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Abstract: This work investigates the sliding mode control (SMC) problem for a class of uncertain
switched systems subject to asynchronous switching and an assigned finite time constraint. Two
important issues are how to ensure the reachability of state trajectories within the assigned time and
the input-to-output finite-time stability (IO-FTS) of the closed-loop switched systems during the whole
phase under asynchronous switching. To achieve these objectives, an asynchronous sliding mode
controller with adjustable parameters is constructed to drive the state trajectories onto the sliding
surface during the assigned finite-time interval. By means of the partitioning strategy, sufficient
conditions for the IO-FTS of the closed-loop switched are derived during the whole phase [0, T] using
the multiple Lyapunov function (MLF) approach. Additionally, the asynchronous characteristics are
detailedly investigated while analyzing the reachability of a specified sliding surface. Finally, an
illustrative example is given to illustrate the effectiveness of the proposed method.

Keywords: Switched systems; input-output finite-time stability; asynchronous switching; sliding
mode control

1. Introduction

As well known, switched systems consist of a family of subsystems described by differential or
difference equations, along with a switching law that orchestrates the transitions between these
subsystems. In the few decades, switched systems have garnered considerable attention from
researchers due to their powerful potential in various practical applications, such as stirred tank
reactors [1], automobile control systems [2], and other fields. Numerous theoretical results related to
switched systems have been provided, especially concerning the Lyapunov stability [3-6].

It is important to note that the previous research results have mainly focused on asymptotic
stability and exponential stability, which describe the system’s behavior over an infinite-time interval.
However, in practical industrial processes such as flight control [7] and mobile robots [8], the operating
time may be specific and finite. This has sparked significant attention to the issue of finite-time stability
(FTS) ever since it was first introduced in [9]. In some cases, only the output, not the state, needs to
be constrained within a bound. As a special case of FTS, input-output finite-time stability (IO-FTS)
examines the effects of output constraints on system performance [10,11]. A system is considered
IO-FTS if, for a given class of norm bounded input signals over a specified time interval T, the outputs
of the system do not exceed a predetermined threshold during T. There has been significant research
on the problem of IO-FTS, covering various system types, such as singular systems [12,13], fuzzy
systems [14], Markovian systems [15], and so on. More recently, several interesting results have been
investigated concerning IO-FTS for switched systems [16-18]. In [16], through the construction of
several linear copositive Lyapunov functions and the utilization of the mode-dependent average dwell
time (MDADT) methodology, sufficient conditions are derived to ensure the IO-FTS of the resultant
closed-loop switched system. A suitable state feedback controller is designed for switched singular
continuous-time systems in [17].

In an ideal scenario, the switching of the controller is perfectly synchronized with the switching
of the system. However, in many real-world situations, there can be a delay in the switching signal
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available to the controller compared to the system’s switching, resulting in asynchronous switching in
the closed-loop system. This asynchrony arises due to the time required for communication between
the system and the controller through a communication channel. As a result, there are inevitable
instances of asynchronous switchings between the system mode and the controller. As well known,
sliding mode control (SMC) has proven to be an effective robust control approach against uncertainties
and external disturbances, with successful applications in a wide variety of complex systems and
engineering domains. The SMC has been extended to switched systems [19-22]. However, it’s worth
noting that all the aforementioned works considered system dynamic behaviors over a sufficiently long
(in principle infinite) time interval without any constraint on transient dynamics. To address finite-time
SMC, Zhao et al. [23] explored the finite-time bound (FTB) problem of SMC for a class of switched
systems with unmeasured states but still under the synchronous switching assumption. However,
there is a lack of results regarding the IO-FTS problem of SMC for a class of switched systems under
asynchronous switching.

In this work, we will investigate the IO-FTS problem of SMC for a class of uncertain switched
systems under asynchronous switching. Firstly, the IO-FTS concept is introduced for the relevant
switched system and a suitable SMC law is designed to ensure the reachability of the mode-dependent
sliding surface within a finite-time interval. Utilizing ADT and MLF techniques, the corresponding
IO-FTS for both the reaching phase and sliding motion phase are attained under asynchronous
switching. Subsequently, we present a partitioning strategy that effectively analyzes the IO-FTS
characteristics of the switched system over the whole finite-time interval.

Notations. Throughout this paper, the symbol || - || denotes a real vector or induced matrix
norm for vectors in the Euclidean space. R™ denotes the set of nonnegative real numbers. R" is the
n-dimensional vector space and N is the set of nonnegative integers. The notation P > 0(< 0) means
that P is real symmetric and positive definite (negative definite) matrix and I is used to represent an
identity matrix of appropriate dimensions. For any symmetric matrix P, Amax(P) and Amin(P) denote
the maximum and minimum eigenvalues of matrix P, respectively, and ‘+” represents an ellipsis for
terms induced for symmetry. And we define He{P} = P + PT.

