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Abstract: As a consequence of applying advanced maintenance practices, the theoretical probability of failures
is relatively low. However, observation of low market intelligence and maintenance management has been
reported. The experimental investigation is supported by findings from a survey targeting asset-intensive
companies applying hydraulic power systems. Next, the study incorporates multidimensional data analysis
using CA-AHC (Correspondance Analysis with Agglomerative Hierarchical Clustering) approach. The non-
parametric machine learning models are used from generated feature subspace to extract features affecting
maintenance performance indicators. The results support empirical evidence that equipment age increases the
probability of failures. However, the novel findings show that number of maintenance personnel, equipment
size measured by nominal working energy consumption, and activities dedicated to maintaining fluid
cleanliness impact regression results of companies utilising hydraulic applications.
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1. Introduction

1.1. Background and Rationale

Companies have always been aware of the risk associated with their operational and production
processes. Although there are many risk factors, the maintenance function is mainly related to
operational performance and overall equipment effectiveness [1]. Although usually perceived as a
“necessary evil” nowadays, many consider maintenance a strategic move for gaining a competitive
advantage [2]. However, uncoordinated investments and poor management severely affect RAM
(Reliability, Availability and Maintainability) [3], which is why many companies face difficulties in
implementing advanced data-driven and sustainable practices [4]. Such issues are mainly attributed
to problems of selecting appropriate Maintenance Practice (MP), implementation suitability [5],
industrial environment [6], asset management risks [7], and other technological issues.

Consequently, the Maintenance Strategy Selection (MSS) domain emerged for dealing with these
multiple interrelated issues. Although the MSS provided a “bright avenue” for dealing with
disruptive market demands, problems associated with complex applications, lack of personnel, and
around-the-clock industrial requirements led to human factor deficiencies and poor decision-making
[7].

The problem is that maintenance managers have preconceived notions about “good” or “bad”
maintenance strategies. Thus, many believe that adopting PdM (Predictive Maintenance) will
significantly reduce their downtime and improve production flows, which is a misconception. This
is especially an issue in companies adopting PdM as a cost-cutting and time-reducing practice [8],
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believing that Al (Artificial Intelligence) will significantly advance their performance [9], which
ultimately fails to fulfill the expectations [10].

1.2. Literature review

With the expansion of PdM 4.0 [11], the performance and competitiveness of manufacturing
companies strongly depend on the reliability and availability of manufacturing assets. Recent studies
acknowledge that lacking maintenance knowledge and skills will have practical/financial
implications [12]. Although issues are constantly assessed in smaller companies, there is a lack of
evidence considering large-scale applications. Some argue that the efficiency of maintenance play a
pivotal role in securing profit [13,14]. Most, however, argue that OEE (Overall Equipment
Effectiveness), is one of the driving factors fothe r selection of MSS. Although there is an extensive
literature on MPIs (Maintenance Performance Indicators), the availability [6], with MTBF (Mean-
Time-Between-Failure) and MTTR (Mean-Time-To-Repair) as cores [7], are mostly highlighted as
most important MPIs [15]. As noticed, the indicators do not include qualitative data (e.g.,
maintenance activities) that usually exist in practice. This is primarily because such information is
hard to collect, process and maintain over time.

As many studies incorporate machine and deep learning techniques in diagnosis and prognosis
[16,17], while also for reliability modelling and optimisation [18], there is a lack of use machine
learning and multidimensional data analysis from a strategic and tactical standpoint [19]. This is
especially the case in asset-intensive industries with heavy-duty machinery such as hydraulic power
systems. Moreover, existing body-of-knowledge within the sphere of hydraulic system maintenance
is mostly concerned with diagnostic and prognostic aspect [20], there is a lack of empricial evidence
on the issues affecting maintenance performance from a management perspective. As such, there is
lack of evidence regarding the impact of latent factors affecting output maintenance performance
metrics (e.g., MTBF, MTTR).

Nevertheless, entering digitalisation and cloud computing era, many companies incorporate
visual analytics [21] for assessing business issues by relying on MDA (Multivariate Data Analysis)
[22]. The benefits of using MDA is in its ability to incorporate multidimensional data: unstructured
text, categorical data, numerical data, logs, binary data, etc., and project such data in a lower-
dimensional subspace for investigating latent indicators [23] that impact production performance.
Although there has not been much engagement in maintenance management, visual analytics with
MDA are landscaping other fields, such as business management, disaster management, and many
other fields [24]. As such, the study intent is to use MDA for allocating features impacting
maintenance performance that can be considered for improvement of higher-level maintenance
decision-making.

1.3. Aims and objectives

With the idea of using textual and numerical data, performed experimental analysis is done by
surveying companies utilising hydraulic systems. By conducting longitudinal study over the course
of three years, the evidence gathered helped us gain insights into potential relationships between
applied MPs and output results. Namely, using MDA, we extrapolate feature subspace through
Correspondance Analysis (CA). Using CA, the aim of the study is to generate components by
combining MPs with associated CFT (Component Failure Types) and RCF (Root Causes of Failure)
for benchmarking MPs in terms of output performance. Next, the goal is to extract most important
features impacting maintenance performance (e.g., MTBF, MTTR) using machine learning
algorithms.

The rest of the study is structured as follows. The methodology describes survey design,
synthesis and processing data with an in-detail description of the analysis. The third chapter provides
descriptive statistics and research results. The fourth chapter includes discussion of research results
and post hoc analysis considering MMPs. The last chapter provides concluding remarks, implications
and future research directions.
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2. Methodology

2.1. Study design

The study workflow consists of three parts: (a) survey design and realisation; (b) survey data
processing and wrangling; and (c) feature subspace extraction and data analysis. The design of the
survey is performed in several iterations consistsing of the organisational, maintenance management
and performance characterstics. After data was obtained the CA and Agglomerative Hierarchical
Clustering (AHC) are used to generate a feature subspace. Finally, selected MPs are used in
conjunction with output performance metrics to isolate the features, including programs, factors and
activities using machine learning (ML) algorithms.

