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Abstract: With the rapid urban development in Beijing, there is a critical need to explore urban
natural resources and understand the underlying mechanisms. Urban blue space (UBS) has gained
increasing attention due to its potential to drive microcirculation, mitigate heat islands, and enhance
residents’ well-being. In this study, we used remote sensing data to extract UBS in Beijing and
employed exploratory spatial data analysis (ESDA) methods to examine its spatial and temporal
development over the past two decades. We adopted a mesoscopic perspective to uncover the full
spectrum of landscape patterns and quantitatively simulate the mechanisms influencing the area of
UBS and landscape patterns. Our findings are as follows: (1) The UBS area in Beijing exhibited
fluctuating growth from 2000 to 2020. (2) Spatial clustering of UBS was stable with subtle changes.
(3) The ecological conditions in Beijing improved over the last 21 years indicated by increased
habitat diversity and richness, while notable landscape fragmentation posed significant challenges.
(4) Technological factors emerged as the most influential mechanism for the UBS area, followed by
vegetation conditions represented by the normalized difference vegetation index (NDVI) and
annual average temperature (T).(5) Precipitation emerged as the most vital influencing factor for the
UBS landscape, followed by residential population (POP) and economic conditions represented by
gross domestic product (GDP).(6) The density of the vegetation surface, as indicated by the gap
between the NDVI and enhanced vegetation index (EVI), proved more sensitive to the UBS area
than to the UBS landscape.

Keywords: urban blue space; spatiotemporal analysis; mechanism simulation; landscape analysis

1. Introduction

Urban blue space (UBS) refers to spaces of surface water within urban areas, including lakes,
channels, and pools [1]. UBS plays a crucial role in various aspects, such as biodiversity conservation
[2], climate change mitigation [3], provision of ecosystem services[4], and public health benefits [5].
It also contributes to reducing the heat island effect and regulating the local climate [6-8].
Consequently, the management of UBS holds great importance in urban planning and development
[9,10]. In addition to its functional benefits, UBS significantly enhances the aesthetics [11] and cultural
value [12] of urban environments. It provides a sense of comfort and tranquility, offering respite from
the pressures of modern city life [13,14]. Furthermore, UBS helps mitigate flood risks associated with
the expansion of artificial surfaces, optimizes land use patterns, improves public satisfaction, and
promotes residents' well-being [15-19].In Beijing, as a globally recognized metropolis renowned for
its fast-paced lifestyle, serves as an exemplary case study for examining the role of UBS in urban
environments.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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In terms of the content of existing studies in this field, the focus has primarily been on changes
in urban blue spaces (UBS) [20] and patch connectivities [21-23]. However, UBS in metropolises serve
not only as functional outdoor water bodies but also as unique urban landscapes and spaces with
aesthetic and emotional significance. Therefore, it is crucial to pay more attention to the area and
landscapes of UBS. Regarding the time scale, most previous research has concentrated on specific
years or short-term timelines [24-28]. However, UBS changes occur over long-term and gradual
processes, which cannot be adequately captured within a short-term study spanning only three to
five years [29]. Additionally, UBS is subject to irregular impacts from extreme weather events such
as droughts and floods, which are often overlooked when using equal time interval methods [30].
Hence, conducting long-term studies with more detailed information is essential in this field. In terms
of primary data, previous research on UBS landscapes has primarily relied on traditional data
sources, such as historical maps and aerial images with large spatial resolutions and limited
information [31,32]. These sources only support studies at a patch scale [33,34]. However, with
advancements in remote sensing technology, high-quality primary data have become more
accessible. Therefore, there is a demand for studies that utilize more detailed information and focus
on a smaller scale [35,36]. Considering the potential interference of fragmented and temporal water
patches resulting from high-resolution data, as well as the inability of low-resolution data to capture
detailed information, this study adopts remote sensing data with a resolution of 30 m x 30 m to
accurately extract UBS.