2. Problem Formulation

Consider the uncertain switched system as follows:

X(t) = (Agr) + DA x(t) + B(u(t) + for) (x(2), 1)) + Do(ryw(t),
y(t) = Copx(t), ¢))

where x(t) € R" represents the state; u(tf) € R™ is the control input; y(t) € RY is the measured
output; w(t) € R” is the external disturbance; f,(;)(x(t),t)) € R™ is a nonlinear function satisfying
| fo(ry (x(£), )l < €op)llx(£)[| with €54y > 0 a known constant. The matrices { A, (1), By (1), Co (1), Do) :
o(t) € N¢} is a family of known matrices depending on an index set N. = {1,2,...,s}, and o(t) :
R — N specifies the index of the active subsystem at each time instant f. The switching signal
of subsystems is given by o(t) : {(io, to), ..., (ix, t), .lix € Ne,k € N}, which means that the i;-th
subsystem is activated when t € [t, t;,1). Furthermore, o(t) = i indicates the activation of the i-th
subsystem. Due to the asynchronous switching, the practical switching instant of the controller may
differ from that of the system. For convenience, ¢’ (t) is introduced to denote the practical switching
time of the controller. ¢’(t) : {(io, to + Do), -, (ix, tx + Dg), -..|ix € N, k € N} implies that the ig-th
controller operates within the interval t € [ty + Ay, tgiq + Agy1), where [Ar| < infiso(te1 — fr),
Ay > 01is said to be the mismatched period between the controller and the system.
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For each switching signal ¢(t) = i,i € N, we denote the system associated with the i-th
subsystem by

Arry = Ai, DAy = DA,

D, = Dj, Cory = Ci.
Thus, system (1) can be rewritten as
x(t) = (Ai+AA)x(t) + B(u(t) + fi(x(t),t)) + Diw(t),
y(t) = Cix(f). )

Assumption 1. The external disturbance w(t) is the time varying and the set W coincides with the set of
the uniformly bounded signals over [0, T}, defined as Wiy 1,5 2 {w() e Leo,j0,1] © wl (Hw(t) < 62}, where
6 > 0is a known scalar.

Assumption 2. AA; denotes parameter uncertainty and satisfies
AA; = E;M;(t)H;, 3)

where H; and E; are the known constant matrices and M;(t) is an unknown time varying matrix satisfying
MI(t)M;(t) < L.

Next, we will proceed to establish the definition of input-output finite-time stability on the
switched system (1). Additionally, the definition of the average dwell time is also recalled for the
development of the main results in this work.

Definition 1. Given a time interval [t1, t,], explicit output constraint scalars c1, ¢y (cy > ¢ > 0), disturbance
signals Wy, 1,1 5 defined over [t1, 5], a weighted matrix R > 0. The switched system (1) with u(t) = 0 is said
to be IO-FTS with respect to (c1,c2, [t1, ta2], R, Wiy, 11,6, 7). if

yT(tl)Ry(tl) <c = yT(fz)Ry(fz) <c, Vie [tl, tz].

Definition 2. Forany T >t > 0, let Ny (t, T) denote the switching number of o (t) over (t,T). If Ny (¢, T)
< No + (T — t)/ 7, holds for T, > 0 and an integer Ny > 0, then T, is called an average dwell time.

Lemma 1. For the specified parameters (c1, c2, [0, T], R, Wi 1), 0 (t)), the switched system (1) is IO-FTS with
respect to (c1,¢2, [0, T], R, Wi 1),5,0(t)), if only if there exist auxiliary scalars c} satisfying c1 < c¢j < ca
such that each subsystem is IO-FTS with respect to (c1,c*, [0, T*], R, W|o 11 5,0 (t)) during reaching phase and
IO-FTS with respect to (c*, c2, [T*, T], R, Wi 11 5, ) during sliding motion phase, where c* = Illg%{cl* }.

3. Integral sliding surface design

In this work, we utilize integral sliding mode control to effectively stabilize a switched system (1)
under asynchronous switching. In general, there are two periods for SMC design. The first period is
the reaching phase, that is, the state trajectories are driven onto the established sliding mode surface.
During this period, the state is controlled by the designed sliding mode controller. The second period
is the sliding motion, that is, the state trajectories move along the sliding mode surface. During this
period, the state may be taken under the enforcement of equivalent control law w1, (t).
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For the purpose of presentation clarity, it is convenient to denote the mismatched period as (31 and the

matched period as (.
Op: {x(t) eR"|o(t) =i #(t ) te bty +0k),k=1,2,...}, 4)
Oy : {x(t) € R'o(t) = 0'(t) = i)t € [t + Dy tiga) k= 0,1,2,..). 5)

The integral sliding surface function is designed as follows:

s(x(t), ) = Gx(t) — /0 "Kix(t)dr, ©)

where matrix G is chosen such that GB is nonsingular and K; will be designed later.

Within the designated finite interval [0, T|, a suitable sliding mode controller is designed to drive
the trajectories of the estimated state onto the specified sliding surface s(x(t), j) = 0in a finite time T*
with T* < T and then are maintained there for the remaining time interval [T*, T|. In order to achieve
this objective, the SMC law is constructed as

u(t) = (GB)!(Kjx(t) — (e +(t))sgn(s(x(t), /), for ey, )
(GB)™H(Kix(t) = (o +1(t))sgn(s(x(t),1))), for te Oy,
where the robust term #(t) is given as
n(t) £ a1l|x(t)] + o2, ®)

with 1 £ maxjen; {01}, &2 = maxien; {02}, 01 = [|GA; | + |GE:|[[|Hil| + €il|GB||, 62 < 8||GD|. The
gain K; will be obtained in Theorem 4 and ¢ is the adjustable parameter to be further described in
Theorem 1.

In the forthcoming sections, the aforementioned SMC law will be firstly proven to ensure the
reachability of the sliding surface within the interval [0, T*]. Subsequently, the derived sufficient
conditions for IO-FTS of the closed-loop switched system during both the reaching phase [0, T*] and
the sliding motion phase [T*, T] will be presented.