2.2. Survey design and realisation

Design of survey items started with a systematic review of the literature (Task 1) regarding
keywords and search strings: “maintenance performance indicators” AND “hydraulic system”. After the
review, the authors individually synthesised indicators (Task 2) from the literature and extracted the
most important ones (Task 3) while respecting interrater agreement using Cohens’ K = 0.89. The first
draft is used to target companies utilising hydraulic applications in West Balkan Penninsula (Task
4). Consultations with experts helped eliminate unnecessary indicators and modify the survey (Task
5). After redesigning the first draft (Task 6), the simulation is performed within the sample of 5
companies (Task 7). The feedback from experts (Task 8) helped eliminate most survey items due to
time, understanding of metics, and lack of records. In the final version of the survey (Task 9) all three
companies agreed to 22 questions (with 5 sub-questions). The first realisation phase started on
September 2019 (Task 10). In the first run, a total of 81 samples were collected. In the second run
(September 2020 - June 2021), 100 companies participated. In the final run, 115 companies participated
and shared the data. The survey is available in Supplementary Material 1.

2.3. Survey items and data extraction

The survey design (Figure 1) started in February 2019 and lasted until June 2019. Segmentation
of survey questions include three facets, namely: (i) organisational characteristics; (ii) characteristics
of maintenance functions; and (iii) output data as performance metrics. The organisational facet
includes questions regarding organisational structure and asset characteristics. The maintenance
characteristics include department size and staff; qualifications; condition monitoring (e.g., sensors,
instruments); preventive/corrective activities (e.g., filter replacement time). The output performance
metrics measured include MTBF; MTTR (Mean-time-to-repair); CFT; RCF; and WOMM (wasted oil
per month-machine).
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Figure 1. Study design and data wrangling process.
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Tasks and activities

Task 1. Systematic Literature Review
Conducting SLR based on keywords and
search strings: "Maintenance Performance
indicator" AND "hydraulic system”

Task 2. Allocating indicators
Based on the search strings and strategy use
inclusion criteria and exclusion criteria. Use
parameters for estimating item reliabilii

Task 3. Indicator synthesis
Based on the extracted indicators, does the
Cohen's kappa agreement satisfy >.7 among
researchers who reviewed articles?
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Description

Conducting literature review of industrial
maintenance practices for extracting relevant
maintenance performance indicators.

Identification and selection of indicators of
maintenance practices within the context of
maintenance of hydraulic systems.

Classification —of MPIs —according to
empirical evidence from the literature.
Adding or removing indicators and reaching
interrater agreement.

Task 4. Preliminary draft

Determining contextual setting of the survey
realisation: geographical area, maintenance
Junction area; types, applications, etc. ________ |
Task 5. Academia feedback

Do colleagues in the area of industrial
maintenance consider questionnaire items

Correction of survey questions and items.
Academic consultations. Improvement of the
survey. Eliminating unrelevant items.

Consultations ~ with — academic  experts
engaged in hydraulic system maintenance.
Consultations with industrial companies.

Task 6. Continuous improvement
Incorporate suggestions from reviewers of
the survey draft and redesign accordingly.
Does the improvement of the survey satisfies
required level for gathering evidence?

Task 7. Simulation study Conducting simulation (pilot) study of the
Use defined geographical area. Contact survey. Based on the pilot study response, the
companies by email, in person and email. survey is checked for understanding,
Ask for understanding of items. Feedback. completeneess, reliability and validity.

Improvement of the survey after suggestions
made by experts eng 1 in the mail e
practice  of hydraulic power  systems.
Redesigning the survey for the simulation.

Task 8. Industry consultations Y Feedback from industrial experts (managers,

Is the survey understandable? Do items exist N engineers, technicians, shop flor operators).
y e in industrial encirel 5 [ Industrial experts } e : . P o o

or measuring in industrial encirclement: Poor response rate. Hard to understand some

Removing 55 questions from survey due to
interpretation, lack of understandment and

Task 9. Final draft of the survey %
Improvement?
Are items understandable? Measured? N management system. Lack of available data.

Change and eliminate items that are unable

Does it require improvement by experts? questions. Biased answers. Redesign.
to be measured and recorded. Redesign low records. Requires time to collect. Not
survey again and sent to different experts. available in the quality (maintenance)
Launching of the survey with 21 questions
L including subquestions that are available and
Survey realisation understandable for completition. Using a
Figure 1. Survey design workflow.

survey as a longitudinal study.

Task 10. Survey realisation
Retrival of surveys and data management.
Data wrangling, maniuplation and data
analysis.

2.4. Correspondence analysis

Since survey contains mostly categorical data, the contingency tables is formed and 2 distance
metrics is used for CA. The contingency table(s) considers i categories (rows) of variable V1, where i
=1, 2... 1, and j categories (columns) of variable V2 where j =1, 2...]. The value xijcorresponds to the
values of variable with i rows and j columns, with n instances. Using contingency tables, we first

calculate probabilities as follows:
Xii
fiy ==, (1)

n

where the sum of rows equals marginal probability:

fi=Ziza fij 2)
and for the sum of columns, the marginal probability:

fi = Zjaa fi 3)
The relationship between selected variables measured by the x2distance:

(nfij—nfif j)*

Xops = Thr Xjey nfifj ' @

where nfij is observed probability and nfif; is the theoretical probability, and factoring out n out
of eq. 4, we get total inertia Q%
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Fij=fif j)? _

2
fifj ne”. )

ngs = §=1 Z;:ln

The CA is described as point clouds proposed by [25], alongside mathematical formulations
[26,27]. Considering row profiles i, we obtain a cloud of profiles Ni. With generated point cloud, we
add G: point, depicted as the centre of gravity with coordinate f;. The G can be considered a centre
of gravity if we associate each point i with the weight proportional to its marginal value (f.). The
space then compares profile i with the Gi by distance measure. As stated, distance between i and i” is
defined:

2 iy =) L (fu_Tui)?
dxz(l'l)_zjzlf.j(fi. fu,) ' ©6)

Although it can suggest Euclidian distance, the x> compares the sum of differences where each
dimension | is associated with the weight 1/f;. Therefore, the centre of the gravity G corresponds to
the mean profile as:

. 1 (fii 2
d2,6) = Sh (2= 1) - 7)

