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Abstract: This work investigates the sliding mode control (SMC) problem for a class of uncertain

switched systems subject to asynchronous switching and an assigned finite time constraint. Two

important issues are how to ensure the reachability of state trajectories within the assigned time and

the input-to-output finite-time stability (IO-FTS) of the closed-loop switched systems during the whole

phase under asynchronous switching. To achieve these objectives, an asynchronous sliding mode

controller with adjustable parameters is constructed to drive the state trajectories onto the sliding

surface during the assigned finite-time interval. By means of the partitioning strategy, sufficient

conditions for the IO-FTS of the closed-loop switched are derived during the whole phase [0, T] using

the multiple Lyapunov function (MLF) approach. Additionally, the asynchronous characteristics are

detailedly investigated while analyzing the reachability of a specified sliding surface. Finally, an

illustrative example is given to illustrate the effectiveness of the proposed method.

Keywords: Switched systems; input-output finite-time stability; asynchronous switching; sliding

mode control

1. Introduction

As well known, switched systems consist of a family of subsystems described by differential or

difference equations, along with a switching law that orchestrates the transitions between these

subsystems. In the few decades, switched systems have garnered considerable attention from

researchers due to their powerful potential in various practical applications, such as stirred tank

reactors [1], automobile control systems [2], and other fields. Numerous theoretical results related to

switched systems have been provided, especially concerning the Lyapunov stability [3–6].

It is important to note that the previous research results have mainly focused on asymptotic

stability and exponential stability, which describe the system’s behavior over an infinite-time interval.

However, in practical industrial processes such as flight control [7] and mobile robots [8], the operating

time may be specific and finite. This has sparked significant attention to the issue of finite-time stability

(FTS) ever since it was first introduced in [9]. In some cases, only the output, not the state, needs to

be constrained within a bound. As a special case of FTS, input-output finite-time stability (IO-FTS)

examines the effects of output constraints on system performance [10,11]. A system is considered

IO-FTS if, for a given class of norm bounded input signals over a specified time interval T, the outputs

of the system do not exceed a predetermined threshold during T. There has been significant research

on the problem of IO-FTS, covering various system types, such as singular systems [12,13], fuzzy

systems [14], Markovian systems [15], and so on. More recently, several interesting results have been

investigated concerning IO-FTS for switched systems [16–18]. In [16], through the construction of

several linear copositive Lyapunov functions and the utilization of the mode-dependent average dwell

time (MDADT) methodology, sufficient conditions are derived to ensure the IO-FTS of the resultant

closed-loop switched system. A suitable state feedback controller is designed for switched singular

continuous-time systems in [17].

In an ideal scenario, the switching of the controller is perfectly synchronized with the switching

of the system. However, in many real-world situations, there can be a delay in the switching signal
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available to the controller compared to the system’s switching, resulting in asynchronous switching in

the closed-loop system. This asynchrony arises due to the time required for communication between

the system and the controller through a communication channel. As a result, there are inevitable

instances of asynchronous switchings between the system mode and the controller. As well known,

sliding mode control (SMC) has proven to be an effective robust control approach against uncertainties

and external disturbances, with successful applications in a wide variety of complex systems and

engineering domains. The SMC has been extended to switched systems [19–22]. However, it’s worth

noting that all the aforementioned works considered system dynamic behaviors over a sufficiently long

(in principle infinite) time interval without any constraint on transient dynamics. To address finite-time

SMC, Zhao et al. [23] explored the finite-time bound (FTB) problem of SMC for a class of switched

systems with unmeasured states but still under the synchronous switching assumption. However,

there is a lack of results regarding the IO-FTS problem of SMC for a class of switched systems under

asynchronous switching.

In this work, we will investigate the IO-FTS problem of SMC for a class of uncertain switched

systems under asynchronous switching. Firstly, the IO-FTS concept is introduced for the relevant

switched system and a suitable SMC law is designed to ensure the reachability of the mode-dependent

sliding surface within a finite-time interval. Utilizing ADT and MLF techniques, the corresponding

IO-FTS for both the reaching phase and sliding motion phase are attained under asynchronous

switching. Subsequently, we present a partitioning strategy that effectively analyzes the IO-FTS

characteristics of the switched system over the whole finite-time interval.

Notations. Throughout this paper, the symbol || · || denotes a real vector or induced matrix

norm for vectors in the Euclidean space. R+ denotes the set of nonnegative real numbers. Rn is the

n-dimensional vector space and N is the set of nonnegative integers. The notation P > 0(< 0) means

that P is real symmetric and positive definite (negative definite) matrix and I is used to represent an

identity matrix of appropriate dimensions. For any symmetric matrix P, λmax(P) and λmin(P) denote

the maximum and minimum eigenvalues of matrix P, respectively, and ‘∗’ represents an ellipsis for

terms induced for symmetry. And we define He{P} , P + PT .

2. Problem Formulation

Consider the uncertain switched system as follows:

ẋ(t) = (Aσ(t) + ∆Aσ(t))x(t) + B(u(t) + fσ(t)(x(t), t)) + Dσ(t)w(t),

y(t) = Cσ(t)x(t), (1)

where x(t) ∈ Rn represents the state; u(t) ∈ Rm is the control input; y(t) ∈ Rq is the measured

output; w(t) ∈ Rr is the external disturbance; fσ(t)(x(t), t)) ∈ Rm is a nonlinear function satisfying

‖ fσ(t)(x(t), t))‖ ≤ ǫσ(t)‖x(t)‖ with ǫσ(t) > 0 a known constant. The matrices {Aσ(t), Bσ(t), Cσ(t), Dσ(t) :

σ(t) ∈ Nc} is a family of known matrices depending on an index set Nc = {1, 2, . . . , s}, and σ(t) :

R+ → Nc specifies the index of the active subsystem at each time instant t. The switching signal

of subsystems is given by σ(t) : {(i0, t0), ..., (ik, tk), ...|ik ∈ Nc, k ∈ N}, which means that the ik-th

subsystem is activated when t ∈ [tk, tk+1). Furthermore, σ(t) = i indicates the activation of the i-th

subsystem. Due to the asynchronous switching, the practical switching instant of the controller may

differ from that of the system. For convenience, σ′(t) is introduced to denote the practical switching

time of the controller. σ′(t) : {(i0, t0 + ∆0), ..., (ik, tk + ∆k), ...|ik ∈ Nc, k ∈ N} implies that the ik-th

controller operates within the interval t ∈ [tk + ∆k, tk+1 + ∆k+1), where |∆k| < infk≥0(tk+1 − tk),

∆k > 0 is said to be the mismatched period between the controller and the system.
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For each switching signal σ(t) = i, i ∈ Nc, we denote the system associated with the i-th

subsystem by

Aσ(t) , Ai, ∆Aσ(t) , ∆Ai,

Dσ(t) , Di, Cσ(t) , Ci.

