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Abstract: Recent simulation studies have revealed a wealth of distinct crystal polymorphs encountered in the 

self-organization of polymer systems driven by entropy or free energy. The present analysis, based on the 

concept of self-avoiding random walks on crystal lattices, is useful to calculate upper bounds for the entropy 

difference of the crystals that are formed during polymer crystallization and thus provide predictions on 

polymorph thermodynamic stability. Here, we compare two pairs of crystals sharing the same coordination 

number, ncoord: hexagonal close packed (HCP) and face centered cubic (FCC), both having ncoord = 12 and the 

same packing density, and the less dense hexagonal (HEX) and body centered cubic (BCC) lattices, with ncoord = 

8. In both cases, once a critical step length is reached, one of the crystals shows a higher number of SAWs 

compatible with the crystal. We explain the observed trends in terms of the bending and torsion angles 

corresponding to the different chain geometry as imposed by the geometric constraints of the crystal lattice. 

Keywords: self-avoiding random walk; lattice model; crystallization; hexagonal close packed; face 

centered cubic; body centered cubic; polymer; self-organization; perfection; crystal polymorph 

 

1. Introduction 

The term “soft matter” refers to a class of physical systems which includes polymers, colloids, 

granular media, surfactants, and gels. The common feature of all these diverse materials is that they 

consist of units whose size is significantly larger than the constituent atoms [1]. One of the main 

characteristics of soft matter is the existence of thermal fluctuations which are mainly manifested as 

Brownian motion of atoms, particles, and molecules. Due to this, the molecular shape and size are 

constantly changing even under conditions of equilibrium. Thus, to describe equilibrium local and 

global structure, a statistical approach is required. Additionally, soft matter systems are characterized 

by spontaneous self-assembly, self-organization and phase transitions. An important tool to aid in 

the statistical description of mesoscopic structure, but also of phenomena and processes relevant to 

soft matter, in general, and polymer science, in particular, is the concept of random walk (RW) and 

its variation in the form of self-avoiding random walk (SAW) [2]. 

The mathematical concept of a SAW corresponds to a trajectory of fixed step length that grows 

randomly on a lattice under the condition that it cannot visit the same point twice. In a strict 

mathematical sense, several salient aspects of SAW are still unknown or only partially resolved [2]. 

Still, this has not been an obstacle for its successful application in a very wide range of physical 

systems and topics in chemistry, physics, polymer science, material technology, mathematics, process 

optimization, computer science and biology [3–12]. Over the years significant advances have been 

made in the algorithms related to SAW identification and enumeration, further advancing its usage 

in diverse problems, especially ones related to synthetic and biological macromolecules. The 

excluded volume effect in polymer melts and solutions is in fact intimately related to the condition 

of self-avoidance in random walks [13–29].  

Self-avoiding random walks and polygons (SAPs) have been studied extensively on 2-D and 3-

D lattices [30] with specific examples being the honeycomb [31–34], square [35,36], triangular [37], 
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simple cubic [35,38–40], body centered cubic (BCC) [41] and face centered cubic (FCC) [41,42] lattices. 

Due to their importance and general applicability significant algorithmic and theoretical advances 

have been made in the enumeration, characterization, identification and scaling behavior of SAWs, 

SAPs, and their variants [19,20,33,43–62]. It is interesting to notice that while the simple cubic (SC), 

BCC and FCC crystals have been extensively studied in the literature, no such wealth of information 

exists for the hexagonal close packed (HCP) one. This could be attributed to a possible assumption 

that the HCP and FCC crystals are characterized by the same number of SAWs, independently of the 

step size [63], because both crystals have the same coordination number (ncoord = 12) and packing 

density (φ = 𝜋√2/6). As will be demonstrated in the continuation such claim is not valid: beyond a 

certain SAW length the number of SAWs compatible with the HCP crystal becomes marginally higher 

than the one for the FCC crystal, the difference increasing as the number of steps of the SAW grows. 

In the past we employed a SAW-based analysis to enumerate the possible configurations of 

single-chain crystals and thus explain their thermodynamic stability in regular lattices in slits (tubes) 

[64] and plates [65]. These studies have been motivated by the spontaneous, entropy-driven 

crystallization of chains of tangent hard spheres as demonstrated in Monte Carlo (MC) simulations 

of dense packings under various conditions of spatial confinement [66–68]. Very recently, it was 

documented that starting from random (disordered) packings, freely-jointed chains of hard spheres 

in the bulk show a transition to the ordered state following Ostwald´s rule of stages [69]: initially a 

random hexagonal close packed (rHCP) morphology is formed of mixed HCP and FCC character 

[70,71]. Given enough observation time the rHCP ordered morphology is eventually succeeded by 

an almost defect-free FCC crystal [71]. In parallel modeling efforts, a wealth of distinct crystal 

polymorphs, including non-compact crystals like the body centered cubic (BCC) and simple 

hexagonal (HEX), has also been encountered in the (free)energy-driven self-assembly of freely-

jointed chains of tangent monomers interacting with the square well potential under very dilute 

conditions [72]. 

With respect to the stability of the HCP and FCC crystals made of athermal polymer chains semi-

analytical calculations were presented in [70], based on the separation of translational and 

conformational degrees of freedom. Resulting upper bound estimates demonstrate that the 

conformational entropy of an HCP crystal of hard-sphere polymers is higher than the one of the FCC 

crystal by a margin of 0.331 × 10-5 k per monomer, where k is Boltzmann´s constant. However, this 

minute difference is significantly smaller than the free energy advantage of the FCC crystal in terms 

of translational entropy. The latter can be assumed to be very similar, if not identical, to the 

translational entropy of monomers disregarding the constraints imposed by chain connectivity. A 

widely accepted value for the entropic difference between FCC and HCP crystals for monomeric hard 

spheres corresponds to approximately 112 × 10-5 k per monomer, has been established in the literature 

[73–75], depending further on packing density [76]. The semi-analytical predictions of [70] have been 

supported by extremely long molecular simulations based on Monte Carlo algorithms demonstrating 

FCC perfection in athermal polymer crystallization of entangled chains [66,77].    

In the present contribution we further support the semi-analytical calculations of [70] by 

exhaustive enumeration of the self-avoiding random walks (SAWs) compatible with the inter-site 

geometry as encountered in the FCC and HCP crystals. We also analyze the SAW statistics, including 

the local geometry (bending and torsion angles) and the global size (distribution and mean of the 

end-to-end distance). Two additional crystals, the HEX and BCC, both having ncoord = 8,  encountered 

in simulations of chains whose monomers interact with the square well potential [72], are considered 

in the current work.  

