Pre prints.org

Article Not peer-reviewed version

Enumeration of self-avoiding
random walks on lattices as model
chains in polymer crystals

Javier Benito , Unai Urrutia , Nikos Ch. Karayiannis : , Manuel Laso i

Posted Date: 14 August 2023
doi: 10.20944/preprints202308.0999.v1

Keywords: self-avoiding random walk, lattice model, crystallization, hexagonal close packed, face centered
cubic, body centered cubic, polymer, self-organization, perfection, crystal polymorph

E ] E Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently
ﬁ available and citable. Preprints posted at Preprints.org appear in Web of
Eh Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.



https://sciprofiles.com/profile/1982091
https://sciprofiles.com/profile/38456
https://sciprofiles.com/profile/1840580

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2023 d0i:10.20944/preprints202308.0999.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Enumeration of Self-Avoiding Random Walks on

Lattices as Model Chains in Polymer Crystals

Javier Benito, Unai Urrutia, Nikos Ch. Karayiannis * and Manuel Laso *

Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de

Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006

Madrid, Spain; javier.benito.piedra@alumnos.upm.es (J.B.); u.urrutia@alumnos.upm.es (U.U.)

* Correspondence: n.karayiannis@upm.es; Tel.: +34-910-677-318 (N.C.K.); manuel.laso@upm.es; Tel.: +34-910-
677-316 (M.L.)

Abstract: Recent simulation studies have revealed a wealth of distinct crystal polymorphs encountered in the
self-organization of polymer systems driven by entropy or free energy. The present analysis, based on the
concept of self-avoiding random walks on crystal lattices, is useful to calculate upper bounds for the entropy
difference of the crystals that are formed during polymer crystallization and thus provide predictions on
polymorph thermodynamic stability. Here, we compare two pairs of crystals sharing the same coordination
number, nword: hexagonal close packed (HCP) and face centered cubic (FCC), both having #1cord = 12 and the
same packing density, and the less dense hexagonal (HEX) and body centered cubic (BCC) lattices, with #1coora =
8. In both cases, once a critical step length is reached, one of the crystals shows a higher number of SAWs
compatible with the crystal. We explain the observed trends in terms of the bending and torsion angles
corresponding to the different chain geometry as imposed by the geometric constraints of the crystal lattice.

Keywords: self-avoiding random walk; lattice model; crystallization; hexagonal close packed; face
centered cubic; body centered cubic; polymer; self-organization; perfection; crystal polymorph

1. Introduction

The term “soft matter” refers to a class of physical systems which includes polymers, colloids,
granular media, surfactants, and gels. The common feature of all these diverse materials is that they
consist of units whose size is significantly larger than the constituent atoms [1]. One of the main
characteristics of soft matter is the existence of thermal fluctuations which are mainly manifested as
Brownian motion of atoms, particles, and molecules. Due to this, the molecular shape and size are
constantly changing even under conditions of equilibrium. Thus, to describe equilibrium local and
global structure, a statistical approach is required. Additionally, soft matter systems are characterized
by spontaneous self-assembly, self-organization and phase transitions. An important tool to aid in
the statistical description of mesoscopic structure, but also of phenomena and processes relevant to
soft matter, in general, and polymer science, in particular, is the concept of random walk (RW) and
its variation in the form of self-avoiding random walk (SAW) [2].

The mathematical concept of a SAW corresponds to a trajectory of fixed step length that grows
randomly on a lattice under the condition that it cannot visit the same point twice. In a strict
mathematical sense, several salient aspects of SAW are still unknown or only partially resolved [2].
Still, this has not been an obstacle for its successful application in a very wide range of physical
systems and topics in chemistry, physics, polymer science, material technology, mathematics, process
optimization, computer science and biology [3-12]. Over the years significant advances have been
made in the algorithms related to SAW identification and enumeration, further advancing its usage
in diverse problems, especially ones related to synthetic and biological macromolecules. The
excluded volume effect in polymer melts and solutions is in fact intimately related to the condition
of self-avoidance in random walks [13-29].

