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Article

Homogenization of Smoluchowski Equations in Thin
Heterogeneous Porous Domains

Reine Gladys Noucheun and Jean Louis Woukeng *
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nreinegladys@gmail.com

* Correspondence: jeanlouis.woukeng@univ-dschang.org

Abstract: We carry out in a thin heterogeneous porous layer, the multiscale analysis of a set of

Smoluchowski’s discrete diffusion-coagulation equations describing the evolution density of diffusion

particles that are prone to coagulate in pairs. Assuming that the thin heterogeneous layer is made of

microstructures that are uniformly distributed inside, we obtain in the limit an upscaled model in

lower space dimension. To achieve our goal, we use the concept of two-scale convergence adapted to

thin heterogeneous media.

Keywords: Homogenizatio; Smoluchowski equation; two-scale convergence; thin domains

1. Introduction and main result

The Smoluchowski equation modeling Alzheimzer’s disease (AD) is a system of partial differential

equations that describes the evolving densities of diffusing particles that are prone to coagulate in pairs.

Recently, the important role of Smoluchowski equation in modeling the evolution of AD at different

scales has been investigated in [1,12,14,29] in which the authors presented a mathematical model for

the aggregation and diffusion of β-amyloid (Aβ) in the brain affected by AD at a microscopic scale (the

size of a single neuron) and at the early stage of the disease when small amyloid fibrils are free to move

and to coalesce. We also refer to [2,3,10,15,22–24,26] for some other works in the same direction. In the

model proposed in [12], a very small portion of the cerebral tissue is described by a bounded smooth

region Ω ⊂ R
3 which is perforated by removing from it a set of periodically distributed holes of size ε

(the neurons). Moreover the production of Aβ in monomeric form at the level of neuron membranes is

modeled by a non homogeneous Neumann condition on the boundary of the porosities.

In the current work, we consider the model stated in [12], but this time in a thin porous layer. This

is motivated by the fact that Alzheimer’s disease particularly affects the cerebral cortex (responsible

for language and information processing) and hippocampus (essential for memory), which represent

very thin layers of brain tissue and contain thousands millions of neurons. Here we describe a very

small layer of the brain tissue by a highly heterogeneous thin porous layer in which the heterogeneities

are due to the number of millions of neurons that the brain tissue can contain. To be more precise, our

model problem at the micro level is stated below.

Let Ω be a bounded open Lipschitz connected subset in R
2. For 0 < ε < 1 be freely fixed, we set

Ωε = Ω × (−ε, ε) =
{
(x, x3) ∈ R

3 : x ∈ Ω and − ε < x3 < ε
}

.

We denote by Z = Y × I the reference layer cell, where Y = (0, 1)2 and I = (−1, 1). Let Z f ⊂ Z be a

compact set in Z with smooth boundary, which represents a generic neuron, and let Zs = Z\Z f be

the supporting cerebral tissue (often call the solid part in the literature of porous media). Next, let

Kε = {k ∈ Z
2 × {0} : ε(k + Z) ⊂ Ωε}, and set Tε = ∪k∈Kε

ε(k + Z f ). We define the thin porous layer

by

Ωε = Ωε\Tε (points in Ωε lying off Tε).

The boundary of Ωε is divided into two parts: the outer boundary ∂DΩε = ∂Ωε and the inner boundary

Γε = ∂Tε. We also denote by Γ = ∂Z f , so that Γε = ∪k∈Kε
ε(k + Γ). Finally we denote by ν the outward

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 August 2023                   doi:10.20944/preprints202308.1067.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202308.1067.v1
http://creativecommons.org/licenses/by/4.0/


2 of 17

unit normal to Γε. We assume that Ωε is connected and that |Zs| > 0, where |Zs| stands for the

Lebesgue measure of Zs in R
3. The ε-model reads as follows: for m = 1, uε

1 solves the PDE





∂uε
1

∂t − div(d1∇uε
1) + uε

1

M

∑
j=1

a1,ju
ε
j = 0 in Qε = (0, T)× Ωε

∂uε
1

∂ν = 0 on (0, T)× ∂Ωε
∂uε

1
∂ν = εψε on (0, T)× Γε

uε
1(0, x) = 0 in Ωε;

(1)

for 1 < m < M, uε
m solves the PDE





∂uε
m

∂t − div(dm∇uε
m) + uε

m

M

∑
j=1

am,ju
ε
j = f ε

m in Qε

∂uε
m

∂ν = 0 on (0, T)× ∂Ωε

uε
m(0, x) = 0 in Ωε;

(2)

and for m = M, uε
M solves the equation





∂uε
M

∂t − div(dM∇uε
M) = gε in Qε

∂uε
M

∂ν = 0 on (0, T)× ∂Ωε

uε
M(0, x) = 0 in Ωε,

(3)

where

f ε
m =

1

2

m−1

∑
j=1

aj,m−ju
ε
j u

ε
m−j, gε =

1

2 ∑
j+k≥M

j<M, k<M

aj,kuε
j u

ε
k and ψε(t, x) = ψ(t, x,

x

ε
) (4)

for (t, x) ∈ Qε.

We assume that:

H1. the coefficients ai,j are positive constants and satisfy ai,j = aj,i (1 ≤ i, j ≤ M) with aM,M = 0, and that the

diffusion coefficients di are positive constants that become smaller as j is large.

H2. The function ψε is defined by ψε(t, x) = ψ(t, x, x
ε ) ((t, x) ∈ Qε), where ψ ∈ C1([0, T]; C1(Ω;

C1
per(Y; C1(I)))) with 0 ≤ ψ ≤ 1 and ψ(0, x, y) = 0 for (x, y) ∈ Ω × Z.

In (H2), C1
per(Y; C1(I)) denotes the space of functions in C1(R2; C1(I)) that are Y-periodic. In

(1)-(3), ∇ stands for the usual gradient operator while div denotes the divergence operator with respect

to the variable x; T is a positive number representing the final time. The unknowns are the vectors

value functions u
ε : Qε → R

M, u
ε = (uε

1, ..., uε
M) where the coordinate uε

m ≥ 0 (1 ≤ m < M) stands for

the concentration of m-clusters, that is clusters made of m identical elementary particles, while uε
M

takes into account aggregation of more than M − 1 monomers. It is worth noting that the meaning

of uε
M is different from that of uε

m (m < M) as it aims at describing the sum of densities of all the

large assemblies. It is assumed that the large assemblies exhibit all the same coagulation properties

and do not coagulate with each other. We also assume that the only reaction allowing clusters to

form large clusters is a binary coagulation mechanism, while the movement of clusters leading to

aggregation arises only from a diffusion process described by the constant diffusion coefficient dm

(1 ≤ m ≤ M). The kinetic coefficient ai,j arises from a reaction in which an (i + j)-cluster is formed

from an i-cluster and a j-cluster. Therefore, they can be interpreted as coagulation rates. Finally,

f ε
m (1 < m < M) accounts for the formation of m-clusters by coalescence of smaller clusters and gε
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accounts for the formation of a large clusters by coalescence of others large one that have the same

coagulation properties.