4. Reachability with T* < T

The analysis of the reachability of sliding surface s(x(t), j) = 0 will be analyzed in the subsequent
theorem.

Theorem 1. Consider the uncertain nonlinear switched system (1). The sliding surface is chosen as (6). If the
desired SMC law is designed as Eq.(7) and the adjustable parameters ¢ > 0 satisfies

1
0> LIGxO), ©)
then the specified sliding surface s(x(t), j) = 0 can be reached in a finite time T* with T* < T.

Proof of Theorem 1. Choose the Lyapunov function

s (x(8), j)s(x(t), f)- (10)
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When t € (), from (1) and (6), it can get
Vi(t) = sT(x(t),))3(x(t),))
= (X(t)fj)(G (t) — Kjx(t))
= sT(x(t),] ((GA + GAA)X(t) + GB(u(t) + fi(x(t), 1)) + GDjw(t) — Kjx(t)).
(11)

From Assumption 1, it is easily obtained that ||w(t)|| < é. Thus, substituting (7) and the fact of
1fi(x(8), )| < eillx(#)] into (11) yields

Vi(t) < ls(x(), )l ((”GAi” +IGE|[[Hi | [x(®)]| + e:|GB[[[x ()] + 5||GD1'||)
+sT(x(t),j)GBu(t) — sT(x(t),j)Kjx(t)
< —olls(x(®), N)ll- (12)

Further, due to the fact

1 .
Vi(t) = EHS(x(t),])IIZ, (13)
one has
Vi(t) < —oy/2Vi(t). (14)

When t € (), it can also get (14).
By integrating the expression (14) from 0 to T, it is easily obtained that

2/Vi(T*) =24/ V1(0) < —v20T". (15)

We can obtain that

1
TF < ——(24/VA(T*) —24/V1(0
ﬁQ(W( ) —2y/Wi(0))
1
< —ls(0)]l. (16)
Q
Due to the condition s(0) = Gx(0), we get
1
< —[|Gx(0)]]. (17)
Q
Thus, from condition (9), it can be shown that trajectories of state estimate will be driven onto the
specified sliding surface s(x(t),j) = 0 in finite time T* with T* < T. O

5. I0-FTS within [0, T]

In this section, IO-FTS problems of the switched systems (1) during the reaching phase and the
sliding motion phase will be separately analyzed using the ADT method, respectively. Subsequently,
the sliding mode gains for the whole phase will be provided.

During t € ()3, the SMC law mismatches with the subsystem, that is, o(t) = i # ¢’(t) = j. Then,
the SMC law is formulated as

u(t) = (GB) ' (Kjx(t) — (o +n(t))sgn(s(x(t), ). (18)
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Substituting the above SMC law into the switched system (1), the closed-loop switched system can be
obtained as follows:

x(t) = Ayx(t)+ Diw(t) + Bfi(x(t),t) — Bys(t, ),
y(t) = Cix(t), (19)

with Aj; = A; + AA; + BK;, B = B(GB) ™", 115(t, j) = (0 + 1(t))sgn(s(x(t), ))-
When t € )y, the matched SMC law can be described as

u(t) = (GB) ™! (Kix(t) — (o +(1))sgn(s(x(t),1))). (20)
By substituting (20) into the switched system (1), we can get the closed-loop system

£(t) = Awx(t) + Drwt) + B (x(£), 1) — Bus(t i),
y(t) = Cix(t), 1)
with A; = A; + AA; + BK;, 115(t,i) = (0 4+ 71 (t))sgn(s(x(t),1)).
5.1. IO-FTS over reaching phase
Now, we establishes the sufficient conditions for IO-FTS of the closed-loop switched system (19)

and (21) within the interval [0, T*].

Theorem 2. Consider the systems (19) and (21), for given positive constant aq, xp, 41 > 1,up > 1 and the a
feasible scalars B;, a1 > ap > 0, if there exist scalars py;j, p2j and matrices P;j > 0, P; > 0, W;; > 0, W; > 0
forany i,j € N, such that

1IIll“ IIr21“ = Tli 1?21‘
Y= ¢ <0 ¥= <o (22)
l S &Y Py
3BioTACT < e T Wy, 3BiotAct < e T W, (23)
eazT*}Lcl +ﬁiT*elX1T* (52 +3Q2 +3é‘%) S Ac*e_(ln(ylyz)+(0‘1_“2)M’7’)Nﬂ, (24)
Pij < mPj, P < poPyj,  Wij < Wi, Wi < o Wi, (25)
with
Y. = He{Piin + PijBKj} + Wi]' — 0‘1Pij PijDi
1ij . e |
Y. = i He{PiAi + PiBKz‘} + Wi — Dézpi PiDi
1 — N —ﬁi[ ,
Y, = —P;iB p1;iPjB &1 po;iPyE; HY
2 0 0 0 0 0o |’
¥, — —PB p1,PB €l pyPE; HI
2i 0 0 0 0 0 ,
Yaij = —diag{pil, p1jl, prijl, p2ijl, 021}, ¥ai = —diag{Bil, pril, puil, pail, p2i},

B = B(GB)™.
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If the average dwell time of switching signal o satisfies

(11‘1(‘111“1/!2) + (0&1 — az)Md) T
In(Ac*) —Inw — No(ln(]lliq) + (a1 — LKQ)Md) '

T > T, = (26)

where

My = maxpeqy, my{ L}, @ = e Aey + B Te1 ™ (62 + 307 + 353),

A = max; jex; {Amax [ (CTRG; )*%P (CTRG; )*l] Amax[(CTRC; )*%PZ-]-(CiTRCi)*%]},
. _1

A = min; jen { Aminl (CTRC;) ™2 Pi(CT RC;) 2], Amin[ (CTRC:) "2 P4 (CTRCi) 2]},

then the closed-loop system (19) and (21) is IO-FTS during the interval [0, T*].