The same principles are used for estimating the distances in the column profile. A column profile
is a set of I values in R dimensional space. The coordinate of the jth point is fi/f; and j points together
to form the Nj cloud. The central point, i.e., the centre of gravity G, is added with coordinate fi in the
Ith dimension. The Gr is the centre of gravity as long as we assign a column profile j a weight
corresponding to its marginal probability f;. Same as row profiles, we estimate the distances between
points j and j” with x2 distance as:

2
2 iy i&_fij!) 3
4220, = S (- 22), ®)

and the centre of gravity Gy is estimated as:

@%(i,6)) = S (- 1) ©)

J
If independence exists, the conditional probability equals marginal probability for all i (f; = fi/f.),
meaning that all profiles are the same as the mean, i.e., Nirbecomes Gr. As such, we measure the inertia
by the eq. 5 as:
L (ND s Ji (fij—fi.f.j)z_)(_z_ 2
Inertia (Gz) =it Zj:l—fi.f.j == ®-, (10)
The same holds for Nj, Inertia(N)/G)) = Inertia(Ni/G1). Therefore, ®2? presents the strength of the

link. The CA proceeds, as all components (i.e., factors), by projecting Ni to axes C1 and C2, forming a
plane P. Finding a plane P is determined by the criteria of maximum inertia, such that:

i=1 fi (OH})?, (11)

is maximal and is used to determine the Mi point that corresponds to the Ith profile on the plane
P, where OHi represents the distance to the origin Gr = O. The plane P is the sum of the inertia such
that projected H: overall i is maximal. The C1and C2 axes (components) represent maximal inertia
such that C2.LC1, and as a result, we get plane P. The inertia As of the sth axis is then:

=1 fi (OH])? = 2, (12)

and As represents the eigenvalue of the Cs. Calculating fi on Cs (same for column) over the total
inertia of the As is:

fi(OH})?

Contribution(f;, As) = )
S

, (13)

where summation leads to the inertia of Cs, and we determine the quality (Qual) of the
representation as:
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— 2:€=1fi.(0HiS)2 _ As 14
Quals = S = omy? = T (14)

where OM.i is the distance of M point to origin O. The numerator represents the inertia of N: on

the axis Cs, and the denominator is the total Inertia(Nr) = ®2. Calculating position on the plot of rows

and columns, we use transitional formulas for determining coordinates of i row on the sth axis (Fs)
as:

N 1w fijn

FE@ =737 60, (15)
where Gs(j) is the coordinate of the column j on the sth axis, and As is the inertia of the sth axis.
Permuting Gs and Fs, we get the same outcome for the different barycentre. Intuitively, the number

axes is S <min(J — 1, I — 1) that contain non-zero inertia. Estimating @2 of points axes gives us:

@2 = 3D < min(l - 1,] — 1). (16)

2.5. Clustering CA-components using AHC

Agglomerative Hierarchical Clustering (AHC) is added to replace the inability of CA to project
data in more than three dimensions. The two important measures of the AHC is distance and linkage.
The AHC assumes that each point x is a singleton [28]. The algorithm creates a collection of higher-
level clusters c¢i by merging the point(s) (singletons) into a new cluster ¢i. For measuring distances
between points, the Euclidian distance is used [29]:

ED(p,q) = yEi(pi — 9)* = llxe — xcr1l, (17)

where p and g are coordinates of c. For the cluster linkage we use Ward’s method [30]. The
method is imputed by the Lance-Williams algorithm [29] and calculated as:

lillji 2
d(gig;) =7, e — &l (18)

where agglomeration factors are estimated by the Lance-Williams dissimilarity:

[i|+1k]

a; = ;B =

i+l KL

Ikl
lil+1j1+kl

;v=0, (19)

such that lil represents the number of objects in cluster i, g represents the centre coordinates
estimated as:

__lilgi+ljlgj
8= Tl 20)
After obtaining the distance metrics the clustering of principal components, the CA-AHC is

performed.
3. Research results

3.1. Survey insights and descriptives

From the sample of 297 companies, the 7.41% (22 companies) of respondents strictly underlined
that they were unwilling to participate in the study. The 19.53% (58 companies) of respondents were
willing to participate in the survey; however, the results were not obtained even after contacting three
times. Next 34.3% of respondents (102 companies) did not respond. The final dataset comprises 115
companies (38.72% response rate).

The samples consists of large (51.3%), medium (37.4%), and small (11.3%) companies. According
to NACE (Nomenclature of Economic Activities), respondents comprise of: 8.7% AFF (Agriculture,
forestry, and fishing), 19.1% CON (Construction), 47.0% MAN (Manufacturing) and 25.2% M&Q
(Mining and Quarrying). Considering the asset characteristics, the HMA (Hydraulic Machinery Age)
shows average distribution across classes (Table 1). The NoM (Number of Machines) is the largest in
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Mé&Q. The MPPM (Maintenance Personnel per Machine) is highest in MAN (0.75), and lowest in

CON (0.45).
Table 1. Descriptive statistics of survey results.
Feature AFF! CON! MAN! M&Q!
HMA 10.5 10.25 11.80 10.54
NoM 62.4 41.86 52.94 85.2
MPPM 0.55 0.37 1.09 0.62

1AFF=Agriculture, forestry, and fishing; CON=Construction; MAN=Manufacturing;
M&Q=Mining and quarrying;

The CFT (Component Failure Types) item is used to construct categories based on the text
mining. Hence, the most reported failures include “hoses OR pipes” 85.65%; pumps in 71.3%;
“actuators OR cylinders” OR “linear OR rotary” 53.05%; sensors 23.48%; “servo OR proportional”
21.6%; “pressure OR flow OR check OR regulation valves” 4.35%; accumulators 3.48%; “ice OR
internal combustion engine” OR “em OR electrical motor” 3.48%; and other 3.4%. The categories are
devised into ten categories for the analysis. Considering RCF (Root Causes of Failure), most reported
RCFs relate to seals (92.2%); leakage (64.35%); overload (42.61%); temperature (24.35%); technician
and operator mistakes (23.48%); air and water contamination (10.43%); “wear OR fatigue” (4.35%),
particle contamination (3.48%), and other stoppages (27.83%) failures.

The reader should note that most companies do not use a single but a combination of different
MPs, and for the sake of understanding we use curly brackets for reporting cases where companies
utilise MP variants. For instance, in cases where a company is utilising OM, CBM and PdM practice,
they are noted as “{OM. CBM. PdM.}".