Self-avoiding random walks and polygons (SAPs) have been studied extensively on 2-D and 3-
D lattices [30] with specific examples being the honeycomb [31-34], square [35,36], triangular [37],
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simple cubic [35,38-40], body centered cubic (BCC) [41] and face centered cubic (FCC) [41,42] lattices.
Due to their importance and general applicability significant algorithmic and theoretical advances
have been made in the enumeration, characterization, identification and scaling behavior of SAWs,
SAPs, and their variants [19,20,33,43-62]. It is interesting to notice that while the simple cubic (SC),
BCC and FCC crystals have been extensively studied in the literature, no such wealth of information
exists for the hexagonal close packed (HCP) one. This could be attributed to a possible assumption
that the HCP and FCC crystals are characterized by the same number of SAWs, independently of the
step size [63], because both crystals have the same coordination number (1cord = 12) and packing
density (¢ = nV2/6). As will be demonstrated in the continuation such claim is not valid: beyond a
certain SAW length the number of SAWs compatible with the HCP crystal becomes marginally higher
than the one for the FCC crystal, the difference increasing as the number of steps of the SAW grows.

In the past we employed a SAW-based analysis to enumerate the possible configurations of
single-chain crystals and thus explain their thermodynamic stability in regular lattices in slits (tubes)
[64] and plates [65]. These studies have been motivated by the spontaneous, entropy-driven
crystallization of chains of tangent hard spheres as demonstrated in Monte Carlo (MC) simulations
of dense packings under various conditions of spatial confinement [66—68]. Very recently, it was
documented that starting from random (disordered) packings, freely-jointed chains of hard spheres
in the bulk show a transition to the ordered state following Ostwald’s rule of stages [69]: initially a
random hexagonal close packed (rHCP) morphology is formed of mixed HCP and FCC character
[70,71]. Given enough observation time the rHCP ordered morphology is eventually succeeded by
an almost defect-free FCC crystal [71]. In parallel modeling efforts, a wealth of distinct crystal
polymorphs, including non-compact crystals like the body centered cubic (BCC) and simple
hexagonal (HEX), has also been encountered in the (free)energy-driven self-assembly of freely-
jointed chains of tangent monomers interacting with the square well potential under very dilute
conditions [72].

With respect to the stability of the HCP and FCC crystals made of athermal polymer chains semi-
analytical calculations were presented in [70], based on the separation of translational and
conformational degrees of freedom. Resulting upper bound estimates demonstrate that the
conformational entropy of an HCP crystal of hard-sphere polymers is higher than the one of the FCC
crystal by a margin of 0.331 x 10 k per monomer, where k is Boltzmann’s constant. However, this
minute difference is significantly smaller than the free energy advantage of the FCC crystal in terms
of translational entropy. The latter can be assumed to be very similar, if not identical, to the
translational entropy of monomers disregarding the constraints imposed by chain connectivity. A
widely accepted value for the entropic difference between FCC and HCP crystals for monomeric hard
spheres corresponds to approximately 112 x 10k per monomer, has been established in the literature
[73-75], depending further on packing density [76]. The semi-analytical predictions of [70] have been
supported by extremely long molecular simulations based on Monte Carlo algorithms demonstrating
FCC perfection in athermal polymer crystallization of entangled chains [66,77].

In the present contribution we further support the semi-analytical calculations of [70] by
exhaustive enumeration of the self-avoiding random walks (SAWs) compatible with the inter-site
geometry as encountered in the FCC and HCP crystals. We also analyze the SAW statistics, including
the local geometry (bending and torsion angles) and the global size (distribution and mean of the
end-to-end distance). Two additional crystals, the HEX and BCC, both having #1ceord =8, encountered
in simulations of chains whose monomers interact with the square well potential [72], are considered
in the current work.

The manuscript is organized as follows: Section 2 presents the model, the reference crystals and
the method employed for the SAW enumeration. Section 3 hosts the results on the local and global
properties of SAWs on the HCP, FCC, HEX and BCC lattices. The discussion of the results can be
found in section 4. The manuscript is concluded with section 5 summarizing the main conclusions
and listing future extensions.
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2. Materials and Methods

As reported in the introduction the present work forms part of an on-going modeling study of
(free)energy- [72,78] and entropy-driven [70,71,79,80] self-organization of idealized systems based on
polymers interacting with the hard sphere or the square well potential [81]. Four different crystals
have been considered in this work: the hexagonal close packed (HCP), face centered cubic (FCC),
body centered cubic (BCC or BC) and holoedric 6/mmm (simple hexagonal, HEX), whose periodic
structure and salient characteristics can be found in [77,82]. The HCP and FCC ones have been
selected because they compete as emerging and resulting structures in the disorder-order transition
of freely-jointed chains of hard spheres at sufficiently high packing densities [70,71,79,80]. The HEX
and BCC crystals, along with the HCP and FCC crystals and the quasi-crystalline Frank-Kasper
[83,84] phase, are encountered as final stable morphologies in the crystallization of clusters formed
from chains interacting with the square well, attractive potential [72,78] at dilute conditions. Density-
based [85,86] and geometric [72] arguments can accurately explain the dominance of non-compact
crystals in specific ranges of the interaction potential in two and three dimensions.