The analysis of component mechanisms, including population, economics, climate, and land use
[37], deserves more attention compared to single-factor studies [38] since the spatiotemporal
characteristics of UBS are influenced by multiple resource factors. Understanding the interactions
and contributions of these factors is crucial in comprehending UBS dynamics. Moreover, qualitative
mechanisms hold greater value for policymakers and stakeholders [39-43] involved in urban
management and hydrological projects compared to quantitative mechanisms [44,45]. Qualitative
insights provide a deeper understanding of the underlying processes and offer more meaningful
guidance for decision-making. In many existing studies, the differentiation in vegetation density has
been overlooked [46]. However, vegetation density directly affects the water holding capacity and
the ability of ecosystems to regulate runoff. Considering that the area of low-density vegetation in
Beijing is significantly larger than that of high-density vegetation and that the availability of
vegetation density data is limited, the authors have chosen NDVI, which is more sensitive to low-
density vegetation surfaces, and EVI, which is more sensitive to high-density vegetation surfaces [47],
as proxies to distinguish vegetation density in this study.

Compared to previous studies, this research makes several significant contributions. First, the
authors have chosen a sequential 21-year period, which helps avoid information gaps that may occur
in previous studies using equal interval methods. By analyzing a longer time span, a more
comprehensive understanding of UBS dynamics can be achieved. Second, in terms of spatial and
temporal analysis, the remote sensing data utilized in this study offer wider coverage, increased
accuracy, and more detailed information compared to traditional data sources such as urban
planning drawings and surveying statistics used in previous studies. This enables a more robust and
nuanced investigation of urban landscapes. Finally, this research explores the heterogeneity in
vegetation density within the mechanism simulation, which has often been overlooked in existing
studies. By considering variations in vegetation density, the study provides insights into the impact
of different vegetation types and their densities on UBS dynamics. This contributes to a more
comprehensive understanding of the mechanisms driving UBS changes.

2. Materials and Methods

2.1. Study Area

The study area of this research is Beijing, which is a prominent political, economic, and cultural
center in China. Beijing is situated between 115.7°E - 117.4°E longitude and 39.4°N - 41.6°N latitude
[48]. It shares borders with Tianjin in the east and Hebei in the remaining directions (see Figure 1).
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The city covers an area of 16,410 square kilometers and had a permanent resident population of 21.89
million as of 2021 [49]. Beijing experiences a monsoon-influenced humid continental climate.
Summers in Beijing are hot, humid, and prone to rainfall, while winters are cold, dry, and
characterized by clear skies. The average annual rainfall in Beijing is approximately 698.4 mm, and
the average annual temperature ranges from 9°C to 19°C [50].
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Figure 1. Study Area of Beijing.

Beijing serves as a typical case for studying urban blue space (UBS) in a metropolis. The city's
UBS plays a crucial role in several aspects. First, due to the frequent intense rainfall and extreme
precipitation events that occur during the summer, UBS serves as a vital component of natural
reservoirs, helping to absorb and regulate excess water, thereby reducing the risk of flooding.
Additionally, UBS in Beijing provides valuable mental and recreational benefits to the public. As a
special urban landscape, UBS is a source of mental relaxation and entertainment for the city's
residents amidst their fast-paced lives. These blue spaces create a serene and tranquil environment,
offering an escape from the hustle and bustle of urban life. The presence of UBS in Beijing contributes
to the overall well-being and quality of life for its inhabitants. Considering the dual functions of flood
mitigation and mental well-being, studying UBS in Beijing provides valuable insights into the
multifaceted role of blue spaces in metropolises.

2.2. Methodology

2.2.1. Spatial Autocorrelation Analysis and Spatial Clustering Analysis

Spatial autocorrelation detects the convergence or dispersion of observations [51,52]. Moran's I
is a widely used classical spatial autocorrelation index. For a series of n variable samples, x; is the
observation at location i, and wijis the spatial weight matrix (SWM). Then, Moran’s [ is calculated as
follows:

n n vl v
_ nyioq Zj:l wij(x; — X) (x; — X)
- n n n =
i=1 Xj=1 Wij D= (x; — X)?
Moran’s Iranges from -1 to 1. Moran’s I >0 indicates a positive spatial correlation. The closer it
is to 1, the more significant the positive spatial autocorrelation. Moran's I <0 indicates a negative

