 

sodium-taurocholate co-transporting polypeptide (NTCP). This binding triggers the process of 

receptor-mediated endocytosis. 2) Inside the hepatocyte, the lysosomes break down the viral envelope 

and nucleocapsid. 3) Viral DNA is released into the cytoplasm. 4) Subsequently, the viral DNA is 

transported to the nucleus, where it undergoes repair and conversion to a more stable form called 

covalently closed circular DNA (cccDNA). 5) The cccDNA serves as a template for the synthesis of 

viral RNA. 6) After, ARNs are transported to the cytoplasm and the rough endoplasmic reticulum 

(RER) to facilitate the production of viral proteins. 7-8) The core protein or nucleoprotein assembles 

around a circularized RNA within the cytoplasm. 9) After as-sembly, transcription is carried out by 

the viral polymerase. 10-11) Within the RER, the viral particles are enveloped by a lipid membrane, 

which carries the Hepatitis B surface Antigen (HBsAg). 12) Finally, the mature virions are released 

into the bloodstream, accompanied by empty particles that serve as decoys for the immune response. 
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Figure 2. Immune response during HBV infection. (A) shows the cytokine-mediated process of 

hepatocyte death. Numbers 1-10 indicate the cell activation process. Numbers 11-14 and 15-16 show 

the nuclear and cytoplasmic pathways (respectively) to activate apoptosis. (B) shows the 

neutralization of viral particles in the bloodstream. 1) capture and processing of HBV, 2) presentation 

of antigens, 3) release of cytokines (IL-21), 4) differentiating B cells into plasma cells. Finally, 5) 

production of primary antibodies against HBV infection. 

5. HBV and metabolism 

The liver performs vital metabolic processes in the body, and hepatocytes are the primary target 

of HBV. Consequently, the HBV genome or viral proteins can inevitably interact at a molecular level 

with metabolic pathways. Evidence suggests that HBV can modulate directly or indirectly key 

enzymes involved in glucose metabolism, lipid metabolism, and bile acid uptake (Figure 3) [77].  

A study in vitro showed that Hepatitis B x protein (HBx) can up-regulate the expression of a 

long non-coding RNA Urothelial Carcinoma Associated 1 (LncRNA UCA1), which induces the 

expression of hexokinase [72,73]. In primary rat hepatocytes, phosphofructokinase transcription 

increased 72 hours post-transfection with HBx [74]. A proteomic analysis found that the enzymes 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate kinase (PK), phosphoglycerate 

kinase (PGK), and lactate dehydrogenase (LDH) were significantly up-regulated in HepG2 cells after 

transfection with different HBx genotypes [75]. These enzymes are crucial to carry out glycolysis in 

the liver. HBx can also affect gluconeogenesis through overexpression of the phosphoenolpyruvate 

carboxylase (PEPCK) and Glucose-6-phosphatase (G6PC), that catalyze the conversion of 

oxaloacetate to phosphoenolpyruvate and the hydrolysis of glucose-6-phosphate to glucose, 

respectively. Overexpression of these enzymes caused hyperglycemia in HBx transgenic mice [76]. In 

a yeast-based expression system, it has been observed that the expression of the preS2 mRNA (code 

HBsAg) may be reduced or suppressed when glucose concentrations reach 2% (Figure 2b) [77]. These 

findings suggest that the levels of HBsAg may be difficult to detect under high glucose conditions. 

HBx can also induce the transcription of the glucose-6-phosphate dehydrogenase gene (G6PD) [78], 

which is a key enzyme in the pentose phosphate pathway (PPP). The PPP is important for generating 

nicotinamide adenine dinucleotide phosphate (NADPH) and ribose-5-phosphate, contributing to 

redox balance, energy production, and nucleotide biosynthesis [71]. 
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Figure 3. HBV interaction with host metabolic pathways. 1-3) Metabolic control is mediated by the 

Hepatitis B protein X (HBx), which activates the expression of genes involved in 4-10) glucose 

metabolism (grey arrows), 11-18) lipid metabolism (blue arrows), and 19) bile acid uptake (red arrow). 

The enzymes or receptors highlighted in red represent the key proteins up-regulated by HBx. The 

orange arrows represent the main effects of metabolic control by HBV. 