Proof of Theorem 2. Construct a Lyapunov-like function as the follows

Vz(t):{ e (£) = x ()p +f0f W (o) ¥(0)d6,  te Oy, -

V,,(t)(t) =xT(t)P + f ( )de, te .

When t € (), the i-th subsystem is activated and the corresponding j-th controller is activated, which
means o'(t) = i, ¢’(t) = j, we get the time derivative of the Lyapunov-like V;;(t).

) + xT(£) Py () + xT () Wi (1)

+ Bfi(x(t),t) + Diw(t) — Brs(t,j)) " Pyx(t) + x" (1) Py (Ajjx(t)

£),t) + Dyw(t) — Bigs(t, ) + xT ()W, ( )

)+ wT(t)DiTPijx(t)

)+ xT () Wix(t). (28)

Vi(t) = xT(t)Px(t) +x"
= (Ayx(t)
+Bfi(x(

= xT(f)(AZ;Pl]+P1]AZ])X<t)+X ()P DZU(t

+2f T (x(t), 1) BT Pyx () — 21 (¢, ) BT Py (t
Define the following auxiliary function with scalars a1, §;,
Jij(t) = Vig(£) = aa Vij(8) = By (B)a(t) = Bings (£, j)1s (8, )- (29)

Consider the fact of 2f (x(t), t) BT Pyjx(t) < py;x” (t)P;;B(P;jB) x(t) + ,011]1 e2xT(t)x(t), it yields from
(28) that

i) < xT() (A}]?Pij + PyAij — a1 P + wij) x(t) + xT (£ PyDyw(t) + w” () D] Py (t)
+p1ijx” (8 PyB(PyB) T x(t) + pyjefxT ()x(t) (£)PyBis(t,j) — Biw (H)w(t)
()BT Bye(6) = Bon 6, 0]) — ax [ 7 (6) Woggy ()6
Note that
2T (HPAAx(t) < paigx” (H)PyE (PyE) T x(t) + oy T (t) H Hix(8).

Then, we can get

t
Jij(t) +0€1/0 xT(0)We (g0 (6)X (0)d6 < &1 ()T 1381 (1), (30)
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with
x(f) Ty PyDi —P;B
a)=| w@) |, Tyj=1| « —BI 0
ns(t,j) * * —Bil
T = He{P;jA; + P;BK;} — a1 Pyj + Wij + p2;i Py E; (PyE;) "
05, H Hi + p1;iPyB(PyB)T + el (31)
By Schur’s complement, it can be shown that I';; < 0 can be ensured by (22). Thus, it can be obtained
from (30) that:
Jij(t) <0, (32)
which means that
Vii(t) < aqVii(x) + Bio™ (Hw(t) + Bind (1, ))1s (£, )- (33)

On the other hand, it is easily shown by Schur’s complement that the inequality I'y;; < 0 is equivalent
to the condition (22).
When t € [t, ty, 1], multiplying both sides of (33) with e~ %!, which implies that

—aty/..
dediyl](t) < Bie T (Hw(t) + Bie iyl (t,j)ys(t, ). (34)

Then, integrating both sides of (34) from #; to t, one gets
t t
Vi(t) < eVt + B [ e 0T (@)w(0)d0 +p; [ ey (0 (6)de. (35)
ty tr

Similarly, when t € (), we define the auxiliary function:

Ji(t) = Vi(t) — axVi(t) = BT ()w(t) — Birgs (£, 1)ps (1) (36)
Then, after some manipulations with the condition (22), we can get

t
NIt + D)+ [ e DT (@)w(0)do

Vi(t
l( ) e+

IN

t
+,Bi/t+A 2= T(9)y5(8)de. -
kT =k
From (25) and (27), there hold

Vii(t) < mVi(t), Vi(t) < uaVij(t). (38)
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When t € [ty, t + L), from (35), (37) and (38), by using iteration, it is derived that

IN

t
Vi) < eIV(n) 4By [ DT @)w(@)dn + / =0 (0)(6)do
k
t
eV ) + i [T @)+ py [ O] (@) (0)a8
k k

t
ylem(t—tk)ezxz(tk—tk—l—Ak—1)Vj(tk_1 + Npq) +,Bi/ eal(t—ﬂ)wT(e)w(e)de

te

IN

IN

et [ 20T (0)75(6)d0 + / (=0T (0)17,(0)do
t1+ D1

t

—I—I/lleal(t_tk)/gi/k e“z(tk_e wT(G)w(Q)dQ

AV

IN

t
pippet 2T M) V(b g+ A ) + By / e 10T (0)w(0)do

te
tk
+ﬂ1€a1 (t*tk)’Bl. /
t1+ D1

_|_yle“1 (t*tk)’[;l. /

FEEE AV

t
eaz(tkfe)ﬂg(g)qs(g)de+/3l-/t e =0T (0)y5(0)de
k

te

et T () (0)do

IN

1 e (t=ti) pita (te—tk—1—Dg—1) (6“1 (o1 D1 —te1) Vii(teo1)