In the present work, a polymer is represented as a linear chain of strictly tangent hard spheres.
This chain is grown on the sites of a crystal, so its bonded geometry is defined by the linear
architecture of the chain, the tangency condition of bonded atoms and the spatial constraints imposed
by the crystal sites. As in our past works [64,65] “monomer” refers to each of the hard spheres that
constitute the polymer chain, while “site” refers to the each of the sites of the ideal crystal. A single
chain is grown on each reference lattice, with a monomer occupying a single site, and bonded
monomers lying on adjacent sites, which are thus separated by a bond/step length. With respect to
bond geometry, bending () and torsion (¢) angles are formed by successive triplets and quartets of
monomers along the chain backbone. These angles must respect the connectivity and geometry of
each lattice. Accordingly, bending and torsion angles along the polymer chain are different for
different crystal types, as can be seen in Table 1 (bending angles) and Table 2 (torsion angles). Chains
on the HCP crystal show the largest variety, with 6 and 19 distinct bending and torsion angles,
respectively, while SAWs on the BCC crystal have only 3 compatible bending angles.

Table 1. Bending angles, 0, which are compatible with each reference crystal. Compatibility is
indicated by the bold “+” symbol.

0 (degrees) FCC HCP BCC HEX
0.000 + + + +
33.56 - + - -
60.00 + + - +
70.53 - + + -
90.00 + + - +

109.47 - - + -
120.00 + + - +

Table 2. Torsion angles, ¢, which are compatible with each reference crystal. Compatibility is
indicated by the bold “+” symbol.

¢ FCC HCP BCC HEX
0.000 +
25.24 -
29.50 -
35.26 -
50.48 -
54.74 +
60.00 - - + +
70.53 +
79.98 - + - -

+ + + + + 4+

+
1
1



https://doi.org/10.20944/preprints202308.0999.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2023 d0i:10.20944/preprints202308.0999.v1

90.00 +
100.02 -
109.47 +
115.24 -
120.00 - - + +
125.26 +
141.06 -
144.74 -
150.50 -
154.76 -
164.21 -
180.00 +

+ + + +

+ + + + + + +
1
1

Following our past works on SAWs under confinement [64,65] a SAW of N steps consists of the
ordered sequence of sites wN(0), , w¥(1), ..., @W¥(N-1), wN(N) with wM(0) being the SAW origin. In
contrast to SAWs on spatially restricted lattices [64,65], the ones studied here correspond to the
unconstrained bulk case. Thus, any site can be selected as the origin of the SAW, w"(0), due to the
maximal symmetry of the bulk lattice. Self-avoidance of the random walk (or equivalently excluded
volume of polymer) is fulfilled as w"(i) # wN(j) for all i # j. Bond tangency is satisfied as |wN(i+1) -
wN(@) | =1, with 7 € [0,1,....N-1] and |w!= (w - w)? denoting the Euclidean norm. The size of the
SAW is quantified by the square end-to-end distance: |V |2 = (wN(N) - wN(0)) - (wN(N) - wN(0)).

For a given number of steps, N, and a reference crystal X (HCP, FCC, HEX or BCC) our algorithm
is based on the direct enumeration of the total number of distinct SAWs, en(X), and proceeds with the
calculation of all bending and torsion angles and of the square end-to-end distance of each identified
SAW. Accordingly, for a SAW of N steps the mean square end-to-end distance, <l wV|2 >(X), can be
readily calculated as:

=1
(IwN?)(X) = cNZClele 1)

The scaling of the number of distinct SAWs, cv, and of the average SAW size, ([w"|?), as a
function of the number of SAW steps is given by exponential-power-law asymptotic expressions
[2,36,38-40,60,87]:

cy(X)~ApNNY 1

N|2 2v
where A and D are the critical amplitudes, p is the connective constant, and y and v are the critical
exponents. The critical exponents are considered universal, while the values of A, D and u are lattice
dependent.