I
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spatial correlation. The closer it is to -1, the more significant the negative spatial
autocorrelation. Moran’s [ =0 means a random distribution [53]. The high/low clustering (Getis-Ord
General G*) tool is an effective method for spatial aggregation simulation. The calculation formula is
as follows:

Y wijx =X X7 wij

2
n w n .
Y \/"Zj=1‘”ij‘(zj=1‘”u)
n-1

G*_

n x2

x is the average of observations, x;, x;,-*,x, w;; is the spatial weight of x; and x;, i,j =

1,2,--+,n. The higher G* is, the higher the observation clustering, and vice versa. The null hypothesis

of General G* assumes that the observations do not cluster spatially [54]. The p value determines

whether the null hypothesis should be accepted or not. The z score reflects the dispersion of
observations [55].

2.2.2. Principal Components Regression Analysis

Principal component regression analysis (PCR) is used to solve multivariate collinearity
problems [56]. Principal component analysis (PCA) converts multiple indexes into several
comprehensive indexes by orthogonal rotation transformation, following the premise of minimizing
information loss. Generally, the results of PCA are independent variables called principal
components [57]. The geometric interpretation and model of PCA are as follows (Figure 2):

X1

Figure 2. Illustration of principal component analysis theory.

The distribution of a series of n binary observations (x4, X12,***, X41, X52) in the coordinate space
composed of X; and X, is shown in Figure 2. Along the X; or X, axis, observation points have
large discretization indicated by the variance of X; or X,, respectively. Axes X; and X, are rotated
counterclockwise to axes ¥; and Y, following formula X. The dispersion of n observation points on
the Y; axis is the largest, indicating that variable Y; retains most of the information of the original

data.
Yl)_ cos@ sinf <X1)_
(Yz _(— sinf cos 9) X, =Ux
2.2.3. Grey Relation Analysis

A complex system always involves various elements; the mechanism of each element is hard to
simulate quantitively in practice because of the associated interactions. Grey system theory attempts
to look for quantitative relationships based on the curve geometry [58-60]. Sequences are closely
related when they have tight geometry curves and similar trends, and vice versa. Thus, grey
correlation analysis is an effective classical quantitative measure for dynamic series. The formula is
as follows:
min min|xo (k) — x; (k)| + ¢ max max|xo (k) — x; (k)|

(20 (), x; (k) = — 2o (k) = (k) + § max max|xo (k) — x, (k)|
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n

1
o, 20 = ) o), % ()
k=1
where 7(xo(k),x;(k)) is the grey correlation coefficient at location k, 7(xo,x;) is the data sequence

from x, to x;.Erefers to the resolution coefficient. The value of {is inversely proportional to the
difference between sequence phases. In classical statistical theory, for a set of observations with a
large sample size, the probability of the sample is approximately equal to the frequency. Thus, ¢ is
equal to 0.5.

2.3. Data and Resources

Remote sensing images from the Google Earth Engine data catalog were used to extract
influencing factors. The statistical data were retrieved from the statistical yearbook and official

websites (Table 1).
Table 1. Data and resources.
. . Temporal
Number Name Dataset Spatial resolution .
resolution
1 POP Gridded Populat.lon of the World, 100 m Yearly
Version 4
2 PREP ERA5-Land 0.1 *0.1° Daily
3 T Aqua/Terra MODIS MYD11A2 1000 m Eight days
4 FvC MODIS MCD12Q1 500 m Yearly
5 ASP MODIS MCD12Q1 500 m Yearly
6 NDVI MODIS NDVI MYD13Q1 V6 250 m Sixteen days
7 EVI MODIS NDVI MYD13Q1 V6 250 m Sixteen days
Beijing Statistical Yearbook;
Beijing Statistical Bulletin of
8 GDP National Economic and Social - Yearly
Development
9 UEM Bel]mg' ar}d each district’s ) Yearly
statistical yearbook
10 EDUI Beljmg. ar‘ld each district’s B Yearly
statistical yearbook
1 STI Bel]mg. ar.ld each district’s ) Yearly
statistical yearbook
12 UBS  JRC Monthly Water History, v1.3 30m Monthly