A
5, 1t 851 6041(tkfl‘*‘Akfl_e)wT(G)W(Q)de
t1
b1 +D- '
+Bi it 80y T () (0)do )
t1
tk

+upe1 (=t g, et 4T (9)w(0)do
t1+ D1

ty
+Bippetr =) 20T (0)ns(0)do
t1+ 0,1

t
18 [ e =0T (0)w(0)d0 + B; | el @n(e)a
k

IN

IN

(ylyze(al—ocz)Md)Ng(O,t)eocthij(O) + Bi /Ot e(txl—zxz)Mng(G,t)eal(t—9)wT(9)w(9)d9
t
i [ el s MaNe@g =00y T () (6)as, (39)

where T;(0,t) denotes the total mismatched time span during [0, t] and 5[ (t)y5(t) = (0 + 5 (t))%.
Moreover, when t € [ty + A, try1), there holds

t
‘/l(t) S (‘ulyze(al_“Z)Md)NU(OIt)e‘XZt‘/ij(O) + IBI‘/O e(“l_IXZ)MdNU(QVt)eal(t_e)wT(e)w(g)dG
t
s [ el MaNe @ (=0T () ()0, (40)
When t € [0, T*), combing (39) with (40), we can get
% T*
Vao(t) < (pypge®1—2)MayNe(OT )(e"‘thz(O) + ,31/ e =0T (0)w(6)do
0

i [ O] @) (0)0), (41)
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with M; = maXye (1, m} {Ak}
Note that
xT(HPyx(t) = xT(1)(CTRC)2(CTRC;) "2 P;(CTRC;) 3 (CTRC:)2 (1) 42)
xT(HPx(t) = xT(1)(CTRC;)? (CTRC;) "2 P,(CTRC;)~2(CTRC:)2x(t) (43)
then, we have
Amin((CTRC;) ™3 P(CTRC;) ™ 2)y" (H)Ry(t) < xT () Pyx(t)
< Amax((CTRC;) "2 P;j(CTRC;) ™2 )y (£)Ry(t) (44)
Amin((CTRC;) ™2 Pi(CTRC;)~2)y™ (H)Ry(t) <
xT(£)Pix(t) < Amax((CTRC;) "2 Py(CTRC;)~ 2 )y (t) Ry(t) (45)
Noting V;;(0) = x7(0)P;jx(0), V;(0) = xT(0)P;x(0) we have
-
Valt) £ (uapael@imMNeOT) (12T Ry 4, /0 10w (0)w(0)do
+Bi /0 t et (t=0),, T (9);75(9)519), (46)

where A = max; ;. { Amax [(CTRC;) ™2 P{(CTRC;) 2], Amax [(CTRC)) 2P (CTRC;) 1] }
Note that the fact of #5(t, j) = 0+ n(t)sgn(s(x(t),j)) with 5(t) = d1||x(#)|| + &2, it can obtain that

13 (4, )s(t, ) < 3% + 383 [|x(1) || + 363, (47)
thus, one gets
Valt) < (e MNeOT) (02T Ry 4 BT o™ (62 + 307 + 363)
+3B;02emT /O t xT(Q)x(G)dG) . (48)
From the fact (27), we have
Vi) = ATORa() + | T (0)Wijx(6)d6

)~ 2P;(CTRC) 2 JyT (H)Ry(t) + /Ot xT (6)Wijx(8)de

vV
>
B
2
o
=
(@)

v

A ORy(0) + [T (0 Wy (@)de, (49)
and
Vi(t) = xT(t)Pix(t)—I—/Oth(G)WZ-x(G)dG

> AT (ORy(H) + /0 T () Wix(6)de, (50)
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where A = min jc . {Amin[(ciTRci)*%Pi(ciTRci)*%],Am-m[(ciTRci)*%Pij(chci)*%] } From (48)
and(49), we can obtain

TORAE) < (u1ppe(1 =02 Ma)Ne(0T7) (e"‘ZT* Acy + BiT e T (52 +3¢? + 3(5%))
y'(ORy(1) < T

+(ylyze(“l*“Z)Md)N"(O'T*)C%ﬁié%e“lT* s xT(0)x(0)do — [, xT(e)w,x(e)de‘
A

From (48) and (50), we can obtain

TR < (p1ppe=22)Ma)Ne (0.T7) (e"‘zT*/_\cl + BT e T (6% + 302 + 35%))
y Yy = 1

(1pae( 1= @Mi)Ne(OT)38,62001T" (44T (9)x(8)d6 — [ xT (8)Wix(6)de
by :

+

When pqpy =1, from (24), we have

yT (HRy(t) < c*.
When pqpp # 1, from the conditions Ny (£, T) < Ny + TT;t, (26) and condition (23), it holds

y (HRy(H) <. (51)
Thus, the switched system (1) is IO-FTS with respect to (c*, [0, T*], R, W|g 1) 5,0) during t € [0, T*]. O

5.2. IO-FTS over sliding motion phase

In the subsequent sections of this work, the IO-FTS problem will be analyzed during the sliding
motion phase when t € [T*, T|. By means of sliding mode theory, as the system trajectories enter
the sliding mode, it follows that s(x(t),j) = 0 and s(x(¢),j) = 0. Consequently, we can derive the
following equivalent control law:

