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Article 
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Abstract: With the rapid urban development in Beijing, there is a critical need to explore urban 

natural resources and understand the underlying mechanisms. Urban blue space (UBS) has gained 

increasing attention due to its potential to drive microcirculation, mitigate heat islands, and enhance 

residents' well-being. In this study, we used remote sensing data to extract UBS in Beijing and 

employed exploratory spatial data analysis (ESDA) methods to examine its spatial and temporal 

development over the past two decades. We adopted a mesoscopic perspective to uncover the full 

spectrum of landscape patterns and quantitatively simulate the mechanisms influencing the area of 

UBS and landscape patterns. Our findings are as follows: (1) The UBS area in Beijing exhibited 

fluctuating growth from 2000 to 2020. (2) Spatial clustering of UBS was stable with subtle changes. 

(3) The ecological conditions in Beijing improved over the last 21 years indicated by increased 

habitat diversity and richness, while notable landscape fragmentation posed significant challenges. 

(4) Technological factors emerged as the most influential mechanism for the UBS area, followed by 

vegetation conditions represented by the normalized difference vegetation index (NDVI) and 

annual average temperature (T).(5) Precipitation emerged as the most vital influencing factor for the 

UBS landscape, followed by residential population (POP) and economic conditions represented by 

gross domestic product (GDP).(6) The density of the vegetation surface, as indicated by the gap 

between the NDVI and enhanced vegetation index (EVI), proved more sensitive to the UBS area 

than to the UBS landscape. 

Keywords: urban blue space; spatiotemporal analysis; mechanism simulation; landscape analysis 

 

1. Introduction 

Urban blue space (UBS) refers to spaces of surface water within urban areas, including lakes, 

channels, and pools [1]. UBS plays a crucial role in various aspects, such as biodiversity conservation 

[2], climate change mitigation [3], provision of ecosystem services[4], and public health benefits [5]. 

It also contributes to reducing the heat island effect and regulating the local climate [6–8]. 

Consequently, the management of UBS holds great importance in urban planning and development 

[9,10]. In addition to its functional benefits, UBS significantly enhances the aesthetics [11] and cultural 

value [12] of urban environments. It provides a sense of comfort and tranquility, offering respite from 

the pressures of modern city life [13,14]. Furthermore, UBS helps mitigate flood risks associated with 

the expansion of artificial surfaces, optimizes land use patterns, improves public satisfaction, and 

promotes residents' well-being [15–19].In Beijing, as a globally recognized metropolis renowned for 

its fast-paced lifestyle, serves as an exemplary case study for examining the role of UBS in urban 

environments. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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In terms of the content of existing studies in this field, the focus has primarily been on changes 

in urban blue spaces (UBS) [20] and patch connectivities [21–23]. However, UBS in metropolises serve 

not only as functional outdoor water bodies but also as unique urban landscapes and spaces with 

aesthetic and emotional significance. Therefore, it is crucial to pay more attention to the area and 

landscapes of UBS. Regarding the time scale, most previous research has concentrated on specific 

years or short-term timelines [24–28]. However, UBS changes occur over long-term and gradual 

processes, which cannot be adequately captured within a short-term study spanning only three to 

five years [29]. Additionally, UBS is subject to irregular impacts from extreme weather events such 

as droughts and floods, which are often overlooked when using equal time interval methods [30]. 

Hence, conducting long-term studies with more detailed information is essential in this field. In terms 

of primary data, previous research on UBS landscapes has primarily relied on traditional data 

sources, such as historical maps and aerial images with large spatial resolutions and limited 

information [31,32]. These sources only support studies at a patch scale [33,34]. However, with 

advancements in remote sensing technology, high-quality primary data have become more 

accessible. Therefore, there is a demand for studies that utilize more detailed information and focus 

on a smaller scale [35,36]. Considering the potential interference of fragmented and temporal water 

patches resulting from high-resolution data, as well as the inability of low-resolution data to capture 

detailed information, this study adopts remote sensing data with a resolution of 30 m × 30 m to 

accurately extract UBS. 