3.2. Relationship between MP and CFT using CA-AHC

Obtained results show that the total inertia is ®2 = 1.435, out of which first two components
account for 50% of the total inertia (Error! Reference source not found.). Out of the mentioned MPs,
only {OM} and {PM. CBM. PdM.} account > 0.95 of the quality (Error! Reference source not found.).
On the other hand, we can see that {PdM} accounts significantly less to the inertia Arav = 0.05;
however, with the proposed three axes, the Qualiram = 0.568, shows high interpretability.

Table 2. The quality of interpretation of MP and CFT.

. . " . . , Proportion of Inertia Confidence SV
Dimension 5V Inertia  Chi? Sig. AccountedCumulative St.dev  Corr. C2 Corr. C3

C1 .673 452 315 315 .051 159 417
2 526 277 193 .508 .083 160
C3 515 .265 .185 .693 .099

C4 406 .165 115 .808

C5 .355 126 .088 .896

C6 267 .071 .050 946

c7 187 .035 .024 .970

C8 156 .024 .017 .987

9 130 .017 .012 .999

C10 .040 .002 .001 1.00

Total 1.435 165.021 .000 1.00 1.00
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Table 3. Overview of row components of MP and CFT.

MP Mass Coordinates A Correlation Contribution
Cl C2 (3 C1 C2 C3 Cl C2 C3 Qual
CBM 113 -915 288 .338 .160 .209 .034 .049 591 .058 .081 .731
FBM .096 .055 -508 -.021 .105 .001 .089 .000 .003 .234 .000 .238
FBM.PM. .104 -.885 .012 .143 .160 181 .000 .008 510 .000 .013 .523
FB(I;/]IBI\I;M .096 259 -760 -319 .114 .014 .200 .037 .056 .483 .085 .624
FBM. PM. OM. .061 -339 .208 -324 .044 .015 .009 024 158 .059 .145 .362
OM .035 1.861 .382 2.115 .290 .266 .018 586 415 .018 .536 .969
PdM 026 321 .224 -964 .050 .006 .005 .091 .054 .026 .488 .568
PM 330 -.031 .022 .075 .061 .001 .001 .007 .005 .003 .031 .038
PM.CBM. .052 1.092 -1.023 -.343 .175 .138 197 .023 356 313 .035 .704
PNII)' d?\IISM' .078 945 1.246 -760 .244 .155 439 170 286 .497 185 .968
PM. DM. .009 -.869 .489 .360 .031 .015 .008 .004 210 .066 .036 .312

Total 1.00 1435 1.00 1.00 1.00

The analysis from CA (Error! Reference source not found.), interpreting and making
conclusions solely on biplot can be insufficient. For instance, points on the left ({PM. DM.}; {CBM};
{FBM. PM. OM.}; {FBM. PM.}) clusters, while same can be said for ({FBM}; {FBM.PM.CBM.}; {PM.
CBM.}). However, looking at points one cannot confirm that {FBM} and {PM. CBM.} cluster even
when similarity might suggest association within the two. Looking at {PM. CBM.} and {PM. CBM.
PdM.}, the results imply no association between the two. However, interpreting results in the Error!
Reference source not found., coordinates of Cl{pm. cBMJcoord = 1.092 and C3pm. cBM.Jcoord = -0.343 are
closely associated with C1pm. cBM. PaM.j;coord = 0.945 and C3(pm. cBM. PdM.jicoord = -0.760.

2,0

PM. CBM. PdM.

Component 2

-1,0 0,5 0,0 0,5 1,0 1,5 2,0
Component 1

Figure 2. MP biplot of C1 and C2.

Observing column profiles, the results show that {Hoses. Pipes. Pumps.} Anrr = 0.236; followed
by {Hoses. Pipes. Sensors.} Aurs=0.211; and {Pressure. Flow. Contr.-Reg.} valves Arrcr = 0.181 account
for most of the explained inertia. However, {Hoses. Pipes. Actuators.} suggest higher quality Qualrra
=0.851 > Qualrrcr = 0.686.
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Looking at the left side of the C1 (Error! Reference source not found.), we can assume poor
effectiveness based on frequency and variety of failures, while on the right side of the Cl-axis
(positive), there is an increase in sensor failures. This is a valuable insight for detecting association
with MPs and a better interpretation of the biplot.

1,5

Hoses. Pipes. Pumps.

1,04
oses. Pipes. Actuatory.

0,54
o Hoses. Pipes. Pumps. ICE/EM.  Hoses/Pipes.
-
8 Cylinders. Pumps: &

vaa Dicas Qasa &

S ool oA Hases.Pipes. Sngors
g Actuators (Linear/Rotary).
=) Hoses. Pipeg. Cylx mps. Sensors.
o _()S_II()scs. Pipes. Acumulators.

Hoses. Ripes. Pumps. Sensors.

Pressure/Flow\Regulation Valves

-1,51

-1,5 -1,0 0,5 0,0 0,5 1,0 1,5
Component 1

Figure 3. CFT biplot of C1 and C2.

Although CA (Error! Reference source not found.) provides different ways to interpret the
association between categories, the post hoc analysis can be misleading if one neglects the quality of
visualisations. Looking at the row profile (Error! Reference source not found.) and column profile
(Error! Reference source not found.) tables, we see that only 8/20 components show quality of
representation > 0.70. Therefore, at least 80.8% of inertia must be preserved, consequently the fourth
component is added.

Table 4. Overview of column components of MP and CFT.

Correlation Contribution
CFT Mass €12 G A 1 & & a @ G Qul
Hoses. Pipes. .09 269 239 -236 .079 .015 .020 .020 .088 .069 .068 .225

Hoses. Pipes. Actuators. .070 1.090 483 .611 .147 .183 .059 .098 .563 .111 .177 .851

Hoses. Pipes. Actuators.
Pumps.