Our main aim in this work is to investigate the limiting behaviour as ε → 0, of the solution u
ε to

(1)-(3) under the assumptions (H1)-(H2). This falls within the scope of the homogenization theory in

thin porous domains.

There is a huge literature on homogenization in fixed or porous media. A few works deal with

the homogenization theory in thin heterogeneous domains; see e.g. [4–6,8,9,11,16–18,21,25]. As for

the homogenization in thin heterogeneous porous media, very few results are known up to now. We

may cite [4–6,8,11]. Concerning the Smoluchowski equation as stated in this work, to the best of our

knowledge, the only work dealing with its homogenization is the paper [12] in which the considered

domain is a uniformly perforated one that is not thin. Because our domain is thin and porous, the

homogenization process is not an easy task. Indeed, we make use of the partial mean integral operator

Mε (see below for its definition) associated to the extension operator, while in [12], even the extension

operator is not used. So, the main novelty in our work arises from the fact that the domain Ωε is a thin

heterogeneous porous layer. This leads to a dimension reduction problem in the limit as shown here

below in the main result, which reads as follows.

Theorem 1. Assume that (H1)-(H2) hold. For any ε > 0, let u
ε = (uε

m)1≤m≤M be the unique solution of

(1)-(3) in the class (C1+ α
2 ,2+α(Qε))M, (α ∈ (0, 1)). Let also Mε and Eε denote respectively the partial mean

integral operator and the extension operator defined by (34) (see Section 3) and in Lemma 3 (see Section 2). Then,

as ε → 0, one has, for any 1 ≤ m ≤ M,

MεEεu
ε
m → um in L2(Q)-strong, (5)

Mε∇Eεu
ε
m → ∇xum in L2(Q)2-weak, (6)

MεEε
∂uε

m

∂t
→ ∂um

∂t
in L2(Q)-weak, (7)

where u = (um)1≤m≤M ∈ [L∞(Q) ∩ L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω))]M is the unique solution of the

system (8)-(10) below:





θ ∂u1
∂t − divx (d1 A∇xu1) + θu1

M

∑
j=1

a1,juj = d1ψ̃ in Q = (0, T)× Ω

A∇xu1 · n = 0 on (0, T)× ∂Ω

u1(0, x) = 0 in Ω;

(8)

If 1 < m < M,





θ ∂um
∂t − divx (dm A∇xum) + θum

M

∑
j=1

am,juj − θ
2

M

∑
j=1

aj,m−jujum−j = 0 in Q

A∇xum · n = 0 on (0, T)× ∂Ω

um(0, x) = 0 in Ω;

(9)

and 



θ ∂uM
∂t − divx (dM A∇xum)− θ

2 ∑
j+k≥M

j<M, k<M

aj,kujuk = 0 in Q

A∇xuM · n = 0 on (0, T)× ∂Ω

uM(0, x) = 0 in Ω.

(10)

Moreover u ∈ (C1+ α
2 ,2+α(Q))M and is such that

um > 0 in Q, m = 1, ..., M. (11)
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In (8)-(10), n is the outward unit normal to ∂Ω and the matrix A = I2 +∇yω, where I2 is the 2 × 2 identity

matrix and ω = (ωi)i=1,2 with ωi being the unique solution in H1
#(Zs) = {u ∈ H1(Zs) : u is Y-periodic and∫

Zs
udy = 0} of the cell problem

{
divy(ei +∇yωi) = 0 in Zs, (ei +∇yωi) · ν = 0 on Γ,

ωi(., y3) is Y-periodic,

where here, ν stands for the outward unit normal to Γ and ei is the ith vector of the canonical basis in R
3;

the function ψ̃ and θ are defined respectively by ψ̃(t, x) =
∫

Γ
ψ(t, x, y)dσ(y), (t, x) ∈ Q and θ = |Zs| (the

Lebesgue measure of Zs in R
3.

The partial mean integral Mε considered in Theorem 1 is defined, for a function φ by

Mεφ(t, x) =
1

2ε

∫ ε

−ε
φ(t, x, ζ)dζ for (t, x) ∈ Q.

The system (8)-(10) is the upscaled model arising from the ε-model (1)-(3). It is posed in a 2

dimensions space, leading to an expected dimension reduction problem as it is usually the case for the

homogenization theory in thin domains. Moreover the information given on the microscale by the

Neumann boundary condition in (1) is transferred (in the limit) into the source term in the leading

equation in (8), so that, in the case of (1), the limiting equation does not have the same form as the

original equation posed in the ε-model. For (9) and (10), apart from the diffusion term, they are similar

to the ε-equations in (2) and (3).

The rest of the paper is organized as follows. In Section 2, we investigate the well posedness

of (1)-(3) and provide useful uniform estimates. Section 3 deals with the treatment of the concept of

two-scale convergence for thin heterogeneous domains. We prove therein some compactness results

that will be used in the homogenization process. With the help of the results obtained in Section 3, we

pass to the limit in (1)-(3) in Section 4 where we prove the main result, viz. Theorem 1.

2. Well posedness and uniform estimates

The current section deals with the existence and uniqueness of the solution to (1)-(3), together

with some uniform estimates that will be useful in the sequel. The following result holds true.

Theorem 2. Assume that (H1)-(H2) hold true. For any ε > 0, the system (1)-(3) possesses a unique weak

solution u
ε = (uε

m)1≤m≤M ∈ (C1+ α
2 ,2+α(Qε))M (α ∈ (0, 1) be fixed) such that

uε
m(t, x) > 0 for (t, x) ∈ Qε, m = 1, ..., M.