SAW enumeration and the calculation of their statistics over the four different reference crystals
has been performed with the help of a home-made code. All reported numerical calculations have
been executed on an Intel i9-10850K with 16 Gb of memory, running on Linux operating system.
Starting from the work of Orr [22] elegant methods and efficient algorithms have been developed
over the years to tackle the exponentially difficult SAW enumeration problem
[6,9,36,38,39,61,62,88,89] allowing to reach various high-N SAWs in distinct lattices. We should
further note that our SAW enumeration algorithm is not as efficient as the state-of-the-art methods
described above, and thus our analysis is limited to SAWs of intermediate number of steps. However,
this should not be considered as a potential disadvantage as extensive off-lattice simulations, under
a wide variety of conditions, have clearly demonstrated that, beyond a moderate value, chain length
has practically no effect on the crystallization of athermal packings of fully flexible chains. The phase
behavior and the established ordered morphologies are the same independently of the average length
of chains being as low as 12 or as high as 1000 monomers, the former value corresponding to short
oligomers while the latter to well entangled chains, deep in the polymeric regime [67,79,80].
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3. Results

Table 3 presents the total number of distinct SAWs, cn, and the mean square end-to-end distance,
(Iw"]?), as a function of SAW steps, N, for the FCC and HCP lattices, along with the difference in the
number of SAWSs, Acy (= en(HCP) — en(FCC)). The corresponding data for the BCC and HEX crystals
are presented in Table 4.

Table 3. Distinct number of SAWS, cn, and mean square end-to-end distance, <l wVN[%>, as a function
of number of SAW steps, N, for the FCC and HCP crystals. Also reported is the difference in the
number of SAWs (Acn = en(HCP) — en(FCC)).

FCC HCP Difference

N e (|"[?) o (lo"]?) Acy
1 12 1.000 12 1.000 0
2 132 2.182 132 2.182 0
3 1404 3.496 1404 3.496 0
4 14700 4.908 14700 4.908 0
5 152532 6.397 152532 6.397 0
6 1573716 7.950 1573728 7.950 12
7 16172148 9.556 16172340 9.556 192
8 165697044 11.21 165699744 11.21 2700
9 1693773924 12.90 1693809348 12.90 35424
10 17281929564 14.64 17282367084 14.64 437520
11 176064704412 16.41 176069916384 16.41 5211972
12 1791455071068 18.21 1791515688168 18.21 60617100

Table 4. Distinct number of SAWS, cn, and mean square end-to-end distance, <l wN[2>, as a function

of number of SAW steps, N, for the BCC and HEX crystals. Also reported are the differences Acn (=

eN(BCC) — en(HEX)) and A<l N (2> (=1 wN[2(BCC)- | N 12(HEX)).

BCC HEX Difference

N N (lw"]?) N {lw"]?) Acn A|w"|?)
1 8 1.000 8 1.000 0 0.000
2 56 2.286 56 2.286 0 0.000
3 392 3.612 380 3.726 12 -0.114
4 2648 5.124 2540 5.280 108 -0.156
5 17960 6.645 16844 6.918 1116 -0.274
6 120056 8.294 111068 8.628 8988 -0.334
7 804824 9.940 729524 10.40 75300 -0.458
8 5351720 11.69 4777628 12.22 574092 -0.533
9 35652680 13.43 31217552 14.09 4435128 -0.661
10 236291096 15.26 203608520 16.01 32682576 -0.747
11 1568049560 17.08 1326015428 17.96 242034132 -0.879
12 10368669992 18.97 8625090800 19.95 1743579192 -0.973
13 68626647608 20.86 56043338096 21.97 12583309512 -1.11
14 453032542040 22.81 363826528532 24.02 89206013508 -1.21