Uegj(t) = (GB) "' (Kj — G(A; + AA)x(t) — (GB) "' GDjw(t) — fi(x(t), 1), (52)

which, substituted into (1) yields the following sliding mode dynamics

te )y, (53)

t e )y, (54)

with A; = G(A; + AA;) + BK,.
The following theorem presents the results of the IO-FTS for the switched system (53)-(54) within
the interval [T*, T].
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Theorem 3. Consider the closed-loop system (53)-(54) with the integral sliding surface (6), for given
positive constant wq,&, p1 > 1,up > 1 and the a feasible scalars B;. If there exist positive constants
02ij, 03ij P4ijs O5ijs 02ir P3is Pdis P5i and matrices Pyj > 0, P; > 0 for any i € N, such that

A= | D D] (55)
* A3ij
5 Ay Ay
A= _
[ S| <o (56)
}\C*E“ZT + ‘Bi(sZTeﬂélT S Acze—NQ(ln(]/ll‘uz)-‘er(al—062)) (57)
Py <mPj, P < pa Py (58)
with
Al" _ [ He{Pl]Al + Pl]BK]} — Oélpl']' Pl]Dl
g i * —‘Bil
a _ | pPsEi HT p5iPyBG AT pyPyBGE: HT ps;PyBG 0
2 0 0 0 0 0 0 o DI |’
Agij = —diag{paiil, p2ii1, p3ii1, 3ij L, 04ij 1, pai 1, o5ii 1, psii 1},
A — He{PiAi -+ PZBKI} — Oézpi PiDi
1i _ % —‘Bil
A, — | puRE HI psiPBG Al pyuPBGE; Hf ps5PBG 0
z 0 0 0 0 0 0 o Df |’
Az = —diag{pl, p2i1, 031, 03i1, p4il, p4il, psil, p5il},
B = B(GB)!

If the average dwell time of switching signal o satisfies

(ln(muz) + (a1 — “Z)Md> T
T2 > Taz =

= _ , 59
In(Acy) — ln(/\C*E’XZT + ﬁi52T€“1T) - No(ln(ylyz) + My(aq — 062)) 9

where My = maxie 1, my{ Lk}, then the closed-loop system (53) and (54) is IO-FTS during the interval
[0, T].

Proof of Theorem 3. Choose the Lyapunov function as

mr’() () (TlTlx(t) te )y,
Va(t) = { Vo(t) = (t)ng(t), e, (60)

Similar to Theorem 2 to define the auxiliary functions with scalars a1, ap and f3;

id ](7(7/( ) Voo ( ) - Vga/(t) — ,Bin(t)w(t), te )y,
18 = { Jo(t) = Vo (t) — tszgl(t) — BiwT (Hw(t), fe le, (61)
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Whent € O,
Ti(t) = Vi(t) —aqVi(t) — Biwo” (t)w(t)
= X (f.)ATP x(t) +XT(f)Piinjx(t) — txle(t)Pijx(t) + wT(t)DiTPijx(t)
X1 () PDyw(t) — Biw (H)w(t)
= ()ATP ix(t) + xT (t)P;Ajjx(t) — 2x" () P;jB(GB) ' GA;x(t)
—2xT (H)P ij B(GB)~ 1GAA; x(t) — {Xle(t) ()+2x (t)PijDiw(t)
—2x" (t)P;B(GB) " 'GD;w(t) — Biw" (t)w (t), (62)
Note that
—2x"(t)P;B(GB) 'GAx(t) < p3iij( )P;;B(GB) 'G(P;B(GB) 'G)"x(t)
+p3 % (DAT Aix(8);
—2x"(t)P;B(GB) " 'GAAix(t) < paix" (t)P;B(GB) 'GE;(P;B(GB) 'GE;) x(t)
+PL}XT(t)HiT Hix(t);
—2x"(t)P;B(GB) 'GDw(t) < ps;yx’ (t)P;B(GB) 'G(P;B(GB) 'G)"x(t)
+p5;jw (1) D] Dy (t);
Then, we can get
Ji(t) < xT(6)((As+ BK)) Py + Py(A; + BK;) + ps;PyB(GB) "' G(PyB(GB) ')
+03;/ Al Ai + p4;iP;jB(GB) "' GE;(P;B(GB) ' GE)"
+05ijP;;B(GB) "' G(P;iB(GB) ~'G)" + p3;i P Ei (P E;) "
+P21]1HTH + p;lHiTHi — vclPi]')x(t) + 2xT(t)PijDiw(t)
+w" (1) (p5 DI D; = Bil ) w(t)
= & (HT8a(t), (63)
with
— x(t) B r%z] P D
éZ(t) - [ w(t) ‘|/ 1-‘21] - [ " I—u%Z]
where
Ty = (Ai+BK))"Py+ Pyj(A; + BK)) + p3;iPyBG(PyBG)" + p3i Al Ai — a1 Py + pyt HT Hj
+04iiP;jBGE;(PjBGE;)" + ps;;P;jBG(P;iBG)" + p;;P;jE;(P;E;)" +p211HTH
r%l] = p51] DTD ﬁl
B = B(GB)!

