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Abstract: Tripping is the largest cause of falls and low swing foot ground clearance during the mid-swing phase, 
particularly at the critical gait event known as Minimum Foot Clearance (MFC) is the major risk factor for 
tripping-related falls. Intervention strategies to increase MFC height can be effective if applied in real-time based 
on feed-forward prediction. The current study investigated the capability of machine learning models to classify 
the MFC into various categories using toe-off kinematics data. Specifically, three MFC sub-categories (less than 
1.5cm, between 1.5-2.0cm and higher than 2.0cm) were predicted applying machine learning approaches. A total 
of 18,490 swing phase gait cycles’ data were extracted from six healthy young adults, each walking for 5-minutes 
at a constant speed of 4km/h on a motorised treadmill. Both K-Nearest Neighbour (KNN) and Random-Forest 
were utilised for prediction based on the data from toe-off for five consecutive frames (0.025s duration). Foot 
kinematics data were obtained from inertial measurement unit aĴached to the mid-foot, recording tri-axial linear 
accelerations and angular velocities of the local coordinate. KNN and Random-Forest achieved 84% and 86% 
accuracy, respectively, in classifying MFC into the three sub-categories with run time of 0.39 seconds and 13.98 
seconds respectively. The KNN-based model was found to be more effective if incorporated into an active 
exoskeleton as the intelligent system to control MFC based on the preceding gait event, toe-off due to its quicker 
computation time. The machine learning based prediction model shows promise for the prediction of critical 
MFC data indicating higher tripping risk.  

Keywords: minimum foot clearance (MFC); tripping prevention; falls prevention; machine learning; gait 
prediction; gait biomechanics 
 

1. Introduction 
Falls are the critical issue among vulnerable populations including older adults, stroke survivors, 

Parkinson’s patients and individuals with other neurological disorders [1-7]. For example, up to one 
in three older adults fall at least once a year while this figure is 40-58% for post-stroke individuals 
(within 1 year of their stroke) and 45-68% for people with Parkinsonism [8-14]. Due to slower reaction 
speeds and lower bone mineral density [15], these frail populations are prone to severe injuries that 
can lead to death or constant nursing care with large costs that can impact both individuals and 
national social security systems [15-17]. Falls prevention should be thus prioritised especially for 
vulnerable populations. Among various causes, tripping has been identified as the leading cause 
accounting for up to 53% of the entire falls incidences [18, 19].  

    Tripping can be defined as the unintentional swing foot’s contact with the walking surface 
or an object on it with sufficient momentum that destabilises the walker [20]. During the swing phase 
of the gait cycle, the critical event in relation to tripping risk is minimum foot clearance (MFC), 
determined as the local minimum swing toe vertical displacement during the mid-swing phase [21-
22]. Tripping at MFC has the high risk of forward balance loss and an associated fall because (i) low 
vertical clearance increases the likelihood of swing foot contact, (ii) swing foot travels at near-
maximum speed generating the large impact in case of tripping at MFC and (iii) both feet stance does 
not provide the ideal supporting base against balance loss [22-25].  
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Essentially, tripping prevention can be achieved if sufficient vertical displacement is provided 
at MFC [26]. There are various intervention techniques aiming to increase MFC height such as use of 
the special shoe-insole, biofeedback training and exercise intervention. The focus of our current 
research is to predict MFC heights in advance so that this can be incorporated into assistive devices 
(e.g. active exoskeletons) for actuation assistance when necessary [27-30]. For development of such 
technology, MFC height estimation should be based on wearable sensors such as inertial 
measurement units (IMUs) [31-37] and undertaken well in advance for the mechanical device to take 
action. Our previous work showed that MFC timing can be predicted from toe-off characteristics with 
a mean absolute error of 0.07 seconds [38]. 