Thus, system (1) can be rewritten as

ẋ(t) = (Ai + ∆Ai)x(t) + B(u(t) + fi(x(t), t)) + Diw(t),

y(t) = Cix(t). (2)

Assumption 1. The external disturbance w(t) is the time varying and the set W coincides with the set of

the uniformly bounded signals over [0, T], defined as W[0,T],δ , {w(·) ∈ L∞,[0,T] : wT(t)w(t) ≤ δ2}, where

δ > 0 is a known scalar.

Assumption 2. ∆Ai denotes parameter uncertainty and satisfies

∆Ai = Ei Mi(t)Hi, (3)

where Hi and Ei are the known constant matrices and Mi(t) is an unknown time varying matrix satisfying

MT
i (t)Mi(t) ≤ I.

Next, we will proceed to establish the definition of input-output finite-time stability on the

switched system (1). Additionally, the definition of the average dwell time is also recalled for the

development of the main results in this work.

Definition 1. Given a time interval [t1, t2], explicit output constraint scalars c1, c2 (c2 > c1 > 0), disturbance

signals W[t1,t2],δ
defined over [t1, t2], a weighted matrix R > 0. The switched system (1) with u(t) = 0 is said

to be IO-FTS with respect to (c1, c2, [t1, t2], R, W[t1,t2],δ
, σ), if

yT(t1)Ry(t1) ≤ c1 ⇒ yT(t2)Ry(t2) ≤ c2, ∀t ∈ [t1, t2].

Definition 2. For any T ≥ t ≥ 0, let Nσ(t, T) denote the switching number of σ(t) over (t, T). If Nσ(t, T)

≤ N0 + (T − t)/τa holds for τa > 0 and an integer N0 ≥ 0, then τa is called an average dwell time.

Lemma 1. For the specified parameters (c1, c2, [0, T], R, W[0,T],δ, σ(t)), the switched system (1) is IO-FTS with

respect to (c1, c2, [0, T], R, W[0,T],δ, σ(t)), if only if there exist auxiliary scalars c∗i satisfying c1 < c∗i < c2

such that each subsystem is IO-FTS with respect to (c1, c∗, [0, T∗], R, W[0,T],δ, σ(t)) during reaching phase and

IO-FTS with respect to (c∗, c2, [T∗, T], R, W[0,T],δ, σ) during sliding motion phase, where c∗ = max
i∈Nc

{c∗i }.

3. Integral sliding surface design

In this work, we utilize integral sliding mode control to effectively stabilize a switched system (1)

under asynchronous switching. In general, there are two periods for SMC design. The first period is

the reaching phase, that is, the state trajectories are driven onto the established sliding mode surface.

During this period, the state is controlled by the designed sliding mode controller. The second period

is the sliding motion, that is, the state trajectories move along the sliding mode surface. During this

period, the state may be taken under the enforcement of equivalent control law ueq(t).
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For the purpose of presentation clarity, it is convenient to denote the mismatched period as Ω1 and the

matched period as Ω2.

Ω1 : {x(t) ∈ R
n|σ(t) = i 6= σ′(t) = j, t ∈ [tk, tk +△k), k = 1, 2, . . .}, (4)

Ω2 : {x(t) ∈ R
n|σ(t) = σ′(t) = i, t ∈ [tk +△k, tk+1), k = 0, 1, 2, . . .}. (5)

The integral sliding surface function is designed as follows:

s(x(t), j) = Gx(t)−
∫ t

0
Kjx(τ)dτ, (6)

where matrix G is chosen such that GB is nonsingular and Kj will be designed later.

Within the designated finite interval [0, T], a suitable sliding mode controller is designed to drive

the trajectories of the estimated state onto the specified sliding surface s(x(t), j) = 0 in a finite time T∗

with T∗
< T and then are maintained there for the remaining time interval [T∗, T]. In order to achieve

this objective, the SMC law is constructed as

u(t) =

{

(GB)−1
(

Kjx(t)− (̺ + η(t))sgn(s(x(t), j))
)

, for t ∈ Ω1,

(GB)−1
(

Kix(t)− (̺ + η(t))sgn(s(x(t), i))
)

, for t ∈ Ω2,
(7)

where the robust term η(t) is given as

η(t) , δ1‖x(t)‖+ δ2, (8)

with δ1 , maxi∈Nc
{δ1i}, δ2 , maxi∈Nc

{δ2i}, δ1i , ‖GAi‖+ ‖GEi‖‖Hi‖+ ǫi‖GB‖, δ2i , δ‖GDi‖. The

gain Kj will be obtained in Theorem 4 and ̺ is the adjustable parameter to be further described in

Theorem 1.

In the forthcoming sections, the aforementioned SMC law will be firstly proven to ensure the

reachability of the sliding surface within the interval [0, T∗]. Subsequently, the derived sufficient

conditions for IO-FTS of the closed-loop switched system during both the reaching phase [0, T∗] and

the sliding motion phase [T∗, T] will be presented.

4. Reachability with T
∗
< T

The analysis of the reachability of sliding surface s(x(t), j) = 0 will be analyzed in the subsequent

theorem.

Theorem 1. Consider the uncertain nonlinear switched system (1). The sliding surface is chosen as (6). If the

desired SMC law is designed as Eq.(7) and the adjustable parameters ̺ > 0 satisfies

̺ >
1

T
‖Gx(0)‖, (9)

then the specified sliding surface s(x(t), j) = 0 can be reached in a finite time T∗ with T∗
< T.

Proof of Theorem 1. Choose the Lyapunov function

V1(t) =
1

2
sT(x(t), j)s(x(t), j). (10)
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When t ∈ Ω1, from (1) and (6), it can get

V̇1(t) = sT(x(t), j)ṡ(x(t), j)

= sT(x(t), j)(Gẋ(t)− Kjx(t))

= sT(x(t), j)
(

(GAi + G∆Ai)x(t) + GB
(

u(t) + fi(x(t), t)
)

+ GDiw(t)− Kjx(t)
)

.

(11)

From Assumption 1, it is easily obtained that ‖w(t)‖ ≤ δ. Thus, substituting (7) and the fact of

‖ fi(x(t), t)‖ ≤ ǫi‖x(t)‖ into (11) yields

V̇1(t) ≤ ‖s(x(t), j)‖
(

(‖GAi‖+ ‖GEi‖‖Hi‖)‖x(t)‖+ ǫi‖GB‖‖x(t)‖+ δ‖GDi‖
)

+sT(x(t), j)GBu(t)− sT(x(t), j)Kjx(t)

≤ −̺‖s(x(t), j)‖. (12)

Further, due to the fact

V1(t) =
1

2
‖s(x(t), j)‖2, (13)

one has

V̇1(t) ≤ −̺
√

2V1(t). (14)

When t ∈ Ω2, it can also get (14).