The manuscript is organized as follows: Section 2 presents the model, the reference crystals and 

the method employed for the SAW enumeration. Section 3 hosts the results on the local and global 

properties of SAWs on the HCP, FCC, HEX and BCC lattices. The discussion of the results can be 

found in section 4. The manuscript is concluded with section 5 summarizing the main conclusions 

and listing future extensions.  
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2. Materials and Methods 

As reported in the introduction the present work forms part of an on-going modeling study of 

(free)energy- [72,78] and entropy-driven [70,71,79,80] self-organization of idealized systems based on 

polymers interacting with the hard sphere or the square well potential [81]. Four different crystals 

have been considered in this work: the hexagonal close packed (HCP), face centered cubic (FCC), 

body centered cubic (BCC or BC) and holoedric 6/mmm (simple hexagonal, HEX), whose periodic 

structure and salient characteristics can be found in [77,82]. The HCP and FCC ones have been 

selected because they compete as emerging and resulting structures in the disorder-order transition 

of freely-jointed chains of hard spheres at sufficiently high packing densities [70,71,79,80]. The HEX 

and BCC crystals, along with the HCP and FCC crystals and the quasi-crystalline Frank-Kasper 

[83,84] phase, are encountered as final stable morphologies in the crystallization of clusters formed 

from chains interacting with the square well, attractive potential [72,78] at dilute conditions. Density-

based [85,86] and geometric [72] arguments can accurately explain the dominance of non-compact 

crystals in specific ranges of the interaction potential in two and three dimensions.  

In the present work, a polymer is represented as a linear chain of strictly tangent hard spheres. 

This chain is grown on the sites of a crystal, so its bonded geometry is defined by the linear 

architecture of the chain, the tangency condition of bonded atoms and the spatial constraints imposed 

by the crystal sites. As in our past works [64,65] “monomer” refers to each of the hard spheres that 

constitute the polymer chain, while “site” refers to the each of the sites of the ideal crystal. A single 

chain is grown on each reference lattice, with a monomer occupying a single site, and bonded 

monomers lying on adjacent sites, which are thus separated by a bond/step length. With respect to 

bond geometry, bending (θ) and torsion (ϕ) angles are formed by successive triplets and quartets of 

monomers along the chain backbone. These angles must respect the connectivity and geometry of 

each lattice. Accordingly, bending and torsion angles along the polymer chain are different for 

different crystal types, as can be seen in Table 1 (bending angles) and Table 2 (torsion angles). Chains 

on the HCP crystal show the largest variety, with 6 and 19 distinct bending and torsion angles, 

respectively, while SAWs on the BCC crystal have only 3 compatible bending angles.  

Table 1. Bending angles, θ, which are compatible with each reference crystal. Compatibility is 

indicated by the bold “+” symbol. 

θ (degrees) FCC HCP BCC HEX 

0.000 + + + + 

33.56 - + - - 

60.00 + + - + 

70.53 - + + - 

90.00 + + - + 

109.47 - - + - 

120.00 + + - + 

Table 2. Torsion angles, ϕ, which are compatible with each reference crystal. Compatibility is 

indicated by the bold “+” symbol. 

ϕ FCC HCP BCC HEX 

0.000 + + + + 

25.24 - + - - 

29.50 - + - - 

35.26 - + - - 

50.48 - + - - 

54.74 + + - - 

60.00 - - + + 

70.53 + + - - 

79.98 - + - - 
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90.00 + + + + 

100.02 - + - - 

109.47 + + - - 

115.24 - + - - 

120.00 - - + + 

125.26 + + - - 

141.06 - + - - 

144.74 - + - - 

150.50 - + - - 

154.76 - + - - 

164.21 - + - - 

180.00 + + + + 

Following our past works on SAWs under confinement [64,65] a SAW of N steps consists of the 

ordered sequence of sites ωN(0), , ωN(1), … , ωN(N-1), ωN(N) with ωN(0) being the SAW origin. In 

contrast to SAWs on spatially restricted lattices [64,65], the ones studied here correspond to the 

unconstrained bulk case. Thus, any site can be selected as the origin of the SAW, ωN(0), due to the 

maximal symmetry of the bulk lattice. Self-avoidance of the random walk (or equivalently excluded 

volume of polymer) is fulfilled as ωN(i) ≠ ωN(j) for all i ≠ j. Bond tangency is satisfied as |ωN(i+1) - 

ωN(i)| = 1, with i ∈ [0,1,….N-1] and |ω|= (ω . ω)(1/2) denoting the Euclidean norm. The size of the 

SAW is quantified by the square end-to-end distance: |ωN|2 = (ωN(N) - ωN(0)) . (ωN(N) - ωN(0)).  

For a given number of steps, N, and a reference crystal X (HCP, FCC, HEX or BCC) our algorithm 

is based on the direct enumeration of the total number of distinct SAWs, cN(X), and proceeds with the 

calculation of all bending and torsion angles and of the square end-to-end distance of each identified 

SAW. Accordingly, for a SAW of N steps the mean square end-to-end distance, <|ωN|2 >(X), can be 

readily calculated as: 〈|𝐰ே|ଶ〉(𝑋) = ଵ௖ಿ∑ |𝐰ே|ଶ௖ಿ   (1)

The scaling of the number of distinct SAWs, cN, and of the average SAW size, 〈|𝐰ே|ଶ〉, as a 

function of the number of SAW steps is given by exponential-power-law asymptotic expressions 

[2,36,38–40,60,87]: 𝑐ே(𝑋)~𝐴𝜇ே𝑁ఊିଵ  
(2)〈|𝐰ே|ଶ〉(𝑋)~𝐷𝑁ଶ௩   
(3)

where A and D are the critical amplitudes, μ is the connective constant, and γ and ν are the critical 

exponents. The critical exponents are considered universal, while the values of A, D and μ are lattice 

dependent.   

SAW enumeration and the calculation of their statistics over the four different reference crystals 

has been performed with the help of a home-made code. All reported numerical calculations have 

been executed on an Intel i9-10850K with 16 Gb of memory, running on Linux operating system. 

Starting from the work of Orr [22] elegant methods and efficient algorithms have been developed 

over the years to tackle the exponentially difficult SAW enumeration problem 

[6,9,36,38,39,61,62,88,89] allowing to reach various high-N SAWs in distinct lattices. We should 

further note that our SAW enumeration algorithm is not as efficient as the state-of-the-art methods 

described above, and thus our analysis is limited to SAWs of intermediate number of steps. However, 

this should not be considered as a potential disadvantage as extensive off-lattice simulations, under 

a wide variety of conditions, have clearly demonstrated that, beyond a moderate value, chain length 

has practically no effect on the crystallization of athermal packings of fully flexible chains. The phase 

behavior and the established ordered morphologies are the same independently of the average length 

of chains being as low as 12 or as high as 1000 monomers, the former value corresponding to short 

oligomers while the latter to well entangled chains, deep in the polymeric regime [67,79,80].  
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3. Results 

Table 3 presents the total number of distinct SAWs, cN, and the mean square end-to-end distance, 〈|𝐰ே|ଶ〉, as a function of SAW steps, N, for the FCC and HCP lattices, along with the difference in the 

number of SAWs, ΔcN (= cN(HCP) – cN(FCC)). The corresponding data for the BCC and HEX crystals 

are presented in Table 4.  