Furthermore there exists ε0 > 0 such that, for all 1 ≤ m ≤ M,

‖uε
m‖L∞(Qε)

≤ C, (12)

‖∇uε
m‖L2(Qε)

≤ Cε
1
2 , (13)

∥∥∥∥
∂uε

m

∂t

∥∥∥∥
L2(Qε)

≤ Cε
1
2 , (14)

and

‖ψε‖L2((0,T)×Γε) ≤ C ‖ψ‖L2(0,T;C(Ω×Γ)) , (15)

for all 0 < ε ≤ ε0, where C > 0 is independent of m and ε.

Proof. The well posedness of (1)-(3) has been addressed in [1,12,13,29]. We are concerned here only

with the uniform estimates (12)-(14), the estimate (15) being a classical result arising from the trace
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result. We just emphasize that since |Γε| = O(1) (|Γε| stands for the Lebesgue measure of Γε), no

scaling is needed in the left-hand side of (15). Now, as for (12), we follows exactly the same lines of

reasoning as in [12] to obtain it. It remains to check (13) and (14). We first consider (13). We distinguish

the cases m = 1 and 1 < m ≤ M.

We start with m = 1. Multiplying (1)1 by uε
1 and integrating over Ωε, next using the divergence

theorem, we get

1
2

d
dt

∥∥uε
1

∥∥2
L2(Ωε) + d1

∥∥∇uε
1

∥∥2
L2(Ωε) +

∫
Ωε

(∣∣uε
1

∣∣2 ∑
M
j=1 a1,ju

ε
j

)
dx

= εd1

∫
Γε ψ(t, x, x

ε )u
ε
1(t, x)dσε(x)

≤ εd1
2 ‖ψε(t)‖2

L2(Γε) +
εd1
2

∥∥uε
1(t)

∥∥2
L2(Γε) ,

(16)

where the last inequality above stems from Hölder’s and Young’s inequalities. We use a well-known

trace inequality to deduce the existence of a positive constant C1 independent of ε such that

ε ‖uε
1(t)‖2

L2(Γε) ≤ C1

(∫

Ωε
|uε

1(t)|2 dx + ε2
∫

Ωε
|∇uε

1(t)|2 dx

)
. (17)

Therefore, integrating (16) over (0, t) (t ∈ (0, T]) and taking into account (15) and (17), we are led to

‖uε
1(t)‖2

L2(Ωε) + d1(2 − ε2C1)
∫ t

0
‖∇uε

1(s)‖2
L2(Ωε) ds (18)

≤ C1d1

∫ t

0
‖uε

1(s)‖2
L2(Ωε) ds + εd1C ‖ψ‖L2(0,T;C(Ω×Γ)) .

We therefore infer the boundedness of uε
1 in L∞(Qε) associated to (18) that there exists ε0 > 0 such

that (13) holds for m = 1 and
∥∥uε

1

∥∥2
L∞(0,T;L2(Ωε)) ≤ Cε

1
2 for all 0 < ε ≤ ε0, where ε0 is chosen such that

2 − ε2C1 ≥ 1, that is, ε0 ≤ C
− 1

2
1 .

For 1 < m < M, we proceed as for m = 1 and multiply (2)1 by uε
m and integrate over Ωε; then one

obtains

1

2

d

dt
‖uε

m(t)‖2
L2(Ωε) + dm ‖∇uε

m‖2
L2(Ωε) +

∫

Ωε

(
|uε

m|2
M

∑
j=1

am,ju
ε
j

)
dx

=
∫

Ωε
f ε
muε

mdx ≤ ‖ f ε
m‖L2(Ωε) ‖uε

m‖2
L2(Ωε) .

Integrating over (0, t) for t ∈ (0, T], we get

‖uε
m(t)‖2

L2(Ωε) + 2dm

∫ t

0
‖∇uε

m(s)‖2
L2(Ωε) ds ≤ 2 ‖ f ε

m‖L2(Qε)
‖uε

m‖2
L2(Qε)

.

Using (12), we get at once

‖uε
m‖2

L∞(0,T;L2(Ωε)) + ‖∇uε
m‖2

L2(Qε)
≤ Cε

1
2 .

Finally, the proof of (13) for m = M is obtained exactly as the one for the case 1 < m < M mutatis

mutandis (replace f ε
m by gε).

Let us now prove (14). We proceed as above by distinguishing three cases.
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For m = 1, we multiply (1)1 by ∂uε
1/∂t and use (1)2-(1)3 to get

∫

Ωε

∣∣∣∣
∂uε

1

∂t

∣∣∣∣
2

dx +
d1

2

∂

∂t

∫

Ωε
|∇uε

1|2 dx = εd1

∫

Γε
ψε ∂uε

1

∂t
dσε(x)

−
∫

Ωε

(
uε

1

∂uε
1

∂t

M

∑
j=1

a1,ju
ε
j

)
dx.

But

∫

Ωε

(
uε

1

∂uε
1

∂t

M

∑
j=1

a1,ju
ε
j

)
dx ≤

∥∥∥∥
∂uε

1

∂t

∥∥∥∥
L2(Ωε)

∥∥∥∥∥uε
1

M

∑
j=1

a1,ju
ε
j

∥∥∥∥∥
L2(Ωε)

≤ 1

2

∥∥∥∥
∂uε

1

∂t

∥∥∥∥
2

L2(Ωε)
+

1

2

∥∥∥∥∥uε
1

M

∑
j=1

a1,ju
ε
j

∥∥∥∥∥

2

L2(Ωε)

.

Thus

∥∥∥∥
∂uε

1

∂t

∥∥∥∥
2

L2(Ωε)
+ d1

∂

∂t
‖∇uε

1‖2
L2(Ωε) (19)

≤ 2εd1

∫

Γε
ψε ∂uε

1

∂t
dσε(x) +

∥∥∥∥∥uε
1

M

∑
j=1

a1,ju
ε
j

∥∥∥∥∥

2

L2(Ωε)

.