By integrating the expression (14) from 0 to T∗, it is easily obtained that

2
√

V1(T∗)− 2
√

V1(0) ≤ −
√

2̺T∗. (15)

We can obtain that

T∗
< − 1√

2̺

(

2
√

V1(T∗)− 2
√

V1(0)
)

<
1

̺
‖s(0)‖. (16)

Due to the condition s(0) = Gx(0), we get

T∗
<

1

̺
‖Gx(0)‖. (17)

Thus, from condition (9), it can be shown that trajectories of state estimate will be driven onto the

specified sliding surface s(x(t), j) = 0 in finite time T∗ with T∗
< T.

5. IO-FTS within [0, T]

In this section, IO-FTS problems of the switched systems (1) during the reaching phase and the

sliding motion phase will be separately analyzed using the ADT method, respectively. Subsequently,

the sliding mode gains for the whole phase will be provided.

During t ∈ Ω1, the SMC law mismatches with the subsystem, that is, σ(t) = i 6= σ′(t) = j. Then,

the SMC law is formulated as

u(t) = (GB)−1
(

Kjx(t)− (̺ + η(t))sgn(s(x(t), j))
)

. (18)
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Substituting the above SMC law into the switched system (1), the closed-loop switched system can be

obtained as follows:

ẋ(t) = Āijx(t) + Diw(t) + B fi(x(t), t)− B̄ηs(t, j),

y(t) = Cix(t), (19)

with Āij = Ai + ∆Ai + B̄Kj, B̄ = B(GB)−1, ηs(t, j) = (̺ + η(t))sgn(s(x(t), j)).

When t ∈ Ω2, the matched SMC law can be described as

u(t) = (GB)−1
(

Kix(t)− (̺ + η(t))sgn(s(x(t), i))
)

. (20)

By substituting (20) into the switched system (1), we can get the closed-loop system

ẋ(t) = Āix(t) + Diw(t) + B fi(x(t), t)− B̄ηs(t, i),

y(t) = Cix(t), (21)

with Āi = Ai + ∆Ai + B̄Ki, ηs(t, i) = (̺ + η(t))sgn(s(x(t), i)).

5.1. IO-FTS over reaching phase

Now, we establishes the sufficient conditions for IO-FTS of the closed-loop switched system (19)

and (21) within the interval [0, T∗].

Theorem 2. Consider the systems (19) and (21), for given positive constant α1, α2, µ1 ≥ 1,µ2 ≥ 1 and the a

feasible scalars βi, α1 ≥ α2 > 0, if there exist scalars ρ1ij, ρ2ij and matrices Pij > 0, Pi > 0, Wij > 0, Wi > 0

for any i, j ∈ Nc, such that

Ψ =

[

Ψ1ij Ψ2ij

∗ Ψ3ij

]

< 0, Ψ̄ =

[

Ψ̄1i Ψ̄2i

∗ Ψ̄3i

]

< 0 (22)

3βiδ
2
1λc∗ ≤ e−α1T∗

Wij, 3βiδ
2
1λc∗ ≤ e−α1T∗

Wi, (23)

eα2T∗
λ̄c1 + βiT

∗eα1T∗
(δ2 + 3̺2 + 3δ2

2) ≤ λc∗e−(ln(µ1µ2)+(α1−α2)Md)N0 , (24)

Pij ≤ µ1Pj, Pi ≤ µ2Pij, Wij ≤ µ1Wj, Wi ≤ µ2Wij, (25)

with

Ψ1ij =

[

He{Pij Ai + Pij B̄Kj}+ Wij − α1Pij PijDi

∗ −βi I

]

,

Ψ̄1i =

[

He{Pi Ai + Pi B̄Ki}+ Wi − α2Pi PiDi

∗ −βi I

]

,

Ψ2ij =

[

−Pij B̄ ρ1ijPijB ǫi I ρ2ijPijEi HT
i

0 0 0 0 0

]

,

Ψ̄2i =

[

−Pi B̄ ρ1iPiB ǫi I ρ2iPiEi HT
i

0 0 0 0 0

]

,

Ψ3ij = −diag{βi I, ρ1ij I, ρ1ij I, ρ2ij I, ρ2ij I}, Ψ̄3i = −diag{βi I, ρ1i I, ρ1i I, ρ2i I, ρ2i I},

B̄ = B(GB)−1.
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If the average dwell time of switching signal σ satisfies

τa1 > τ∗
a1 =

(

ln(µ1µ2) + (α1 − α2)Md

)

T

ln(λc∗)− ln ̟ − N0

(

ln(µ1µ2) + (α1 − α2)Md

) , (26)

where

Md = maxk∈{1,...,m}{△k}, ̟ = eα2T∗
λ̄c1 + βiT

∗eα1T∗
(δ2 + 3̺2 + 3δ2

2),

λ̄ = maxi,j∈Nc
{λmax[(CT

i RCi)
− 1

2 Pi(C
T
i RCi)

− 1
2 ], λmax[(CT

i RCi)
− 1

2 Pij(C
T
i RCi)

− 1
2 ]},

λ = mini,j∈Nc
{λmin[(C

T
i RCi)

− 1
2 Pi(C

T
i RCi)

− 1
2 ], λmin[(C

T
i RCi)

− 1
2 Pij(C

T
i RCi)

− 1
2 ]},

then the closed-loop system (19) and (21) is IO-FTS during the interval [0, T∗].

Proof of Theorem 2. Construct a Lyapunov-like function as the follows

V2(t) =

{

Vσ(t)σ′(t)(t) = xT(t)Pσ(t)σ′(t)x(t) +
∫ t

0 xT(θ)Wσ(θ)σ′(θ)x(θ)dθ, t ∈ Ω1,

Vσ(t)(t) = xT(t)Pσ(t)x(t) +
∫ t

0 xT(θ)Wσ(θ)x(θ)dθ, t ∈ Ω2.
(27)

When t ∈ Ω1, the i-th subsystem is activated and the corresponding j-th controller is activated, which

means σ(t) = i, σ′(t) = j, we get the time derivative of the Lyapunov-like Vij(t).