To address the spatial and temporal resolution differences between remote sensing images and
statistical data, the influencing factors derived from remote sensing images were aggregated to the
district level from the pixel scale. This aggregation process ensures that the data align with the
resolution of the statistical data available. Furthermore, to account for the temporal variations within
the remote sensing images, the data were further derived to annual averages. This averaging process
provides a representative value for each influencing factor, smoothing out short-term fluctuations
and capturing the overall trends over time. By aggregating and deriving the data, this study ensures
compatibility and consistency between the remote sensing images and the available statistical data,
enabling a comprehensive and integrated analysis of the influencing factors at the district level on an
annual basis (Figure 3).
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Figure 3. Multi-resoure data analysis method.

Referring to the existing research, considering the actual situation and data availability in
Beijing, the authors have selected the following indicators as influencing factors for studying UBS.

Population(POP): Population is a critical factor influencing UBS scope and intensity[61,62].
Domestic water consumption and modifications to surface runoff by human activities significantly
impact UBS. Therefore, population is a relevant indicator in this study.

Precipitation(PREP): Urban precipitation plays a vital role in the groundwater recharge and
overall water circulation in cities . Extreme weather events associated with global climate change can
generate temporary urban blue spaces, such as groundwater puddles. Hence, precipitation is
commonly considered an influential indicator in UBS research [63].

Temperature(T): UBS and temperature represent a complex system interactions. UBS helps
regulate the local microclimate, mitigating high temperatures and providing substantial cooling
effects to the surrounding areas [64]. Higher temperature accelerates waterbody shrinking through
increased evaporation. Thus, temperature is a significant factor to consider in UBS studies [65].

Fractional vegetation cover(FVC): Vegetation plays a crucial role in slowing surface runoff and
enhancing water conservation capacity[66,67]. Considering the positive influence of vegetation on
UBS, FVC is an essential indicator in this study.

Artificial surface proportion(ASP): The proportion of artificial surface in a city significantly
affects its surface temperature, leading to either warming or cooling effects. Analyzing ASP helps in
understanding urban ecological health and the impact of ASP on UBS [68].

Normalized difference vegetation index: NDVI is closely associated with the cooling effect of
urban ecological spaces and precipitation[69]. It is more sensitive than the enhanced vegetation index
(EVI) in regions with sparse vegetation, which are often found in metropolises such as Beijing. Thus,
NDVl s a suitable indicator for UBS research in Beijing.

Enhanced vegetation index(EVI): EVI is a robust remote sensing index that reflects vegetation
density and is especially effective for dense vegetation surfaces. It is closely related to urban
microcirculation and blue spaces [70].

Gross domestic product(GDP): GDP measures the gross product of a country and indirectly
reflects water consumption, wastewater discharge, and water-use efficiency [71,72]. Considering
the implications for water management and efficiency, GDP is a relevant indicator in this study.
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Urban environmental management (UEM): UEM encompasses water conservancy, public
facilities, and land use planning to ensure that population growth is in alignment with access to
natural resources, basic infrastructure, and shelter. UEM, including water management, precipitation
collection, and hydrological services, is directly related to UBS.

Educational investment (EDUI): Education investment significantly promotes science and
technology, which in turn affects production methods and water consumption efficiency. It is closely
related to UBS and its sustainability.

Scientific and technical investment (STI): STI drives the application of technologies such as the
Internet of Things (IoT), YunOS IoT, and big data. These technologies optimize water consumption
patterns and UBS planning, making STI a relevant indicator in understanding UBS dynamics.

3. Results
3.1. Spatiotemporal Analysis of Blue Space Area

3.1.1. Development Characteristics of the UBS Area in Beijing

The UBS area in Beijing showed a slight increasing trend from 2000 to 2020, with a stable trend
from 2004 to 2016. It has been clearly upward since 2016. The area of UBS in Beijing was 124.4 km? in
2000, reducing to 99.08 km? in 2004, rising slightly to 121 km? in 2016, and increasing to 183.4 km? in
the last four years (Figure 4).
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Figure 4. The area of UBS in Beijing from 2000 to 2020.