Hoses. Pipes. Accumulators. .035 -573 -340 .021 .078 .025 .015 .000 .147 .052 .000 .199

Hoses. Pipes. Act. Pumps. S-

200 -537 -.052 -.024 .104 .127 .002 .000 .556 .005 .001 .562

217 -585 257 185 130 .164 .052 .028 .569 .110 .057 .737

PV.
Hoses. Pipes. Act. Pumps. /0 oee 560 174 066 .006 011 .005 .044 .045 020 .109
Sensors.
Hoses. Pipes. Pumps. 070 897 1.05 -1.12 236 .124 277 326 .237 .324 366 .927

Hoses. Pipes. Pumps. ICE/EM. .035 -1.02 289 435 .070 .080 .011 .025 .521 .042 .094 .657

Hoses. Pipes. Pumps. Sensors. .148 .289 -.645 -350 .134 .027 .222 .068 .092 .458 .135 .684

Hoses. Pipes. Sensors. 043 1414 -081 157 211 .192 .001 .402 .412 .001 .506 .920

Pressure/Flow Control-Reg. .043 .759 -1.45 -406 .181 .055 .332 .027 .139 .508 .040 .686
Total 1.00 1.435 1.00 1.00 1.00



https://doi.org/10.20944/preprints202308.0956.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2023 d0i:10.20944/preprints202308.0956.v1

11

2 T
I
|
|
I
I
I
! M. CBM. PaM.
11 [Hoses. Pipes. Pumps.
I
I
P.MA DM. 1 Hoses. Pip&. Actuators.
Cyl|nders. Pumps. DVsCB Hoses. Pipes. ®
Hoses. Pumps. RE/EM® o I pgm OM
. BM. PM. OMJI
04 —— - FBM-PM® -~ g~~~ "@PM — - — -~ — - ]

Toses. Pipes. Actuators. Pumps.
oses. [Pipes. Actuators. Pumps gSend®s. |
Hoses. Pipes. Acumulalors. :GBM

1 .‘Joses. Pipes. Pumps. Sensors|
1

Hoses. Pipes. Sensors.

Component 2

HBM. PM. CBM.
! ®
PM. CBM.

Pressure/Flow Regulation Valves.

-2 T
-2 -1 0

Component 1

o

Figure 4. MP and CFT biplot.

The results (Error! Reference source not found.) show that the first cluster (blue) consisting of
{CBM} and {PM. DM.} report variety of failures, alongside the second (red) where {FBM} and {PM.
CBM.} report reduced variety of failures. The third cluster (green) implies higher association among
MPs. The fourth cluster (yellow) shows the smallest distance between {PM. CBM. PdM.} and failures
{Hoses. Pipes. Pumps.}, suggesting the higher performance within applications. Finally, the last
cluster (purple) shows small distances between {OM} and ({Hoses. Pipes. Sensors.} and {Hoses. Pipes.

Actuators}).
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Figure 5. Dendrogram of MP and CFT.

3.3. Relationship between MP and CFT using CA-AHC

Considering the RCF variable, the category of {Leakage. Seals. Operator and Maintenance
mistakes.} is the most dominant. The frequency of reported root causes, the highest frequency fi
association is among {PdM} and OST {Overload. Seals. Temperature.} (feam.ost =.667). Aside from
failures associated with leakage and seals, operator/maintenance personnel mistakes are dominant
in {PM. DM.} and {OM}.

The results show a statistically significant value (Error! Reference source not found.) of x2 =
85.769 (p = 0.016), which suggests existance of the relationship between categories. Comparing to the
previous case, the total inertia of ®? = 0.746 with components C1-3 (75.7%) suggests better
interpretability than MP and CFT (69.3%).

Table 5. The quality of interpretation of MP and RCF.

Component Tnertia  Chiz Sig. Proportion of Inertia Confidence Singular Value
Accounted Cumulative C1 Cc2 C3

1 245 329 329 064 044 -.450
2 196 262 591 090 144
3 124 166 757 .081
4 113 151 909
5 .052 .070 979
6 016 021 1.00

Total 746 85.769 0.016 1.00 1.00

Observing the row profiles’ inertia (Error! Not a valid bookmark self-reference.), selected
components (dimensions) show that {OM} provides the highest percentage of variation Aom = 0.127
(17%), followed by {PM. CBM. PdM.} Apm.camram = 0.116 (15.6%), and {FBM. PM.} Arsmrm = 0.095
(12.7%). Looking at the Qual of interpretation, we can see that for the suggested categories of row
profiles, the selected components contribute highly (Qual > 0.80) to the inertia.

Table 6. Row profiles inertia of MP and RCF.

Correlation Contribution
MP Mass €1 C2 3 A C1 @) 3 C1 C C3 Qual
CBM 113 -436 .245 135 .065 .088 .035 .016 329 104 .031 465
FBM .096 -.085 -.166 .309 .024 .003 .013 .074 029 111 .386 .525
FBM.PM. .104 .072 570 .707 .095 .002 173 420 .006 .357 549 911
FB(IE/];'MPM' .096 -400 .157 -.60 .063 .062 .012 275 242 .037 541 .820
FBM. PM. OM. .061 .760 .476 -.10 .067 143 .071 .005 526 206 .010 .742
OM .035 259 -1.78 .532 .127 .010 .566 .079 .018 .870 .077 .966
PdM 026 985 .658 -22 .045 .103 .058 .010 558 249 .027 .834
PM 330 .347 -177 -18 .075 .163 .053 .083 532 139 137 .809
PM. CBM. .052 -296 -.008 -.15 .040 .019 .000 .010 114 .000 .030 .145
PN;(&EM' .078 -1.11 -.077 -.08 .116 .395 .002 .005 835 .004 .005 .844
PM. DM. .009 -.588 -.615 .569 .028 .012 .017 .023 106 116 .099 .321
Total 1.00 746 1.00 1.00 1.00

Looking at the inertia by individual components (Error! Reference source not found.), {OM}
seems not to be associated with previous points. Although {PM. CBM. PdM.} and {PdM]} closely
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associate in the previous analysis; the points here repel on C1. The biplot (Error! Reference source
not found.) provides significant insights without the explicit use of data.

2,04
OM

0,51

PM. CBM. PdM. ; "
0,01

Component 2

0,51

>

-1,0

}
|
FBM
|
I
|
|
|
|
|
|
|

-1,0 0,5 0,0 0,5 1,0 1,5 2,0
Component |

Figure 6. MP biplot of C1 and C2.