Consider the condition (55), by employing Schur’s complement and some operations, we can get
inj < 0, that is

Vi]'(i’) <a1Vii(x) + BiwT (Hw(t), te Q. (64)
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Similarly, from the condition (56), we can also get
Vi(t) < mVi(x) + B’ (Hw(t),  te€ Oy (65)
When t € [ty, t + Ay), integrating (64) from t; to t, we obtain
Vi) < V1) i [ e 00T (O)w(e)s. (66)
On the other hand, when t € [ty + Ay, txy1), it holds that
Vi(t) < e 2BV (1 + Ar) + By /t :A 20T (0)w(6)do. (67)
kO

When t € [y, t + k), notice that Ny (o, t) = Ny (to, t) + 1, it follows from the similar procedures to
Theorem 2 that

% X £
Vi) < (e s MNT ) (o2 Ty r) 4oy [ el (0)w(0)do)

IN

(VIVZe(txlfaz)Md)Ng(T*,t) (;\C*€“2(t7T*) + ﬁi52(t _ T*)eal (th*)) ) (68)
Moreover, when t € [t; + Ay, tx41), there holds

t
Vilt) £ (e MoN T (2T (1) 1y [ 00T (0)0(6) o)
T*

S (lulyze(txlfaz)Md)Ng(T*,t) (;\C*eaz(th*) 4 ﬁléz(t _ T*)eal(th*)) . (69)

From Theorem 2, the switched system is IO-FTB during [0, T*], i.e., the initial output condition of the
sliding motion phase at time T* satisfies y' (T*)Ry(T*) < c*. Then, from the condition (59), we have

T (papge(a—02)Ma ) Ne (1) (Zc*eﬂz(f—T*) + Bio* (t — T*)E“I(t—T*))
y (HRy(t) < - ‘ 70)

From (57) and (59), we can obtain

yT(Ry(t) < ca. (71)
Thus, the switched system (53) is IO-FTS with respect to (c2, [0, T], R, Wi 1,6, 0) during ¢ € [T*, T]. O

5.3. Design of gains K; and K;

It’s noteworthy that the conditions in Theorems 2 and 3 are not in the form of linear matrix
inequalities (LMlIs), even when the value 7 is fixed. However, through inequality transformations,
some LMIs conditions can be derived in Theorem 4. Subsequently, the gains K; will be designed to
ensure the conditions in Theorems 2 and 3 to be hold simultaneously.
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Theorem 4. Given the parameters (cq,cz, [0,
feasible scalars B;. If there exist matrices Pij, Pi, Wij, Wi, real matrixes L

1€{1,2,3,4,5}, forany i,j € N, satisfying
O1ij Oy ]

@:
l * O

[ —e 1 TWy; /BBicadi W ]
—vI

*

l —%c*e*NO(ln(ﬂ1l42)+Md(oc17a2))
*
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T|, R, ), positive constant aq, 0,41 > 1,up > 1 and the

L; and scalars c*, piij and py;,
O Oy

<0,
O3 1

V/3Bic2d1 W
—vl

ijs

o= (72)

—e~uTy,

*

<0,

<o

(73)

+ BiTe" T (6% + 302 +363)  /er2Tey

I (74)

d0i:10.20944/preprints202308.1078.v1

(75)
(76)
(77)

cre2T 4 B;a2Te Ty — %Cze_Nﬂ(ln(Vlﬂz)'i'Md("‘l_“2))1/ <0,
v(CIRG)™ < P; <2(CRC)™!,  v(CIRG)™ < Py < 2(CIRC) 7,
Pj < mPij, Pij < poPi, Wi < iaWij, Wij < oW

with

—B
0 ,
—Bil

D;
—Bil

*

[ He{AfPi]' + B[:i’PZTl'Pi]'} — 061731‘]'
*
*

He{A;P; + BL;} — aP;

*

—-B
0 ,
i —Bil
puB €Py paEi PiH p3iBG PyAl  pyBGE;
0 0 0 0 0 0 0
0 0 0 0 0 0 0
’Pinl-T p5l‘jBG 0 Pij
0 o DI o [,
0 0 0 O
puB eP; pxuEi PiH] p3BG PiA]  pyBGE;
0 0 0 0 0 0 0
0 0 0 0 0 0 0

'Pl‘Hl-T p5l‘BG 0 Pi

0 o DI o [,

0 0 0 0
—diag{p1iiL, p1ijL, 02ij L, 2ii 1, p3ii L, p3ifL, p4ifL, paij L, 05ii L, p5ii 1, Wit
—diag{p;, p1;1, p2i1, 02i1, 03i 1, p3:1, pai L, i1, p5i 1, 051, Wi}
B(GB) ..

D;
—Bil

* *

Then the switched system (19) is IO-FTS with respect to (c1,¢2, [0, T], R, §,0) under the switching signal o

),

(ln(ylyz) + (aq — az)Md) T
In(Ac*) —In® — My

(11‘1(]11]/!2) + (a1 — az)Md) T
"In(Acy) — In(Acre2T + B;62TemaT) — My

Ta>T;:max{

(78)
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where @ = e*2T ey + B;TeMT (6% + 3¢? + 363), My = No(In(pipa) + My(a1 — a2)). The control gain
Kij = ﬁi]-Pi]fl and Ki = ﬁiPi_l.