Integrating (19) over (0, t) and using the boundedness property (12), we obtain after integration by

parts,
∫ t

0

∥∥∥ ∂uε
1

∂s (s)
∥∥∥

2

L2(Ωε)
ds + d1

∥∥∇uε
1(t)

∥∥2
L2(Ωε) ≤ Cε

+2εd1

∫
Γε ψεuε

1dσε(x)− 2εd1

∫ t
0

∫
Γε

∂ψε

∂s (s)u
ε
1(s)dσε(x)ds,

(20)

where we have used the fact that ψ(0, x, y) = 0. Now, we use the inequality (17); then (20) becomes

∫ t
0

∥∥∥ ∂uε
1

∂s (s)
∥∥∥

2

L2(Ωε)
ds + d1

∥∥∇uε
1(t)

∥∥2
L2(Ωε)

≤ Cε + εd1

(
‖ψε‖2

L2(Γε) +
∥∥uε

1

∥∥2
L2(Γε)

)

+εd1

∫ t
0

(∥∥∥ ∂ψε

∂s (s)
∥∥∥

2

L2(Γε)
+
∥∥uε

1(s)
∥∥2

L2(Γε)

)
ds

≤ Cε + Cε

(
‖ψ‖2

L∞(0,T;C(Ω×Γ)) +
∥∥∥ ∂ψ

∂t

∥∥∥
2

L2(0,T;C(Ω×Γ))

)

+C
∥∥uε

1

∥∥2
L2(Ωε) + Cd1ε2

∥∥∇uε
1(t)

∥∥2
L2(Ωε) + C

∥∥uε
1

∥∥2
L2(Ωε) + Cε2

∥∥∇uε
1

∥∥2
L2(Qε)

.

It follows that ∫ t

0

∥∥∥∥
∂uε

1

∂s
(s)

∥∥∥∥
2

L2(Ωε)
ds + d1(1 − Cε2) ‖∇uε

1(t)‖2
L2(Ωε) ≤ Cε, (21)

where in (21), we took advantage of (12) and (13). Hence, choosing ε ≤ ε0 sufficiently small so that

1 − Cε2 ≥ 0, we get (14) for m = 1.

The proof of (14) in the case when 1 < m ≤ M follows the same lines of reasoning as above, but is

much easier. It is therefore left to the reader. This completes the proof.
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The following result whose proof can be found in [19, Theorem 3] will be useful in the sequel.

Lemma 3. There exists a bounded linear operator Eε : H1(Ωε) → H1(Ωε) such that, for all v ∈ H1(Ωε),

Eεv = v in Ωε and

‖Eεv‖L2(Ωε)
≤ C

(
‖v‖L2(Ωε) + ε ‖∇v‖L2(Ωε)

)
,

and

‖∇Eεv‖L2(Ωε)
≤ C ‖∇v‖L2(Ωε)

for a positive constant independent of both ε and v.

Based on Lemma 3, we define the extension Eεv of a function v ∈ L2(0, T; H1(Ωε)) to

L2(0, T; H1(Ωε)) as follows:

(Eεv)(t) = Eε(v(t)) a.e. t ∈ (0, T).

Then accounting of Lemma 3 and Theorem 2, we have

sup
1≤m≤M

(
‖Eεu

ε
m‖L∞(ΩT

ε )
+ ‖Eεu

ε
m‖L2(0,T;H1(Ωε))

)
≤ Cε

1
2 , (22)

where C > 0 is independent of ε and

ΩT
ε = (0, T)× Ωε. (23)

We also need an estimate on ∂uε
m/∂t in L2(ΩT

ε ). To that end, we procced as in [20] and consider the

restriction operator Rε : L2(Ωε) → L2(Ωε), Rεv = v|Ωε (the restriction of v to Ωε). Then it is a fact that

Rε is a bounded linear operator as

‖Rεv‖L2(Ωε) ≤ ‖v‖L2(Ωε)
∀v ∈ L2(Ωε).

Now, if R∗ : L2(Ωε) → L2(Ωε) denotes the adjoint operator of Rε, then for v ∈ L2(0, T; L2(Ωε)) =

L2(Qε), we define R∗
ε v as follows:

(R∗
ε v)(t) = R∗

ε (v(t)) a.e. t ∈ (0, T),

and we have

〈R∗
ε u, v〉 =

∫ T

0
〈R∗

ε (u(t)), v(t)〉 dt =
∫ T

0
〈u(t), Rε(v(t))〉 dt

for all u ∈ L2(Qε) and v ∈ L2(ΩT
ε ). It is therefore easy to see that R∗

ε v = χΩε v for all v ∈ L2(Qε), or

equivalently

R∗
ε v = χΩε Eεv for all v ∈ L2(Qε). (24)

Lemma 4. Let the assumptions of Theorem 2 hold. It holds that

∥∥∥∥χΩε
∂Eεu

ε
m

∂t

∥∥∥∥
L2(ΩT

ε )
≤ Cε

1
2 for all 0 < ε ≤ ε0, (25)

where C > 0 is independent of ε, and ε0 is defined in Theorem 2.

Proof. First, we have R∗
ε ∂tu

ε
m = χΩε ∂tEεu

ε
m, where ∂t = ∂/∂t. Thus it is sufficient to show that

‖R∗
ε ∂tEεu

ε
m‖L2(ΩT

ε )
≤ Cε

1
2 .
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So, let ϕ ∈ L2(ΩT
ε ); then

|〈R∗
ε ∂tEεu

ε
m, ϕ〉| = |〈∂tEεu

ε
m, Rε ϕ〉| ≤ ‖∂tEεu

ε
m‖L2(Qε)

‖Rε ϕ‖L2(Qε)

≤ ‖∂tu
ε
m‖L2(Qε)

‖ϕ‖L2(ΩT
ε )

≤ Cε
1
2 ‖ϕ‖L2(ΩT

ε )
.

Whence the result.

3. Two-scale convergence in thin heterogeneous domains

The two-scale convergence for thin heterogeneous domains has been introduced in [25] and

extended to thin porous surfaces in [8,19]. The notations used in this section are the same as in the

previous ones. Especially, the domain Ωε is defined as above, that is, Ωε = Ω× (−ε, ε). When ε → 0, Ωε

shrinks to the "interface" Ω0 = Ω × {0} ≡ Ω. We know that Qε = (0, T)× Ωε and ΩT
ε = (0, T)× Ωε,

and we set Q = (0, T) × Ω0, I = (−1, 1), Y = (0, 1)2 and finally Z = Y × I. Let 1 ≤ p < ∞; by

L
p
per(Y; Lp(I)) we denote the space of functions in L

p
loc(R

2; Lp(I)) that are Y-periodic. Accordingly we

define W
1,p
per(Y; W1,p(I)) as the subspace of W

1,p
loc (Y; W1,p(I)) made of periodic Y-periodic functions,

and we set

W
1,p
# (Y; W1,p(I)) =

{
u ∈ W

1,p
per(Y; W1,p(I)) :

∫

Z
u(y, y3)dy = 0

}
,

which is a Banach space equipped with the norm

‖u‖# =

(∫

Z
|∇u|p dy

)1/p

, u ∈ W
1,p
# (Y; W1,p(I)).