The data (Error! Reference source not found.) suggests that within dimensions (C1-3) {AWCS}
has the highest inertia Aawcs = 0.149, followed by {OST} Aawcs = 0.136 and {LS} Aawcs = 0.120. The Qual
metric suggests that AWCS {Air contamination. Water contamination. Seals.} contains enough
information for visualisation (Qualawcs = 0.950).

Table 7. Column profiles inertia of MP and RCF.

Correlation for column Contribution
C1 2 C3 Cl C2 (C3 Qual
AWCS 070 .548 -1.306 .175 .149 .085 .607 .017 140 796 .014 950
LS 226 -509 .073 -415 .120 .239 .006 313 489 010 .324 .823
LSOMM .235 -291 -272 .200 .067 .081 .089 .076 299 261 141 701
OSL  .183 .227 533 .472 .115 .038 .265 .328 .082 451 354 .887
OSsT 209 .618 .170 -351 .136 .325 .031 .207 584 .044 188  .817
OTOPAW .035 562 .021 .126 .045 .045 .000 .004 243 .000 .012 .256
WFF  .043 -1.024 .110 .395 .114 186 .003 .055 401 .005 .060 .466

Total 1.00 .746 1.00 1.00 1.00

MP Mass Cl1 C2 (C3 Inertia

The graph (Error! Reference source not found.) shows that C1 (positive side) suggests that
failures are associated with contamination, while the left side of C1 (negative) associate with failures
of operator/maintenance mistakes. Results from the biplot (Error! Reference source not found.)
suggests high association between {OM} and {Air/Water contamination. Seals.}. The positive side of
C1-C2 components suggest association among practices that report failures due to contamination,
whilst centre and negative side report variety of failures.

Considering of 75.7% of inertia, representation shows Qual > 0.70 holds 12/18 categories while
the extension on the fourth component all except {PM. DM.} have Qual > 0.70. Thus, interpretation
only on three components (75.7% inertia) was enough. The first cluster (blue) on dendrogram (Error!
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Reference source not found.) has the largest association among MPs and failures associated with
{Leakage. Seals. Operator and Maintenance Mistakes}, especially {FBM}. The second cluster (green)
shows the smallest distance between {FBM. PM. CBM.} and {Leakage. Seals.}. The third (red) cluster
shows similarity between {FBM. PM.} and {Overload. Seals. Leakage.}. The forth (purple) cluster
shows similarity across different applied MPs and failures regarding overload and temperature.
Finally, the last cluster (yellow) shows similarity {OM} and {Air contamination. Water contamination.

Seals.}.
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Figure 8. MP and RCF biplot.
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Figure 9. Dendrogram of MP and RCF.

3.4. Clusters and performance metrics

The obtained clusters (MP-CFT and MP-RCF) are benchmarked against performance metrics,
including both technical (i.e., MTTR, MTBF) and sustainable (e.g., WOMM). Although there is no
significant variation among MTTR considering clusters, the MTBF metric show difference amongst
metrics. Namely, in both cases clusters 2, 3, and 4, outperform other clusters, where the second cluster
shows the best performance considering mean value of MTBF. Considering WOMM metric, the result
suggests that 2nd, 3rd and 4th cluster show lower average WOMM. Note: The cluster 0* (n = 21)
considers respondents that were not clustered and were left out of the analysis.

Table 8. MP-CFT clusters and performance metrics.

Metric MTTR MTBF WOMM

Cluster 0* 1 2 3 4 5 0* 1 2 3 4 5 0* 1 2 3 4 5
Med 5 3 515 5 4 950 550 1950 1500 1650 945.5 26.3 40.7 22.7 234 9.6 30.3
Mean 5.1 415352 4.7 4 1196 907.1 1558 1495 1616 1010.2 39.8 39.8 41.2 27.9 30.1 30.3
Stdev 2.3 2.7 1.5 3.1 1.8 1.1 706.6 673.6 1157.7 735.5 728.8 655.5 45.6 19.1 50.2 26.1 26.7 1.1
Min 1 2 3 2 2 3 200 350 150 100 250 450 222 161 25 125 72 294
Max 12 10 75 15 8 5 2650 2500 2950 3500 2500 1700 250 71.43 136.3 142.9 62.5 31.2

Table 9. MP-RCEF clusters and performance metrics.

Metric MTTR MTBF WOMM

Cluster 0* 1 2 3 4 5 0* 1 2 3 4 5 o* 1 2 3 4 5
Med 5 5 355 4 3 1250 950 1995.5 950 1575 1570.5 26 36.5 19.4 11.9 31.329.4
Mean 5 5.1 3.56.9 4.7 3 1290.81087.52023.51341.71418.71570.5 36.1 41.3 19.2 29.5 27.629.4
Stdev 2.8 2 133326 0 710.5 805.6 1096.3 651.5 745.4 183.1 40.3 289 59 39.3 195 0
Min 1 2 2351 3 150 150 850 950 100 1441 22 25 122 71 13294
Max 15 10 53 12 12 3 2950 2500 3500 2500 2750 1700 250 129.426.8108.371.429.4

3.5. Machine learning feature importance
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For the selection of machine learning algorithms, we check normality of data using Shapiro-Wilk
test. The test shows that normality assumption is violated, thus we used non-parametric ML
algorithms that consists of: RF (Random Forest), SVM (Support Vector Machine), kNN (k-Neirest
Neighboor) and DT (Decision Tree). Also, the decision for selecting these non-parametric regression
algorithms is that they can be used with continuous and categorical predictors. Finally, from obtained
results we use feature importance for allocating most important predictors.

Table 10. Performance results of MTTR.

ML RF SVM kNN DT

MSE 3.412 1.009 4.846 877137.904
RMSE 1.847 1.004 2.201 936.556
MAE/MAD 1.314 0.627 1.694 767.94

R? 0.125 0.002 0.033 0.009

Table 11. Performance results of MTBE.