Table 3. Distinct number of SAWS, cN, and mean square end-to-end distance, <|ωN|2>, as a function 

of number of SAW steps, N, for the FCC and HCP crystals. Also reported is the difference in the 

number of SAWs (ΔcN = cN(HCP) – cN(FCC)). 

 FCC HCP Difference 

N cN 〈|𝝎ே|ଶ〉 cN 〈|𝝎ே|ଶ〉 ΔcN 

1 12 1.000 12 1.000 0 

2 132 2.182 132 2.182 0 

3 1404 3.496 1404 3.496 0 

4 14700 4.908 14700 4.908 0 

5 152532 6.397 152532 6.397 0 

6 1573716 7.950 1573728 7.950 12 

7 16172148 9.556 16172340 9.556 192 

8 165697044 11.21 165699744 11.21 2700 

9 1693773924 12.90 1693809348 12.90 35424 

10 17281929564 14.64 17282367084 14.64 437520 

11 176064704412 16.41 176069916384 16.41 5211972 

12 1791455071068 18.21 1791515688168 18.21 60617100 

Table 4. Distinct number of SAWS, cN, and mean square end-to-end distance, <|ωN|2>, as a function 

of number of SAW steps, N, for the BCC and HEX crystals. Also reported are the differences ΔcN (= 

cN(BCC) – cN(HEX)) and Δ<|ωN|2> (=|ωN|2(BCC)- |ωN|2(HEX)). 

 BCC HEX Difference 

N cN 〈|𝝎ே|2〉 cN 〈|𝝎ே|2〉 ΔcN ∆〈|𝝎ே|2〉 
1 8 1.000 8 1.000 0 0.000 

2 56 2.286 56 2.286 0 0.000 

3 392 3.612 380 3.726 12 -0.114 

4 2648 5.124 2540 5.280 108 -0.156 

5 17960 6.645 16844 6.918 1116 -0.274 

6 120056 8.294 111068 8.628 8988 -0.334 

7 804824 9.940 729524 10.40 75300 -0.458 

8 5351720 11.69 4777628 12.22 574092 -0.533 

9 35652680 13.43 31217552 14.09 4435128 -0.661 

10 236291096 15.26 203608520 16.01 32682576 -0.747 

11 1568049560 17.08 1326015428 17.96 242034132 -0.879 

12 10368669992 18.97 8625090800 19.95 1743579192 -0.973 

13 68626647608 20.86 56043338096 21.97 12583309512 -1.11 

14 453032542040 22.81 363826528532 24.02 89206013508 -1.21 

The FCC and HCP crystals show the same number of SAWs up to N = 5 steps. However, for N ≥ 

6 the number of SAWs on the two lattices start to deviate with the HCP crystal showing systematically 

more SAWs than the FCC one. At N = 6, ΔcN = 12, the relative difference is approximately 7.6×10-6. For 

the longest SAW studied here (N = 12) ΔcN = 60,617,100 which corresponds to a relative difference of 

3.4×10-5, showing increasing trends as the SAW grows in length. In parallel, as can be seen by the 

comparison of the related rows in Table 3 the average size of the SAWs in the HCP and FCC lattices 

is the same within a tolerance of 10-5 for all values of N.  
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Similar trends are observed in the comparison of the BCC and HEX crystals as listed in Table 4. 

For N = 3 the BCC crystal has 12 more SAWs compared to the HEX crystal with the relative difference 

being 0.031, significantly higher than the one observed for the HCP-FCC pair at the corresponding 

deviation point (N = 6). For the longest SAW studied here (N = 14) the absolute and relative differences 

for the HEX-BCC pair increase to 89,206,013,508 and 0.20, respectively. Accordingly, even if both 

lattices have the same coordination number (ncoord = 8) the single chain conformations, as quantified 

by the number of SAWs, are significantly fewer in HEX compared to BCC. With respect to average 

size the polymer grown on the HEX lattice is systematically longer than the one on the BCC with the 

relative difference being approximately 0.053 for N = 14.  

The left panel of Figure 1 shows the logarithm of the total number of distinct SAWs, cN, as a 

function of the logarithm of the total number of SAW steps, for all lattices studied here. Also shown 

are the differences of the two pairs (cN(HCP) – cN(FCC)) and cN(BCC) – cN(HEX)). On the right panel 

of Figure 1 we can observe the dependence of the logarithm of the mean square end-to-end distance, 

<|ωN|2 >(X), as calculated from Eq. 1, on the logarithm of the number of SAW steps, N. Furthermore, 

we have fitted all available data with best linear fits corresponding to the scaling formula of Eq. 3. 

Figure 1 shows one such best linear fit corresponding to the data for the HEX crystal, with the 

reliability fitting coefficient being practically equal to 1. The complete set of the parameter values, 

according to Eqs. 2 and 3, as obtained from best linear fits on current SAW data are reported in Table 

5. Very little variation is observed for both the critical amplitude and exponent between the different 

lattices, especially when the FCC and HCP crystals are compared. A minimal trend suggests that the 

exponent increases slightly for the crystals of the lower coordination number, while the opposite 

behavior is observed for the amplitude. Given the short- or intermediate length of the studied SAWs 

the universal exponent of 0.588 is nicely matched for the HCP and FCC crystals. Between the HCP 

and the FCC crystal there is no appreciable difference suggesting that the corresponding SAW sizes 

will be very similar, but strictly not identical, for the limit of infinitely long chains (N → ∞). 

  

Figure 1. (Left panel): Logarithm of the total number of distinct SAWs, cN, as a function of the 

logarithm of the total number of SAW steps, N, for all lattices studied here: HCP, FCC, BCC and HEX. 

Also reported are the corresponding differences between the pairs: ΔcN(HCP-FCC) and ΔcN(BCC-

HEX). The red curve (FCC) is obscured by the blue (HCP) one and the cyan (BCC) by the magenta 

(HEX) due to minimal differences. (Right panel): Logarithm of the mean square end-to-end distance, 

<|ωN|2>, as a function of the logarithm of the total number of SAW steps, N, for all lattices. Also 

shown in green dashed line is the best linear fit on the data for the HEX crystal. 
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Table 5. Critical amplitudes, A and D, critical exponents, γ and v, and connective constant, μ, as 

calculated from best linear fits using the SAW enumeration data as reported in Tables 3 and 4 and 

Figure 1 for the HCP, BCC and HEX lattices. Due to the minimal differences between the HCP and 

FCC crystals in section 4 (Discussion) we present the correlation of the difference. 