Any x in R
3 writes (x, x3) or (x, ζ) where x = (x1, x2). We identify Ω0 with Ω so that the generic

element in Ω0 is also denoted by x instead of (x, 0).

We are now able to define the two-scale convergence for thin heterogeneous domains and for thin

boundaries.

Definition 5. (a) A sequence (uε)ε>0 ⊂ Lp(ΩT
ε ) (1 ≤ p < ∞) is said to

(i) weakly two-scale converge in Lp(ΩT
ε ) to u0 ∈ Lp(Q; L

p
per(Y; Lp(I))) if as ε → 0,

1

ε

∫

ΩT
ε

uε(t, x) f
(

t, x,
x

ε

)
dxdt →

∫

Q

∫

Z
u0(t, x, y) f (t, x, y)dydxdt

for any f ∈ Lp′(Q; Cper(Y; Lp′(I))) (1/p′ = 1− 1/p); we denote this by "uε → u0 in Lp(ΩT
ε )-weak

2s";
(ii) strongly two-scale converge in Lp(ΩT

ε ) to u0 ∈ Lp(Q; L
p
per(Y; Lp(I))) if it is weakly two-scale

convergent and further

ε
− 1

p ‖uε‖Lp(Qε)
→ ‖u0‖Lp(Q;L

p
per(Y;Lp(I))) ; (26)

we denote this by "uε → u0 in Lp(ΩT
ε )-strong 2s".

(b) A sequence (uε)ε>0 ⊂ Lp((0, T)× Γε) is said to weakly two-scale converge in Lp((0, T)× Γε)

to u0 ∈ Lp(Q × Γ) if, as ε → 0,

∫

(0,T)×Γε
uε(t, x) f (t, x,

x

ε
)dσε(x)dt →

∫∫

Q×Γ
u0(t, x, y)dσ(y)dxdt

for all f ∈ Lp′(0, T; C(Ω × Γ)) that is Y-periodic in y.
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Remark 6. It is easy to see that if u0 ∈ Lp(Q; Cper(Y; Lp(I))) then (26) is equivalent to

ε
− 1

p ‖uε − uε
0‖Lp(ΩT

ε )
→ 0 as ε → 0, (27)

where uε
0(t, x) = u0(t, x, x/ε) for (t, x) ∈ ΩT

ε .

We start with the following important result that should be used in the sequel; see [7, Lemma

3.2.3] for the proof.

Lemma 7. Let ψ ∈ Lp(0, T; C(Ω × Γ)) that is Y-periodic in y. Then, letting ψε(t, x) = ψ(t, x, x/ε) for

(t, x) ∈ (0, T)× Γε, we have

(i) ‖ψε‖Lp((0,T)×Γε) ≤ ‖ψ‖Lp(0,T;C(Ω×Γ));

(ii)
∫ T

0

∫
Γε ψ(t, x, x/ε)dσε(x)dt →

∫∫
ψ(t, x, y)dσ(y)dt.

Throughout the work, the letter E will stand for any ordinary sequence (εn)n≥1 with 0 < εn ≤ 1

and εn → 0 when n → ∞. The generic term of E will be merely denote by ε and ε → 0 will mean

εn → 0 as n → ∞. This being so, we have the following compactness results.

Theorem 8. (i) Let (uε)ε∈E be a sequence in Lp(ΩT
ε ) (1 < p < ∞) such that

sup
ε∈E

ε−1/p ‖uε‖Lp(ΩT
ε )

≤ C

where C is a positive constant independent of ε. Then there exists a subsequence E′ of E such that the sequence

(uε)ε∈E′ weakly two-scale converges in Lp(ΩT
ε ) to some u0 ∈ Lp(Q; L

p
per(Y; Lp(I))).

(ii) Let (uε)ε∈E be a sequence in Lp((0, T)× Γε) such that

‖uε‖Lp((0,T)×Γε) ≤ C,

C > 0 being independent of ε. Then there exist a subsequence E′ of E and a function u0 ∈ Lp(Q × Γ) such that,

as E′ ∋ ε → 0,

uε → u0 in Lp((0, T)× Γε)-weak 2s.

Proof. The proof of part (i) can be found in [16] while the proof of part (ii) can be found in [7] (see also

[8,19]).

Theorem 9. Let (uε)ε∈E be a sequence in Lp(0, T; W1,p(Ωε)) (1 < p < ∞) such that

sup
ε∈E

(
ε−1/p ‖uε‖Lp(ΩT

ε )
+ ε−1/p ‖∇uε‖Lp(ΩT

ε )

)
≤ C

where C > 0 is independent of ε. Then there exist a subsequence E′ of E and a couple (u0, u1) with u0 ∈
Lp(0, T; W1,p(Ω)) and u1 ∈ Lp(Q; W

1,p
# (Y; W1,p(I))) such that, as E′ ∋ ε → 0,

uε → u0 in Lp(ΩT
ε )-weak 2s,

∂uε

∂xi
→ ∂u0

∂xi
+

∂u1

∂yi
in Lp(ΩT

ε )-weak 2s, i = 1, 2, (28)

and
∂uε

∂x3
→ ∂u1

∂y3
in Lp(ΩT

ε )-weak 2s. (29)

Proof. See [16] for the proof.
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Remark 10. If we set

∇xu0 =

(
∂u0

∂x1
,

∂u0

∂x2
, 0

)
,

then (28) and (29) are equivalent to

∇uε → ∇xu0 +∇yu1 in Lp(ΩT
ε )

3-weak 2s.

The following result is sharper than its homologue in Theorem 9.