ML RF SVM kNN DT
MSE 463982.999 833283.033 648621.198 877137.904
RMSE 681.163 912.843 805.37 936.556
MAE/MAD 584.637 712.324 633.333 767.94
R2 0.304 0.059 0.156 0.058
Table 12. Performance results of WOMM.
ML RF SVM kNN DT
MSE 853.157 991.228 1560.16 979.015
RMSE 29.209 31.484 39.499 31.289
MAE/MAD 22.789 23.051 27.713 20.396
R2 0.222 0.03 0.02 0.056

Based on the obtained results considering performance indicators, in all cases RF outperforms
other ML models. Hence, we use feature importance of RF algorithm to investigate the most relevant
features impacting the regression. The results from out-of-bag MSE shows that within each
observation MSE does not change significantly (Error! Reference source not found.), as with all cases,
approximately up to 10 trees was enough to reduce the descrepancy between training and testing.
However, there exist a significant error in all cases due to low prediction accuracy of such complex
data. The regression plot (Error! Reference source not found.) shows significant variation in
validation (predicted vs observed values). Conducting feature perturbations to measure mean
descrease in accuracy, i.e., increase of MSE, shows that MDS (Maintenance Department Staff), NWEC
(Nominal Working Energy Consumption), TTCOC (Time To Complete Oil Change), MPPM, and FAP
are most important maintenance features (Error! Reference source not found.). On the other side,
looking at increase in node purity (Error! Reference source not found.) it shows that NWEC, MPPM,
and TTOR (Time To Oil Refilling) mostly contribute to the homogeneity of the output, i.e., reduction
of variance. In addition, negative features such as CMS (Condition Monitoring Sensors), TTCOC, and
MA, suggests noise and/or overfitting, which questions their suitability for modeling since they do
not seem to positively contribute to the prediction.
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Figure 10. Results of clusters considering MTTR metric via (a) OOB-MSE error; (b) predicted versus
observed test value; (c) mean decrease in accuracy; and (d) total increase in node purity of features.

Considering the MTBF (Error! Reference source not found.) metric, evidence suggest that
highest impact on MTBF is the machine age. This is also supported with empirical evidence [19], as
equipment age significantly contributes to the reduction of MTBE. Also, MPPM, TTOR, TTCOC, MAP
(Maintenance Analysis Program) and FRT (Filter Replacement Time) are the most important
indicators of MTBF. This suggests that hydraulic fluid condition significantly affects the MTBF of
hydraulic machinery. Observing the sustainability metric of WOMM, it shows that MPPM, TTCOC,
NWEC, MDS, and FRT are the most impactful factors when it comes to fluid waste (Error! Reference
source not found.), considering both reduction in MSE and decrease in variance. For the sake of
understanding, we use ranking of feature importance to establish most important features (Error!
Reference source not found.). From the ranking, it can be seen that number of maintenance personnel
per machine plays an important role in hydraulic system’s maintenance, followed by time to oil
refilling, the equipment size measured by nominal working energy consumption, machinery age,
filter replacement time, etc. Surprisingly, although only 9.6% of companies apply data analysis tools
in hydraulic machine maintenance, only slight improvement is noticable considering the output
metrics. This also stands for laboratorial analysis of hydraulic oil, which shows that there is no
significant impact on improving the output metrics.
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Figure 11. Results of clusters considering MTBF metric via (a) OOB-MSE error; (b) predicted versus
observed test value; (c) mean decrease in accuracy; and (d) total increase in node purity of features.
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Figure 12. Results of clusters considering WOMM metric via (a) OOB-MSE error; (b) predicted versus
observed values; (c) mean decrease in accuracy; and (d) total increase in node purity of features.
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Figure 13. RF-Feature Importance scores summarised by rankings in respect to the performance
metrics of MTTR, MTBF and WOMM.

4. Discussion

4.1. Research results from the analysis of MP and CFT

The results show a high association between investigated variables of MP and CFT, x?>=165.021,
with a p-value < 0.001. Looking at the categories of MP, the {PM} is reported as the most applied MP,
while CFT suggest that {Hoses. Pipes. Actuators. Pumps. Servo/Proportional valves.} is the most
report category of component failures.

The results obtained show that the first cluster {CBM} and {Pipes. Actuators. Pumps. DV
(Servo/Proportional) valves.} with {Hoses. Pipes. Pumps. ICE/EM.}, suggests poor performance of
MPs. Namely, filtering {CBM} by using different items it turns out that companies reporting using
strictly {CBM} had the lowest MTBFcsm = 835h, and in that sense had the worst performance
considering this metric. The results show that maintenance activities behind {CBM} mostly consider
visual inspection (56%) while up to 75% of the cases using condition monitoring instruments like PFT
(Pressure/Flow/Temperature) are not used for maintenance decision-making. Considering data
analysis, the results show that only 7% of {CBM} respondents report using data analysis tools. This
also poses a question whether maintenance practitioners trully apply CBM and at what level. The
second (red) and third (green) cluster show mixed MPs and variety of failures reported, although
with less severity and variation unlike the first one. The fourth (yellow) and fifth (purple) cluster
show presumably better performance in terms of reducing severity of failures of main components.

Taking a practical standpoint regarding the association between MPs and CFT using CA-AHC
analysis, the results suggests advanced maintenance practices, such as CBM and PdM, seem to report
a smaller variety of failures while at the same time an increased frequency of sensor failures. This can
be attributed to the fact that some serious failures can be avoided with the use of sophisticated
monitoring technology and instruments. On the other hand, applying traditional practices - FBM and
PM - stoppages are mostly associated with failures associated with actuators and power units. This
can suggest poor maintenance skills and lack competences for preventing this types of failures. The
absence of such abilities leads to severe type of failures and productivity drop.
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4.2. Results from the analysis of MP and RCF

The results show an existence of relationship between the MP and RCF, x2=85.769 (p <0.05). As
{PM} is reported as the most applied practice, {Leakage. Seals. Operator and Maintenance personnel
mistakes.} is the most reported category of RCF, while leakage and seals are most reported root causes
of failure across categories.

From the CA-AHC analysis the obtained clusters suggest the following. The first (blue) cluster
(Exror! Reference source not found.) show similarity mostly between {CBM}; {PM. CBM.}; {FBM} and
failures associated with {Leakage. Seals. Operator and Maintenance mistakes.} on one side, while at
the higher distance among categories at the same cluster {PM. CBM. PdM.} and {PM. DM.} show
association with {Wear out. Fatigue.} of hydraulic components. Comparing with other items from the
survey considering quantitative data, the {Wear out. Fatigue.} indeed report highest MTBFwear out.
Fatigue} = 2080 h.