V̇ij(t) = ẋT(t)Pijx(t) + xT(t)Pij ẋ(t) + xT(t)Wijx(t)

= (Āijx(t) + B fi(x(t), t) + Diw(t)− B̄ηs(t, j))T Pijx(t) + xT(t)Pij(Āijx(t)

+B fi(x(t), t) + Diw(t)− B̄ηs(t, j)) + xT(t)Wijx(t)

= xT(t)(ĀT
ij Pij + Pij Āij)x(t) + xT(t)PijDiw(t) + wT(t)DT

i Pijx(t)

+2 f T
i (x(t), t)BT Pijx(t)− 2ηT

s (t, j)B̄T Pijx(t) + xT(t)Wijx(t). (28)

Define the following auxiliary function with scalars α1, βi,

Jij(t) = V̇ij(t)− α1Vij(t)− βiw
T(t)w(t)− βiη

T
s (t, j)ηs(t, j). (29)

Consider the fact of 2 f T
i (x(t), t)BT Pijx(t) ≤ ρ1ijx

T(t)PijB(PijB)
Tx(t) + ρ−1

1ij ǫ2
i xT(t)x(t), it yields from

(28) that

Jij(t) ≤ xT(t)
(

ĀT
ij Pij + Pij Āij − α1Pij + Wij

)

x(t) + xT(t)PijDiw(t) + wT(t)DT
i Pijx(t)

+ρ1ijx
T(t)PijB(PijB)

Tx(t) + ρ−1
1ij ǫ2

i xT(t)x(t)− xT(t)Pij B̄ηs(t, j)− βiw
T(t)w(t)

−ηT
s (t, j)B̄T Pijx(t)− βiη

T
s (t, j)ηs(t, j)− α1

∫ t

0
xT(θ)Wσ(θ)σ′(θ)x(θ)dθ.

Note that

2xT(t)Pij∆Aix(t) ≤ ρ2ijx
T(t)PijEi(PijEi)

Tx(t) + ρ−1
2ij xT(t)HT

i Hix(t).

Then, we can get

Jij(t) + α1

∫ t

0
xT(θ)Wσ(θ)σ′(θ)x(θ)dθ ≤ ξT

1 (t)Γ1ijξ1(t), (30)
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with

ξ1(t) =







x(t)

w(t)

ηs(t, j)






, Γ1ij =







Γ1
1ij PijDi −Pij B̄

∗ −βi I 0

∗ ∗ −βi I






.

Γ1
1ij = He{Pij Ai + Pij B̄Kj} − α1Pij + Wij + ρ2ijPijEi(PijEi)

T

+ρ−1
2ij HT

i Hi + ρ1ijPijB(PijB)
T + ρ−1

1ij ǫ2
i I (31)

By Schur’s complement, it can be shown that Γ1ij < 0 can be ensured by (22). Thus, it can be obtained

from (30) that:

Jij(t) < 0, (32)

which means that

V̇ij(t) < α1Vij(x) + βiw
T(t)w(t) + βiη

T
s (t, j)ηs(t, j). (33)

On the other hand, it is easily shown by Schur’s complement that the inequality Γ1ij < 0 is equivalent

to the condition (22).

When t ∈ [tk, tk+1], multiplying both sides of (33) with e−α1t, which implies that

de−α1tVij(t)

dt
≤ βie

−α1twT(t)w(t) + βie
−α1tηT

s (t, j)ηs(t, j). (34)

Then, integrating both sides of (34) from tk to t, one gets

Vij(t) ≤ eα1(t−tk)Vij(tk) + βi

∫ t

tk

eα1(t−θ)wT(θ)w(θ)dθ + βi

∫ t

tk

eα1(t−θ)ηT
s (θ)ηs(θ)dθ. (35)

Similarly, when t ∈ Ω2, we define the auxiliary function:

Ji(t) = V̇i(t)− α2Vi(t)− βiw
T(t)w(t)− βiη

T
s (t, i)ηs(t, i). (36)

Then, after some manipulations with the condition (22), we can get

Vi(t) ≤ eα2(t−tk−△k)Vi(tk +△k) + βi

∫ t

tk+△k

eα2(t−θ)wT(θ)w(θ)dθ

+βi

∫ t

tk+△k

eα2(t−θ)ηT
s (θ)ηs(θ)dθ. (37)

From (25) and (27), there hold

Vij(t) ≤ µ1Vj(t), Vi(t) ≤ µ2Vij(t). (38)
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When t ∈ [tk, tk +△k), from (35), (37) and (38), by using iteration, it is derived that

Vij(t) ≤ eα1(t−tk)Vij(tk) + βi

∫ t

tk

eα1(t−θ)wT(θ)w(θ)dθ + βi

∫ t

tk

eα1(t−θ)ηT
s (θ)ηs(θ)dθ

≤ µ1eα1(t−tk)Vj(tk) + βi

∫ t

tk

eα1(t−θ)wT(θ)w(θ)dθ + βi

∫ t

tk

eα1(t−θ)ηT
s (θ)ηs(θ)dθ

≤ µ1eα1(t−tk)eα2(tk−tk−1−△k−1)Vj(tk−1 +△k−1) + βi

∫ t

tk

eα1(t−θ)wT(θ)w(θ)dθ

+µ1eα1(t−tk)βi

∫ tk

tk−1+△k−1

eα2(tk−θ)ηT
s (θ)ηs(θ)dθ + βi

∫ t

tk

eα1(t−θ)ηT
s (θ)ηs(θ)dθ

+µ1eα1(t−tk)βi

∫ tk

tk−1+△k−1

eα2(tk−θ)wT(θ)w(θ)dθ

≤ µ1µ2eα1(t−tk)eα2(tk−tk−1−△k−1)Vij(tk−1 +△k−1) + βi

∫ t

tk

eα1(t−θ)wT(θ)w(θ)dθ

+µ1eα1(t−tk)βi

∫ tk

tk−1+△k−1

eα2(tk−θ)ηT
s (θ)ηs(θ)dθ + βi

∫ t

tk

eα1(t−θ)ηT
s (θ)ηs(θ)dθ

+µ1eα1(t−tk)βi

∫ tk

tk−1+△k−1

eα2(tk−θ)wT(θ)w(θ)dθ

≤ µ1µ2eα1(t−tk)eα2(tk−tk−1−△k−1)
(

eα1(tk−1+△k−1−tk−1)Vij(tk−1)

+βi

∫ tk−1+△k−1

tk−1

eα1(tk−1+△k−1−θ)wT(θ)w(θ)dθ

+βi

∫ tk−1+△k−1

tk−1

eα1(tk−1+△k−1−θ)ηT
s (θ)ηs(θ)dθ

)

+µ1eα1(t−tk)βi

∫ tk

tk−1+△k−1

eα2(tk−θ)wT(θ)w(θ)dθ

+βiµ1eα1(t−tk)
∫ tk

tk−1+△k−1

eα2(tk−θ)ηT
s (θ)ηs(θ)dθ

+βi

∫ t

tk

eα1(t−θ)wT(θ)w(θ)dθ + βi

∫ t

tk

eα1(t−θ)ηT
s (θ)ηs(θ)dθ

≤ · · ·
≤ (µ1µ2e(α1−α2)Md)Nσ(0,t)eα2tVij(0) + βi

∫ t

0
e(α1−α2)Md Nσ(θ,t)eα1(t−θ)wT(θ)w(θ)dθ

+βi

∫ t

0
e(α1−α2)Md Nσ(θ,t)eα1(t−θ)ηT

s (θ)ηs(θ)dθ, (39)

where Td(0, t) denotes the total mismatched time span during [0, t] and ηT
s (t)ηs(t) = (̺ + η(t))2.