Lattice A μ γ D v 

HCP 1.19 10.07 1.134 0.977 0.587 

BCC 1.21 6.565 1.124 0.995 0.593 

HEX 1.24 6.436 1.129 0.994 0.603 

The distribution of the discrete bending angles which are compatible with each lattice studied 

here is given in Figure 2 as a function of the number of SAW steps. For all crystal types as N grows 

the population of obtuse angles experiences small decreases in favor of the acute ones because of the 

self-avoidance condition. The fraction of bending angles with 90o, where available (HCP, FCC and 

HEX), rapidly reaches a stable plateau. Extrapolating the current trends to longer N the most probable 

bending angle is 60º, 60º, 70.53º and 90o for the FCC, HCP, BCC and HEX crystals, respectively.    

 

  

Figure 2. Distribution of discrete bending angles of the SAWs on the (top left) FCC, (top right) HCP, 

(bottom left) BCC and (bottom right) HEX crystals as a function of total number of SAW steps, N. All 

possible SAW bending angles compatible with each crystal are reported in Table 1. For a given angle 

different colors correspond to SAWs of different lengths as indicated in the legend. 

Figure 3 hosts the corresponding results for the distribution of discrete torsion angles which are 

compatible with each lattice crystal. For FCC as N increases the populations at 54.7, 125.3 and 180o 

increase, while the one at 90o shows a significant reduction. Compared to other crystals the SAWs on 

the HCP lattice show a richer behavior with the primary angles resting at 54.7, 70.5, 109.5 and 180o. 

The HEX crystal is the one that shows the smallest variation with increasing number of SAW steps. 
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Figure 3. Distribution of discrete torsion (dihedral) angles of the SAWs on the (top left) FCC, (top 

right) HCP, (bottom left) BCC and (bottom right) HEX lattices as a function of the total number of 

SAW steps, N. All possible SAW torsion angles compatible with each lattice are reported in Table 2. 

For a given angle different colors correspond to SAWs of different lengths as indicated in the legend. 

The distribution of SAW size, as quantified by the square end-to-end distance, |ωN|2 is shown 

in Figures 4 and 5 for the HCP – FCC and BCC – HEX pairs, respectively. The probability distribution 

function (PDF) is presented in the main figure while the cumulative distribution function (CDF) is 

shown in the inset. Given the major differences in the bonded geometry between HCP and FCC 

lattices it is not surprising that the distribution of the SAW size shows significant deviations. 

However, it is interesting to notice that in spite of these variations the global SAW size, on average, 

is indistinguishable between the close packed FCC and HCP crystals as shown in Table 1 and further 

confirmed by the CDF trends in the inset of Figure 4. On the other hand, SAWs on the BCC lattice 

have smaller size than the ones on the HEX as indicated by the concentrated maxima of the BCC 

distribution at small values of the square end-to-end distance. 
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Figure 4. Probability distribution function (PDF) of the square end-to-end SAW distance, |ωN|2, for 

the HCP and FCC crystals for a SAW of N = 11 steps. Inset: cumulative distribution function (CDF) 

for the same systems. 

 

Figure 5. Probability distribution function (PDF) of the square end-to-end SAW distance, |ωN|2, for 

the BCC and HEX crystals for a SAW of N = 14 steps. Inset: cumulative distribution function (CDF) 

for the same systems. 

4. Discussion 

We enumerate and describe the self-avoiding random walks, SAWs, grown on different crystals, 

characterized by the same coordination number (ncoord = 12 or 8). We observe that for the HCP and 

FCC pair once a critical number of steps is reached (N = 6) the distinct number of SAWs becomes 

different. In relative numbers this difference is minute but definitely non-zero with the HCP crystal 

showing a larger number of SAWs compared to FCC (cN(HCP) > cN(FCC)). The present finding is clear 

evidence that the SAW behavior in the HCP and FCC crystals should not be considered as identical 
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even though both are characterized by the same coordination number and packing density. In 

parallel, the average size of SAWs on these two crystals is indistinguishable for the whole range of 

studied SAW steps even if the internal chain/SAW bonded geometry, as quantified by the bending 

and torsion angles, is significantly different with the HCP crystal showing a much richer variety and 

same is true for the size distribution as quantified by the end-to-end distance.  

The main objective of the present work is to provide a quantitative basis for the study of the 

thermodynamic stability of the HCP and FCC crystals made of fully flexible, athermal polymers. As 

mentioned in the introduction by assuming independence of the translational and conformational 

degrees of freedom, an argument which is analyzed in detail in [70], the total entropy of the crystal 

can be considered as the summation of two distinct contributions: the conformational one, ΔSconf, 

dictated by chain connectivity respecting the geometric constraints of the reference crystal, and the 

translational one, ΔStran, which should be very similar to the one of monomeric systems of hard 

spheres, free of any constraints imposed by chain connectivity.  Accordingly, the entropy difference 

of the HCP and FCC crystals can be written as [70]: ∆𝑆ி஼஼ିு஼௉ = ∆𝑆ୡ୭୬୤ி஼஼ିு஼௉ + ∆𝑆୲୰ୟ୬ி஼஼ିு஼௉ = ln ห௻ಷ಴಴หห௻ಹ಴ುห+ ∆𝑆୲୰ୟ୬ி஼஼ିு஼௉    (4)

where Ξ is the complete set (partition function) of all multichain configurations compatible with 

the polymer model (here freely-jointed chains of tangent hard spheres) and the lattice geometry (here 

HCP or FCC), and || denote the cardinality of a set [70]. The translational contribution is known from 

past studies on monomeric analogs [73–75]. Thus, the evaluation of Ξ for the multichain 

configurations is required to arrive at an accurate estimate for ∆𝑆ி஼஼ିு஼௉ but such information is not 

available for any of the crystals. Accordingly, we need to establish an upper-bound, single-chain 

estimation.  The concept of random walks (RWs) would not shed any light given that both crystals 

have the same coordination number and as such the same number of RWs over the whole range of 

steps. Toward this end, as a more refined criterion we resort to self-avoiding random walks (SAWs), 

providing a tighter and more discriminating upper bound estimate for the difference in the 

configurational entropy as [70]: ห௻ಹ಴ುหห௻ಷ಴಴ห < ቀ௖ಿ(ு஼௉)௖ಿ(ி஼஼)ቁே⇔ ln ൬ห௻ಹ಴ುหห௻ಷ಴಴ห൰ = ଵே 𝑙𝑛 ቀ௖ಿ(ு஼௉)௖ಿ(ி஼஼)ቁ   (5)

The data presented here in Tables 3 and 4, and Figure 1 for the HCP-FCC and HEX-BCC pairs 

clearly identify a difference in the number of SAWs once a critical number of steps is reached. The 

ratio of the SAWs in Eq. 5 can be fitted using an asymptotic formula: ೎ಿ(೉)೎ಿ(ೊ)ିଵே = 𝐴 − 𝐵𝑒ିௗே  (6)

where X and Y are the two crystals to be compared and A, B and d are the fitting parameters. 

