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Abstract: We carry out in a thin heterogeneous porous layer, the multiscale analysis of a set of
Smoluchowski’s discrete diffusion-coagulation equations describing the evolution density of diffusion
particles that are prone to coagulate in pairs. Assuming that the thin heterogeneous layer is made of
microstructures that are uniformly distributed inside, we obtain in the limit an upscaled model in
lower space dimension. To achieve our goal, we use the concept of two-scale convergence adapted to
thin heterogeneous media.
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1. Introduction and main result

The Smoluchowski equation modeling Alzheimzer’s disease (AD) is a system of partial differential
equations that describes the evolving densities of diffusing particles that are prone to coagulate in pairs.
Recently, the important role of Smoluchowski equation in modeling the evolution of AD at different
scales has been investigated in [1,12,14,29] in which the authors presented a mathematical model for
the aggregation and diffusion of f-amyloid (Ap) in the brain affected by AD at a microscopic scale (the
size of a single neuron) and at the early stage of the disease when small amyloid fibrils are free to move
and to coalesce. We also refer to [2,3,10,15,22-24,26] for some other works in the same direction. In the
model proposed in [12], a very small portion of the cerebral tissue is described by a bounded smooth
region O C R? which is perforated by removing from it a set of periodically distributed holes of size ¢
(the neurons). Moreover the production of Af in monomeric form at the level of neuron membranes is
modeled by a non homogeneous Neumann condition on the boundary of the porosities.

In the current work, we consider the model stated in [12], but this time in a thin porous layer. This
is motivated by the fact that Alzheimer’s disease particularly affects the cerebral cortex (responsible
for language and information processing) and hippocampus (essential for memory), which represent
very thin layers of brain tissue and contain thousands millions of neurons. Here we describe a very
small layer of the brain tissue by a highly heterogeneous thin porous layer in which the heterogeneities
are due to the number of millions of neurons that the brain tissue can contain. To be more precise, our
model problem at the micro level is stated below.

Let Q be a bounded open Lipschitz connected subset in R2. For 0 < ¢ < 1 be freely fixed, we set

ngﬂx(—e,e)z{(?,x3)€R3:f€Qand —s<X3<s}.

We denote by Z = Y x I the reference layer cell, where Y = (0,1)>and I = (—1,1). Let Zf CZbea
compact set in Z with smooth boundary, which represents a generic neuron, and let Z; = Z\Z; be
the supporting cerebral tissue (often call the solid part in the literature of porous media). Next, let
K = {k € Z* x {0} : e(k+ Z) C O}, and set T* = Ugege(k + Zy). We define the thin porous layer
by

QOFf = Q\T* (points in Q) lying off T¢).

The boundary of ()f is divided into two parts: the outer boundary dpQ)* = 00}, and the inner boundary
[ = 9T*. We also denote by I = 9Zy, so that I'* = Uy, e(k + I'). Finally we denote by v the outward
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unit normal to I'“. We assume that ()¢ is connected and that |Z;| > 0, where |Zs| stands for the
Lebesgue measure of Z; in R3. The e-model reads as follows: for m = 1, uj solves the PDE

¢ M
G — div(dy Vu) + 1 Yy jus = 0in Qc = (0,T) x OF
j=1
% =0on (0,T) x 9O @
% = Slps on (O, T) X re
uj(0,x) = 0in OF

for1 < m < M, uf, solves the PDE

M

du ) .

gt”’ —div(d,, Vus,) + ué, ‘Zlﬂm,j”f' = f& in Q;
]:

e 2
% — 0on (0,T) x 9OF @
u%,(0,x) = 0in QF;
and for m = M, uj; solves the equation
ou . .
ag—g/l —div(dyVuy,) = e in Q¢
EM =0on (0,T) x 90 (©)
uy;(0,x) = 0in QOF,
where
€ l = €,,€ 1 €,,€ 4 - X
f = 3 Y AUy, 8 = 5 Y. ajxujupand ¢F(t x) = (4%, E) )
=1 j+k=M
j<M, k<M

for (t,x) € Q..
We assume that:

H1. the coefficients a; ; are positive constants and satisfy a;; = a;; (1 <i,j < M) with ap,m = 0, and that the
diffusion coefficients d; are positive constants that become smaller as j is large.

H2. The function y¢ is defined by ¥¢(t,x) = ¢(t,%, %) ((t,x) € Q¢), where p € C([0,T];CH(Y;
C;er(Y;Cl(I)))) with0 < ¢ < land ¢(0,%,y) =0 for (X,y) € Q x Z.

In (H2), C;er(Y;Cl(l )) denotes the space of functions in C*(R?;C'(I)) that are Y-periodic. In
(1)-(3), V stands for the usual gradient operator while div denotes the divergence operator with respect
to the variable x; T is a positive number representing the final time. The unknowns are the vectors
value functions u® : Q. — RM ye = (uﬁ, ey uﬁw) where the coordinate 1, > 0 (1 < m < M) stands for
the concentration of m-clusters, that is clusters made of m identical elementary particles, while u5,
takes into account aggregation of more than M — 1 monomers. It is worth noting that the meaning
of uj, is different from that of uj, (m < M) as it aims at describing the sum of densities of all the
large assemblies. It is assumed that the large assemblies exhibit all the same coagulation properties
and do not coagulate with each other. We also assume that the only reaction allowing clusters to
form large clusters is a binary coagulation mechanism, while the movement of clusters leading to
aggregation arises only from a diffusion process described by the constant diffusion coefficient d,;
(1 < m < M). The kinetic coefficient 4; ; arises from a reaction in which an (i 4 j)-cluster is formed
from an i-cluster and a j-cluster. Therefore, they can be interpreted as coagulation rates. Finally,
fi (1 < m < M) accounts for the formation of m-clusters by coalescence of smaller clusters and g
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accounts for the formation of a large clusters by coalescence of others large one that have the same
coagulation properties.