Moreover, when t ∈ [tk +△k, tk+1), there holds

Vi(t) ≤ (µ1µ2e(α1−α2)Md)Nσ(0,t)eα2tVij(0) + βi

∫ t

0
e(α1−α2)Md Nσ(θ,t)eα1(t−θ)wT(θ)w(θ)dθ

+βi

∫ t

0
e(α1−α2)Md Nσ(θ,t)eα1(t−θ)ηT

s (θ)ηs(θ)dθ, (40)

When t ∈ [0, T∗), combing (39) with (40), we can get

V2(t) ≤ (µ1µ2e(α1−α2)Md)Nσ(0,T∗)
(

eα2tV2(0) + βi

∫ T∗

0
eα1(t−θ)wT(θ)w(θ)dθ

+βi

∫ T∗

0
eα1(t−θ)ηT

s (θ)ηs(θ)dθ
)

, (41)
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with Md = maxk∈{1,...,m}{△k}.

Note that

xT(t)Pijx(t) = xT(t)(CT
i RCi)

1
2 (CT

i RCi)
− 1

2 Pij(C
T
i RCi)

− 1
2 (CT

i RCi)
1
2 x(t) (42)

xT(t)Pix(t) = xT(t)(CT
i RCi)

1
2 (CT

i RCi)
− 1

2 Pi(C
T
i RCi)

− 1
2 (CT

i RCi)
1
2 x(t) (43)

then, we have

λmin((C
T
i RCi)

− 1
2 Pij(C

T
i RCi)

− 1
2 )yT(t)Ry(t) ≤ xT(t)Pijx(t)

≤ λmax((CT
i RCi)

− 1
2 Pij(C

T
i RCi)

− 1
2 )yT(t)Ry(t) (44)

λmin((C
T
i RCi)

− 1
2 Pi(C

T
i RCi)

− 1
2 )yT(t)Ry(t) ≤

xT(t)Pix(t) ≤ λmax((CT
i RCi)

− 1
2 Pi(C

T
i RCi)

− 1
2 )yT(t)Ry(t) (45)

Noting Vij(0) = xT(0)Pijx(0), Vi(0) = xT(0)Pix(0) we have

V2(t) ≤ (µ1µ2e(α1−α2)Md)Nσ(0,T∗)
(

eα2T∗
λ̄c1 + βi

∫ T∗

0
eα1(t−θ)wT(θ)w(θ)dθ

+βi

∫ t

0
eα1(t−θ)ηT

s (θ)ηs(θ)dθ
)

, (46)

where λ̄ = maxi,j∈Nc

{

λmax

[

(CT
i RCi)

− 1
2 Pi(C

T
i RCi)

− 1
2
]

, λmax

[

(CT
i RCi)

− 1
2 Pij(C

T
i RCi)

− 1
2
]

}

.

Note that the fact of ηs(t, j) = ̺ + η(t)sgn(s(x(t), j)) with η(t) = δ1‖x(t)‖+ δ2, it can obtain that

ηT
s (t, j)ηs(t, j) ≤ 3̺2 + 3δ2

1‖x(t)‖2 + 3δ2
2 , (47)

thus, one gets

V2(t) ≤ (µ1µ2e(α1−α2)Md)Nσ(0,T∗)
(

eα2T∗
λ̄c1 + βiT

∗eα1T∗
(δ2 + 3̺2 + 3δ2

2)

+3βiδ
2
1eα1T∗

∫ t

0
xT(θ)x(θ)dθ

)

. (48)

From the fact (27), we have

Vij(t) = xT(t)Pijx(t) +
∫ t

0
xT(θ)Wijx(θ)dθ

≥ λmin[(C
T
i RCi)

− 1
2 Pij(C

T
i RCi)

− 1
2 ]yT(t)Ry(t) +

∫ t

0
xT(θ)Wijx(θ)dθ

≥ λyT(t)Ry(t) +
∫ t

0
xT(θ)Wijx(θ)dθ, (49)

and

Vi(t) = xT(t)Pix(t) +
∫ t

0
xT(θ)Wix(θ)dθ

≥ λyT(t)Ry(t) +
∫ t

0
xT(θ)Wix(θ)dθ, (50)
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where λ = mini,j∈Nc

{

λmin

[

(CT
i RCi)

− 1
2 Pi(C

T
i RCi)

− 1
2
]

, λmin

[

(CT
i RCi)

− 1
2 Pij(C

T
i RCi)

− 1
2
]

}

. From (48)

and(49), we can obtain

yT(t)Ry(t) ≤
(µ1µ2e(α1−α2)Md)Nσ(0,T∗)

(

eα2T∗
λ̄c1 + βiT

∗eα1T∗
(δ2 + 3̺2 + 3δ2

2)
)

λ

+
(µ1µ2e(α1−α2)Md)Nσ(0,T∗)3βiδ

2
1eα1T∗ ∫ t

0 xT(θ)x(θ)dθ −
∫ t

0 xT(θ)Wijx(θ)dθ

λ
.

From (48) and (50), we can obtain

yT(t)Ry(t) ≤
(µ1µ2e(α1−α2)Md)Nσ(0,T∗)

(

eα2T∗
λ̄c1 + βiT

∗eα1T∗
(δ2 + 3̺2 + 3δ2

2)
)

λ

+
(µ1µ2e(α1−α2)Md)Nσ(0,T∗)3βiδ

2
1eα1T∗ ∫ t

0 xT(θ)x(θ)dθ −
∫ t

0 xT(θ)Wix(θ)dθ

λ
.

When µ1µ2 = 1, from (24), we have

yT(t)Ry(t) ≤ c∗.

When µ1µ2 6= 1, from the conditions Nσ(t, T) ≤ N0 +
T−t
τa

, (26) and condition (23), it holds

yT(t)Ry(t) ≤ c∗. (51)

Thus, the switched system (1) is IO-FTS with respect to (c∗, [0, T∗], R, W[0,T],δ, σ) during t ∈ [0, T∗].

5.2. IO-FTS over sliding motion phase

In the subsequent sections of this work, the IO-FTS problem will be analyzed during the sliding

motion phase when t ∈ [T∗, T]. By means of sliding mode theory, as the system trajectories enter

the sliding mode, it follows that s(x(t), j) = 0 and ṡ(x(t), j) = 0. Consequently, we can derive the

following equivalent control law:

ueqj(t) = (GB)−1(Kj − G(Ai + ∆Ai)x(t)− (GB)−1GDiw(t)− fi(x(t), t), (52)

which, substituted into (1) yields the following sliding mode dynamics

{

ẋ(t) = Âijx(t) + D̂iw(t),

y(t) = Cix(t),
t ∈ Ω1, (53)

with Âij = Ḡ(Ai + ∆Ai) + B̄Kj, Ḡ = I − B(GB)−1G, B̄ = B(GB)−1, D̂i = ḠDi, and

{

ẋ(t) = Âijx(t) + D̂iw(t),

y(t) = Cix(t),
t ∈ Ω2, (54)

with Âi = Ḡ(Ai + ∆Ai) + B̄Ki.