Theorem 11. Let (uε)ε∈E be a sequence in L2(0, T; H1(Ωε)) such that

sup
ε∈E

ε−
1
2

(
‖uε‖L2(0,T;H1(Ωε))

+ ‖uε‖H1(0,T;L2(Ωε))

)
≤ C, (30)

where C is a positive constant independent of ε. Finally, suppose that the embedding H1(Ω) →֒ L2(Ω)

is compact. Then there exist a subsequence E′ of E and a couple (u, u1) ∈ (L2(0, T; H1(Ω)) ∩
H1(0, T; L2(Ω)))× L2(Q; H1

#(Y; H1(I))) such that, as E′ ∋ ε → 0,

uε → u in L2(ΩT
ε )-strong 2s, (31)

∇uε → ∇xu +∇yu1 in L2(ΩT
ε )

3-weak 2s, (32)

and

∂tuε → ∂tu in L2(ΩT
ε )-weak 2s. (33)

Proof. First, owing to Theorem 9, there exist a subsequence E′ of E and a couple (u, u1) ∈
L2(0, T; H1(Ω)))× L2(Q; H1

#(Y; H1(I))) such that, as E′ ∋ ε → 0,

uε → u in L2(ΩT
ε )-weak 2s,

∇uε → ∇xu +∇yu1 in L2(ΩT
ε )

3-weak 2s,

and

∂tuε → ∂tu in L2(ΩT
ε )-weak 2s.

It remains to prove (31). To that end, we set

Mεuε(t, x) =
1

2ε

∫ ε

−ε
uε(t, x, x3)dx3 for (t, x) ∈ Q. (34)

Then we easily see that Mεuε ∈ L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω)) with

sup
ε∈E

(
‖Mεuε‖L2(0,T;H1(Ω)) + ‖Mεuε‖H1(0,T;L2(Ω))

)
≤ C. (35)

Then from (35), we derive the existence of a subsequence of E′ still denoted by E′ and of a function

u0 ∈ L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω)) such that, as E′ ∋ ε → 0,

Mεuε → u0 in L2(0, T; L2(Ω))-strong. (36)

We recall that (36) stems from the compactness of the embedding L2(0, T; H1(Ω))∩ H1(0, T; L2(Ω)) →֒
L2(0, T; L2(Ω)).

Now, from the Poincaré-Wirtinger inequality, it holds that

ε−
1
2 ‖uε − Mεuε‖L2(0,T;L2(Ωε))

≤ Cε ‖∇uε‖L2(0,T;L2(Ωε))
,
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so that

ε−
1
2 ‖uε − Mεuε‖L2(0,T;L2(Ωε))

→ 0 as E′ ∋ ε → 0. (37)

Thus the inequality

ε−
1
2 ‖uε − u0‖L2(ΩT

ε )
≤ ε−

1
2 ‖uε − Mεuε‖L2(ΩT

ε )
+ ε−

1
2 ‖Mεuε − u0‖L2(ΩT

ε )

associated to the equality

ε−
1
2 ‖Mεuε − u0‖L2(ΩT

ε )
=

√
2 ‖Mεuε − u0‖L2(Q)

yield (with the help of (36) and (37))

ε−
1
2 ‖uε − u0‖L2(ΩT

ε )
→ 0 as E′ ∋ ε → 0.

This shows that uε → u0 in L2(ΩT
ε )-strong 2s, and so u0 = u. The proof is complete.

The next result and its corollary are proved exactly as their homologues in [27, Theorem 6 and

Corollary 5] (see also [28]).

Theorem 12. Let 1 < p, q < ∞ and r ≥ 1 be such that 1/r = 1/p + 1/q ≤ 1. Assume (uε)ε∈E ⊂ Lq(ΩT
ε )

is weakly two-scale convergent in Lq(ΩT
ε ) to some u0 ∈ Lq(Q; L

q
per(Y; Lq(I))), and (vε)ε∈E ⊂ Lp(ΩT

ε ) is

strongly two-scale convergent in Lp(ΩT
ε ) to some v0 ∈ Lp(Q; L

p
per(Y; Lp(I))). Then the sequence (uεvε)ε∈E is

weakly two-scale convergent in Lr(ΩT
ε ) to u0v0.

Corollary 13. Let (uε)ε∈E ⊂ Lp(ΩT
ε ) and (vε)ε∈E ⊂ Lp′(ΩT

ε )∩ L∞(ΩT
ε ) (1 < p < ∞ and p′ = p/(p− 1))

be two sequences such that:

(i) uε → u0 in Lp(Qε)-weak 2s;
(ii) vε → v0 in Lp′(Qε)-strong 2s;

(iii) (vε)ε∈E is bounded in L∞(Qε).

Then uεvε → u0v0 in Lp(Qε)-weak 2s.

4. Derivation of the homogenized system

4.1. Preliminary results

In this subsection, we aim at providing further important convergence results that will be very

useful in the sequel. In that order, it is to be noted that Ωε can alternatively be defined as follows:

Ωε = ∪k∈Kε
ε(k + Zs), where Kε = {k ∈ Z

2 × {0} : ε(k + Z) ⊂ Ωε} with Ωε = Ω × (−ε, ε). We set

Λε = ∪k∈Kε
(k + Zs), a periodic repetition of the set Zs. We denote by χε the characteristic function

function of Λε in Ωε: χε ≡ χΛε
. Then it holds that

Ωε = {x ∈ Ωε : χε(
x

ε
) = 1},

so that χΩε(x) = χε(
x
ε ) for x ∈ Ωε.

Lemma 14. Let (uε)ε>0 be a sequence in Lp(ΩT
ε ) (1 < p < ∞) that weakly two-scale converges in Lp(ΩT

ε )

towards u0 ∈ Lp(Q; L
p
per(Y; Lp(I))). Then, as ε → 0,

uεχε → u0χZs
in Lp(ΩT

ε )-weak 2s. (38)

If further the two-scale convergence is strong, then (38) holds in the strong two-scale sense.
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Proof. Set vε(t, x, ζ) = uε(t, x, εζ) for (t, x, ζ) ∈ ΩT
1 . Then since uε → u0 in Lp(ΩT

ε )-weak 2s, it holds

that ‖uε‖Lp(ΩT
ε )

≤ Cε1/2 (C > 0 being independent of ε), so that ‖vε‖Lp(ΩT
1 )

≤ C. Hence, up to a

subsequence, vε → v0 in Lp(ΩT
1 ) in the usual classical two-scale weak sense, where v0 ∈ Lp(Q ×

I; L
p
per(Y)). Next, let f ∈ C(Q; Cper(Y; C(I))). Passing to the limit (in the subsequence determined

above) in the obvious equality

1

ε

∫

ΩT
ε

uε(t, x) f (t, x,
x

ε
)dxdt =

∫

ΩT
1

vε(t, x, ζ) f (t, x,
x

ε
, ζ)dxdζdt,

we get at once u0 = v0.