Looking at qualitative items, 60% of «cases show the utilisation of
Pressure/Flow/Temperature/Contamination sensors, suggesting that failures were avoided using an
effective maintenance program. The second (green) cluster reports failures mainly {Leakage. Seals.}
and similarity with {FBM. PM. CBM.}. Looking at the analysis of MP and CFT, this type of practice
shows small distance to {Hoses. Pipes. Pumps. Sensors}, suggesting CM practice, however, the
leakage/seals was unable to be prevented. The third (red) and fourth (purple) clusters show similarity
to failures associated with overload, unlike previous cases. This also justifies failures associated with
the temperature since overload leads to dissipation and transformation of power into heat. Finally,
the last (yellow) cluster shows similarity between {OM} and {Air/Water contamination. Seals.}
suggesting that these failures are associated with constant inspections and activities (e.g., filter
replacements, oil refilling). Indeed, looking at quantitive data, MTTRairwater cont) = 6.13h, which is
second to highest (operator/maintenance mistakes being the top) suggests long time to repair leaves
the system exposed to the environment. The time to complete oil change shows 3995h on average,
when usual practice and equipment manufacturers suggest approx. 2000h. Also, looking at the
activity of TTOR, which is usual maintenance activity applied to “refresh” the oil properties, is 191.7h.
Such practice of trying to compensate the loss of fluid properties (e.g., viscosity), consequently system
response, by constantly adding the fluid into the system is associated with oxidation and particle/air
contamination.

Taking altogether, we derive several remarks. Firstly, component failures and root causes of
failures in hydraulic system can be clustered into three categories: (1) Random events — typically
include failures of components such as pipes and hoses. This can also be said for failures associated
with leakage and seals, since over 90% of companies report these failures. (2) Non-random events —
usually include degradational events under advanced maintenance practices. For instance, pumps
and actuators’ failures for which the usage of indicators of pressure, flow and temperature can
explain or indicate degradational behavior. Looking at RCF, non-random effects include failures
associated with contamination in which instruments (e.g., particle counters) can be implemented to
monitor and reduce the severity of wear. (3) Human-related events — the obtained evidence suggest
lack of industrial maintenance personnel, especially considering advanced data analytics and
specialist in the domain of hydraulic system maintenance.

4.3. Feature importance considering performance metrics

Generated CA-AHC feature subspace of devised categories are used with RF to extract relevant
predictors, i.e., features considering performance metrics. From the asset and machine perspective
equipment size (i.e., NWEC) and machine age are the most important predictors. Introducing the
variable of NWEC for measuring the maintenance performance prooved to be significant and not
available in the literature, by authors knowledge. From maintenance perspective, number of
maintenance personnel per machine, i.e., MPPM has the highest impact on prediction properties of
the RF regression, overall. This is also an important remark, since by authors knowledge no empirical
evidence exists in the literature.
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Also, considering maintenance activities TTOR, FRT, TTCOC, TTCOC criteria, are the most
important features. Hence, considering statements that fluid contamination is one of the common
causes of failure, the constant refilling of hydraulic oil and complete oil change in the system,
pressumably by overhaul, does in fact reduce the probability of failure, increasing MTBF and at the
same time reducing MTTR of hydraulic machinery. From a technological perspective, LCMI
(Lubricant Condition Monitoring Instruments) is the most important feature overall; however, it is
questionable the impact on MTTR, unlike MTBF and WOMM where it has significant impact. Also,
the CMS and LCML (Lubricant Condition Monitoring Laboratory) analysis show poor or negative
prediction properties considering performance metrics.

Finally, the features that show negative or poor contribution to the regression model suggest
that existing maintenance of hydraulic systems show low technological and digital readiness level.
Namely, the fact that 45.2% of MDS consists only of operators and technicians” questions whether
companies perceive maintenance as a “strategic move” or still as a “neccesary evil”. Rhetorically,
companies utilising advanced PdM solutions face difficulties in managing assets, and report high
amount of failures. This prooved to be a business opportunity for companies and maintenance
experts in engaging and providing outsourced maintenance services with in-door solutions, which is
why many engage with MaaS (Maintenance as a Service) concepts [31]. Also, the results show that
13.1% of companies outsource their maintenance activities, while 50.4% of rely on external experts or
companies to perform failure analysis of their equipment. Moreover, confounding statistics regarding
application of data analysis show that only 9.6% companies apply some statistical or data analysis
tools in hydraulic machine maintenance, which is why no actual contribution to the prediction
properties was observed.

5. Conclusions

The study presents an extensive and in-depth study of features affecting the maintenance
performance of companies utilising hydraulic machines. The study uses empirical evidence and data
synthesised from questionnaire-based survey disseminated on the territory of West-Balkan countries.
Since extensive amount of data is gathered, the study uses correspondance analysis in combination
with agglomerative hierarchical clustering for generating feature subspace, afterwhich components
are used to allocate predictors impacting maintenance performance metrics, such as MTBF, MTTR
and WOMM. Obtained evidence show that maintenance personnel, machine age, equipment size
measured by nominal working energy consumption level, filter replacement time and time to
complete oil change are the highest ranked predictors, which was established by using random forest
algorithm.

Although obtained evidence show significant contributions to the body of knowledge regarding
hydraulic system maintenance, there are limitations of the study. Namely, obtained results include
variety of companies under different NACE classifications, thus environmental conditions and
working regimes can differ. Next, obtained results performed via non-parametric ML algorithms due
to violation of normality needed to be further verified with a larger sample size. Also, further analysis
needs to be conducted to verify and validate the impact of features on operational performance.

In the future, we plan to to conduct study regarding the impact of maintenance features on
maintenance performance metrics, considering both categorical and numerical data. Specifically, we
will include measuring the impact of outsourced versus in-door maintenance and the impact of data
analysis tools in hydraulic machine maintenance. The underlying reason is that there is an obvious
barriers in transitioning between preventive and predictive maintenance, which also supported by
evidence showing lack of success with implemented advanced maintenance practices in this domain.

Supplementary Materials: The following supporting information can be downloaded at:
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