In our current study, we have applied IMUs to record toe-off characteristics described by 3-axial 
accelerations and angular velocities. The objective is to find out whether kinematics data following 
toe-off could be utilised for the classification of MFC heights into categories (e.g., high, medium, low). 
Using the MFC characteristics in [21], the current study aĴempted to classify MFC into the following 
three sub-categories: (i) lower than normal (MFC < 1.5cm), (ii) safe range (1.5cm < MFC < 2cm), and 
(iii) well-above the safety requirement (MFC > 2cm)  

2. Machine Learning Overview 
Machine learning algorithms can extract and recognise features using mathematical 

relationships between different variables in the sample space [38]. Collection of mathematically 
related feature variables in a sample space forms the sample data for development of training and 
testing algorithms. Machine learning applications in gait and neurological studies, have created 
intrinsic understanding in previously under discovered areas, giving rise to wider applications 
involving neurological processes relating human gait from recognition of intention to physical 
locomotion [39-41]. In the current study, a supervised machine learning algorithm was used to make 
predictions on new unlabelled data points. K-Nearest Neighbour (KNN) uses distance measures to 
find K closest neighbours to a test dataset. Low MFC is associated with tripping falls [21]; therefore, 
our goal was to use machine learning algorithm to classify MFC heights into lower than normal, safe 
range and above safe range categories. 
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Figure 2. Process diagram for the implementation of our ML algorithm, problem statement, algorithm 
development, training and performance evaluation. 

3. Data Collection 
3.1. Participants and Protocols 

Six healthy young adults were recruited for the current research from the university volunteers. 
To be included in the study, participants were required to be healthy, capable of walking on the 
treadmill for 30 minutes without a break, free from injuries that affect their walking paĴerns and no 
previous history of injurious falls for at least for the past two years. The entire experimental protocol 
was explained by the researchers and informed consent form approved and mandated by Victoria 
University Research Ethics CommiĴee was voluntarily signed by the participants prior to 
participation 

Gait testing was conducted on the treadmill (AMTI) for 5 minutes at 4km/h, which was 
considered to be the reasonable preferred pace for healthy young individuals [41]. Vicon Bonita 
system (Nexus 2.12.1) with 10 cameras were utilised to track reflective markers at 200Hz, aĴached to 
the heel (the proximal end of the shoe) and the toe (the most anterior superior surface of the shoe). 
Low-pass BuĴerworth filter (6Hz) was applied to the obtained position data prior to analysis. Based 
on the kinematic conventions [42], toe-off and heel contact were first computed to define the swing 
phase. MFC was identified as the local minimum vertical displacement of the toe during the mid-
swing phase from toe-off but when the clear local minimum was absent the alternative definition was 
applied utilising maximum horizontal velocity of swing toe [43]. 

 
Figure 3. IMU (Nexus, Trident) aĴached to the midfoot, tri-axial linear accelerations and angular velocities 
indicated by arrows. X is anterior-posterior axis, Y is Medio-lateral and Z is the vertical. 

As illustrated in Figure 3, IMU (Nexus, Trident) was aĴached to the mid-foot section to record 
various foot-segment based kinematic data (200Hz) but for the current study, tri-axial linear 
accelerations (AccX, AccY,AccZ)  and angular velocities (GyroX, GyroY, GyroZ) were obtained for 
machine learning application. The overall goal of the study was to predict in which category (Table 
1) upcoming MFC would be classified based on the 5 consecutive frames from toe-off comprising 
0.025s kinematic information from toe-off. MFC categories employed in the current study are 
described in Table 1, determined by the previous studies indicating the average MFC for young adults 
to be about 1.5cm (R1), slightly above the average up to 2cm, (R2) and minimum risk of tripping (R3) 
as above 2cm [22, 45, 20, 21]. 

Table 1. MFC Categories. 

R1 R2 R3 
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 Below average Safe Well-above safety limit  

 MFC < 1.5cm 1.5cm < MFC < 2cm MFC > 2.0cm 

3.2. Data Exploration 
The selected features (i.e. tri-axial linear accelerations, angular velocities) were ploĴed with 

Seaborne pair plot [46] and showed non-linearly separable classes. The average values are indicated 
in Table 2 

Table 2. Data from IMU sensor showing mean and standard deviation (5 frames from toe- off; 0,025s) of feature 
variables and number of counts per category of the 18,490 datasets collected. 