Fittings using the exponential formula of Eq. 6 on available SAW enumeration data are reported in 

Figure 6. 
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Figure 6. ((cN(X)-cN(Y))-1) / N versus number of steps, N, as obtained from direct SAW enumeration 

for the HCP/FCC and BCC/HEX pairs. Also shown are fittings with the asymptotic formula of Eq. 6. 

Both pairs suggest an asymptotic behavior of the entropy difference per monomer. For the HCP 

and FCC crystals, the established behavior is far from the asymptotic regime and significantly longer 

SAWs are required pointedly increasing the computational complexity of the problem. However, 

application of the exponential formula (Eq. 6) allows the prediction of the ratio for very long SAWs 

from short and intermediate values as the ones presented here. The fitting parameters for the 

HCP/FCC and BCC/HEX are summarized in Table 6. Although the maximum chain length for which 

we could exhaustively enumerate SAWs is moderate, the quality of the fit in Figure 6 suggests that 

the values of the parameter A in Table 6 are a quite accurate approximation to the asymptotic value, 

i.e. for infinite chain length, which is the physically relevant quantity for long polymers. 

Table 6. Fitting parameters A, B and d of the asympotic formula according to Eq. 4 applied on the 

current SAW enumeration data for the HCP/FCC and BCC/HEX pairs of crystal lattices. 

Pair of Crystals A  B  d Range of Validity    

HCP - FCC 3.31×10-6 8.63×10-6 0.24      N > 5    

BCC - HEX 0.0188 0.0144 0.17      N > 2    

Concentrating on the HCP-FCC pair, which is the main focus of the present study, placing the 

asymptotic formula in Eq. 5 and considering the limit of very long chains provides an upper bound 

estimate, ∆𝑆ୡ୭୬୤ி஼஼ିு஼௉ ≈ −0.331 × 10ିହ𝑘 , as the HCP polymer crystal has a higher conformational 

entropy than the FCC one. However, this value is significantly lower than the translational entropy ∆𝑆୲୰ୟ୬ୱி஼஼ିு஼௉ ≈ 112 × 10ିହ𝑘. Accordingly, the FCC is the most stable crystal among the polymorphs for 

freely-jointed polymers of tangent hard spheres.  

5. Conclusions 

Prediction of the thermodynamic stability of crystals made of athermal polymers is significantly 

more complicated than for monomeric analogs due to the presence of constraints imposed by chain 

connectivity. Here, we demonstrate that once a critical number of steps is reached the HCP crystal 

has more self-avoiding random walks than the FCC one. Accordingly, a tight upper bound estimate 

of the conformational entropic advantage of the HCP crystal suggests that this lead is not sufficient 
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to overcome the significantly larger translational advantage of the FCC crystal [70]. Accordingly,  the 

FCC crystal is the thermodynamically most stable crystal and should prevail among competing 

polymorphs, as confirmed by recent off-lattice simulations [71]. The present work is currently being 

extended to tackle freely-rotating chains on crystals in two and three dimensions.  

Author Contributions: Conceptualization, N.C.K. and M.L.; methodology, N.C.K. and M.L.; software, J.B. and 

U.U.; validation, U.U.; data curation, J.B.; writing—original draft preparation, J.B. and N.C.K.; writing—review 

and editing, U.U. and M.L.; funding acquisition, N.C.K. and M.L. All authors have read and agreed to the 

published version of the manuscript. 

Funding: This research was funded by MICINN/FEDER (Ministerio de Ciencia e Innovación. Fondo Europeo de 

Desarrollo Regional), grant numbers “PID2021-127533NB-I00” and “RTI2018-097338-B-I00”. 

Data Availability Statement: Data and SAW enumeration codes are fully available upon request. 

Acknowledgments: Authors deeply thank Prof. Katerina Foteinopoulou, Dr. Miguel Herranz, Patricia Jimenez 

and Ines del Caz for very helpful interactions. The authors acknowledge support through projects “PID2021-

127533NB-I00” and “RTI2018-097338-B-I00” of MINECO/FEDER (Ministerio de Ciencia e Innovación. Fondo 

Europeo de Desarrollo Regional). The authors gratefully acknowledge the Universidad Politécnica de Madrid 

(www.upm.es) for providing computing resources on Magerit Supercomputer through projects “r727” and 

“s341”. 

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the 

study; in the collection, analysis, or interpretation of data; in the writing of the manuscript; or in the decision to 

publish the results. 

References 

1. Doi, M. Soft Matter Physics Oxford University Press: New York, 2017. 

2. Madras, N.; Slade, G. The Self-Avoiding Walk; Birkhauser: Boston, 1996. 

3. Weiss, G.H.; Rubin, R.J. RANDOM-WALKS - THEORY AND SELECTED APPLICATIONS. Adv. Chem. 

Phys. 1983, 52, 363-505. 

4. Webb, B.Z.; Cohen, E.G.D. Self-avoiding modes of motion in a deterministic Lorentz lattice gas. Journal of 

Physics a-Mathematical and Theoretical 2014, 47, doi:10.1088/1751-8113/47/31/315202. 

5. Triampo, D.; Shobsngob, S.; Triampo, W.; Pongkitiwanichkul, P. Modified self-avoiding walk in a 

polymerization process. Journal of the Korean Physical Society 2005, 46, 1429-1432. 

6. Sykes, M.F. SELF-AVOIDING WALKS ON SIMPLE CUBIC LATTICE. J. Chem. Phys. 1963, 39, 410-&, 

doi:10.1063/1.1734262. 

7. Brydges, D.; Frohlich, J.; Spencer, T. THE RANDOM-WALK REPRESENTATION OF CLASSICAL SPIN 

SYSTEMS AND CORRELATION INEQUALITIES. Communications in Mathematical Physics 1982, 83, 123-

150, doi:10.1007/bf01947075. 

8. Alvarez, J.; van Rensburg, E.J.J.; Soteros, C.E.; Whittington, S.G. Self-avoiding polygons and walks in slits. 

Journal of Physics a-Mathematical and Theoretical 2008, 41, doi:10.1088/1751-8113/41/18/185004. 

9. Fisher, M.E.; Sykes, M.F. EXCLUDED-VOLUME PROBLEM AND THE ISING MODEL OF 

FERROMAGNETISM. Physical Review 1959, 114, 45-58, doi:10.1103/PhysRev.114.45. 

10. Stauffer, D.; Aharony, A. Introduction to Percolation Theory: Revised Second Edition; CRC Press: Boca Raton, 

2014. 

11. Janse van Rensburg, E.J. The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles, 2nd ed.; 

Oxford University Press: Oxford, 2015. 