In addition to its impact on glucose metabolism, HBV infection is associated with lipid droplet 

accumulation in hepatocytes. In cell culture, this phenomenon has been studied through the 

interaction of HBx with lipogenic genes, such as liver X receptor (LXR), sterol regulatory element-

binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and peroxisome proliferator-activated 

receptor (PPARs). In 2008, it was discovered that HBx can directly bind to LXRα isoform [79]. Once 

activated, the LXR is transported to the nucleus, where it activates the transcription of genes with the 

sequence AGGTCA [80]. Among them is the SREBP-1c, which acts as a transcription factor for genes 

responsible for synthesizing fatty acids, such as FAS and PPARs [81]. The FAS cytoplasmic complex 

converts acetyl-CoA and malonyl-CoA to palmitic acid, utilizing NADPH as a cofactor [81]. Palmitic 

acid is one of the most important fatty acids that make up triglycerides. On the other hand, PPAR 

upregulation can induce the expression of the enzyme serine-palmitoyl-transferase (SPT) that 

synthesizes sphingolipids [82]. Sphingolipids serve as structural components of the cell membrane 

and play a crucial role in maintaining the integrity of various organelles, including the endoplasmic 

reticulum, Golgi apparatus, mitochondria, and lysosomes [82]. Other enzymes induced by PPAR-α 

include carnitine palmitoyl transferase A1 (CPT1A), acyl-CoA dehydrogenase (ACADM), and 

peroxisomal acyl-CoA oxidase (ACOX1). These enzymes play crucial roles in β-oxidation, the process 

involved in the breakdown of fatty acids into acetyl-CoA molecules. Acetyl-CoA can enter the citric 

acid cycle or serve as substrates for the FAS complex [83]. Finally, the PPAR-ß/ isoform can induce 

the expression of the CD36 receptor and the phospholipid transfer protein (PLTP). CD36 facilitates 

the uptake of fatty acids and lipoproteins, while PLTP is involved in the transfer of phospholipids 

between lipoprotein particles [83,84]. 

HBV can impact bile acid metabolism through its interaction with NTCP, a protein involved in 

the reabsorption of bile acids. NTCP serves as a receptor for HBV to enter hepatocytes [59], and this 

interaction can disrupt the normal uptake and recycling of bile acids within the liver. As a result, 

there can be an increase in the levels of bile acids in the serum of patients [85]. This symptom was 
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analyzed in a cohort of patients with hepatitis B, finding that high levels of five bile acids (glycocholic 

acid, glycochenodeoxycholic acid, taurocholic acid, taurochenodeoxycholic acid, and 

glycoursodeoxycholic acid) were associated with the progression of cirrhosis [86]. These findings 

suggest that serum bile acid levels could be helpful as biochemical markers of fibrosis progression in 

patients with hepatitis B. 

HBV can modulate hepatocyte metabolism to create a favorable environment for its replication. 

HBx is the most important protein involved in the regulation of metabolism. The modulation of 

glucose metabolism creates an environment rich in glucose, energy, and nucleotides. At the same 

time, the control of lipid metabolism provides the necessary lipids to form new viral envelopes but 

promotes the accumulation of lipid droplets in hepatocytes. 

6. The theory of viral adaptation 

HBV-related viruses have been detected in various animal species, such as fish, amphibians, 

reptiles, rodents, bats, and primates [87]. The origin of these viruses can be traced back approximately 

400 million years [87]. A multidisciplinary archaeological study recently identified traces of HBV 

genotypes in ten millennia-old human remains [88]. During this time, humans and HBV genotypes 

have been subjected to selective pressures shaping their coevolutionary dynamic. Humans have 

experienced different environmental conditions, infectious diseases, diets, and social interactions 

[89]. These pressures can influence human genetic diversity, metabolism, immunity, and infection 

susceptibility [89]. Simultaneously, HBV adapts to the selective pressures imposed by the host, 

leading to a complex interaction (HBV/human) that could determine its current distribution, 

epidemiology, and clinical outcomes.  