The analysis of component mechanisms, including population, economics, climate, and land use 

[37], deserves more attention compared to single-factor studies [38] since the spatiotemporal 

characteristics of UBS are influenced by multiple resource factors. Understanding the interactions 

and contributions of these factors is crucial in comprehending UBS dynamics. Moreover, qualitative 

mechanisms hold greater value for policymakers and stakeholders [39–43] involved in urban 

management and hydrological projects compared to quantitative mechanisms [44,45]. Qualitative 

insights provide a deeper understanding of the underlying processes and offer more meaningful 

guidance for decision-making. In many existing studies, the differentiation in vegetation density has 

been overlooked [46]. However, vegetation density directly affects the water holding capacity and 

the ability of ecosystems to regulate runoff. Considering that the area of low-density vegetation in 

Beijing is significantly larger than that of high-density vegetation and that the availability of 

vegetation density data is limited, the authors have chosen NDVI, which is more sensitive to low-

density vegetation surfaces, and EVI, which is more sensitive to high-density vegetation surfaces [47], 

as proxies to distinguish vegetation density in this study. 

Compared to previous studies, this research makes several significant contributions. First, the 

authors have chosen a sequential 21-year period, which helps avoid information gaps that may occur 

in previous studies using equal interval methods. By analyzing a longer time span, a more 

comprehensive understanding of UBS dynamics can be achieved. Second, in terms of spatial and 

temporal analysis, the remote sensing data utilized in this study offer wider coverage, increased 

accuracy, and more detailed information compared to traditional data sources such as urban 

planning drawings and surveying statistics used in previous studies. This enables a more robust and 

nuanced investigation of urban landscapes. Finally, this research explores the heterogeneity in 

vegetation density within the mechanism simulation, which has often been overlooked in existing 

studies. By considering variations in vegetation density, the study provides insights into the impact 

of different vegetation types and their densities on UBS dynamics. This contributes to a more 

comprehensive understanding of the mechanisms driving UBS changes. 

2. Materials and Methods 

2.1. Study Area 

The study area of this research is Beijing, which is a prominent political, economic, and cultural 

center in China. Beijing is situated between 115.7°E - 117.4°E longitude and 39.4°N - 41.6°N latitude 

[48]. It shares borders with Tianjin in the east and Hebei in the remaining directions (see Figure 1). 
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The city covers an area of 16,410 square kilometers and had a permanent resident population of 21.89 

million as of 2021 [49]. Beijing experiences a monsoon-influenced humid continental climate. 

Summers in Beijing are hot, humid, and prone to rainfall, while winters are cold, dry, and 

characterized by clear skies. The average annual rainfall in Beijing is approximately 698.4 mm, and 

the average annual temperature ranges from 9℃ to 19℃ [50]. 

 

Figure 1. Study Area of Beijing. 

Beijing serves as a typical case for studying urban blue space (UBS) in a metropolis. The city's 

UBS plays a crucial role in several aspects. First, due to the frequent intense rainfall and extreme 

precipitation events that occur during the summer, UBS serves as a vital component of natural 

reservoirs, helping to absorb and regulate excess water, thereby reducing the risk of flooding. 

Additionally, UBS in Beijing provides valuable mental and recreational benefits to the public. As a 

special urban landscape, UBS is a source of mental relaxation and entertainment for the city's 

residents amidst their fast-paced lives. These blue spaces create a serene and tranquil environment, 

offering an escape from the hustle and bustle of urban life. The presence of UBS in Beijing contributes 

to the overall well-being and quality of life for its inhabitants. Considering the dual functions of flood 

mitigation and mental well-being, studying UBS in Beijing provides valuable insights into the 

multifaceted role of blue spaces in metropolises. 