This being so, choosing f as above, one has

1

ε

∫

ΩT
ε

uε(t, x)χε(
x

ε
) f (t, x,

x

ε
)dxdt =

∫

ΩT
1

vε(t, x, ζ)χΛ1
(

x

ε
, ζ) f (t, x,

x

ε
, ζ)dxdζdt

≡ Jε.

Owing to the usual two-scale concept, we obtain, as ε → 0,

Jε →
∫∫

ΩT
1 ×Y

u0(t, x, y, ζ)χZs
(y, ζ) f (t, x, y, ζ)dxdydζdt, (39)

where in (39) we have used the fact that u0 = v0 proved above. This concludes the proof.

The following result will be crucial in the homogenization process. From now on, we set χs = χZs
,

the characteristic function of Zs in Z.

Proposition 15. Let (uε
m)1≤m≤M be the solution of (1)-(3). Given any ordinary sequence E, there exist

a subsequence E′ of E and functions (um, u1
m)1≤m≤M with um ∈ L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω)) and

u1
m ∈ L2(Q; H1

#(Y; H1(I))), such that, as E′ ∋ ε → 0,

χεu
ε
m → χsum in L2(ΩT

ε )-strong 2s, (40)

χε∇uε
m → χs(∇xum +∇yu1

m) in L2(ΩT
ε )

3-weak 2s, (41)

and

χε∂tu
ε
m → χs∂tum in L2(ΩT

ε )-weak 2s. (42)

Proof. Since Eεu
ε
m = uε

m in Qε, we have

χεu
ε
m = χεEεu

ε
m. (43)

Next, appealing to (22) and (25), we are in a condition to apply Theorem 11: Given an ordinary sequence

E, there exist a subsequence E′ of E and a couple (um, u1
m) ∈ (L2(0, T; H1(Ω)) ∩ H1(0, T; L2(Ω)))×

L2(Q; H1
#(Y; H1(I))) such that, as E′ ∋ ε → 0,

Eεu
ε
m → um in L2(ΩT

ε )-strong 2s, (44)

∇Eεu
ε
m → ∇xum +∇yu1

m in L2(ΩT
ε )

3-weak 2s, (45)

and

Eε∂tu
ε
m → ∂tum in L2(ΩT

ε )-weak 2s. (46)

Applying Lemma 14 and accounting of (43), we are done.
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4.2. Passage to the limit: Proof of the main result

Assume that the functions um and u1
m are as in Proposition 15. Let ϕ ∈ C1(Q) and ϕ1 ∈ C1(Q ×

I; C1
per(Y)), and define

Φε(t, x) = ϕ(t, x) + εϕ1(t, x,
x

ε
) for (t, x) ∈ ΩT

ε .

We Φε as test function in the variational form of (1)-(3):





1
ε

∫
Qε

∂uε
1

∂t Φεdxdt + d1
ε

∫
Qε

∇uε
1 · ∇Φεdxdt + 1

ε

∫
Qε

uε
1

M

∑
j=1

a1,ju
ε
j Φεdxdt

=
∫ T

0

∫
Γε ψ(t, x, x

ε )Φε(t, x)dtdσε(x);

(47)

For 1 < m < M,





1
ε

∫
Qε

∂uε
m

∂t Φεdxdt + dm
ε

∫
Qε

∇uε
m · ∇Φεdxdt + 1

ε

∫
Qε

uε
m

M

∑
j=1

am,ju
ε
j Φεdxdt

= 1
2ε

∫
Qε

m−1

∑
j=1

aj,m−ju
ε
j u

ε
m−jΦεdtdx;

(48)

and

1

ε

∫

Qε

∂uε
M

∂t
Φεdxdt +

dM

ε

∫

Qε

∇uε
M · ∇Φεdxdt =

1

2 ∑
j+k≥M,j<M,k<M

1

ε

∫

Qε

aj,kuε
j u

ε
kΦεdxdt. (49)

Let us first deal with (47). We note that it is equivalent to





1
ε

∫
ΩT

ε
χε

∂uε
1

∂t Φεdxdt + d1
ε

∫
ΩT

ε
χε∇uε

1 · ∇Φεdxdt + 1
ε

∫
ΩT

ε
χεu

ε
1

M

∑
j=1

a1,ju
ε
j Φεdxdt

=
∫ T

0

∫
Γε ψ(t, x, x

ε )Φε(t, x)dtdσε(x).

(50)

We have that

∇Φε(t, x) = ∇x ϕ(t, x) +∇y ϕ1((t, x,
x

ε
) + ε∇x ϕ1((t, x,

x

ε
).

Thus we may apply Proposition 15 to pass to the limit in the first two terms on the left-hand side of

(50), using Φε as test function in the two-scale concept. As for the term on the right-hand side of (50),

we use Lemma 7 to pass to the limit therein. We end up with the last term on the left-hand side where

the limit passage therein is more involved. Indeed, we use there the strong two-scale convergence of

χεu
ε
1 towards χsu1 associated to the weak two-scale convergence of χεu

ε
j (1 ≤ j ≤ M) towards χsuj to

get from Corollary 13 that, for 1 ≤ j ≤ M, we have, as E′ ∋ ε → 0,

χεu
ε
1uε

j = (χεu
ε
1)(χεu

ε
j) → χsu1uj in L2(ΩT

ε )-weak 2s.
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Therefore, using in that term the test function Φε and taking into account all the process described

above after (50), we are led, as E′ ∋ ε → 0 in (50), to





∫∫

Q×Z
χs

∂u1
∂t ϕdxdydt + d1

∫∫

Q×Z
χs(∇xu1 +∇yu1

1) · (∇x ϕ +∇y ϕ1)dxdydt

+
∫∫

Q×Z
χsu1

M

∑
j=1

a1,juj ϕdxdydt =
∫∫

Q×Γ
ψϕdxdσ(y)dt

∀(ϕ, ϕ1) ∈ C1(Q)× C1(Q × I; C1
per(Y)).