3.1.2. Spatial Autocorrelation Analysis of the UBS in Beijing

Considering a confidence level of a=0.05, Moran’s I is always lower than 0.2, which means that
the UBS exhibited a random distribution.
3.1.3. Spatial Clustering Pattern of the UBS in Beijing

From 2000 to 2020, the cluster analysis of “high/low” revealed that the agglomeration
characteristics of UBS were relatively stable at the county level. However, the significance of
clustering in Tai Shitun decreased prominently (Figure 5).
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Figure 5. Spatial clustering pattern of the UBS in Beijing.
3.2. Spatiotemporal Analysis of the UBS Landscape in Beijing

3.2.1. Analysis of Landscape Indicators

Landscape pattern comprehensively reflect landscape spatial heterogeneity. Patterns reveal the
spatial distribution and combination of different patches. These patches are always of various sizes,

shapes, and attributes.
In this study, multiple landscape indexes were computed. Specific indicators included LPI,
SPLIT, CONTAG, Al PD, NP, LSI, SHDI, SHEI,and PAFRAC. The detailed descriptions and formulas

of these indicators are presented in Table 2 [73].

Table 2. Landscape indexes.

Area percentage of maximum patch
Dispersion among different patches at a landscape
scale.

The higher the value of SPLIT, the more
separation between studied patch types.
Spatial collection and decentralization. The
smaller the value of CONTAG, the more sparse
each patch type.

Connectivity between patches of all patch types.
The lower the value is, the more discrete the
landscape.

Patch density in the landscape reflects the degree
and type of landscape fragmentation. Patch

LPI (Largest patch index)

SPLIT (Splitting index)

CONTAG (Contagion index)

Al (Aggregation index)

PD (Patch i
(Patch density) density represents the spatial heterogeneity of the
landscape per unit area.
NP (Number of patches) Number of all patches distributed in the

landscape.



https://doi.org/10.20944/preprints202308.1061.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2023 d0i:10.20944/preprints202308.1061.v1

Indicates the change in landscape form. The

LSI (Landscape shape index) higher the value, the more complex the shape.

Reflects how many different quantitative

SHDI (Shannon’s diversity index) measures are in a dataset

Describes the extent of the landscape controlled by

SHEI (Shannon’s evenness index) minority patch types

The intensity index reflects the disturbance in
PAFRAC (Perimeter area fractal landscape patterns due to human activities. The
dimension) higher the value, the greater the landscape's
external disturbance.

The elements with upward trends: are LPI, SPLIT, PD, NP, LSI, SHDI, SHEI, and PAFRAC
(Figure 6). Their changes show that UBS landscape pattern in Beijing developed stably in the first two
decades. The maximum landscape patch area is increasing. Patches are more complex and have a
significant change intensity. Diversity and richness are improved. The patches are distributed more
evenly. Landscape patch types have become more diverse because of human effects. As a result, the
extent of separation, fragmentation, and spatial heterogeneity indexes was more remarkable and
higher.

The indicators with downward trends: are A, CONTAG (Figure 6). In the last 21 years, the
landscape connectivity of UBS in Beijing has been shallow, and the downward trend was kept up
with the sprawl of urban construction.
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Figure 6. Landscape indexes development from 2000 to 2020.

3.2.2. Principal Component Analysis of the UBS Spatial Landscape Indices

The cumulative contribution rate of the first two principal components (Zi1 and Z2) is 93.9%
(Table 3), indicating that the first two principal components contain 93.9% of the information of the
10 original components. Thus, the landscape indexes of the UBS could be significantly extracted to
the two component indicators (Formula 1, 2).