In 2014, HBV and humans’ different degrees of adaptation were proposed [90]. This hypothesis 

suggests that the severity of liver disease tends to be lower as the degree of adaptation increases 

(Figure 4) [90]. HBV-host adaptations can be grouped into incomplete, semi-complete, and complete 

[90]. The lowest degree of adaptation is known as “incomplete adaptation.” Probably caused by a 

very recent interaction between the virus and its host population [91]. Incomplete adaptation can 

manifest in two ways. Firstly, in cases of fulminant hepatitis, HBV infection triggers a hyperimmune 

response that severely impairs liver function. This state is considered ineffective for HBV survival 

because it relies on the host to exist. Fulminant hepatitis represents an extreme form of incomplete 

adaptation. Another form of incomplete adaptation can be the cases of acute hepatitis B when the 

immune response efficiently eliminates the HBV DNA genomes without allowing the virus to 

develop a favorable intracellular environment for virus/host coexistence [6,7]. Both acute and 

fulminant hepatitis B are not commonly observed in human populations, suggesting that most 

individuals may exhibit another type of adaptation [90]. The second degree of adaptation is “semi-

complete adaptation,” observed in patients with chronic hepatitis B [90]. Although this type of 

infection does not immediately compromise the host’s life, prolonged exposure can lead to the 

development of fibrosis, cirrhosis, and hepatocellular carcinoma [2,92]. Different HBV genotypes, 

particularly genotypes B and C, have a higher risk of hepatocellular carcinoma [27,28], indicating a 

potential disruption in the adaptive process regarding metabolic or immunological interaction. 

Finally, the highest degree of adaptation is exemplified by OBI [90], where patients have low HBV 

viral load (<200 IU/mL) and absence of HBsAg [9,10]. This state is likely achieved by integrating the 

HBV genome into host cells, stability of cccDNA, and immune tolerance [93]. It allows for a 

homeostasis state between the human host and the specific HBV genotype, resulting in asymptomatic 

infection for many years [90]. This type of adaptation has been observed in the native population of 

Mexico infected by genotype H [94]. The molecular dating estimates that genotype H has been 

present in the Mexican population for at least 2070 years [95]. Another virus with a similar adaptation 

may be the sub-genotype F1b in the Amerindian population of the Amazon basin. These observations 

suggest that complete adaptation could develop between an endemic HBV genotype and its 

respective native population in each region [90]. 

The balance between viral replication and immune control is crucial for the HBV to persist 

within the host without causing excessive liver damage. This balance can be disrupted by several 
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factors, including viral mutations, a patient’s immune status, antiviral medications, exposure to 

toxins, co-infections, and lifestyle [97]. An additional significant factor to consider is the migration of 

HBV genotypes. As mentioned above, genotype H is less aggressive in native Mexican populations. 

However, when it migrates to a new population, such as Japan, it can cause acute hepatitis B [98] or 

liver cancer [34].  

In contrast to HBV, the infection caused by the hepatitis C virus (HCV) is considered more severe 

due to its high mortality rate (3.45 deaths per 100,000 people) compared to HBV (0.45 deaths per 

100,000 people) [99]. Among the attributable fraction contributing to the incidence of liver cancer, 

50% is related to hepatitis C, whereas 15% is related to hepatitis B [100]. Approximately 55%-85% of 

adults with hepatitis C develop the chronic form, whereas less than 5% of adults with hepatitis B 

develop chronic infection [101]. This difference may indicate that spontaneous clearance is more 

common in acute HBV than in acute HCV infection. Based on the adaptation theory to these findings, 

it can be inferred that HCV exhibits a lower degree of adaptation than HBV, likely due to its recent 

introduction to human populations. A molecular dating study suggests HCV originated in the Old 

World approximately 3,000 years ago [102]. However, HBV is estimated to have circulated in human 

populations for at least ten millennia [88]. The lower degree of adaptation of HCV to humans may 

explain why it is more likely to cause serious health problems, such as chronic infection, liver cancer, 

and death. 

 

Figure 4. The theory of viral adaptation. The three degrees of viral adaptation are shown on the left 

side. Each column indicates the representative clinical outcomes, viral load dynamics during 

infection, and immune and metabolic interactions. On the right, the potential factors that can break 

the levels of adaptation are represented. 

In conclusion, the clinical outcomes of HBV infection could result from complex immune and 

metabolic interactions between the host and HBV. These outcomes can vary among populations and 

are influenced by several factors, including the HBV genotype, the genetic makeup of the population, 

exposure to toxins, co-infections, comorbidities, antiviral medications, diets, and lifestyle. The 

different types of HBV infection suggest three distinct degrees of viral adaptation. Understanding the 

degrees of adaptation of HBV genotypes in different populations is essential to develop the most 

appropriate control and prevention measures.  
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