Our main aim in this work is to investigate the limiting behaviour as ¢ — 0, of the solution u® to
(1)-(3) under the assumptions (H1)-(H2). This falls within the scope of the homogenization theory in
thin porous domains.

There is a huge literature on homogenization in fixed or porous media. A few works deal with
the homogenization theory in thin heterogeneous domains; see e.g. [4-6,8,9,11,16-18,21,25]. As for
the homogenization in thin heterogeneous porous media, very few results are known up to now. We
may cite [4-6,8,11]. Concerning the Smoluchowski equation as stated in this work, to the best of our
knowledge, the only work dealing with its homogenization is the paper [12] in which the considered
domain is a uniformly perforated one that is not thin. Because our domain is thin and porous, the
homogenization process is not an easy task. Indeed, we make use of the partial mean integral operator
M, (see below for its definition) associated to the extension operator, while in [12], even the extension
operator is not used. So, the main novelty in our work arises from the fact that the domain Q)¢ is a thin
heterogeneous porous layer. This leads to a dimension reduction problem in the limit as shown here
below in the main result, which reads as follows.

Theorem 1. Assume that (H1)-(H2) hold. For any ¢ > 0, let u® = (u5,)1<m<m be the unique solution of
(1)-(3) in the class (C'+22+%(Q;))M, (a € (0,1)). Let also M, and E denote respectively the partial mean
integral operator and the extension operator defined by (34) (see Section 3) and in Lemma 3 (see Section 2). Then,
as e — 0, one has, forany 1 <m < M,

MEeuf, — y, in L2(Q)-strong, (5)

MV Eus, — Vzuy in LZ(Q)Z-weak, (6)
out,  Ouy . -

M.E; 5 Ty n L*(Q)-weak, (7)

where u = (tm)1<m<m € [L®(Q) N L2(0, T; HY(Q)) N H(0, T; L2(Q))|M is the unique solution of the
system (8)-(10) below:

M ~
0% — divy (dy AVzuy) + iy Yt = dhinQ=(0,T) x Q
]:

8
AVzuy-n=00n(0,T) x 9Q ®)
U1 (O,Y) =0in )y
Ifl<m< M,
du i L o .

GT;" — divy (dmAqum) + Ouyy 'Zlam,ju]' -5 .Zlujxm*jujum*j =0inQ
j= = 9
AVxiy -n=00n (0,T) x 0Q) )

and
0% — dive (dyAVsim) —§ ¥ ajuug =0in Q
jrk>M

j<M, k<M (10)

AVzup -n=00n(0,T) x 9Q
upm(0,%) =0in Q.

Moreover u € (C*+22+%(Q))M and is such that

Uy >0imQ m=1,... M. (11)
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In (8)-(10), n is the outward unit normal to Q) and the matrix A = I + Vyw, where I is the 2 x 2 identity
matrix and w = (w;)i=12 with w; being the unique solution in Hy(Zs) = {u € H'(Zs) : u is Y-periodic and
[, udy = 0} of the cell problem

divy(e; + Vyw;) = 0in Zs, (e; + Vyw;)-v=00nT,
wi(.,y3) is Y-periodic,

where here, v stands for the outward unit normal to F and e; is the ith vector of the canonical basis in R3;
the function ¥ and 0 are defined respectively by P(t,%) = [ ¢(t,%,y)do(y), (t,%) € Qand 6 = |Z,| (the
Lebesgue measure of Zs in R3.

The partial mean integral M, considered in Theorem 1 is defined, for a function ¢ by

Mp(t,7) = 5 [ 9(t5,0)dC for (1,7) € Q

The system (8)-(10) is the upscaled model arising from the e-model (1)-(3). It is posed in a 2
dimensions space, leading to an expected dimension reduction problem as it is usually the case for the
homogenization theory in thin domains. Moreover the information given on the microscale by the
Neumann boundary condition in (1) is transferred (in the limit) into the source term in the leading
equation in (8), so that, in the case of (1), the limiting equation does not have the same form as the
original equation posed in the e-model. For (9) and (10), apart from the diffusion term, they are similar
to the e-equations in (2) and (3).

The rest of the paper is organized as follows. In Section 2, we investigate the well posedness
of (1)-(3) and provide useful uniform estimates. Section 3 deals with the treatment of the concept of
two-scale convergence for thin heterogeneous domains. We prove therein some compactness results
that will be used in the homogenization process. With the help of the results obtained in Section 3, we
pass to the limit in (1)-(3) in Section 4 where we prove the main result, viz. Theorem 1.

2. Well posedness and uniform estimates

The current section deals with the existence and uniqueness of the solution to (1)-(3), together
with some uniform estimates that will be useful in the sequel. The following result holds true.

Theorem 2. Assume that (H1)-(H2) hold true. For any € > 0, the system (1)-(3) possesses a unique weak
solution u® = (u%,)1<m<m € (C*F22H(Qe))M (a € (0,1) be fixed) such that

us, (t,x) >0for (t,x) € Qe, m=1,..., M.

Furthermore there exists eg > 0 such that, forall1 < m < M,

3| o0 < G (12)
1
IVl 2 (q,) < Ce2, (13)
€

ity < Cet, (14)

ot li2(q)

and

9% 20,7y xrey < C Yl 20,1.c@x1)) - (15)

forall 0 < & < gy, where C > 0 is independent of m and e.

Proof. The well posedness of (1)-(3) has been addressed in [1,12,13,29]. We are concerned here only
with the uniform estimates (12)-(14), the estimate (15) being a classical result arising from the trace
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result. We just emphasize that since [T¢| = O(1) (|T¥| stands for the Lebesgue measure of I¥), no
scaling is needed in the left-hand side of (15). Now;, as for (12), we follows exactly the same lines of
reasoning as in [12] to obtain it. It remains to check (13) and (14). We first consider (13). We distinguish
thecasesm =land 1 <m < M.