2.2. Methodology 

2.2.1. Spatial Autocorrelation Analysis and Spatial Clustering Analysis 

Spatial autocorrelation detects the convergence or dispersion of observations [51,52]. Moranᇱs 𝐼 

is a widely used classical spatial autocorrelation index. For a series of n variable samples, 𝑥௜ is the 

observation at location i, and wij is the spatial weight matrix (SWM). Then, Moranᇱs 𝐼 is calculated as 

follows: 𝐼 = 𝑛 ∑ ∑ 𝑤௜௝(𝑥௜ − 𝑥̅)(𝑥௝ − 𝑥̅)௡௝ୀଵ௡௜ୀଵ∑ ∑ 𝑤௜௝௡௝ୀଵ௡௜ୀଵ ∑ (𝑥௜ − 𝑥̅)ଶ௡௜ୀଵ  Moranᇱs 𝐼ranges from -1 to 1. Moranᇱs 𝐼 >0 indicates a positive spatial correlation. The closer it 

is to 1, the more significant the positive spatial autocorrelation.  Moranᇱs  𝐼 < 0 indicates a negative 
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spatial correlation. The closer it is to -1, the more significant the negative spatial 

autocorrelation. Moranᇱs  𝐼 =0 means a random distribution [53]. The high/low clustering (Getis-Ord 

General G*) tool is an effective method for spatial aggregation simulation. The calculation formula is 

as follows： 

G*=
∑ ௪೔ೕ௫ೕ೙ೕసభ ି௫̅ ∑ ௪೔ೕ೙ೕసభ

ඨ∑ ೣೕమ೙ೕసభ೙ ି భೣమඨቈ೙ ∑ ೢ೔ೕೢ೙ೕసభ షቀ∑ ೢ೔ೕ೙ೕసభ ቁమ቉೙షభ
 

𝑥̅  is the average of observations, 𝑥ଵ，𝑥ଶ, ⋯ , 𝑥௡  𝑤௜௝  is the spatial weight of 𝑥௜  and 𝑥௝ , 𝑖, 𝑗 =1,2, ⋯,n. The higher G* is, the higher the observation clustering, and vice versa. The null hypothesis 

of General G* assumes that the observations do not cluster spatially [54]. The p value determines 

whether the null hypothesis should be accepted or not. The z score reflects the dispersion of 

observations [55].  

2.2.2. Principal Components Regression Analysis 

Principal component regression analysis (PCR) is used to solve multivariate collinearity 

problems [56]. Principal component analysis (PCA) converts multiple indexes into several 

comprehensive indexes by orthogonal rotation transformation, following the premise of minimizing 

information loss. Generally, the results of PCA are independent variables called principal 

components [57]. The geometric interpretation and model of PCA are as follows (Figure 2): 

 

Figure 2. Illustration of principal component analysis theory. 

The distribution of a series of n binary observations (𝑥ଵଵ, 𝑥ଵଶ, ⋯ , 𝑥௡ଵ, 𝑥௡ଶ) in the coordinate space 

composed of 𝑋ଵ and 𝑋ଶ is shown in Figure 2. Along the 𝑋ଵ or 𝑋ଶ axis, observation points have 

large discretization indicated by the variance of 𝑋ଵ or 𝑋ଶ, respectively. Axes 𝑋ଵ and 𝑋ଶ are rotated 

counterclockwise to axes 𝑌ଵ and 𝑌ଶ following formula X. The dispersion of n observation points on 

the 𝑌ଵ axis is the largest, indicating that variable 𝑌ଵ retains most of the information of the original 

data. ൬𝑌ଵ𝑌ଶ൰=ቀ cos 𝜃      sin 𝜃− sin 𝜃    cos 𝜃ቁ ൬𝑋ଵ𝑋ଶ൰=𝑈𝑋 

2.2.3. Grey Relation Analysis 

A complex system always involves various elements; the mechanism of each element is hard to 

simulate quantitively in practice because of the associated interactions. Grey system theory attempts 

to look for quantitative relationships based on the curve geometry [58-60]. Sequences are closely 