Categor
y 

  Average value of corresponding feature variables Total 

  AccX

 2/m s   
AccY

 2/m s  
AccZ

 2/m s  
GyroX
 /rads s  

GyroY
 /rads s  

GyroZ
 /rads s

 

R1 Mean 10.54 -3.85 4.18 0.02 -1.64 0.55 7235 

STD 5.92 5.81 4.79 2.75 1.91 2.11 

R2 Mean 9.89 -2.00 0.16 0.09 -0.69 0.10 3738 

STD 4.40 5.34 4.08 1.51 1.12 1.84 

R3 Mean 8.43 -0.23 8.09 2.34 -3.22 1.83 7517 

STD 7.06 3.94 7.28 2.00 2.10 2.01 

Zoomed Z-axis component of the acceleration and angular velocity on the three categories of the 
MFC heights, distinctive paĴerns illustrated in Figures 2a and 2b argues to the range of our 
classification 
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Figure 2. a: Zoomed Z-axis of linear acceleration on R1, R2 and R3 graphically compared. 
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Figure 2. b: Zoomed Z-axis of angular velocity on R1, R2 and R3 graphically compared. 

3.3. Model Selection and Algorithm Design 
K-Nearest Neighbour (KNN) and Random-Forest were selected because our dataset   variables 

are non-linearly separable as can be seen in Figure 3. Additionally, the characteristic aĴributes 
of each data point in Figure 3 formed a category that is assigned a class and 
the data points of any particular class are neighbors of each other. 
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Figure 3. Pair plot correlation of the feature variables (linear acceleration and angular velocity) on R1 (blue), 
R2 (orange) and R3 (green). 

In KNN, each instance is categorised as a vector of numbers in an n-dimensional Euclidean space. 
To find the class to which an unknown data point is a neighbor the Euclidean distance is measured 
as the true straight-line between two points. All instances, therefore, correspond to points in an n-

dimensional Euclidian space and the distance between instances ( , )d p q  is  

2 2 2
1 1 2 2( , ) ( ) ( ) ... ( )n nd p q q p q p q p      

 

= 

2

1
( )

n

i i
i
q p




 

Given k nearest neighbours, the optimum value is picked for best prediction of either R1, R2 or 
R3 MFC height category. In Random-Forest, an ensemble of many decision trees is designed to 
overcome overfiĴing problems associated with decision trees by bootstrap aggregation or bagging.  
Given a random-forest tree Tb (for b = 1 to B) to the bootstrap sample Z* of size N from training data,   

To make a prediction at a new point x  : 

Regression: 

^

1

1( ) ( )BB
rf bb
f x T x

B 
 

  
Classification:  

^

( )B
rfC x   majority vote 

^

1{ ( )} B
bC x  

where 

^
( )bC x  is the class of prediction of the bth random-forest tree. 
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These methods have proven success in several use cases in gait classification and identification 
[47-49]. Both KNN and Random-Forest were, therefore, selected for our study and as both were 
useable for regression or classification problems and belonged to supervised machine learning 
algorithms 

3.3.1. Hyper Parameter Tuning and Optimization 
Each variable data (Table 2) was reshaped for scaling, using RobustScaler. GridSearch cross 

validation was used to determine the optimal list of parameters for our machine learning problem. 
FiĴing 5 folds and iterating for 28 candidates, totalling 140 fits, the best parameters for KNN was 
tested with 7 neighbours 2 distances, 2 weights and 5 cross validations, and the best parameters 
proposed were ({'n_neighbors': 13, 'p': 2, 'weights': 'distance'}). Similarly, Random-Forest best 
parameters suggestion with GridSearach was ({'criterion': 'gini', 'max_depth': 8, 'max_features': 'sqrt', 
'n_estimators': 400, 'random_state': 42}). 

The feature variables (accelerometer and angular velocity) were separately investigated to 
determine individual contribution to the prediction of the MFC heights. The results are shown in 
table 4a and 4b. 