We start with m = 1. Multiplying (1); by u{ and integrating over ()%, next using the divergence
theorem, we get

2
3 H”ﬁHiZ(QS) +di ||v”§||i2(ns) + Jos <|”§| Zj]\il ‘114‘“]5) dx
= edy [re (8, %, L)us (£, x)doe(x) (16)

< YO 2qre) + 15 Ol ey

where the last inequality above stems from Holder’s and Young's inequalities. We use a well-known
trace inequality to deduce the existence of a positive constant C; independent of & such that

e ||u§(t)||%z(rs) <G </Q€ |u§ (£)|* dx + €2 /Qs WHOI dx) ) (17)

Therefore, integrating (16) over (0, t) (t € (0, T]) and taking into account (15) and (17), we are led to

t
145 (D)1 202y + 1 (2 — €2C1) /O V735 (5) 172 e s (18)
t
< Cudr [ 56 F2( ds + e C 120 meanry

We therefore infer the boundedness of u{ in L®(Q;) associated to (18) that there exists gy > 0 such

that (13) holds for m = 1 and ||u§ Hiw ( < Ce?forall0 < e < g, where g is chosen such that

0,T;L2(0x))
~1
2 —€2Cy > 1, thatis, ¢g < C; 2.
For 1 < m < M, we proceed as for m = 1 and multiply (2); by u}, and integrate over ()%; then one
obtains

1d o
EE ||ufn(t)||%2(ﬂg) + dm ||vu21||%2(05) + /g:)g <|u$n|2 Z%ﬂm,ju§> dx
]:

2
N A LA
Integrating over (0,t) for t € (0, T], we get
t
115 (D)1 220 +2dm/0 195, (9) 1722y 45 < 21 finlliz(g,) Naiallzaga) -
Using (12), we get at once

2 2 1
145l T (0,7:02(0)) + [Vt 720,y < Ce2.

Finally, the proof of (13) for m = M is obtained exactly as the one for the case 1 < m < M mutatis
mutandis (replace f;, by g).
Let us now prove (14). We proceed as above by distinguishing three cases.

d0i:10.20944/preprints202308.1067.v1
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For m = 1, we multiply (1)1 by duf /9t and use (1)-(1)3 to get
dut |2 ) e LU
/()s W dx‘i‘?g Q£|VZ/I1| dx — Sd] /I‘slp Wd(fg(x)
Jut M
- us =1y all»u£.> dx
/Qs < ot = 17]
But
Jut M Jut M
e’ 1€ ' § € €
/s (“1 ot ;“14”’]> dx < ‘ ot || 120 |“1;“14“J
- = L2(0x)
2
1| 0us ||? 1 . M
< Z||=t =g Ut
- 2‘ ot LZ(QE)+2 i ;”14”1
= L2(€)
Thus
dut |2 d 1o 62
5 ey T Mar 178 120 19)
M 2
< 2ed; / [l aldag(x)+ uﬁZal,]-u;?
e L2(cx)

Integrating (19) over (0,t) and using the boundedness property (12), we obtain after integration by
parts,

au 2 2

fO 1 L2(Qg) ds +d1 ||Vl/l-£1 HL2 QS < Ce

+2£d1 frg Peuidoe(x) — 2ed; fo frg S (s)ul (s)doe(x)ds,

where we have used the fact that (0, %, y) = 0. Now, we use the 1nequality (17); then (20) becomes

(20)

ds

tllo
Jy |5

g B+ H 1735 ()| 20

< Certedy (1971 + [ e

aS
o,

+edy fo (‘

2
LZ Ie) + ||M1 >||L2(FE)> ds

< Ce+Ce <||l/’”L°°0TC(er)+ H LZOTC(er))>

+C 1522 ) + Ctae? [V ()| 2y + € 1 22y + CE* [ V05 2

It follows that )
ouj

5 (8

ds +dy (1= Ce) || Vi (1) | T2y < Ce, (21)
L2(0r)
where in (21), we took advantage of (12) and (13). Hence, choosing ¢ < ¢y sufficiently small so that
1—Ce? >0, we get (14) for m = 1.
The proof of (14) in the case when 1 < m < M follows the same lines of reasoning as above, but is
much easier. It is therefore left to the reader. This completes the proof. [
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The following result whose proof can be found in [19, Theorem 3] will be useful in the sequel.

Lemma 3. There exists a bounded linear operator E, : H'(QFf) — H'(Q) such that, for all v € H'(QF),
E.v = vin QFf and

|Ecvll 20 < € (Il 2y + €1 Vollizga) )

and
”VEEZ)”[}(QS) <C ||VU||L2(Q€)

for a positive constant independent of both € and v.

Based on Lemma 3, we define the extension E.v of a function v € L?(0,T; H'(QF)) to
L%(0,T; H'(Q)) as follows:
(Ecv)(t) = E¢(v(t)) a.e. t € (0,T).

Then accounting of Lemma 3 and Theorem 2, we have

1
sup (HEEu;:nHL‘”(Q;f) + ”EeuinHLz(O,T;Hl(Qg))) < Cez, (22)
1<m<M

where C > 0 is independent of € and
Ol =(0,7) x Q.. (23)

We also need an estimate on du¢, /9t in L>(Q). To that end, we procced as in [20] and consider the
restriction operator R : L?(Q) — L?(Q)F), Rev = 0] (the restriction of v to (O¢). Then it is a fact that
R is a bounded linear operator as

IR0l 2 < 19l r2ar) Vo € L2(Qe)-

Now, if R* : L2(Qf) — L?(Q,) denotes the adjoint operator of Re, then for v € L2(0, T; L?(QF)) =
L%(Q:), we define R}v as follows:

(RFv)(t) = R*(o(t)) ae. t € (0, T),

and we have .