The following theorem presents the results of the IO-FTS for the switched system (53)-(54) within

the interval [T∗, T].
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Theorem 3. Consider the closed-loop system (53)-(54) with the integral sliding surface (6), for given

positive constant α1, α2, µ1 ≥ 1,µ2 ≥ 1 and the a feasible scalars βi. If there exist positive constants

ρ2ij, ρ3ij, ρ4ij, ρ5ij, ρ2i, ρ3i, ρ4i, ρ5i and matrices Pij > 0, Pi > 0 for any i ∈ Nc, such that

Λ =

[

Λ1ij Λ2ij

∗ Λ3ij

]

< 0, (55)

Λ̄ =

[

Λ̄1i Λ̄2i

∗ Λ̄3i

]

< 0, (56)

λ̄c∗eα2T + βiδ
2Teα1T ≤ λc2e−N0(ln(µ1µ2)+Md(α1−α2)) (57)

Pij ≤ µ1Pj, Pi ≤ µ2Pij (58)

with

Λ1ij =

[

He{Pij Ai + Pij B̄Kj} − α1Pij PijDi

∗ −βi I

]

,

Λ2ij =

[

ρ2ijPijEi HT
i ρ3ijPij B̄G AT

i ρ4ijPij B̄GEi HT
i ρ5ijPij B̄G 0

0 0 0 0 0 0 0 DT
i

]

,

Λ3ij = −diag{ρ2ij I, ρ2ij I, ρ3ij I, ρ3ij I, ρ4ij I, ρ4ij I, ρ5ij I, ρ5ij I},

Λ̄1i =

[

He{Pi Ai + Pi B̄Ki} − α2Pi PiDi

∗ −βi I

]

,

Λ̄2i =

[

ρ2iPiEi HT
i ρ3iPi B̄G AT

i ρ4iPi B̄GEi HT
i ρ5iPi B̄G 0

0 0 0 0 0 0 0 DT
i

]

,

Λ̄3i = −diag{ρ2i I, ρ2i I, ρ3i I, ρ3i I, ρ4i I, ρ4i I, ρ5i I, ρ5i I},

B̄ = B(GB)−1.

If the average dwell time of switching signal σ satisfies

τa2 > τ∗
a2 =

(

ln(µ1µ2) + (α1 − α2)Md

)

T

ln(λc2)− ln(λ̄c∗eα2T + βiδ2Teα1T)− N0(ln(µ1µ2) + Md(α1 − α2))
, (59)

where Md = maxk∈{1,...,m}{△k}, then the closed-loop system (53) and (54) is IO-FTS during the interval

[0, T].

Proof of Theorem 3. Choose the Lyapunov function as

V3(t) =

{

Vσσ′(t) = xT(t)Pσσ′x(t), t ∈ Ω1,

Vσ(t) = xT(t)Pσx(t), t ∈ Ω2.
(60)

Similar to Theorem 2 to define the auxiliary functions with scalars α1, α2 and βi

J̃(t) =

{

J̃σσ′(t) = V̇σσ′(t)− α1Vσσ′(t)− βiw
T(t)w(t), t ∈ Ω1,

J̃σ(t) = V̇σ(t)− α2Vσ(t)− βiw
T(t)w(t), t ∈ Ω2.

(61)
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When t ∈ Ω1,

J̃ij(t) = V̇ij(t)− α1Vij(t)− βiw
T(t)w(t)

= xT(t)ÂT
ij Pijx(t) + xT(t)Pij Âijx(t)− α1xT(t)Pijx(t) + wT(t)D̂T

i Pijx(t)

+xT(t)PijD̂iw(t)− βiw
T(t)w(t)

= xT(t)ĀT
ij Pijx(t) + xT(t)Pij Āijx(t)− 2xT(t)PijB(GB)−1GAix(t)

−2xT(t)PijB(GB)−1G∆Aix(t)− α1xT(t)Pijx(t) + 2xT(t)PijDiw(t)

−2xT(t)PijB(GB)−1GDiw(t)− βiw
T(t)w(t), (62)

Note that

−2xT(t)PijB(GB)−1GAix(t) ≤ ρ3ijx
T(t)PijB(GB)−1G(PijB(GB)−1G)Tx(t)

+ρ−1
3ij xT(t)AT

i Aix(t);

−2xT(t)PijB(GB)−1G∆Aix(t) ≤ ρ4ijx
T(t)PijB(GB)−1GEi(PijB(GB)−1GEi)

Tx(t)

+ρ−1
4ij xT(t)HT

i Hix(t);

−2xT(t)PijB(GB)−1GDiw(t) ≤ ρ5ijx
T(t)PijB(GB)−1G(PijB(GB)−1G)Tx(t)

+ρ−1
5ij wT(t)DT

i Diw(t);

Then, we can get

Jij(t) ≤ xT(t)
(

(Ai + B̄Kj)
T Pij + Pij(Ai + B̄Kj) + ρ3ijPijB(GB)−1G(PijB(GB)−1G)T

+ρ−1
3ij AT

i Ai + ρ4ijPijB(GB)−1GEi(PijB(GB)−1GEi)
T

+ρ5ijPijB(GB)−1G(PijB(GB)−1G)T + ρ2ijPijEi(PijEi)
T

+ρ−1
2ij HT

i Hi + ρ−1
4ij HT

i Hi − α1Pij

)

x(t) + 2xT(t)PijDiw(t)

+wT(t)
(

ρ−1
5ij DT

i Di − βi I
)

w(t)

= ξT
2 (t)Γ2ijξ2(t), (63)

with

ξ2(t) =

[

x(t)

w(t)

]

, Γ2ij =

[

Γ1
2ij PijDi

∗ Γ2
2ij

]

.

where

Γ
1
2ij = (Ai + B̄Kj)

T Pij + Pij(Ai + B̄Kj) + ρ3ijPij B̄G(Pij B̄G)T + ρ−1
3ij AT

i Ai − α1Pij + ρ−1
4ij HT

i Hi

+ρ4ijPij B̄GEi(Pij B̄GEi)
T + ρ5ijPij B̄G(Pij B̄G)T + ρ2ijPijEi(PijEi)

T + ρ−1
2ij HT

i Hi

Γ
2
2ij = ρ−1

5ij DT
i Di − βi I

B̄ = B(GB)−1.