4. Results 
Figure 2 depicted the Z-axis variables of the critical MFC heights. MFC height in the range of the 

critical threshold based on the young population’s lower end of the normal range (i.e. mean – SD) 
indicated the Z-axis component of the kinematic variable is highly unstable with increased tripping 
risk at MFC. Figure 3 is the correlation plot that helped us visualise the relationship between the 
variables. Figure 4a and 4b are adapted from the confusion matrix for KNN and Random-Forest with 
close matched accuracies. Higher accuracies are prioritised in ML modelling, while precision and 
recall rate are more valuable for beĴer data classification. For example, high recall signifies good 
coverage, i.e. the percentage of tags the classifier predicted for a given label out of the total number 
of tags it should have predicted for that given label [50]. Both precision and recall are at acceptable 
levels supported by the F1 Score.  

 
Figure 4. a. Performance evaluation of KNN algorithm showing average accuracy of 84 percent with high 
recall and F1-scores. 
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A particular MFC height is predictable with 84 percent accuracy, suitability for business case 
related by high recall rate of 92 percent on R3 which has the highest risk of fall. 

 
 

Figure 4. b. Performance evaluation of Random-Forest with average accuracy of 86 percent with high recall 
and F1-scores. 

Performance result with Random-Forest is similar to the KNN algorithm with slight 
improvement in overall accuracy and recall. Random-Forest randomly selects a subset of features 
that are used as candidates at each split. This protocol automatically prevents the multitude of 
decision trees from relying on the same set of features, solving problems of overestimated correlations 
by avoiding a correlation of the individual trees. Each tree then draws a random sample of data from 
the training dataset when generating its splits, which further introduces an element of randomness 
and prevents the individual trees from overfiĴing the data. The uniformly generated weighted 
average on R1, R2 and R3 with both algorithms showed that each class was equally considered in its 
calculation of the metrics and had equal impact on the average score for each of those metrics (Table 
3) 

Table 3. Performance Summary of KNN and Random-Forest. 

Algorithm Accuracy score 
(%) 

Weighted 
average (%) 

Run time   

KNN 84  83 0.39 seconds, at 
K =12 

Random Forest 86 86 13.98 seconds, 
with 800 
estimators and 
max depth of 8 
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Table 4. a. Comparison of prediction accuracies using linear acceleration and angular velocity as separate 
features on Random Forest and KNN. 

Feature Variables Random Forest (% 
accuracy) 

KNN (% 
accuracy) 

Acceleration 
(X,Y,Z) 

67 65 

Gyro meter(X,Y,Z) 75 74 

Combined 
Acceleration and 
Gyro meter (X,Y,Z) 

86 84 

Table 4. b. Comparison of individual axial features (acceleration and angular velocity) on prediction with 
Random Forest and KNN. 

ML 
Algorit
hm 

Percentage accuracies of individual features to predict MFC 
height 

 AccX
 %   

AccY
 %  

AccZ
 %  

GyroX
 %  

GyroY
 %  

GyroZ
 %  

Rando
m 
Forest 

40 43 51 51 46 48 

KNN 41 45 55 56 51 55 
Table 4a showed the angular velocity had more positive effect on the predicted MFC heights 

than the linear acceleration and MFC height are best predicted with multiple features. Table 4b 
indicated that the vertical acceleration and the x and z axis of the angular velocities are more 
significantly related to the MFC height than the other kinematic variables.  

4. Discussion 
Minimisation of tripping risks has been one of the central issues for falls prevention and 

providing sufficient swing foot-ground clearance at MFC has been a key consideration while 
applying an intervention. For the real-time technology as part of the intelligent system, one effective 
approach is to use feed-forward prediction of upcoming MFC as early as the initiation of swing phase 
at toe-off. For healthy young adults, MFC usually takes place approximately around 50% of the swing 
phase, 0.2s-0.3s after toe-off [51]. It can be interpreted that ‘prediction and actuation’ should, in this 
example, occur within that time limit. In the current study, KNN successfully classified MFC into the 
three categories at 84% accuracy within 0.025s, suggesting the sufficient reliability and feasibility of 
our machine learning outputs to be incorporated into intelligent assistive device. Previous methods 
for MFC height estimation based on double-integration of vertical acceleration [24] is useful for 
measurement outside the laboratory environments, but our machine learning based prediction is the 
first aĴempt to devise intelligent active exoskeletons to increase MFC height. We have previously 
demonstrated toe-off kinematics can be used to predict MFC timing [38] – in this research we have 
applied toe-off kinematics for the real-time feedforward prediction of MFC heights. 