<Mww=47mwmmw»m=/<wm&wm»w

0

forall u € L?>(Qc) and v € L*(Q]). It is therefore easy to see that R¥v = x.v for all v € L?(Q), or
equivalently
Riv = xqeEev forall v € L2(Q;). (24)

Lemma 4. Let the assumptions of Theorem 2 hold. It holds that

where C > 0 is independent of €, and € is defined in Theorem 2.

E €
XQS% < Cs%for all0 < e < g, (25)

L2(0f)

Proof. First, we have R} 0;uf, = x:0:E¢u},, where 0; = 9/9t. Thus it is sufficient to show that

1
|| R: 0t Eeuty, ||L2(Q€T) < Cez.

d0i:10.20944/preprints202308.1067.v1
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So, let ¢ € L?(Q]); then

[(RetEettyy, @) = [(9tEettyy, Re@)| < [|9:Eetsyyl|12(q,) IRe@ll 12,

IN

1
92520 191120y < Cet llglzqar) -
Whence the result. O

3. Two-scale convergence in thin heterogeneous domains

The two-scale convergence for thin heterogeneous domains has been introduced in [25] and
extended to thin porous surfaces in [8,19]. The notations used in this section are the same as in the
previous ones. Especially, the domain (), is defined as above, thatis, Q. = Q X (—¢,¢). Whene — 0, Q)
shrinks to the "interface" Qp = Q x {0} = Q. We know that Q. = (0,T) x Qf and Q! = (0,T) x Q,
and weset Q = (0,T) x Qp, I = (—1,1),Y = (0,1)? and finally Z = Y x I. Let 1 < p < oo; by
Lger(Y; LP(I)) we denote the space of functions in Lf ' (R% LP(I)) that are Y-periodic. Accordingly we
define W,l,g’,’(Y; WLP(I)) as the subspace of Wll 7 (Y; WP (1)) made of periodic Y-periodic functions,
and we set

Wyt Wi (n) = u e Wiwr ) [ utg iy =of,

which is a Banach space equipped with the norm

1/p
1,
lulle = ()90l dy) ", e wF W),

Any x in R3 writes (%, x3) or (%,{) where ¥ = (x1, x;). We identify )y with Q) so that the generic
element in () is also denoted by ¥ instead of (%, 0).

We are now able to define the two-scale convergence for thin heterogeneous domains and for thin
boundaries.

Definition 5. (a) A sequence (u;)e~0 C LP(Q]) (1 < p < o) is said to
(i) weakly two-scale converge in L (Q]) to ug € LP(Q; L;er(Y; LF(I))) ifase — 0,

1 _ X _ _ _
7/03 ue(t,x)f (t,x,g> dxdt — /Q/Zuo(t,x,y)f(t,x,y)dydxdt

€

forany f € LV (Q; Cper(Y; LY (I))) 1/p" = 1—1/p); we denote this by "u, — ug in LP (O] )-weak
2s";

(ii) strongly two-scale converge in LP(Q) to ug € LP(Q; Lger(Y; LP(I))) if it is weakly two-scale
convergent and further

_1
e 7 Nluellpr gy = ollr e, vier(n)) : (26)

per

we denote this by "u, — ug in LP(Q] )-strong 25"

(b) A sequence (u¢)e~o C LP((0,T) x I¥) is said to weakly two-scale converge in L?((0, T) x I'?)
touy € LP(Q xI')if,ase — 0,

€ t/ tlir
G

forall f € L' (0, T;C(Q) x I)) that is Y-periodic in 7.

X
£

Yoo (x)dt — / /Q (L, y)do(y)dat

d0i:10.20944/preprints202308.1067.v1
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Remark 6. It is easy to see that if uy € LV (Q; Cper(Y; LP(I))) then (26) is equivalent to

1
€ 7 |lue — upllppary =+ 0ase =0, (27)

where u§(t, x) = ug(t,%,x/¢) for (t,x) € QL.

We start with the following important result that should be used in the sequel; see [7, Lemma
3.2.3] for the proof.

Lemma 7. Let ¢ € LP(0,T;C(Q x T')) that is Y-periodic in jj. Then, letting ¥¢(t,x) = (t,%,x/¢) for
(t,x) € (0,T) x I'%, we have

@ N9 p 0,1y xre) < 1®llipom.c@xr))y
i) [ frglp(t,f,x/s)d(fg(x)dt—>//lp(t,f,y)da(y)dt.

Throughout the work, the letter E will stand for any ordinary sequence (&, ),>1 with0 <, <1
and &, — 0 when n — co. The generic term of E will be merely denote by ¢ and ¢ — 0 will mean
ey — 0 as n — oco. This being so, we have the following compactness results.

Theorem 8. (i) Let (u¢)cck be a sequence in LP(QI) (1 < p < oo) such that

-1
supe /¥ ||”€||LP(QST) <C
e€kE

where C is a positive constant independent of e. Then there exists a subsequence E' of E such that the sequence
(tte )¢ pr weakly two-scale converges in LP (Q]) to some ug € LP(Q; L,’;er(Y,‘ LF(I))).
(i) Let (ug)eck be a sequence in LP((0, T) x T'®) such that

||“8HLP((0,T)xr€) <C

C > 0 being independent of €. Then there exist a subsequence E' of E and a function ug € LP(Q x T') such that,
asE' 3e—0,

ue — ug in LP((0, T) x T'®)-weak 2s.