Consider the condition (55), by employing Schur’s complement and some operations, we can get

Γ2ij < 0, that is

V̇ij(t) < α1Vij(x) + βiw
T(t)w(t), t ∈ Ω1. (64)
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Similarly, from the condition (56), we can also get

V̇i(t) < α2Vi(x) + βiw
T(t)w(t), t ∈ Ω2. (65)

When t ∈ [tk, tk +△k), integrating (64) from tk to t, we obtain

Vij(t) ≤ eα1(t−tk)Vij(tk) + βi

∫ t

tk

eα1(t−θ)wT(θ)w(θ)dθ. (66)

On the other hand, when t ∈ [tk +△k, tk+1), it holds that

Vi(t) ≤ eα2(t−tk−△k)Vi(tk +△k) + βi

∫ t

tk+△k

eα2(t−θ)wT(θ)w(θ)dθ. (67)

When t ∈ [tk, tk +△k), notice that Nσ(t0, t) = Nσ′(t0, t) + 1, it follows from the similar procedures to

Theorem 2 that

Vij(t) ≤ (µ1µ2e(α1−α2)Md)Nσ(T∗ ,t)
(

eα2(t−T∗)Vij(T
∗) + βi

∫ t

T∗
eα1(t−θ)wT(θ)w(θ)dθ

)

≤ (µ1µ2e(α1−α2)Md)Nσ(T∗ ,t)
(

λ̄c∗eα2(t−T∗) + βiδ
2(t − T∗)eα1(t−T∗)

)

. (68)

Moreover, when t ∈ [tk +△k, tk+1), there holds

Vi(t) ≤ (µ1µ2e(α1−α2)Md)Nσ(T∗ ,t)
(

eα2(t−T∗)Vi(T
∗) + βi

∫ t

T∗
eα1(t−θ)wT(θ)w(θ)dθ

)

≤ (µ1µ2e(α1−α2)Md)Nσ(T∗ ,t)
(

λ̄c∗eα2(t−T∗) + βiδ
2(t − T∗)eα1(t−T∗)

)

. (69)

From Theorem 2, the switched system is IO-FTB during [0, T∗], i.e., the initial output condition of the

sliding motion phase at time T∗ satisfies yT(T∗)Ry(T∗) < c∗. Then, from the condition (59), we have

yT(t)Ry(t) ≤
(µ1µ2e(α1−α2)Md)Nσ(T∗ ,t)

(

λ̄c∗eα2(t−T∗) + βiδ
2(t − T∗)eα1(t−T∗)

)

λ
. (70)

From (57) and (59), we can obtain

yT(t)Ry(t) < c2. (71)

Thus, the switched system (53) is IO-FTS with respect to (c2, [0, T], R, W[0,T],δ, σ) during t ∈ [T∗, T].

5.3. Design of gains Kj and Ki

It’s noteworthy that the conditions in Theorems 2 and 3 are not in the form of linear matrix

inequalities (LMIs), even when the value η is fixed. However, through inequality transformations,

some LMIs conditions can be derived in Theorem 4. Subsequently, the gains Ki will be designed to

ensure the conditions in Theorems 2 and 3 to be hold simultaneously.
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Theorem 4. Given the parameters (c1, c2, [0, T], R, δ), positive constant α1, α2, µ1 ≥ 1,µ2 ≥ 1 and the

feasible scalars βi. If there exist matrices Pij, Pi, Wij, Wi, real matrixes Lij, Li and scalars c∗, ρlij and ρli,

l ∈ {1, 2, 3, 4, 5}, for any i, j ∈ Nc, satisfying

Θ =

[

Θ1ij Θ2ij

∗ Θ3ij

]

< 0, Θ̄ =

[

Θ̄1i Θ̄2i

∗ Θ̄3i

]

< 0, (72)

[

−e−α1TWij

√

3βic2δ1Wij

∗ −νI

]

≤ 0,

[

−e−α1TWi

√

3βic2δ1Wi

∗ −νI

]

≤ 0, (73)

[

− 1
2 c∗e−N0(ln(µ1µ2)+Md(α1−α2)) + βiTeα1T(δ2 + 3̺2 + 3δ2

2)
√

eα2Tc1

∗ −νI

]

≤ 0, (74)

c∗eα2T + βiδ
2Teα1Tν − 1

2 c2e−N0(ln(µ1µ2)+Md(α1−α2))ν ≤ 0, (75)

ν(CT
i RCi)

−1
< Pi < 2(CT

i RCi)
−1, ν(CT

i RCi)
−1

< Pij < 2(CT
i RCi)

−1, (76)

Pj ≤ µ1Pij, Pij ≤ µ2Pi, Wj ≤ µ1Wij, Wij ≤ µ2Wi (77)

with

Θ1ij =







He{AiPij + B̄LiP−1
i Pij} − α1Pij Di −B̄

∗ −βi I 0

∗ ∗ −βi I






,

Θ̄1i =







He{AiPi + B̄Li} − α2Pi Di −B̄

∗ −βi I 0

∗ ∗ −βi I






,

Θ2ij =







ρ1ijB ǫiPij ρ2ijEi PijH
T
i ρ3ij B̄G Pij A

T
i ρ4ij B̄GEi

0 0 0 0 0 0 0

0 0 0 0 0 0 0

PijH
T
i ρ5ij B̄G 0 Pij

0 0 DT
i 0

0 0 0 0






,

Θ̄2i =







ρ1iB ǫiPi ρ2iEi Pi H
T
i ρ3i B̄G Pi A

T
i ρ4i B̄GEi

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Pi H
T
i ρ5i B̄G 0 Pi

0 0 DT
i 0

0 0 0 0






,

Ω3ij = −diag{ρ1ij I, ρ1ij I, ρ2ij I, ρ2ij I, ρ3ij I, ρ3ij I, ρ4ij I, ρ4ij I, ρ5ij I, ρ5ij I,Wij}
Ω̄3i = −diag{ρ1i I, ρ1i I, ρ2i I, ρ2i I, ρ3i I, ρ3i I, ρ4i I, ρ4i I, ρ5i I, ρ5i I,Wi}

B̄ = B(GB)−1.

Then the switched system (19) is IO-FTS with respect to (c1, c2, [0, T], R, δ, σ) under the switching signal σ

τa > τ∗
a = max

{

(

ln(µ1µ2) + (α1 − α2)Md

)

T

ln(λc∗)− ln ˆ̟ − M̄d
,

(

ln(µ1µ2) + (α1 − α2)Md

)

T

ln(λc2)− ln(λ̄c∗eα2T + βiδ2Teα1T)− M̄d

}

,

(78)
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where ˆ̟ = eα2Tλ̄c1 + βiTeα1T(δ2 + 3̺2 + 3δ2
2), M̄d = N0(ln(µ1µ2) + Md(α1 − α2)). The control gain

Kij = LijP−1
ij and Ki = LiP−1

i .