related when they have tight geometry curves and similar trends, and vice versa. Thus, grey 

correlation analysis is an effective classical quantitative measure for dynamic series. The formula is 

as follows: 𝑟൫𝑥଴(𝑘), 𝑥௜(𝑘)൯ = min௜ min௞ |𝑥଴(𝑘) − 𝑥௜(𝑘)| + 𝜉 max௜ max௞ |𝑥଴(𝑘) − 𝑥௜(𝑘)||𝑥଴(𝑘) − 𝑥௜(𝑘)| + 𝜉 max௜ max௞ |𝑥଴(𝑘) − 𝑥௜(𝑘)|  
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𝑟(𝑥଴, 𝑥௜) = 1𝑛 ෍ 𝑟(𝑥଴(𝑘), 𝑥௜(𝑘))௡
௞ୀଵ  

where 𝑟൫𝑥଴(𝑘), 𝑥௜(𝑘)൯ is the grey correlation coefficient at location 𝑘,  𝑟(𝑥଴, 𝑥௜) is the data sequence 

from 𝑥଴ 𝑡o 𝑥௜ .𝜉refers to the resolution coefficient. The value of  𝜉 is inversely proportional to the 

difference between sequence phases. In classical statistical theory, for a set of observations with a 

large sample size, the probability of the sample is approximately equal to the frequency. Thus,  𝜉 is 

equal to 0.5. 

2.3. Data and Resources 

Remote sensing images from the Google Earth Engine data catalog were used to extract 

influencing factors. The statistical data were retrieved from the statistical yearbook and official 

websites (Table 1). 

Table 1. Data and resources. 

Number Name Dataset Spatial resolution 
Temporal 

resolution 

1 POP 
Gridded Population of the World, 

Version 4 
100 m Yearly 

2 PREP ERA5-Land 0.1。*0.1。 Daily 

3 T Aqua/Terra MODIS MYD11A2 1000 m Eight days 

4 FVC MODIS  MCD12Q1 500 m Yearly 

5 ASP MODIS  MCD12Q1 500 m Yearly 

6 NDVI MODIS NDVI  MYD13Q1 V6 250 m Sixteen days 

7 EVI MODIS NDVI  MYD13Q1 V6 250 m Sixteen days 

8 GDP 

Beijing Statistical Yearbook;  

Beijing Statistical Bulletin of 

National Economic and Social 

Development 

_ Yearly 

9 UEM 
Beijing and each district’s 

statistical yearbook 
_ Yearly 

10 EDUI 
Beijing and each district’s 

statistical yearbook 
_ Yearly 

11 STI 
Beijing and each district’s 

statistical yearbook 
_ Yearly 

12 UBS JRC Monthly Water History, v1.3 30 m Monthly 

To address the spatial and temporal resolution differences between remote sensing images and 

statistical data, the influencing factors derived from remote sensing images were aggregated to the 

district level from the pixel scale. This aggregation process ensures that the data align with the 

resolution of the statistical data available. Furthermore, to account for the temporal variations within 

the remote sensing images, the data were further derived to annual averages. This averaging process 

provides a representative value for each influencing factor, smoothing out short-term fluctuations 

and capturing the overall trends over time. By aggregating and deriving the data, this study ensures 

compatibility and consistency between the remote sensing images and the available statistical data, 

enabling a comprehensive and integrated analysis of the influencing factors at the district level on an 

annual basis (Figure 3). 
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Figure 3. Multi-resoure data analysis method. 

Referring to the existing research, considering the actual situation and data availability in 

Beijing, the authors have selected the following indicators as influencing factors for studying UBS. 

Population(POP): Population is a critical factor influencing UBS scope and intensity[61,62]. 

Domestic water consumption and modifications to surface runoff by human activities significantly 

impact UBS. Therefore, population is a relevant indicator in this study. 