The FCC and HCP crystals show the same number of SAWs up to N =5 steps. However, for N 2
6 the number of SAWSs on the two lattices start to deviate with the HCP crystal showing systematically
more SAWs than the FCC one. At N =6, Acv= 12, the relative difference is approximately 7.6x10-¢. For
the longest SAW studied here (N =12) Acy = 60,617,100 which corresponds to a relative difference of
3.4x105, showing increasing trends as the SAW grows in length. In parallel, as can be seen by the
comparison of the related rows in Table 3 the average size of the SAWs in the HCP and FCC lattices
is the same within a tolerance of 10 for all values of N.
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Similar trends are observed in the comparison of the BCC and HEX crystals as listed in Table 4.
For N =3 the BCC crystal has 12 more SAWs compared to the HEX crystal with the relative difference
being 0.031, significantly higher than the one observed for the HCP-FCC pair at the corresponding
deviation point (N = 6). For the longest SAW studied here (N = 14) the absolute and relative differences
for the HEX-BCC pair increase to 89,206,013,508 and 0.20, respectively. Accordingly, even if both
lattices have the same coordination number (#1co0rd = 8) the single chain conformations, as quantified
by the number of SAWs, are significantly fewer in HEX compared to BCC. With respect to average
size the polymer grown on the HEX lattice is systematically longer than the one on the BCC with the
relative difference being approximately 0.053 for N = 14.

The left panel of Figure 1 shows the logarithm of the total number of distinct SAWs, cw, as a
function of the logarithm of the total number of SAW steps, for all lattices studied here. Also shown
are the differences of the two pairs (cN(HCP) — cn(FCC)) and en(BCC) — en(HEX)). On the right panel
of Figure 1 we can observe the dependence of the logarithm of the mean square end-to-end distance,
<lwN12>(X), as calculated from Eq. 1, on the logarithm of the number of SAW steps, N. Furthermore,
we have fitted all available data with best linear fits corresponding to the scaling formula of Eq. 3.
Figure 1 shows one such best linear fit corresponding to the data for the HEX crystal, with the
reliability fitting coefficient being practically equal to 1. The complete set of the parameter values,
according to Egs. 2 and 3, as obtained from best linear fits on current SAW data are reported in Table
5. Very little variation is observed for both the critical amplitude and exponent between the different
lattices, especially when the FCC and HCP crystals are compared. A minimal trend suggests that the
exponent increases slightly for the crystals of the lower coordination number, while the opposite
behavior is observed for the amplitude. Given the short- or intermediate length of the studied SAWs
the universal exponent of 0.588 is nicely matched for the HCP and FCC crystals. Between the HCP
and the FCC crystal there is no appreciable difference suggesting that the corresponding SAW sizes
will be very similar, but strictly not identical, for the limit of infinitely long chains (N — <°).

14 T T T T T 1.4 T T T T T v
—FCC FCC '!v
] ] J HCP 4 i
12 HCP 1.2 hee ,,:’
- - —HCP-FCC HEX 2.
10 4 BCC E 1.0 linear fit (HEX) 4 1
- — HEX ’-/
g . & 0.8 % .
B 2 3
g A
1 0.4 -7 1
- 02 . 7 . -
0 . . . . . 0.0 +— . . ; .
0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
log(N) log(N)

Figure 1. (Left panel): Logarithm of the total number of distinct SAWs, cn, as a function of the
logarithm of the total number of SAW steps, N, for all lattices studied here: HCP, FCC, BCC and HEX.
Also reported are the corresponding differences between the pairs: Acn(HCP-FCC) and Acen(BCC-
HEX). The red curve (FCC) is obscured by the blue (HCP) one and the cyan (BCC) by the magenta
(HEX) due to minimal differences. (Right panel): Logarithm of the mean square end-to-end distance,

<lwNI%>, as a function of the logarithm of the total number of SAW steps, N, for all lattices. Also

shown in green dashed line is the best linear fit on the data for the HEX crystal.
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Table 5. Critical amplitudes, A and D, critical exponents, Y and v, and connective constant, 1, as
calculated from best linear fits using the SAW enumeration data as reported in Tables 3 and 4 and
Figure 1 for the HCP, BCC and HEX lattices. Due to the minimal differences between the HCP and
FCC crystals in section 4 (Discussion) we present the correlation of the difference.