Proof of Theorem 4. For satisfying conditions in both Theorems 2 and 3, simultaneously, the following

inequalities should be satisfied

Ω =

[

Ω1ij Ω2ij

∗ Ω3ij

]

< 0, Ω̄ =

[

Ω̄1i Ω̄2i

∗ Ω̄3i

]

< 0, (79)

3βiδ
2
1λc∗ ≤ e−α1T∗

Wij, 3βiδ
2
1λc∗ ≤ e−α1T∗

Wi, (80)

eα2T∗
λ̄c1 + βiT

∗eα1T∗
(δ2 + 3̺2 + 3δ2

2) ≤ λc∗e−(ln(µ1µ2)+(α1−α2)Md)N0 , (81)

λ̄c∗eα2T + βiδ
2Teα1T ≤ λc2e−N0(ln(µ1µ2)+Md(α1−α2)) (82)

Pij ≤ µ1Pj, Pi ≤ µ2Pij, Wij ≤ µ1Wj, Wi ≤ µ2Wij, (83)

with

Ω1ij =

[

He{Pij Ai + Pij B̄Kj} − α1Pij + Wij PijDi

∗ −βi I

]

,

Ω̄1i =

[

He{Pi Ai + Pi B̄Ki} − α1Pi + Wi PiDi

∗ −βi I

]

,

Ω2ij =

[

−Pij B̄ ρ1ijPijB ǫi I ρ2ijPijEi HT
i ρ3ijPij B̄G AT

i

0 0 0 0 0 0 0

ρ4ijPij B̄GEi HT
i ρ5ijPij B̄G 0

0 0 0 DT
i

]

,

Ω̄2i =

[

−Pi B̄ ρ1iPiB ǫi I ρ2iPiEi HT
i ρ3iPij B̄G AT

i

0 0 0 0 0 0 0

ρ4iPi B̄GEi HT
i ρ5iPi B̄G 0

0 0 0 DT
i

]

,

Ω3ij = −diag{βi I, ρ1ij I, ρ1ij I, ρ2ij I, ρ2ij I, ρ3ij I, ρ3ij I, ρ4ij I, ρ4ij I, ρ5ij I, ρ5ij I}
Ω̄3i = −diag{βi I, ρ1i I, ρ1i I, ρ2i I, ρ2i I, ρ3i I, ρ3i I, ρ4i I, ρ4i I, ρ5i I, ρ5i I}

B̄i = Bi(GiBi)
−1Gi.

Let Pij = P−1
ij ,Pi = P−1

i ,Wij = W−1
ij ,Wi = W−1

i . Pre-multiplying and post-multiplying Ω and Ω̄ with

Υij = diag{Pij, I, I, I, I, I, I, I, I, I, I, I, I} and Ῡi = diag{Pi, I, I, I, I, I, I, I, I, I, I, I, I}, respectively, and

by Schur’s complement, Θ < 0 and Θ̄ < 0 are equivalent to the matrix inequality Ω < 0 and Ω̄ < 0.

On the other hand, by performing a congruence transformation and Schur’s complement, the

condition (23) can be obtained from (85).

By the conditions (76) and the fact that

λmax{(CT
i RCi)

1
2 Pi(C

T
i RCi)

1
2 } =

1

λmin{(CT
i RCi)

− 1
2 Pi(C

T
i RCi)

− 1
2 }

, (84)

λmax{(CT
i RCi)

1
2 Pij(C

T
i RCi)

1
2 } =

1

λmin{(CT
i RCi)

− 1
2 Pij(C

T
i RCi)

− 1
2 }

, (85)

it has

λ >
1

2
, λ̄ <

1

ν
. (86)
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Thus, it is easily shown that the inequalities (24) and (57) are ensured by (74) and (75).

The closed-loop system (19) is IO-FTS with average dwell time τa and the control gain gain are

given by Kj = LijP−1
ij and Ki = LiP−1

i .

6. Simulation examples

Consider the switched system (1) with two modes and parameters as follows:

Subsystem 1:

A1 =

[

−1 1

2 −1

]

, B1 =

[

3

2

]

, D1 =

[

−1

2

]

, E1 =

[

1.5

1

]

,

H1 =

[

0.4

0.3

]T

, C1 =

[

1 0

1 1

]

, R = I, M1(t) = cos(t).

Subsystem 2:

A2 =

[

−2 1

1 1

]

, B2 =

[

4

1

]

, D2 =

[

1

−2

]

, E2 =

[

0.1

0.2

]

,

H2 =

[

0.2

0.1

]T

, C2 =

[

1 2

0 1

]

, M2(t) = sin(t), f (t) = 0.5 cos(t).

The goal of this work is to construct the SMC law u(k) such that the resulting closed-loop system is

IO-FTS. Let c = 3, T = 3, α = 0.1, N0 = 0.1, β1 = 0.3 and β2 = 0.5. From the selection criterion (9), we

can choose the adjustable parameter as ̺1 = 0.2058 and ̺2 = 0.2115. Then, by solving LMIs in Theorem

4, we can get τ∗
a = 0.9531 and the control gains K1 = [−0.4913 − 2.3155], K2 = [0.1738 − 1.3023].

For the initial states as x(0) = [1 − 0.6]T and the average dwell time τ = 1, the simulation results

are shown in Figures 1 and 2. It can be seen from Figure 1 that the state trajectories of the open-loop

switched systems exceed c = 3, which means the uncontrolled system is divergent. According to (26),

we choose ADT as τa = 1.5. By means of the proposed switched signal σ(t) and SMC law u(t), it

is clearly shown in Figure 2 that the trajectory of yT(t)Ry(t) for the closed-loop switched system is

not beyond the threshold value c = 3 in finite-time interval [0, T]. Therefore, when the final time is

given, the state trajectories of the controlled switching systems still are within the previously given

threshold c.

0 0.5 1 1.5 2 2.5 3

t

-50

0

50

100

150

x
(t

)

Figure 1. Evolution of x(t) in open-loop case.
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Figure 2. Evolution of yT(t)Ry(t) in closed-loop case.

7. Conclusions

In this work, we have addressed the challenge of SMC for a class of uncertain switched systems

subject to asynchronous switching and finite-time constraints. To ensure IO-FTS of the switched system,

a SMC controller with adjustable parameters is constructed, enabling the system’s state trajectories to

reach the sliding surface within a predefined time interval. By employing a partitioning strategy and

MLF approach, some sufficient conditions for the IO-FTS of the closed-loop switched ystem over the

whole time interval [0, T] were derived.
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The following abbreviations are used in this manuscript:

IO-FTS Input-to-Output Finite-Time Stability

FTB Finite-time Bound

MLF Multiple Lyapunov Function

SMC Sliding Mode Control

MDADT Mode-Dependent Average Dwell Time

ADT Average Dwell Time

LMI Linear Matrix Inequality
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