12. Ottinger, H.C. Stochastic Processes in Polymeric Fluids; Springer Science & Business Media: Berlin, 2012. 

13. Rubin, R.J. THE EXCLUDED VOLUME EFFECT IN POLYMER CHAINS AND THE ANALOGOUS 

RANDOM WALK PROBLEM. J. Chem. Phys. 1952, 20, 1940-1945, doi:10.1063/1.1700344. 

14. Rubin, R.J. Random-Walk Model of Chain-Polymer Adsorption at a Surface. J. Chem. Phys. 1965, 43, 2392-

2407, doi:10.1063/1.1697138. 

15. Fisher, M.E. SHAPE OF A SELF-AVOIDING WALK OR POLYMER CHAIN. J. Chem. Phys. 1966, 44, 616-

&, doi:10.1063/1.1726734. 

16. Helfand, E. THEORY OF INHOMOGENEOUS POLYMERS - FUNDAMENTALS OF GAUSSIAN 

RANDOM-WALK MODEL. J. Chem. Phys. 1975, 62, 999-1005, doi:10.1063/1.430517. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2023                   doi:10.20944/preprints202308.0999.v1

https://doi.org/10.20944/preprints202308.0999.v1


 13 

 

17. Rubinstein, M.; Colby, R.H. Polymer Physics (Chemistry); Oxford University Press: Oxford, 2003. 

18. deGennes, P.G. Scaling Concepts in Polymer physics; Cornell University Press: Ithaca, 1980. 

19. Guyeux, C.; Nicod, J.M.; Philippe, L.; Bahi, J.M. The study of unfoldable self-avoiding walks - Application 

to protein structure prediction software. Journal of Bioinformatics and Computational Biology 2015, 13, 

doi:10.1142/s0219720015500092. 

20. Guyeux, C.; Charr, J.C.; Abdo, J.B.; Demerjian, J. Advances in the enumeration of foldable self-avoiding 

walks. International Journal of Computational Science and Engineering 2020, 22, 365-375, 

doi:10.1504/ijcse.2020.109398. 

21. Flory, P.J. THE CONFIGURATION OF REAL POLYMER CHAINS. J. Chem. Phys. 1949, 17, 303-310, 

doi:10.1063/1.1747243. 

22. Orr, W.J.C. STATISTICAL TREATMENT OF POLYMER SOLUTIONS AT INFINITE DILUTION. Trans. 

Faraday Soc. 1947, 43, 12-27, doi:10.1039/tf9474300012. 

23. Janse Van Rensburg, E.J.; Whittington, S.G. Self-avoiding walks adsorbed at a surface and pulled at their 

mid-point. Journal of Physics a-Mathematical and Theoretical 2017, 50, doi:10.1088/1751-8121/aa542d. 

24. Pereira, G.G. INTERNAL STRUCTURE OF POLYMER-CHAINS. Physica A 1995, 219, 290-304, 

doi:10.1016/0378-4371(95)00189-e. 

25. Rosa, A.; Everaers, R. Conformational statistics of randomly branching double-folded ring polymers. 

European Physical Journal E 2019, 42, doi:10.1140/epje/i2019-11765-3. 

26. Bishop, M.; Clarke, J.H.R. INVESTIGATION OF THE END-TO-END DISTANCE DISTRIBUTION 

FUNCTION FOR RANDOM AND SELF-AVOIDING WALKS IN 2 AND 3 DIMENSIONS. J. Chem. Phys. 

1991, 94, 3936-3942, doi:10.1063/1.460670. 

27. Clisby, N.; Conway, A.R.; Guttmann, A.J. Three-dimensional terminally attached self-avoiding walks and 

bridges. Journal of Physics a-Mathematical and Theoretical 2016, 49, doi:10.1088/1751-8113/49/1/015004. 

28. Yang, Q.H.; Yang, X.; Luo, M.B. Adsorption of polymer chains on heterogeneous surfaces with random 

adsorption sites. Polymer 2019, 180, doi:10.1016/j.polymer.2019.121677. 

29. Domb, C.; Gillis, J.; Wilmers, G. ON SHAPE AND CONFIGURATION OF POLYMER MOLECULES. 

Proceedings of the Physical Society of London 1965, 85, 625-&, doi:10.1088/0370-1328/85/4/302. 

30. Beaton, N.R.; Flajolet, P.; Garoni, T.M.; Guttmann, A.J. Some New Self-avoiding Walk and Polygon Models. 

Fundamenta Informaticae 2012, 117, 19-33, doi:10.3233/fi-2012-686. 

31. Bosi, G.; Campanino, M. Random Walk on a Randomly Oriented Honeycomb Lattice. Markov Processes and 

Related Fields 2019, 25, 75-99. 

32. Adler, J. THE SELF-AVOIDING WALK ON THE HONEYCOMB LATTICE. Journal of Physics a-

Mathematical and General 1983, 16, L515-L517, doi:10.1088/0305-4470/16/14/005. 

33. Beaton, N.R.; Guttmann, A.J.; Jensen, I. A numerical adaptation of self-avoiding walk identities from the 

honeycomb to other 2D lattices. Journal of Physics a-Mathematical and Theoretical 2012, 45, doi:10.1088/1751-

8113/45/3/035201. 

34. Deforcrand, P.; Koukiou, F.; Petritis, D. SELF-AVOIDING RANDOM-WALKS ON THE HEXAGONAL 

LATTICE. Journal of Statistical Physics 1986, 45, 459-470, doi:10.1007/bf01021082. 

35. Guttmann, A.J. ON THE CRITICAL-BEHAVIOR OF SELF-AVOIDING WALKS. Journal of Physics a-

Mathematical and General 1987, 20, 1839-1854, doi:10.1088/0305-4470/20/7/029. 

36. Macdonald, D.; Hunter, D.L.; Kelly, K.; Jan, N. SELF-AVOIDING WALKS IN 2 TO 5 DIMENSIONS - 

EXACT ENUMERATIONS AND SERIES STUDY. Journal of Physics a-Mathematical and General 1992, 25, 

1429-1440, doi:10.1088/0305-4470/25/6/006. 

37. Jensen, I. Self-avoiding walks and polygons on the triangular lattice. Journal of Statistical Mechanics-Theory 

and Experiment 2004, 10.1088/1742-5468/2004/10/p10008, doi:10.1088/1742-5468/2004/10/p10008. 

38. Guttmann, A.J. ON THE CRITICAL-BEHAVIOR OF SELF-AVOIDING WALKS .2. Journal of Physics a-

Mathematical and General 1989, 22, 2807-2813, doi:10.1088/0305-4470/22/14/027. 

39. MacDonald, D.; Joseph, S.; Hunter, D.L.; Moseley, L.L.; Jan, N.; Guttmann, A.J. Self-avoiding walks on the 

simple cubic lattice. Journal of Physics a-Mathematical and General 2000, 33, 5973-5983, doi:10.1088/0305-

4470/33/34/303. 