Proof. The proof of part (i) can be found in [16] while the proof of part (ii) can be found in [7] (see also
[8,19]). O

Theorem 9. Let (u;)ccr be a sequence in LP (0, T; WP (Q)) (1 < p < o) such that

Sug (Sil/p l[ttell o) + e l/r ||Vug||U,(Q£T)) s¢
e€

where C > 0 is independent of e. Then there exist a subsequence E' of E and a couple (ug, uq) with ug €
LP(0, T; WP(Q)) and uy € LP(Q; WP (Y; WYP(1))) such that, as E' 5 € — 0,

ue — ug in LP(QF)-weak 2s,

Jdu, dug  duq

rQTl)- —
i, N I, + >, in LP(Q})-weak 2s, i = 1,2, (28)
and 5 3
Ue uy . P T
5 s " LP(Q )-weak 2s. (29)

Proof. See [16] for the proof. [
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Remark 10. If we set
auo Buo

vfu() = (axlr E/ 0> ’
then (28) and (29) are equivalent to
Ve — Vg + Vyup in LP (Qf )>-weak 2s.
The following result is sharper than its homologue in Theorem 9.

Theorem 11. Let (u;)ccE be a sequence in L2(0, T; H' (Q)) such that

1
supe 2 (HMEHLZ(O,T;Hl(QE)) + ”uEHHl(O,T;LZ(Qg))) =G (30)
ecE

where C is a positive constant independent of e. Finally, suppose that the embedding H'(Q) — L?(Q)
is compact. Then there exist a subsequence E' of E and a couple (u,u;) € (L?(0,T;H'(Q)) N
HY(0,T; L2(Q))) x L2(Q; H(Y; HY(I))) such that,as E' 3 ¢ — 0,

ue — uin L2(QF)-strong 2s, (31)
Ve = Vzu + Vyuy in L2(QF)?-weak 2s, (32)

and
Osute — Ogu in L*(Q] )-weak 2s. (33)

Proof. First, owing to Theorem 9, there exist a subsequence E’' of E and a couple (u,u;) €
L2(0, T; HY(Q))) x L*(Q; H(Y; HY(I))) such that,as E' 3 ¢ — 0,

ue — uin L2(Q)-weak 2s,

Vue — Vzu+ Vyug in L2(Q])3-weak 2s,

and
st — Opu in L2(Q] )-weak 2s.

It remains to prove (31). To that end, we set

€

Meue(t,X) = 2%/ ue(t,%, x3)dxs for (£, %) € Q. (34)

)

Then we easily see that M.u, € L2(0, T; H'(Q)) N H'(0, T; L>(Q)) with
sug (HMEM'S”LZ(O,T;Hl Q) + ||M€u5||Hl (O,T;LZ(Q))) < C. (35)
€€

Then from (35), we derive the existence of a subsequence of E’ still denoted by E’ and of a function
up € L2(0, T; HY(Q)) N H'(0, T; L?(Q))) such that, as E' > ¢ — 0,

Meue — ug in L*(0, T; L?(Q)))-strong,. (36)
We recall that (36) stems from the compactness of the embedding L2(0, T; H'(Q)) N H(0, T; L*(Q))) —

L%(0, T; L2(QY)).
Now, from the Poincaré-Wirtinger inequality, it holds that

_1
e 2 [Jue — MSuSHLZ(O,T;LZ(QE)) < Ce HVMSHLZ(O,T;LZ(QS)) ’

d0i:10.20944/preprints202308.1067.v1
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so that .
€2 ||ue — MSuSHLZ(O,T;LZ(QS)) —0asE' 3e—0. (37)

Thus the inequality
€% [ue — wol| 2 o) < € [lue — Mettell 2 qor) + €% | Mette — o]l 2,
associated to the equality
€72 || Mette — ugl| 21y = V2 | Mette — gl 2
yield (with the help of (36) and (37))
€2 |lue — uollj2(qry) — 0asE' 5 e — 0.

This shows that 1, — g in L?(Q])-strong 2s, and so 1y = u. The proof is complete. [

The next result and its corollary are proved exactly as their homologues in [27, Theorem 6 and
Corollary 5] (see also [28]).

Theorem 12. Let 1 < p,q < coandr > 1 besuch that 1/r = 1/p +1/q < 1. Assume (u¢)ecg C L1(QF)
is weakly two-scale convergent in L1(Q]) to some ug € L1(Q; LZE,(Y; LI(1))), and (ve)eep C LP(QT) is
strongly two-scale convergent in LP (Q') to some vy € LP(Q; Lge,(Y; LP(I))). Then the sequence (1¢V¢)ecE IS
weakly two-scale convergent in L' (Q) to ugvp.

Corollary 13. Let (ue)ecr C LP(QF) and (ve)ecr € LV (QI) NL®(QI) 1 < p < coand p' = p/(p—1))
be two sequences such that:

(i) ue — ug in LP(Q.)-weak 2s;
(ii) ve — vg in LF' (Q¢)-strong 2s;
(iii) (Ve)eck is bounded in L®(Q;).

Then ugve — ugvg in LP (Q,)-weak 2s.

4. Derivation of the homogenized system

4.1. Preliminary results

In this subsection, we aim at providing further important convergence results that will be very
useful in the sequel. In that order, it is to be noted that ()° can alternatively be defined as follows:
Of = Ugek.e(k + Zs), where Ko = {k € Z? x {0} : e(k+Z) C Q,} with Q, = Q x (—¢,¢). We set
Ae = Uek, (k + Zs), a periodic repetition of the set Zs. We denote by x, the characteristic function
function of A¢ in Qe x, = x4, Then it holds that

X
0 = {re 0, x(l) =1},

so that x: (x) = x.(3) for x € Q..