Table 3. Results of principal component analysis.

component eigenvalue contribution rate cumulative contribution rate
1 8.162 81.623 81.623
2 1.228 12.280 93.903
3 0.328 3.276 97.179
4 0.222 2224 99.403
5 0.043 0.427 99.830
6 0.014 0.140 99.970
7 0.003 0.029 99.999


https://doi.org/10.20944/preprints202308.1061.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 August 2023 d0i:10.20944/preprints202308.1061.v1

11
8 0.000 0.001 100.000
9 0.000 0.000 100.000
10 0.000 0.000 100.000
Z:=0.925NP+0.925PD+0.384LPI+0.735LSI+0.156 PAFRAC-
0.913CONTAG+0.456SPLIT+0.784SHDI+0.895SHEI-0.736 Al 1)
Z>=0.295NP+0.295NP+0.881LPI+0.66LSI+0.946PAFRAC-
0.32CONTAG+0.855SPLIT+0.587SHDI+0.273SHEI-0.659 Al 2)

Zu is highly positively related to NP, PD, SHEI and negatively related to CONTAG, indicating a
spatial distribution structure at a landscape scale. The higher the Z, the greater the NP, PD, and SHEI
indexes, and the smaller the CONTAG value, indicating more patches, the higher patch density, the
lower agglomeration degree of various patches, and the higher patch diversity. Z: is positively related
to PAFRAC, LP], and SPLIT, reflecting spatial distribution structure at the patch scale. The higher the
Z», the greater the PAFRAC, LPI, and SPLIT indexes, meaning a more complex patch shape, the more
extensive patch area, and greater distance between patches.

Z: increased steadily from 2000 to 2014 and decreased until 2020, with a downward trend
overall. The results revealed that UBS patch number, density, and diversity had increased at fourteen
years and then declined in the last six years; the agglomeration weakened and then decreased.
Overall the UBS in Beijing has faced severe fragmentation, which is expected to slow in recent years.

In contrast, Z> decreased in the first decade and increased in the second decade, trending
upward. The results showed that the shape complexity, area, and distance decreased first and then
increased. From the perspective of the whole period, the UBS in Beijing was disturbed from 2000 to
2020 and has been declining in the last decade.

3.3. Mechanisms Driving the Area of UBS

According to the correlation coefficients, the influencing factors rated from most to least
importance are as follows: UEM>EDUI>STI>NDVI>T>GDP>POP>FVC>EVI>PREP>ASP.

The influencing factors were identified as strong factors (UEM, EDUI, STI), medium factors
(NDVI, T, GDP, POP), and weak factors (FVC, EVI, PREP, ASP) according to Jenks Natural Breaks
Classification.

The results showed that scientific technology factors greatly influenced the UBS area, with
correlation coefficients greater than 0.7. The strongest factor is UEM, with the highest coefficient of
0.798, followed by EDUI and STI, with coefficients of 0.759 and 0.758, respectively. The coefficients
of NDVI and EVI indicated that the sparse vegetation surface magnified the UBS area more than the
dense vegetation surface.

3.4. Mechanisms Influencing the UBS Landscape

From the perspective of UBS landscapes, the influencing factors were rated as follows: PREP>
POP> GDP>STI>T>EDUI>UEM>ASP>NDVI>EVI>FVC (Table 4). According to the results of the Jenks
Natural Breaks Classification, the strong factors influencing the UBS landscape are PREP, POP, GDP,
STI, and T, the medium factors are EDUI, UEM, and ASP, and the weak factors are NDVI, EVI, and
FVC. Thus, it is reasonable to conclude that precipitation and human activities influence the UBS
landscape more than vegetation factors.

Table 4. Correlation analysis of UBS area and landscapes.

. .. Correlation
. Correlation Coefficients of .
Influencing Factors Coefficients of UBS
UBS Area
Landscapes
UEM 0.798 0.664
EDUI 0.759 0.665
STI 0.758 0.686
NDVI 0.697 0.617
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T 0.692 0.685
GDP 0.689 0.691
POP 0.68 0.692
FVC 0.659 0.493
EVI 0.658 0.585
PREP 0.62 0.732
ASP 0.5 0.656

4. Discussion

The UBS area initially decreased from 2000 to 2004 due to significant water consumption
resulting from population growth and industrial activities, leading to water shortages [74]. However,
a series of measures aimed at improving water resources and protecting urban water bodies
subsequently led to a steady expansion of the UBS area. The implementation of the South-North
Water Diversion Project, which began in late 2014, significantly contributed to the increase in UBS
area [75]. The year 2016 stands out in particular with a sharp increase in UBS area, which can be
explained by the significantly greater annual precipitation since 2015 [76] and the changes in water
availability and management practices after the South-North Water Diversion Project (Figure 7).
These findings align with previous research [77].
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Figure 7. Development of influencing factors.