40. Schram, R.D.; Barkema, G.T.; Bisseling, R.H. Exact enumeration of self-avoiding walks. Journal of Statistical 

Mechanics-Theory and Experiment 2011, 10.1088/1742-5468/2011/06/p06019, doi:10.1088/1742-

5468/2011/06/p06019. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2023                   doi:10.20944/preprints202308.0999.v1

https://doi.org/10.20944/preprints202308.0999.v1


 14 

 

41. Schram, R.D.; Barkema, G.T.; Bisseling, R.H.; Clisby, N. Exact enumeration of self-avoiding walks on BCC 

and FCC lattices. Journal of Statistical Mechanics-Theory and Experiment 2017, 10.1088/1742-5468/aa819f, 

doi:10.1088/1742-5468/aa819f. 

42. McKenzie, D.S. END-TO-END LENGTH DISTRIBUTION OF SELF-AVOIDING WALKS. Journal of Physics 

a-Mathematical and General 1973, 6, 338-352, doi:10.1088/0305-4470/6/3/009. 

43. Bahi, J.M.; Guyeux, C.; Mazouzi, K.; Philippe, L. Computational investigations of folded self-avoiding 

walks related to protein folding. Comput. Biol. Chem. 2013, 47, 246-256, 

doi:10.1016/j.compbiolchem.2013.10.001. 

44. Duminil-Copin, H.; Hammond, A. Self-Avoiding Walk is Sub-Ballistic. Communications in Mathematical 

Physics 2013, 324, 401-423, doi:10.1007/s00220-013-1811-1. 

45. Duminil-Copin, H.; Glazman, A.; Hammond, A.; Manolescu, I. ON THE PROBABILITY THAT SELF-

AVOIDING WALK ENDS AT A GIVEN POINT. Annals of Probability 2016, 44, 955-983, doi:10.1214/14-

aop993. 

46. Duminil-Copin, H.; Ganguly, S.; Hammond, A.; Manolescu, I. BOUNDING THE NUMBER OF SELF-

AVOIDING WALKS: HAMMERSLEY-WELSH WITH POLYGON INSERTION. Annals of Probability 2020, 

48, 1644-1692, doi:10.1214/19-aop1400. 

47. Caracciolo, S.; Pelissetto, A.; Sokal, A.D. DYNAMIC CRITICAL EXPONENT OF THE BFACF 

ALGORITHM FOR SELF-AVOIDING WALKS. Journal of Statistical Physics 1991, 63, 857-865, 

doi:10.1007/bf01029987. 

48. Caracciolo, S.; Causo, M.S.; Ferraro, G.; Papinutto, M.; Pelissetto, A. Bilocal dynamics for self-avoiding 

walks. Journal of Statistical Physics 2000, 100, 1111-1145, doi:10.1023/a:1018719226557. 

49. Caracciolo, S.; Gherardi, M.; Papinutto, M.; Pelissetto, A. Geometrical properties of two-dimensional 

interacting self-avoiding walks at the theta-point. Journal of Physics a-Mathematical and Theoretical 2011, 44, 

doi:10.1088/1751-8113/44/11/115004. 

50. Hooper, W.; Klotz, A.R. Trapping in self-avoiding walks with nearest-neighbor attraction. Phys. Rev. E 2020, 

102, doi:10.1103/PhysRevE.102.032132. 

51. Brydges, D.C.; Imbrie, J.Z. Green's function for a hierarchical self-avoiding walk in four dimensions. 

Communications in Mathematical Physics 2003, 239, 549-584, doi:10.1007/s00220-003-0886-5. 

52. Gherardi, M. Exact Sampling of Self-avoiding Paths via Discrete Schramm-Loewner Evolution. Journal of 

Statistical Physics 2010, 140, 1115-1129, doi:10.1007/s10955-010-0031-8. 

53. Grimmett, G.R.; Li, Z.Y. Self-avoiding walks and amenability. Electronic Journal of Combinatorics 2017, 24. 

54. Lindorfer, C. A general bridge theorem for self-avoiding walks. Discrete Mathematics 2020, 343, 

doi:10.1016/j.disc.2020.112092. 

55. Zbarsky, S. Asymptotically faster algorithm for counting self-avoiding walks and self-avoiding polygons. 

Journal of Physics a-Mathematical and Theoretical 2019, 52, doi:10.1088/1751-8121/ab52b0. 

56. James, E.W.; Soteros, C.E. New pattern theorems for square lattice self-avoiding walks and self-avoiding 

polygons. Journal of Physics a-Mathematical and Theoretical 2007, 40, 8621-8634, doi:10.1088/1751-

8113/40/30/002. 

57. Schram, R.D.; Barkema, G.T.; Bisseling, R.H. SAWdoubler: A program for counting self-avoiding walks. 

Comput. Phys. Commun. 2013, 184, 891-898, doi:10.1016/j.cpc.2012.10.026. 

58. Duminil-Copin, H.; Smirnov, S. The connective constant of the honeycomb lattice equals root 2+root 2. 

Annals of Mathematics 2012, 175, 1653-1665, doi:10.4007/annals.2012.175.3.14. 

59. Clisby, N.; Dunweg, B. High-precision estimate of the hydrodynamic radius for self-avoiding walks. Phys. 

Rev. E 2016, 94, doi:10.1103/PhysRevE.94.052102. 

60. Clisby, N. Accurate Estimate of the Critical Exponent nu for Self-Avoiding Walks via a Fast Implementation 

of the Pivot Algorithm. Phys. Rev. Lett. 2010, 104, doi:10.1103/PhysRevLett.104.055702. 

61. Conway, A.R.; Enting, I.G.; Guttmann, A.J. ALGEBRAIC TECHNIQUES FOR ENUMERATING SELF-

AVOIDING WALKS ON THE SQUARE LATTICE. Journal of Physics a-Mathematical and General 1993, 26, 

1519-1534, doi:10.1088/0305-4470/26/7/012. 

62. Conway, A.R.; Guttmann, A.J. Square lattice self-avoiding walks and corrections to scaling. Phys. Rev. Lett. 

1996, 77, 5284-5287, doi:10.1103/PhysRevLett.77.5284. 

63. Shukla, P. Physics of disordered solids; Mittal Publications: Delhi, 1982. 

64. Benito, J.; Karayiannis, N.C.; Laso, M. Confined Polymers as Self-Avoiding Random Walks on Restricted 

Lattices. Polymers 2018, 10, doi:10.3390/polym10121394. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2023                   doi:10.20944/preprints202308.0999.v1

https://doi.org/10.20944/preprints202308.0999.v1


 15 

 

65. Parreno, O.; Miguel Ramos, P.; Karayiannis, N.C.; Laso, M. Self-Avoiding Random Walks as a Model to 

Study Athermal Linear Polymers under Extreme Plate Confinement. Polymers 2020, 12, 

doi:10.3390/polym12040799. 