Lemma 14. Let (ug)e~q be a sequence in LP(Q) (1 < p < o0) that weakly two-scale converges in LF (Q])
towards uy € LP(Q; Lzer(Y; LP(I))). Then,ase — 0,

UeXe — UoXz, IN L (O] )-weak 2s. (38)

If further the two-scale convergence is strong, then (38) holds in the strong two-scale sense.
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Proof. Set v,(t,%,0) = ue(t,x,¢) for (t,%,0) € QlT Then since u — ug in L (Q] )-weak 2s, it holds
that ||u€||Lp(Q£T) < Cel/2 (C > 0 being independent of ¢), so that ||vg||Lp(Qlf) < C. Hence, up to a
subsequence, v; — vg in L (Q;F) in the usual classical two-scale weak sense, where vy € LP(Q x
I; Lger(Y)). Next, let f € C(Q; Cper(Y;C(I))). Passing to the limit (in the subsequence determined
above) in the obvious equality

E/QT us(t,x)f(t,x,z)dxdt—/QlTvg(t,x,g)f(t,x,

x
—,()dxdldt,
oo ")z
we get at once uy = vg.

This being so, choosing f as above, one has

2 [l G)re,

x
e Jol €

)dxdt = /QTvs(t,f,é)xAl(

1

= Je

Owing to the usual two-scale concept, we obtain, as e — 0,
Je= [ w(b%5,0xz, @0 (1,7, ) dxdyagat, (39)
1

where in (39) we have used the fact that 1y = vy proved above. This concludes the proof. O

The following result will be crucial in the homogenization process. From now on, we set x; = Xz,
the characteristic function of Zs in Z.

Proposition 15. Let (u%,)1<m<m be the solution of (1)-(3). Given any ordinary sequence E, there exist
a subsequence E' of E and functions (um, u},)1<m<p with uy, € L2(0, T; HY(Q)) N HY(0, T; L2(Q)) and
ul, € L2(Q; HE(Y; H'(I))), such that, as E' > e — 0,

Xellsy, — Xsttm in L2(QF)-strong 2s, (40)
Xe Vs, — Xo(Vrtm + Vyu#) in L2(Q])3-weak 2s, (41)

and
XeOtls, — Xttty in L*(QF)-weak 2s. (42)

Proof. Since E;ut, = uf, in Q,, we have
Xsuin = XsEeufn' (43)

Next, appealing to (22) and (25), we are in a condition to apply Theorem 11: Given an ordinary sequence
E, there exist a subsequence E’ of E and a couple (uy, u},) € (L2(0, T; H(Q)) N H(0, T; L2(Q))) x
L2(Q; HY(Y; H'(I))) such that,as E' > ¢ — 0,

Eeuf, — uy in L2(Q)-strong 2s, (44)
VE:u$, — Vi, + Vyu# in L2(Q])3-weak 2s, (45)

and
Ec0ué, — Oty in L2(O] )-weak 2s. (46)

Applying Lemma 14 and accounting of (43), we are done. [J
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4.2. Passage to the limit: Proof of the main result

Assume that the functions u,, and u}, are as in Proposition 15. Let ¢ € C!(Q) and ¢; € C'(Q x
I;Cpr(Y)), and define

D(t,x) = ¢(t,X) + e, (1%, =) for (t,x) € QL.

™R

We @, as test function in the variational form of (1)-(3):

fQ ouj Dedxdt + 7 di fQ Vg - Vedxdt + 1 fQ u§ Ealju e D dxdt
(47)
= fo Jre Y(8, %, ) D (t, x)dtdoe(x);

Forl<m< M,

LJy, Bidedxdt + 4 [ Vi, Vedxdt + 1 [ 1, ):am jus@cdxdt
(48)
Z%gf Za]m _ju ] us JQDEdtdx

and

1 aMM M
E/QS My dt+—/ Vi, - Vedxdt =

1
/ aj ki ‘up Pedxdt. (49)
]+k>M,]<Mk<M Qe

Let us first deal with (47). We note that it is equivalent to

ous M

L Jor xe gt Pedxdt + % [or x, Vg - Vedxdt + 1 [or xouf ‘Zlal,]-u]‘?cbgdxdt
]:

(50)

= fo Jre (1%, 2) D (t, x)dtdoe(x).

We have that

Vb, (t,x) = Vzo(t, %) + Vyo, (1%, )+£Vx(p1(( yg

)-
Thus we may apply Proposition 15 to pass to the limit in the first two terms on the left-hand side of
(50), using @ as test function in the two-scale concept. As for the term on the right-hand side of (50),
we use Lemma 7 to pass to the limit therein. We end up with the last term on the left-hand side where
the limit passage therein is more involved. Indeed, we use there the strong two-scale convergence of
X:uj towards x,u; associated to the weak two-scale convergence of )(euje- (1 <j < M) towards x,u; to
get from Corollary 13 that, for 1 < j < M, we have,as E' 5 ¢ — 0,

Xetquj = (Xeu]) (Xettj) = Xsuaujin L2(Qf)-weak 2.


https://doi.org/10.20944/preprints202308.1067.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2023 d0i:10.20944/preprints202308.1067.v1

14 of 17

Therefore, using in that term the test function &, and taking into account all the process described
above after (50), we are led, as E' 3 ¢ — 0in (50), to

/ /Q gy + [ / Xo(Vstis + Vyul) - (Vs + Vg, )dxdydt

5 T T (51)
+//QXZ)(suljgal,jujq)dxdydt = //ert,bq)dxda(y)dt

V(q)/ 4)1) € Cl(Q) X Cl(Q X I Cper( ))

We use the same process as for (50) to pass to the limit in (48) and in (49), and we obtain:
Forl <m < M,

/ /Q s pddydt + / / Xo(Vttn + Vyul) - (Vg + V) dxdydt

5 dxdydt — 1 " dxdyd (52)
+/ 1jpax t:’// =l —jpaxayat
QXsz“mj;”m,J”J(P xay 2 QXsz El Ajm—jUjim—jpaxay

forall (¢, ¢;) € C'(Q) x CH(Q x L;Cpr (Y));
and

/Q ZXSauM(pdxdydt—i—dM// Xo(Vting + Vyily) - (Vg + Vo, )dxdydt

= % / Xs ]ku]uk(pdxdydt (53)
]+k>M]<Mk<M QxZ

forall (¢, ¢;) € C1(Q) x CLH(Q x T; C;er(Y)).
We have proved the following result.