Proof of Theorem 4. For satisfying conditions in both Theorems 2 and 3, simultaneously, the following
inequalities should be satisfied

0O— Oqij i <0, O— Oy f:lzi <0, (79)
* 031‘]‘ * 031‘
3Bi0TACt < e T Wy, 3Bi6tAct < e T W, (80)
e2T" Ny + BiT e T (6% + 302 + 3063) < Ac*e~(n(mma)+(a1=a2)Ma)No (81)
ActeeT 4 B;52Te T < AcpeNolIn(uapa)+Ma(as —az)) (82)
P <mP;, P < Py, Wij < iaWj, Wi < uaWy, (83)
with
0 = He{Pi]'Ai + Pi]'BK]'} - lepl']' + Wi]‘ Pi]'Dl'
lij = * —Bil ’
0. — [ He{P;A; + P;BK;} — a1 P; +W; P,D;
1i - * —ﬁll 7
. — | ~PiB puPyB el paPyEi HI p3;PiBG  Af
2 0 0 0 0 0 0 0
p4i]‘PijBGEi HZT P5ijPijBG 0
0 0 0o DI |’
Q.. — | ~DBB puPB el pyPiE; H] p3P;BG Af
2 0 o 0 0 0 0 0
p4iPiBGEl' HlT p5iPl'BG 0
0 0 0 Dl |’
Qqzij = —diag{BiL, p1ijL, p1ijL, 02ii 1, p2ii L, p3ii L, 03ij L, 0aij L, paij1, s, psii 1}
Oz = —diag{B;iL, p1il, p1iL, 02iL, i1, p3i1, p3i1, p4il, pail, p5il, p5i 1}
B = Bi(GiB) ™G

Let Pjj = Pijfl, P = Pfl, Wij = Wl.;.l, Wi = Wfl. Pre-multiplying and post-multiplying Q) and Q) with
Y = diag{Pi]-, LLLLILILILILLILII}andY; =diag{P;, I,1,1,1,1,1,1,1,1,1,1,1}, respectively, and
by Schur’s complement, ® < 0 and ©® < 0 are equivalent to the matrix inequality (2 < 0 and (2 < 0.
On the other hand, by performing a congruence transformation and Schur’s complement, the
condition (23) can be obtained from (85).
By the conditions (76) and the fact that

1 1 1
Amax{ (CIRC;)2P;(CIRC;)2} = , (84)
e R Amin{(CTRC;) "2 P,(CTRC;) "%}
1 1 1
Amax{(CIRC;)2P;;(CIRC))2} = , (85)
l 1 /\min{(CiTRCi)i%Pij(CZ‘TRCi)i%}
it has
1 - 1
A > 5 A< - (86)


https://doi.org/10.20944/preprints202308.1078.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2023 d0i:10.20944/preprints202308.1078.v1

17 of 19

Thus, it is easily shown that the inequalities (24) and (57) are ensured by (74) and (75).

The closed-loop system (19) is IO-FTS with average dwell time 7; and the control gain gain are
givenby K; = CijPi]_-l and K; = CiPi_l. O
6. Simulation examples

Consider the switched system (1) with two modes and parameters as follows:

Subsystem 1:
-1 1 3 -1 1.5
Al lz 1 rBl lz /D] Z]IEl_llll
0 ! 10
Hl_lO?’ ,Cl—ll 1 , R=1, My(t) = cos(t).
Subsystem 2:

N
N
\

-2 1 4
= B, = Dy =
2 1]t

1 0.1
E:
—2]’ 2 lo.z]’
021" 1 2
szl ' ] , Gy =

0.1 0 1 ] , Ma(t) = sin(t), f(t) = 0.5cos(t).

The goal of this work is to construct the SMC law u(k) such that the resulting closed-loop system is
IO-FIS.Letc =3, T =3,a = 0.1, Ny = 0.1, 31 = 0.3 and B, = 0.5. From the selection criterion (9), we
can choose the adjustable parameter as ¢; = 0.2058 and ¢, = 0.2115. Then, by solving LMIs in Theorem
4, we can get 7, = 0.9531 and the control gains K; = [—0.4913 —2.3155], K, = [0.1738 —1.3023].

For the initial statesas x(0) = [I  — 0.6]" and the average dwell time T = 1, the simulation results
are shown in Figures 1 and 2. It can be seen from Figure 1 that the state trajectories of the open-loop
switched systems exceed ¢ = 3, which means the uncontrolled system is divergent. According to (26),
we choose ADT as 7, = 1.5. By means of the proposed switched signal ¢(t) and SMC law u(t), it
is clearly shown in Figure 2 that the trajectory of y' (t)Ry(t) for the closed-loop switched system is
not beyond the threshold value ¢ = 3 in finite-time interval [0, T]. Therefore, when the final time is
given, the state trajectories of the controlled switching systems still are within the previously given
threshold c.

150 T T T T T

100

< 50

Figure 1. Evolution of x(t) in open-loop case.
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Figure 2. Evolution of y” (t)Ry(t) in closed-loop case.
7. Conclusions

In this work, we have addressed the challenge of SMC for a class of uncertain switched systems
subject to asynchronous switching and finite-time constraints. To ensure IO-FTS of the switched system,
a SMC controller with adjustable parameters is constructed, enabling the system’s state trajectories to
reach the sliding surface within a predefined time interval. By employing a partitioning strategy and
MLF approach, some sufficient conditions for the IO-FTS of the closed-loop switched ystem over the
whole time interval [0, T] were derived.
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Abbreviations

The following abbreviations are used in this manuscript:

I0-FTS Input-to-Output Finite-Time Stability

FTB Finite-time Bound

MLF Multiple Lyapunov Function

SMC Sliding Mode Control

MDADT  Mode-Dependent Average Dwell Time

ADT Average Dwell Time

LMI Linear Matrix Inequality
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