Precipitation(PREP): Urban precipitation plays a vital role in the groundwater recharge and 

overall water circulation in cities . Extreme weather events associated with global climate change can 

generate temporary urban blue spaces, such as groundwater puddles. Hence, precipitation is 

commonly considered an influential indicator in UBS research [63]. 

Temperature(T): UBS and temperature represent a complex system interactions. UBS helps 

regulate the local microclimate, mitigating high temperatures and providing substantial cooling 

effects to the surrounding areas [64]. Higher temperature accelerates waterbody shrinking through 

increased evaporation. Thus, temperature is a significant factor to consider in UBS studies [65]. 

Fractional vegetation cover(FVC): Vegetation plays a crucial role in slowing surface runoff and 

enhancing water conservation capacity[66,67]. Considering the positive influence of vegetation on 

UBS, FVC is an essential indicator in this study.  

Artificial surface proportion(ASP): The proportion of artificial surface in a city significantly 

affects its surface temperature, leading to either warming or cooling effects. Analyzing ASP helps in 

understanding urban ecological health and the impact of ASP on UBS [68]. 

Normalized difference vegetation index: NDVI is closely associated with the cooling effect of 

urban ecological spaces and precipitation[69]. It is more sensitive than the enhanced vegetation index 

(EVI) in regions with sparse vegetation, which are often found in metropolises such as Beijing. Thus, 

NDVI is a suitable indicator for UBS research in Beijing.  

Enhanced vegetation index(EVI): EVI is a robust remote sensing index that reflects vegetation 

density and is especially effective for dense vegetation surfaces. It is closely related to urban 

microcirculation and blue spaces [70]. 

Gross domestic product(GDP): GDP measures the gross product of a country and indirectly 

reflects water consumption, wastewater discharge, and water-use efficiency  [71,72]. Considering 

the implications for water management and efficiency, GDP is a relevant indicator in this study. 
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Urban environmental management (UEM): UEM encompasses water conservancy, public 

facilities, and land use planning to ensure that population growth is in alignment with access to 

natural resources, basic infrastructure, and shelter. UEM, including water management, precipitation 

collection, and hydrological services, is directly related to UBS. 

Educational investment (EDUI): Education investment significantly promotes science and 

technology, which in turn affects production methods and water consumption efficiency. It is closely 

related to UBS and its sustainability. 

Scientific and technical investment (STI): STI drives the application of technologies such as the 

Internet of Things (IoT), YunOS IoT, and big data. These technologies optimize water consumption 

patterns and UBS planning, making STI a relevant indicator in understanding UBS dynamics. 

3. Results 

3.1. Spatiotemporal Analysis of Blue Space Area  

3.1.1. Development Characteristics of the UBS Area in Beijing 

The UBS area in Beijing showed a slight increasing trend from 2000 to 2020, with a stable trend 

from 2004 to 2016. It has been clearly upward since 2016. The area of UBS in Beijing was 124.4 km2 in 

2000, reducing to 99.08 km2 in 2004, rising slightly to 121 km2 in 2016, and increasing to 183.4 km2 in 

the last four years (Figure 4). 

 

Figure 4. The area of UBS in Beijing from 2000 to 2020. 

3.1.2. Spatial Autocorrelation Analysis of the UBS in Beijing 

Considering a confidence level of α=0.05, Moran’s I is always lower than 0.2, which means that 

the UBS exhibited a random distribution.  

3.1.3. Spatial Clustering Pattern of the UBS in Beijing 

From 2000 to 2020, the cluster analysis of “high/low” revealed that the agglomeration 

characteristics of UBS were relatively stable at the county level. However, the significance of 

clustering in Tai Shitun decreased prominently (Figure 5). 
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Figure 5. Spatial clustering pattern of the UBS in Beijing. 

3.2. Spatiotemporal Analysis of the UBS Landscape in Beijing 

3.2.1. Analysis of Landscape Indicators 

Landscape pattern comprehensively reflect landscape spatial heterogeneity. Patterns reveal the 

spatial distribution and combination of different patches. These patches are always of various sizes, 

shapes, and attributes. 