The landscape pattern of UBS in Beijing showed stability with increasing diversity, richness, and
evenness indexes from 2000 to 2020, indicating the generation of more water bodies with diverse
properties and purposes. However, the dispersion and spatial heterogeneity indexes were poor,
indicating severe fragmentation potentially caused by urban expansion and the erosion of ecological
spaces [78]. Water pollution policies implemented since 2015 have helped improve water
microcirculation, leading to a reversal of negative trends in 2017, with decreasing density and
diversity indexes and increasing connectivity and aggregation indexes.

The spatial distribution of UBS in Beijing appeared random, potentially influenced by artificial
water bodies created in heat island-reducing projects over the past two decades [79]. Stable UBS
clustering patterns were observed, with unique spots identified, such a shrinking clustering in
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Taishitun County, extinct clustering in Huairou District, and expanded clustering in Miyun District.
Regulation policies, such as vegetable cultivation, reservoir water network development, and
reclaimed water usage, are likely related to stable development and clustered expansion. Conversely,
decreasing and extinct clusterings could be attributed to disturbances from industrial and
agricultural consumption, river channel changes, and artificial water bodies [80].

Among the 11 influencing factors, scientific technology factors have a strong impact on the UBS
area, while precipitation and human activities strongly influence UBS landscapes. Scientific
technologies enhance production efficiency and water utilization efficiency, reducing water
consumption and expanding the UBS area. Precipitation replenishes water storage in urban water
bodies and promotes vegetation growth, directly affecting the landscape pattern of the UBS. Human
activities, including land use changes and surface modifications, have a direct and significant impact
on UBS landscapes. Medium influencing factors, such as sparse vegetation, temperature, economy,
and population, have a moderate influence on UBS area and landscapes. Weak factors are associated
with land use patterns, particularly in dense vegetation areas, reflecting the limited correlation in
these regions [81]. The weak influencing factors in UBS landscapes are closely related to vegetation.

5. Conclusions

The authors of this study utilized remote sensing techniques to extract urban blue space (UBS)
in Beijing. They conducted a comprehensive analysis of the spatial and temporal development of UBS
in the past two decades using ESDA methods. From an ecological perspective, they examined the full
spectrum of landscape patterns and quantitatively simulated the mechanisms of UBS area and
landscape changes. The findings revealed that the UBS area in Beijing experienced a decline from
2000 to 2004, followed by a steady increase over the next decade and a significant jump since 2016.
The spatial clustering of UBS displayed overall stability with subtle changes. The landscape analysis
indicated improvements in ecological circumstances, including increasing habitat diversity and
richness, although challenges related to landscape fragmentation were observed. These results
underscored the value of ecological projects initiated by the government and public organizations
[82].

In terms of mechanisms influencing UBS area, all factors except for artificial surface proportion
(ASP) exhibited significant influence, with correlation coefficients greater than 0.6. Scientific
technologies emerged as the most influential driver, followed by natural climate factors. Human
activities, such as economy and population, showed a weaker influence, while artificial surfaces had
the weakest impact. Regarding UBS landscape patterns, natural climate and human activities were
identified as the strongest influencing factors, whereas factors related to vegetation showed a weaker
influence.

The normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI),
which indicate the conditions of dense and sparse vegetation regions, respectively, exhibited distinct
influences on UBS area and similar impacts on UBS landscape patterns.

This study successfully uncovered the spatiotemporal characteristics of the UBS area and
landscapes in Beijing from 2000 to 2020 and elucidated the multifactorial mechanisms driving these
changes. However, the analysis resolution was limited to counties due to the availability of policy
number and statistics data, rather than at the pixel level. Further research is needed to explore UBS
at a finer scale.

Additionally, while the study analyzed 11 influencing factors, it is acknowledged that there may
be other factors that should have been explored, such as the number and effectiveness of policies.
Furthermore, due to data limitations, the study focused on a 21-year period, and longer-term research
is warranted in the future.
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