Theorem 16. The functions (uy, u},)1< < determined by Proposition 15 solve the variational problems (51),
(52) and (53).

Our next goal is to derive the system whose (u;)1<m<pm is solution to. To that end, we start by
uncoupling each of the equations (51)-(53). We first consider (51) and we see that it is equivalent to the
following system consisting of (54) and (55) below:

//szxs(vyul + Vyul) - Vygdxdydt = 0 Vo, € C1(Q x T;,CLy(Y)), (54)

/ /Q vyt + / / Xo(Vtty + Vyul) - Vegdzdydt
y (55)
—l—//Qszsuljglalljujq)dxdydt = //ert/)cpdfd(r(y)dt Vo € C1(Q).

Let us first consider Eq. (54) and choose therein ¢, under the form ¢, (t,%,y) = ¢(t,X)1(y) with
¢ € Cy(Q) and 57 € €2, (Y) ® C*(I); then (54) becomes

/ X (Vi + Vyuid) - Vyndy = 0 Wy € 32, (Y) @ CL(T). (56)
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To solve (56), we rather consider the variation problem
/Z)(s(ej + Vywj) -Vyndy =0 Vi € C;‘;,(Y) ® Cl(f), (57)

where ¢; (j = 1,2,3) denotes the jth vector of the canonical basis of R3. Then (57) is equivalent to the
cell problem

*diVy(€j+vyw]') =0in Z, (ej+Vya)j) cv=0onT (58)
w;(.,y3) is Y-periodic,
where v stands for the outward unit normal to I'. It is well known that (58) possesses a unique solution
in the space
Hi(Zs) = {u € HY(Zs) : uis Y-periodic and / udy = 0} :
Zs

Now, multiplying (57) by duy/9x; (j = 1,2) and summing up the resulting equations, then comparing
the latter sum with (56) yields at once

8u1

2
uj(t,%,y) = ij(y)g(tj) = w(y) - Vzu (t,X), (59)
=1 j

where w = (w1, w»).
Next, going back to (55) and replacing there u1 by the expression obtained in (59), we get

Jo ()7 xsdy) aaltl(pdfdt +di [, ([ xs(I2 + Vyw)dy) Vxuy - Vxdxdt

M
+ Jo (J7 xsdy) Mlj)z:lﬂuujﬁodfdf = Jo (Jr¢(, . y)do(y)) pdxdt (60)

for all ¢ € C1(Q),

where I is the identity 2 x 2 matrix.
This being so, we set

- /szdy = |Zy| >0,A =L+ Vywand §(t,7) = /l_lp((t,?,y)dcr(y). 1)

Then A is a 2 x 2 symmetric positive definite matrix. Indeed it is a fact that the entries of A have the
form
Ajj = /z (ei + Vyw;) - (ej + Vywj)dy, 1<i,j<2;

this stems from (57) where we show that it is still valid for 7 € H}(Y; H'(I)) and the choose therein
1 = w;. With the above notations in (61), we see that (60) is equivalent to the problem

M ~
Qaaitl — divg(d1AVzuq) + 0uy ‘Zlal,j”j =dipinQ
]:

62
AVzui1-n=00n (0,T) x 90 (62)

11(0,%) =0in Q.

Proceeding as we did for (51), we easily show that (52) and (53) are equivalent to the variational
formulations of the following PDEs:

d0i:10.20944/preprints202308.1067.v1
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For 1 < m < M, (52) is equivalent to
iy . M emfl .
67 — lef(dmAVyum) + Bumj;lﬂm’ju]' -3 ];1 a]-,m_]-u]-um_j =0in Q
- - 63
AVxuy -n=00n (0,T) x 0Q (69)
Uy (0,%) =0in ()
and for m = M, (53) is equivalent to
9337?4 - diVy(dMAVYMM) - % Z aj,kujuk =0in Q
jHk>M,j<M k<M
AVsity -1 =0on (0,T) x 90 (64)

up(0,%) = 0in Q.

The system (62)-(64) is the homogenized model arising from the microscale e-problem (1)-(3). It
is posed in a 2 dimensional space, leading to a dimension reduction problem. We see from [12] that
(62)-(64) possesses a unique solution. We are now able to prove the main result of the work.

4.3. Proof of Theorem 1

The proof of (5)-(7) follows easily from (44)-(46) associated to the properties of the operator M,.
The fact that (#,;)1<m<m solves (8)-(10) has been shown here above in Subsection 4.2. Now, if we
proceed as in [1] (see also [12]), we get the wellposedness of (8)-(10) in the space (C'+32+%(Q))M, and
especially, (11) holds true. Finally, the fact that the whole sequence [(15,)1<m<Mm]e>0 converges towards
(um)1<m<m follows from the uniqueness of the solution (8)-(10). This concludes the proof.

References

1. Y. Achdou, B. Franchi, N. Marcello, M.C. Tesi, A qualitative model for aggregation and diffusion of
beta-amyloid in Alzheimer’s disease, J. Math. Biol. 67 (2013) 1369-1392.

2. H. Amann, Coagulation-fragmentation processes, Arch. Rat. Mech. Anal. 151 (2000) 339-366.

3.  H. Amann, C. Walker, Local and global strong solutions to continuous coagulation-fragmentation equations
with diffusion, J. Differ. Equ. 218 (2005) 159-186.