Machine learning approaches are the emerging technique to classification and evaluation of gait 
paĴerns based on large data volumes, considered to be the mainstream analytical method in future 
and replacing conventional complex manual customised mathematical programming. The prediction 
of a future gait event can be incorporated into assistive device to become intelligent real-time systems 
to augment human ambulation. In machine learning use cases, we have employed KNN and Random 
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Forest for gait classification. Both of our models successfully classified MFC height into the three 
subcategories from toe-off information at high accuracies. Nevertheless, a caution is required for 
machine learning algorithms to provide feedforward control for a powered assistive device in a 
timely manner. While Random-Forest showed beĴer performance in accuracy, KNN may be the 
preferred option considering the time taken for prediction to activate assistive device at MFC based 
on a preceding toe-off event. High recall and high precision cannot be compromised to ensure correct 
classification of MFC heights for the populations at critically high and moderate tripping risks, 
respectively [50].  Further collection of the data is essential in feeding the developed algorithms to 
improve performance before equipping it into assistive device for people. 

In addition to the essential data feeding, there are some other fundamental concerns to overcome 
for practical application into assistive device as intelligent system. In the current proof-of-concept 
research, data of healthy young participants were selected to build the algorithms but, prediction of 
the tripping risk is more useful for vulnerable populations such as older adults, stroke survivors, 
people with Parkinson’s disease and other pathological conditions. Gait paĴerns of the high tripping 
risk are often clearly different from the healthy young, implying that the currently developed 
algorithms need fine-tuning accounting for each gait pathology. MFC classification requires 
reconsideration in that further sub-divisions of the lower end (e.g. less than 0.5cm, 1cm etc) should 
be tested to examine the hazardous risk rather than MFC below 1.5cm categorisation.  

After data feeding from various populations to achieve certain reliability in recognising 
hazardous MFC heights, the developed intelligent systems can be incorporated into ankle active 
exoskeleton devices to directly control ankle motion to increase MFC and prevent the risk of tripping 
falls. Kubota et al. [52] introduced the active ankle exoskeleton based on hybrid assistive limb (HAL) 
technology, which operates ankle dorsiflexion-plantarflexion motion based on efferent neural signals. 
In another word, HAL technology utilises intention to make movements to precisely control 
exoskeletons and reproduce intended movements, known to enhance motor control functions and 
improve neurological disorders [53, 54]. Ankle-HAL technology was developed for rehabilitation to 
focus on joint motion training by users’ own neuro-signals, therefore not designed to directly assist 
active walking [55, 56]. Using our aĴempts to incorporate ML algorithm, however, feedforward 
actuation to reduce the tripping risk could be possible by operating exoskeletons by kinematic inputs. 
If ankle control is not based on neuro-signals, rehabilitation effects on motor control may be lower 
but in return, wearers can be expected to learn the optimum ankle motion during the swing phase 
and acquire less trip-prone walking paĴerns. Such application is one of the fruitful directions of the 
current research outcomes for practical rehabilitation seĴings, while continuous research efforts are 
essentially required. 

5. Conclusions 
Tri-axial linear accelerations and angular velocities data obtained from a single IMU sensor 

aĴached to the mid-foot successfully classified MFC into the three sub-categories including (i) less 
than 1.5cm, (ii) 1.5-2.0cm and (iii) higher than 2.0cm. As the data were collected only from the six 
healthy young adults, the next phase of development requires larger data volume from different 
population groups including individuals with higher risk of tripping-related falls such as older adults, 
stroke survivors and people with pathological conditions (e.g. Parkinson’s disease, dementia). In 
conclusion, the current study has provided important implications about predicting MFC heights 
and KNN has provided high accuracy (i.e. 84%) and quick computation time. While MFC prediction 
performance needs to be tested using other machine learning algorithms and populations, the results 
of this research provide support for application into control of movement assistive devices. Secondly, 
that vertical acceleration and the ‘x’ and ‘z’ components of the angular velocities are mostly related 
to the minimum foot clearance height. 
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