(51)

We use the same process as for (50) to pass to the limit in (48) and in (49), and we obtain:

For 1 < m < M,





∫∫

Q×Z
χs

∂um
∂t ϕdxdydt + dm

∫∫

Q×Z
χs(∇xum +∇yu1

m) · (∇x ϕ +∇y ϕ1)dxdydt

+
∫∫

Q×Z
χsum

M

∑
j=1

am,juj ϕdxdydt = 1
2

∫∫

Q×Z
χs

m−1

∑
j=1

aj,m−jujum−j ϕdxdydt

for all (ϕ, ϕ1) ∈ C1(Q)× C1(Q × I; C1
per(Y));

(52)

and 



∫∫

Q×Z
χs

∂uM
∂t ϕdxdydt + dM

∫∫

Q×Z
χs(∇xuM +∇yu1

M) · (∇x ϕ +∇y ϕ1)dxdydt

= 1
2 ∑

j+k≥M,j<M,k<M

∫∫

Q×Z
χsaj,kujuk ϕdxdydt

for all (ϕ, ϕ1) ∈ C1(Q)× C1(Q × I; C1
per(Y)).

(53)

We have proved the following result.

Theorem 16. The functions (um, u1
m)1≤m≤M determined by Proposition 15 solve the variational problems (51),

(52) and (53).

Our next goal is to derive the system whose (um)1≤m≤M is solution to. To that end, we start by

uncoupling each of the equations (51)-(53). We first consider (51) and we see that it is equivalent to the

following system consisting of (54) and (55) below:

∫∫

Q×Z
χs(∇xu1 +∇yu1

1) · ∇y ϕ1dxdydt = 0 ∀ϕ1 ∈ C1(Q × I; C1
per(Y)), (54)





∫∫

Q×Z
χs

∂u1
∂t ϕdxdydt + d1

∫∫

Q×Z
χs(∇xu1 +∇yu1

1) · ∇x ϕdxdydt

+
∫∫

Q×Z
χsu1

M

∑
j=1

a1,juj ϕdxdydt =
∫∫

Q×Γ
ψϕdxdσ(y)dt ∀ϕ ∈ C1(Q).

(55)

Let us first consider Eq. (54) and choose therein ϕ1 under the form ϕ1(t, x, y) = φ(t, x)η(y) with

φ ∈ C∞
0 (Q) and η ∈ C∞

per(Y)⊗ C1(I); then (54) becomes

∫

Z
χs(∇xu1 +∇yu1

1) · ∇yηdy = 0 ∀η ∈ C∞
per(Y)⊗ C1(I). (56)
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To solve (56), we rather consider the variation problem

∫

Z
χs(ej +∇yω j) · ∇yηdy = 0 ∀η ∈ C∞

per(Y)⊗ C1(I), (57)

where ej (j = 1, 2, 3) denotes the jth vector of the canonical basis of R3. Then (57) is equivalent to the

cell problem {
−divy(ej +∇yω j) = 0 in Zs, (ej +∇yω j) · ν = 0 on Γ

ω j(., y3) is Y-periodic,
(58)

where ν stands for the outward unit normal to Γ. It is well known that (58) possesses a unique solution

in the space

H1
#(Zs) =

{
u ∈ H1(Zs) : u is Y-periodic and

∫

Zs

udy = 0

}
.

Now, multiplying (57) by ∂u1/∂xj (j = 1, 2) and summing up the resulting equations, then comparing

the latter sum with (56) yields at once

u1
1(t, x, y) =

2

∑
j=1

ω j(y)
∂u1

∂xj
(t, x) ≡ ω(y) · ∇xu1(t, x), (59)

where ω = (ω1, ω2).

Next, going back to (55) and replacing there u1
1 by the expression obtained in (59), we get





∫
Q

(∫
Z χsdy

) ∂u1
∂t ϕdxdt + d1

∫
Q

(∫
Z χs(I2 +∇yω)dy

)
∇xu1 · ∇x ϕdxdt

+
∫

Q

(∫
Z χsdy

)
u1

M

∑
j=1

a1,juj ϕdxdt =
∫

Q

(∫
Γ

ψ(., ., y)dσ(y)
)

ϕdxdt

for all ϕ ∈ C1(Q),

(60)

where I2 is the identity 2 × 2 matrix.

This being so, we set

θ =
∫

Z
χsdy = |Zs| > 0, A = I2 +∇yω and ψ̃(t, x) =

∫

Γ
ψ((t, x, y)dσ(y). (61)

Then A is a 2 × 2 symmetric positive definite matrix. Indeed it is a fact that the entries of A have the

form

Aij =
∫

Zs

(ei +∇yωi) · (ej +∇yω j)dy, 1 ≤ i, j ≤ 2;

this stems from (57) where we show that it is still valid for η ∈ H1
#(Y; H1(I)) and the choose therein

η = ωi. With the above notations in (61), we see that (60) is equivalent to the problem





θ ∂u1
∂t − divx(d1 A∇xu1) + θu1

M

∑
j=1

a1,juj = d1ψ̃ in Q

A∇xu1 · n = 0 on (0, T)× ∂Ω

u1(0, x) = 0 in Ω.

(62)

Proceeding as we did for (51), we easily show that (52) and (53) are equivalent to the variational

formulations of the following PDEs:
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For 1 < m < M, (52) is equivalent to





θ ∂um
∂t − divx(dm A∇xum) + θum

M

∑
j=1

am,juj − θ
2

m−1

∑
j=1

aj,m−jujum−j = 0 in Q

A∇xum · n = 0 on (0, T)× ∂Ω

um(0, x) = 0 in Ω;

(63)

and for m = M, (53) is equivalent to





θ ∂uM
∂t − divx(dM A∇xuM)− θ

2 ∑
j+k≥M,j<M,k<M

aj,kujuk = 0 in Q

A∇xuM · n = 0 on (0, T)× ∂Ω

uM(0, x) = 0 in Ω.

(64)

The system (62)-(64) is the homogenized model arising from the microscale ε-problem (1)-(3). It

is posed in a 2 dimensional space, leading to a dimension reduction problem. We see from [12] that

(62)-(64) possesses a unique solution. We are now able to prove the main result of the work.

4.3. Proof of Theorem 1

The proof of (5)-(7) follows easily from (44)-(46) associated to the properties of the operator Mε.

The fact that (um)1≤m≤M solves (8)-(10) has been shown here above in Subsection 4.2. Now, if we

proceed as in [1] (see also [12]), we get the wellposedness of (8)-(10) in the space (C1+ α
2 ,2+α(Q))M, and

especially, (11) holds true. Finally, the fact that the whole sequence [(uε
m)1≤m≤M]ε>0 converges towards

(um)1≤m≤M follows from the uniqueness of the solution (8)-(10). This concludes the proof.
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