4. M. Anguiano, F]J. Sudrez-Grau, Homogenization of an incompressible non-Newtonian flow through a thin
porous medium, Z. Angew. Math. Phys. 68 (2017), 45.

5. M. Anguiano, FJ. Suarez-Grau, Derivation of a coupled Darcy-Reynolds equation for a fluid flow in a thin
porous medium including a fissure, Zeit. Angew. Math. Phys. 68 (2017), 52.

6. M. Anguiano, R. Bunoiu, Homogenization of Bingham flow in thin porous media, Netw. Heter. Media 15
(2020) 87-110.

7. A.Bhattacharya, Homogenization and Multiscale Analysis of Electro-Diffusive Transport in Complex Media,
PhD thesis, Friedrich-Alexander-Universitdt Erlangen-Ntirnberg, 2023.

8. A.Bhattacharya, M. Gahn, M. Neuss-Radu, Effective transmission conditions for reaction-diffusion processes
in domains separated by thin channels, Appl. Anal. 101 (2022) 1896-1910.

9. G. Cardone, W. Jager, J.L. Woukeng, Derivation and analysis of a non-local Hele-Shaw-Cahn-Hilliard system
for flow in thin heterogeneous layers, Submitted.

10. L. Cruz, B. Urbang, S.V. Buldyrev, R. Christie, T. Gomez-Isla, S. Havlin, M. McNamara, H.E. Stanley, B.T.
Hyman, Aggregation and disaggregation of senile plaques in Alzheimer disease, Proceed. Nat. Acad. Sci. 94
(1997) 7612-7616.

11. J. Fabricius, M. Gahn, Homogenization and dimension reduction of the Stokes-problem with Navier slip
condition in thin perforated layers, arXiv preprint arXiv:2210.12052, 2022.

12. B. Franchi, S. Lorenzani, From a microscopic to a macroscopic model for Alzheimer disease: two-scale
homogenization of the Smoluchowski equation in perforated domains, J. Nonlin. Sci. 26 (2016) 717-753.


https://doi.org/10.20944/preprints202308.1067.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2023 d0i:10.20944/preprints202308.1067.v1

17 of 17

13. B. Franchi, S. Lorenzani, Smoluchowski equation with variable coefficients in perforated domains:
homogenization and applications to mathematical models in medicine, In: Harmonic Analysis, PDE and
Applications, pp 49-67, Springer, 2017.

14. B. Franchi, M. C. Tesi, A qualitative model for aggregation fragmentation and diffusion of -amyloid in
Alzheimer’s disease, Rend. Semin. Mat. Univ. Politec. Torino 70 (2012) 75-84.

15. M. Helal, E. Hingant, L. Pujo-Menjouet, G.F. Webb, Alzheimer’s disease: analysis of a mathematical model
incorporating the role of prions, J. Math. Biol. 69 (2014) 1207-1235.

16. M. Gahn, M. Neuss-Radu, P. Knabner, Derivation of effective transmission conditions for domains separated
by a membrane for different scaling of membrane diffusivity, Discrete Cont. Dyn. Syst. S 10 (2017) 773-797.

17. M. Gahn, M. Neuss-Radu, 1.S. Pop, Homogenization of a reaction-diffusion-advection problem in an evolving
micro-domain and including nonlinear boundary conditions, J. Differ. Equ. 289 (2021) 95-127.

18. M. Gahn, M. Neuss-Radu, P. Knabner, Effective interface conditions for processes through thin heterogeneous
layers with nonlinear transmission at the microscopic bulk-layer interface, Network. Heter. Media 13 (2018)
609-640.

19. M. Gahn, W. Jager, M. Neuss-Radu, Two-scale tools for homogenization and dimension reduction of perforated
thin layers: Extensions, Korn-inequalities, and two-scale compactness of scale-dependent sets in Sobolev
spaces, arXiv preprint arXiv:2112.00559, 2021.

20. W. Jager, ]J.L. Woukeng, Homogenization of Richards’ equations in multiscale porous media with soft
inclusions, J. Differ. Equ. 281 (2021) 503-549.

21. W.Jager, ].L. Woukeng, Sigma-convergence for thin heterogeneous domains and application to the upscaling
of Darcy-Lapwood-Brinkmann flow, Submitted preprint, 2022.

22. P. Laurengot, S. Mischler, Global existence for the discrete diffusive coagulation-fragmentation equations, Rev.
Matem. Iberoamericana 18 (2002) 731-745.

23. S. Mischler, M.R. Ricard, Existence globale pour I'équation de Smoluchowski continue non homogene et
comportement asymptotique des solutions, C. R. Math. 336 (2003) 407-412.

24. R.M. Murphy, M.M. Pallitto, Probing the kinetics of f-amyloid selfassociation, J. Struct. Biol. 130 (2000)
109-122.

25. M. Neuss-Radu, W. Jager, Effective transmission conditions for reaction-diffusion processes in domains
separated by an interface, SIAM J. Math. Anal. 39 (2007) 687-720.

26. A.Raj, A. Kuceyeski, M. Weiner, A network diffusion model of disease progression in dementia, Neuron 73
(2012) 1204-1215.

27. M. Sango, J.L. Woukeng, Stochastic sigma-convergence and applications, Dyn. PDE 8 (2011) 261-310.

28. ].L. Woukeng, Homogenization in algebras with mean value, Banach J. Math. Anal. 9 (2015) 142-182.

29. D. Wrzosek, Existence of solutions for the discrete coagulation-fragmentation model with diffusion,
Topological Meth. Nonlin. Anal. 9 (1997) 279-296.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.


https://doi.org/10.20944/preprints202308.1067.v1

	Introduction and main result
	Well posedness and uniform estimates
	Two-scale convergence in thin heterogeneous domains
	Derivation of the homogenized system
	Preliminary results
	Passage to the limit: Proof of the main result
	Proof of Theorem 1

	References