Lattice A U y D v
HCP 1.19 10.07 1.134 0.977 0.587
BCC 1.21 6.565 1.124 0.995 0.593
HEX 1.24 6.436 1.129 0.994 0.603

The distribution of the discrete bending angles which are compatible with each lattice studied
here is given in Figure 2 as a function of the number of SAW steps. For all crystal types as N grows
the population of obtuse angles experiences small decreases in favor of the acute ones because of the
self-avoidance condition. The fraction of bending angles with 90°, where available (HCP, FCC and
HEX), rapidly reaches a stable plateau. Extrapolating the current trends to longer N the most probable
bending angle is 602, 602 70.53° and 90° for the FCC, HCP, BCC and HEX crystals, respectively.
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Figure 2. Distribution of discrete bending angles of the SAWs on the (top left) FCC, (top right) HCP,
(bottom left) BCC and (bottom right) HEX crystals as a function of total number of SAW steps, N. All
possible SAW bending angles compatible with each crystal are reported in Table 1. For a given angle
different colors correspond to SAWs of different lengths as indicated in the legend.

Figure 3 hosts the corresponding results for the distribution of discrete torsion angles which are
compatible with each lattice crystal. For FCC as N increases the populations at 54.7, 125.3 and 180°
increase, while the one at 90° shows a significant reduction. Compared to other crystals the SAWs on
the HCP lattice show a richer behavior with the primary angles resting at 54.7, 70.5, 109.5 and 180e.
The HEX crystal is the one that shows the smallest variation with increasing number of SAW steps.
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Figure 3. Distribution of discrete torsion (dihedral) angles of the SAWs on the (top left) FCC, (top
right) HCP, (bottom left) BCC and (bottom right) HEX lattices as a function of the total number of
SAW steps, N. All possible SAW torsion angles compatible with each lattice are reported in Table 2.
For a given angle different colors correspond to SAWs of different lengths as indicated in the legend.

The distribution of SAW size, as quantified by the square end-to-end distance, |wN12 is shown
in Figures 4 and 5 for the HCP — FCC and BCC — HEX pairs, respectively. The probability distribution
function (PDF) is presented in the main figure while the cumulative distribution function (CDF) is
shown in the inset. Given the major differences in the bonded geometry between HCP and FCC
lattices it is not surprising that the distribution of the SAW size shows significant deviations.
However, it is interesting to notice that in spite of these variations the global SAW size, on average,
is indistinguishable between the close packed FCC and HCP crystals as shown in Table 1 and further
confirmed by the CDF trends in the inset of Figure 4. On the other hand, SAWs on the BCC lattice
have smaller size than the ones on the HEX as indicated by the concentrated maxima of the BCC
distribution at small values of the square end-to-end distance.
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Figure 4. Probability distribution function (PDF) of the square end-to-end SAW distance, |wNI?, for
the HCP and FCC crystals for a SAW of N = 11 steps. Inset: cumulative distribution function (CDF)
for the same systems.
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Figure 5. Probability distribution function (PDF) of the square end-to-end SAW distance, |wNI?, for
the BCC and HEX crystals for a SAW of N = 14 steps. Inset: cumulative distribution function (CDF)
for the same systems.

4. Discussion

We enumerate and describe the self-avoiding random walks, SAWs, grown on different crystals,
characterized by the same coordination number (710t = 12 or 8). We observe that for the HCP and
FCC pair once a critical number of steps is reached (N = 6) the distinct number of SAWs becomes
different. In relative numbers this difference is minute but definitely non-zero with the HCP crystal
showing a larger number of SAWs compared to FCC (cn(HCP) > en(FCC)). The present finding is clear
evidence that the SAW behavior in the HCP and FCC crystals should not be considered as identical
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even though both are characterized by the same coordination number and packing density. In
parallel, the average size of SAWs on these two crystals is indistinguishable for the whole range of
studied SAW steps even if the internal chain/SAW bonded geometry, as quantified by the bending
and torsion angles, is significantly different with the HCP crystal showing a much richer variety and
same is true for the size distribution as quantified by the end-to-end distance.