In this study, multiple landscape indexes were computed. Specific indicators included LPI, 

SPLIT, CONTAG, AI, PD, NP, LSI, SHDI, SHEI,and PAFRAC. The detailed descriptions and formulas 

of these indicators are presented in Table 2 [73]. 

Table 2. Landscape indexes. 

LPI（Largest patch index） Area percentage of maximum patch 

SPLIT (Splitting index) 

Dispersion among different patches at a landscape 

scale. 

The higher the value of SPLIT, the more 

separation between studied patch types. 

CONTAG (Contagion index) 

Spatial collection and decentralization. The 

smaller the value of CONTAG, the more sparse 

each patch type. 

AI（Aggregation index） 

Connectivity between patches of all patch types. 

The lower the value is, the more discrete the 

landscape. 

PD (Patch density) 

Patch density in the landscape reflects the degree 

and type of landscape fragmentation. Patch 

density represents the spatial heterogeneity of the 

landscape per unit area. 

NP (Number of patches) 
Number of all patches distributed in the 

landscape. 
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LSI (Landscape shape index) 
Indicates the change in landscape form. The 

higher the value, the more complex the shape. 

SHDI (Shannon’s diversity index) 
Reflects how many different quantitative 

measures are in a dataset. 

SHEI (Shannon’s evenness index) 
Describes the extent of the landscape controlled by 

minority patch types. 

PAFRAC (Perimeter area fractal 

dimension) 

The intensity index reflects the disturbance in 

landscape patterns due to human activities. The 

higher the value, the greater the landscape's 

external disturbance. 

The elements with upward trends: are LPI, SPLIT, PD, NP, LSI, SHDI, SHEI, and PAFRAC 

(Figure 6). Their changes show that UBS landscape pattern in Beijing developed stably in the first two 

decades. The maximum landscape patch area is increasing. Patches are more complex and have a 

significant change intensity. Diversity and richness are improved. The patches are distributed more 

evenly. Landscape patch types have become more diverse because of human effects. As a result, the 

extent of separation, fragmentation, and spatial heterogeneity indexes was more remarkable and 

higher. 

The indicators with downward trends: are AI, CONTAG (Figure 6). In the last 21 years, the 

landscape connectivity of UBS in Beijing has been shallow, and the downward trend was kept up 

with the sprawl of urban construction. 
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Figure 6. Landscape indexes development from 2000 to 2020. 

3.2.2. Principal Component Analysis of the UBS Spatial Landscape Indices 

The cumulative contribution rate of the first two principal components (Z1 and Z2) is 93.9% 

(Table 3), indicating that the first two principal components contain 93.9% of the information of the 

10 original components. Thus, the landscape indexes of the UBS could be significantly extracted to 

the two component indicators (Formula 1, 2). 

Table 3. Results of principal component analysis. 

component eigenvalue contribution rate cumulative contribution rate 

1 8.162 81.623 81.623 

2 1.228 12.280 93.903 

3 0.328 3.276 97.179 

4 0.222 2.224 99.403 

5 0.043 0.427 99.830 

6 0.014 0.140 99.970 

7 0.003 0.029 99.999 
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8 0.000 0.001 100.000 

9 0.000 0.000 100.000 

10 0.000 0.000 100.000 

Z1=0.925NP+0.925PD+0.384LPI+0.735LSI+0.156PAFRAC-

0.913CONTAG+0.456SPLIT+0.784SHDI+0.895SHEI-0.736AI                         (1) 

Z2=0.295NP+0.295NP+0.881LPI+0.66LSI+0.946PAFRAC-

0.32CONTAG+0.855SPLIT+0.587SHDI+0.273SHEI-0.659AI                          (2) 

Z1 is highly positively related to NP, PD, SHEI and negatively related to CONTAG, indicating a 

spatial distribution structure at a landscape scale. The higher the Z1, the greater the NP, PD, and SHEI 

indexes, and the smaller the CONTAG value, indicating more patches, the higher patch density, the 

lower agglomeration degree of various patches, and the higher patch diversity. Z2 is positively related 

to PAFRAC, LPI, and SPLIT, reflecting spatial distribution structure at the patch scale. The higher the 

Z2, the greater the PAFRAC, LPI, and SPLIT indexes, meaning a more complex patch shape, the more 

extensive patch area, and greater distance between patches. 