66. Ramos, P.M.; Karayiannis, N.C.; Laso, M. Off-lattice simulation algorithms for athermal chain molecules 

under extreme confinement. J. Comput. Phys. 2018, 375, 918-934, doi:10.1016/j.jcp.2018.08.052. 

67. Ramos, P.M.; Herranz, M.; Foteinopoulou, K.; Karayiannis, N.C.; Laso, M. Entropy-Driven Heterogeneous 

Crystallization of Hard-Sphere Chains under Unidimensional Confinement. Polymers 2021, 13, 

doi:10.3390/polym13091352. 

68. Ramos, P.M.; Herranz, M.; Martinez-Fernandez, D.; Foteinopoulou, K.; Laso, M.; Karayiannis, N.C. 

Crystallization of Flexible Chains of Tangent Hard Spheres under Full Confinement. J. Phys. Chem. B 2022, 

126, 5931-5947, doi:10.1021/acs.jpcb.2c03424. 

69. Ostwald, W. Studien uber die bildung and umwandlung fester korper. Z. Phys. Chem. 1897, 22, 289-330. 

70. Herranz, M.; Benito, J.; Foteinopoulou, K.; Karayiannis, N.C.; Laso, M. Polymorph Stability and Free 

Energy of Crystallization of Freely-Jointed Polymers of Hard Spheres. Polymers 2023, 15, 

doi:10.3390/polym15061335. 

71. Herranz, M.; Foteinopoulou, K.; Karayiannis, N.C.; Laso, M. Polymorphism and Perfection in 

Crystallization of Hard Sphere Polymers. Polymers 2022, 14, doi:10.3390/polym14204435. 

72. Herranz, M.; Pedrosa, C.; Martínez-Fernández, D.; Foteinopoulou, K.; Karayiannis, N.C.; Laso, M. Fine-

tuning of colloidal polymer crystals by molecular simulation. Phys. Rev. E 2023, 107, 064605, 

doi:10.1103/PhysRevE.107.064605. 

73. Bolhuis, P.G.; Frenkel, D.; Mau, S.C.; Huse, D.A. Entropy difference between crystal phases. Nature 1997, 

388, 235-236, doi:10.1038/40779. 

74. Bruce, A.D.; Wilding, N.B.; Ackland, G.J. Free energy of crystalline solids: A lattice-switch Monte Carlo 

method. Phys. Rev. Lett. 1997, 79, 3002-3005, doi:10.1103/PhysRevLett.79.3002. 

75. Mau, S.C.; Huse, D.A. Stacking entropy of hard-sphere crystals. Phys. Rev. E 1999, 59, 4396-4401, 

doi:10.1103/PhysRevE.59.4396. 

76. Pronk, S.; Frenkel, D. Can stacking faults in hard-sphere crystals anneal out spontaneously? J. Chem. Phys. 

1999, 110, 4589-4592, doi:10.1063/1.478339. 

77. Herranz, M.; Martínez-Fernández, D.; Ramos, P.M.; Foteinopoulou, K.; Karayiannis, N.C.; Laso, M. Simu-

D: A Simulator-Descriptor Suite for Polymer-Based Systems under Extreme Conditions. Int. J. Mol. Sci. 

2021, 22, 12464. 

78. Herranz, M.; Santiago, M.; Foteinopoulou, K.; Karayiannis, N.C.; Laso, M. Crystal, Fivefold and Glass 

Formation in Clusters of Polymers Interacting with the Square Well Potential. Polymers 2020, 12, 

doi:10.3390/polym12051111. 

79. Karayiannis, N.C.; Foteinopoulou, K.; Laso, M. Entropy-Driven Crystallization in Dense Systems of 

Athermal Chain Molecules. Phys. Rev. Lett. 2009, 103, doi:10.1103/PhysRevLett.103.045703. 

80. Karayiannis, N.C.; Foteinopoulou, K.; Laso, M. The role of bond tangency and bond gap in hard sphere 

crystallization of chains. Soft Matter 2015, 11, 1688-1700, doi:10.1039/c4sm02707h. 

81. Allen, M.P.; Tildesley, D.J. Computer Simulation of Liquids; Oxford University Press: New York, 1987. 

82. Ramos, P.M.; Herranz, M.; Foteinopoulou, K.; Karayiannis, N.C.; Laso, M. Identification of Local Structure 

in 2-D and 3-D Atomic Systems through Crystallographic Analysis. Crystals 2020, 10, 

doi:10.3390/cryst10111008. 

83. Frank, F.C.; Kasper, J.S. COMPLEX ALLOY STRUCTURES REGARDED AS SPHERE PACKINGS .1. 

DEFINITIONS AND BASIC PRINCIPLES. Acta Crystallogr. 1958, 11, 184-190, 

doi:10.1107/s0365110x58000487. 

84. Frank, F.C.; Kasper, J.S. COMPLEX ALLOY STRUCTURES REGARDED AS SPHERE PACKING .2. 

ANALYSIS AND CLASSIFICATION OF REPRESENTATIVE STRUCTURES. Acta Crystallogr. 1959, 12, 483-

499, doi:10.1107/s0365110x59001499. 

85. Serrano-Illán, J.; Navascués, G.; Velasco, E. Noncompact crystalline solids in the square-well potential. 

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2006, 73, 011110, doi:10.1103/PhysRevE.73.011110. 

86. Armas-Pérez, J.C.; Quintana-H, J.; Chapela, G.A.; Velasco, E.; Navascués, G. Phase diagram of a square-

well model in two dimensions. The Journal of Chemical Physics 2014, 140, 064503, doi:10.1063/1.4863993. 

87. Clisby, N. Scale-free Monte Carlo method for calculating the critical exponent. of self-avoiding walks. 

Journal of Physics a-Mathematical and Theoretical 2017, 50, doi:10.1088/1751-8121/aa7231. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2023                   doi:10.20944/preprints202308.0999.v1

https://doi.org/10.20944/preprints202308.0999.v1


 16 

 

88. Sykes, M.F.; Watts, M.G.; Roberts, P.D.; Guttmann, A.J. ASYMPTOTIC BEHAVIOR OF SELFAVOIDING 

WALKS AND RETURNS ON A LATTICE. Journal of Physics Part a General 1972, 5, 653-&, doi:10.1088/0305-

4470/5/5/006. 

89. Clisby, N.; Liang, R.; Slade, G. Self-avoiding walk enumeration via the lace expansion. Journal of Physics a-

Mathematical and Theoretical 2007, 40, 10973-11017, doi:10.1088/1751-8113/40/36/003. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 August 2023                   doi:10.20944/preprints202308.0999.v1

https://doi.org/10.20944/preprints202308.0999.v1