The main objective of the present work is to provide a quantitative basis for the study of the
thermodynamic stability of the HCP and FCC crystals made of fully flexible, athermal polymers. As
mentioned in the introduction by assuming independence of the translational and conformational
degrees of freedom, an argument which is analyzed in detail in [70], the total entropy of the crystal
can be considered as the summation of two distinct contributions: the conformational one, AScons,
dictated by chain connectivity respecting the geometric constraints of the reference crystal, and the
translational one, ASwan, which should be very similar to the one of monomeric systems of hard
spheres, free of any constraints imposed by chain connectivity. Accordingly, the entropy difference
of the HCP and FCC crystals can be written as [70]:

AsFCC—HCP — As(l:"OCan—HCP + ASggg_HCP =1ln

|zFeC|
|ZHCP|

+ a5 @

where E is the complete set (partition function) of all multichain configurations compatible with
the polymer model (here freely-jointed chains of tangent hard spheres) and the lattice geometry (here
HCP or FCC), and | | denote the cardinality of a set [70]. The translational contribution is known from
past studies on monomeric analogs [73-75]. Thus, the evaluation of & for the multichain
configurations is required to arrive at an accurate estimate for ASF¢~H¢P pbut such information is not
available for any of the crystals. Accordingly, we need to establish an upper-bound, single-chain
estimation. The concept of random walks (RWs) would not shed any light given that both crystals
have the same coordination number and as such the same number of RWs over the whole range of
steps. Toward this end, as a more refined criterion we resort to self-avoiding random walks (SAWs),
providing a tighter and more discriminating upper bound estimate for the difference in the
configurational entropy as [70]:

|gHCP| < (CN(HCP))N o1 (|5HCP|) 1 In (cN(HCP))

|gFec) cn(FCO) |gFec| cn(FCO)

©)

The data presented here in Tables 3 and 4, and Figure 1 for the HCP-FCC and HEX-BCC pairs
clearly identify a difference in the number of SAWSs once a critical number of steps is reached. The

N

ratio of the SAWs in Eq. 5 can be fitted using an asymptotic formula:

eN&X)

D _ g pean ©)

where X and Y are the two crystals to be compared and A, B and d are the fitting parameters.
Fittings using the exponential formula of Eq. 6 on available SAW enumeration data are reported in
Figure 6.
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Figure 6. ((c~n(X)-cn(Y))-1) / N versus number of steps, N, as obtained from direct SAW enumeration
for the HCP/FCC and BCC/HEX pairs. Also shown are fittings with the asymptotic formula of Eq. 6.

Both pairs suggest an asymptotic behavior of the entropy difference per monomer. For the HCP
and FCC crystals, the established behavior is far from the asymptotic regime and significantly longer
SAWs are required pointedly increasing the computational complexity of the problem. However,
application of the exponential formula (Eq. 6) allows the prediction of the ratio for very long SAWs
from short and intermediate values as the ones presented here. The fitting parameters for the
HCP/FCC and BCC/HEX are summarized in Table 6. Although the maximum chain length for which
we could exhaustively enumerate SAWs is moderate, the quality of the fit in Figure 6 suggests that
the values of the parameter A in Table 6 are a quite accurate approximation to the asymptotic value,
i.e. for infinite chain length, which is the physically relevant quantity for long polymers.

Table 6. Fitting parameters A, B and d of the asympotic formula according to Eq. 4 applied on the
current SAW enumeration data for the HCP/FCC and BCC/HEX pairs of crystal lattices.

Pair of Crystals A B d Range of Validity
HCP - FCC 3.31x10¢ 8.63x10-¢ 0.24 N>5
BCC - HEX 0.0188 0.0144 0.17 N>2

Concentrating on the HCP-FCC pair, which is the main focus of the present study, placing the
asymptotic formula in Eq. 5 and considering the limit of very long chains provides an upper bound
estimate, AS[SG P ~ —0.331 x 107%k, as the HCP polymer crystal has a higher conformational
entropy than the FCC one. However, this value is significantly lower than the translational entropy
ASEEES P ~ 112 x 107°k. Accordingly, the FCC is the most stable crystal among the polymorphs for

freely-jointed polymers of tangent hard spheres.

5. Conclusions

Prediction of the thermodynamic stability of crystals made of athermal polymers is significantly
more complicated than for monomeric analogs due to the presence of constraints imposed by chain
connectivity. Here, we demonstrate that once a critical number of steps is reached the HCP crystal
has more self-avoiding random walks than the FCC one. Accordingly, a tight upper bound estimate
of the conformational entropic advantage of the HCP crystal suggests that this lead is not sufficient
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to overcome the significantly larger translational advantage of the FCC crystal [70]. Accordingly, the
FCC crystal is the thermodynamically most stable crystal and should prevail among competing
polymorphs, as confirmed by recent off-lattice simulations [71]. The present work is currently being
extended to tackle freely-rotating chains on crystals in two and three dimensions.
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