Z1 increased steadily from 2000 to 2014 and decreased until 2020, with a downward trend 

overall. The results revealed that UBS patch number, density, and diversity had increased at fourteen 

years and then declined in the last six years; the agglomeration weakened and then decreased. 

Overall the UBS in Beijing has faced severe fragmentation, which is expected to slow in recent years. 

In contrast, Z2 decreased in the first decade and increased in the second decade, trending 

upward. The results showed that the shape complexity, area, and distance decreased first and then 

increased. From the perspective of the whole period, the UBS in Beijing was disturbed from 2000 to 

2020 and has been declining in the last decade. 

3.3. Mechanisms Driving the Area of UBS  

According to the correlation coefficients, the influencing factors rated from most to least 

importance are as follows: UEM>EDUI>STI>NDVI>T>GDP>POP>FVC>EVI>PREP>ASP. 

The influencing factors were identified as strong factors (UEM, EDUI, STI), medium factors 

(NDVI, T, GDP, POP), and weak factors (FVC, EVI, PREP, ASP) according to Jenks Natural Breaks 

Classification. 

The results showed that scientific technology factors greatly influenced the UBS area, with 

correlation coefficients greater than 0.7. The strongest factor is UEM, with the highest coefficient of 

0.798, followed by EDUI and STI, with coefficients of 0.759 and 0.758, respectively. The coefficients 

of NDVI and EVI indicated that the sparse vegetation surface magnified the UBS area more than the 

dense vegetation surface. 

3.4. Mechanisms Influencing the UBS Landscape 

From the perspective of UBS landscapes, the influencing factors were rated as follows: PREP> 

POP> GDP>STI>T>EDUI>UEM>ASP>NDVI>EVI>FVC (Table 4). According to the results of the Jenks 

Natural Breaks Classification, the strong factors influencing the UBS landscape are PREP, POP, GDP, 

STI, and T, the medium factors are EDUI, UEM, and ASP, and the weak factors are NDVI, EVI, and 

FVC. Thus, it is reasonable to conclude that precipitation and human activities influence the UBS 

landscape more than vegetation factors. 

Table 4. Correlation analysis of UBS area and landscapes. 

Influencing Factors 
Correlation Coefficients of 

UBS Area 

Correlation 

Coefficients of UBS 

Landscapes 

UEM 0.798 0.664 

EDUI 0.759 0.665 

STI 0.758 0.686 

NDVI 0.697 0.617 
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T 0.692 0.685 

GDP 0.689 0.691 

POP 0.68 0.692 

FVC 0.659 0.493 

EVI 0.658 0.585 

PREP 0.62 0.732 

ASP 0.5 0.656 

4. Discussion 

The UBS area initially decreased from 2000 to 2004 due to significant water consumption 

resulting from population growth and industrial activities, leading to water shortages [74]. However, 

a series of measures aimed at improving water resources and protecting urban water bodies 

subsequently led to a steady expansion of the UBS area. The implementation of the South‒North 

Water Diversion Project, which began in late 2014, significantly contributed to the increase in UBS 

area [75]. The year 2016 stands out in particular with a sharp increase in UBS area, which can be 

explained by the significantly greater annual precipitation since 2015 [76] and the changes in water 

availability and management practices after the South‒North Water Diversion Project (Figure 7). 

These findings align with previous research [77]. 

 

Figure 7. Development of influencing factors. 

The landscape pattern of UBS in Beijing showed stability with increasing diversity, richness, and 

evenness indexes from 2000 to 2020, indicating the generation of more water bodies with diverse 

properties and purposes. However, the dispersion and spatial heterogeneity indexes were poor, 

indicating severe fragmentation potentially caused by urban expansion and the erosion of ecological 

spaces [78]. Water pollution policies implemented since 2015 have helped improve water 

microcirculation, leading to a reversal of negative trends in 2017, with decreasing density and 

diversity indexes and increasing connectivity and aggregation indexes. 

The spatial distribution of UBS in Beijing appeared random, potentially influenced by artificial 

water bodies created in heat island-reducing projects over the past two decades [79]. Stable UBS 

clustering patterns were observed, with unique spots identified, such a shrinking clustering in 
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Taishitun County, extinct clustering in Huairou District, and expanded clustering in Miyun District. 

Regulation policies, such as vegetable cultivation, reservoir water network development, and 

reclaimed water usage, are likely related to stable development and clustered expansion. Conversely, 

decreasing and extinct clusterings could be attributed to disturbances from industrial and 

agricultural consumption, river channel changes, and artificial water bodies [80]. 

Among the 11 influencing factors, scientific technology factors have a strong impact on the UBS 

area, while precipitation and human activities strongly influence UBS landscapes. Scientific 

technologies enhance production efficiency and water utilization efficiency, reducing water 

consumption and expanding the UBS area. Precipitation replenishes water storage in urban water 

bodies and promotes vegetation growth, directly affecting the landscape pattern of the UBS. Human 

activities, including land use changes and surface modifications, have a direct and significant impact 

on UBS landscapes. Medium influencing factors, such as sparse vegetation, temperature, economy, 

and population, have a moderate influence on UBS area and landscapes. Weak factors are associated 

with land use patterns, particularly in dense vegetation areas, reflecting the limited correlation in 

these regions [81]. The weak influencing factors in UBS landscapes are closely related to vegetation. 

5. Conclusions  

The authors of this study utilized remote sensing techniques to extract urban blue space (UBS) 

in Beijing. They conducted a comprehensive analysis of the spatial and temporal development of UBS 

in the past two decades using ESDA methods. From an ecological perspective, they examined the full 

spectrum of landscape patterns and quantitatively simulated the mechanisms of UBS area and 

landscape changes. The findings revealed that the UBS area in Beijing experienced a decline from 

2000 to 2004, followed by a steady increase over the next decade and a significant jump since 2016. 

The spatial clustering of UBS displayed overall stability with subtle changes. The landscape analysis 

indicated improvements in ecological circumstances, including increasing habitat diversity and 

richness, although challenges related to landscape fragmentation were observed. These results 

underscored the value of ecological projects initiated by the government and public organizations 

[82]. 

In terms of mechanisms influencing UBS area, all factors except for artificial surface proportion 

(ASP) exhibited significant influence, with correlation coefficients greater than 0.6. Scientific 

technologies emerged as the most influential driver, followed by natural climate factors. Human 

activities, such as economy and population, showed a weaker influence, while artificial surfaces had 

the weakest impact. Regarding UBS landscape patterns, natural climate and human activities were 

identified as the strongest influencing factors, whereas factors related to vegetation showed a weaker 

influence. 

The normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI), 

which indicate the conditions of dense and sparse vegetation regions, respectively, exhibited distinct 

influences on UBS area and similar impacts on UBS landscape patterns. 

This study successfully uncovered the spatiotemporal characteristics of the UBS area and 

landscapes in Beijing from 2000 to 2020 and elucidated the multifactorial mechanisms driving these 

changes. However, the analysis resolution was limited to counties due to the availability of policy 

number and statistics data, rather than at the pixel level. Further research is needed to explore UBS 

at a finer scale. 

Additionally, while the study analyzed 11 influencing factors, it is acknowledged that there may 

be other factors that should have been explored, such as the number and effectiveness of policies. 

Furthermore, due to data limitations, the study focused on a 21-year period, and longer-term research 

is warranted in the future. 
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