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Abstract: As a consequence of applying advanced maintenance practices, the theoretical probability of failures 
is relatively low. However, observation of low market intelligence and maintenance management has been 
reported. The experimental investigation is supported by findings from a survey targeting asset-intensive 
companies applying hydraulic power systems. Next, the study incorporates multidimensional data analysis 
using CA-AHC (Correspondance Analysis with Agglomerative Hierarchical Clustering) approach. The non-
parametric machine learning models are used from generated feature subspace to extract features affecting 
maintenance performance indicators. The results support empirical evidence that equipment age increases the 
probability of failures. However, the novel findings show that number of maintenance personnel, equipment 
size measured by nominal working energy consumption, and activities dedicated to maintaining fluid 
cleanliness impact regression results of companies utilising hydraulic applications. 

Keywords: multidimensional data analysis; correspodence analysis; agglomerative hierarchical 
clustering; random forest; hydraulic system; machine learning; feature importance 
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1. Introduction 

1.1. Background and Rationale 

Companies have always been aware of the risk associated with their operational and production 
processes. Although there are many risk factors, the maintenance function is mainly related to 
operational performance and overall equipment effectiveness [1]. Although usually perceived as a 
“necessary evil” nowadays, many consider maintenance a strategic move for gaining a competitive 
advantage [2]. However, uncoordinated investments and poor management severely affect RAM 
(Reliability, Availability and Maintainability) [3], which is why many companies face difficulties in 
implementing advanced data-driven and sustainable practices [4]. Such issues are mainly attributed 
to problems of selecting appropriate Maintenance Practice (MP), implementation suitability [5], 
industrial environment [6], asset management risks [7], and other technological issues. 

Consequently, the Maintenance Strategy Selection (MSS) domain emerged for dealing with these 
multiple interrelated issues. Although the MSS provided a “bright avenue” for dealing with 
disruptive market demands, problems associated with complex applications, lack of personnel, and 
around-the-clock industrial requirements led to human factor deficiencies and poor decision-making 
[7]. 

The problem is that maintenance managers have preconceived notions about “good” or “bad” 
maintenance strategies. Thus, many believe that adopting PdM (Predictive Maintenance) will 
significantly reduce their downtime and improve production flows, which is a misconception. This 
is especially an issue in companies adopting PdM as a cost-cutting and time-reducing practice [8], 
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believing that AI (Artificial Intelligence) will significantly advance their performance [9], which 
ultimately fails to fulfill the expectations [10]. 

1.2. Literature review 

With the expansion of PdM 4.0 [11], the performance and competitiveness of manufacturing 
companies strongly depend on the reliability and availability of manufacturing assets. Recent studies 
acknowledge that lacking maintenance knowledge and skills will have practical/financial 
implications [12]. Although issues are constantly assessed in smaller companies, there is a lack of 
evidence considering large-scale applications. Some argue that the efficiency of maintenance play a 
pivotal role in securing profit [13,14]. Most, however, argue that OEE (Overall Equipment 
Effectiveness), is one of the driving factors fothe r selection of MSS. Although there is an extensive 
literature on MPIs (Maintenance Performance Indicators), the availability [6], with MTBF (Mean-
Time-Between-Failure) and MTTR (Mean-Time-To-Repair) as cores [7], are mostly highlighted as 
most important MPIs [15]. As noticed, the indicators do not include qualitative data (e.g., 
maintenance activities) that usually exist in practice. This is primarily because such information is 
hard to collect, process and maintain over time. 

As many studies incorporate machine and deep learning techniques in diagnosis and prognosis 
[16,17], while also for reliability modelling and optimisation [18], there is a lack of use machine 
learning and multidimensional data analysis from a strategic and tactical standpoint [19]. This is 
especially the case in asset-intensive industries with heavy-duty machinery such as hydraulic power 
systems. Moreover, existing body-of-knowledge within the sphere of hydraulic system maintenance 
is mostly concerned with diagnostic and prognostic aspect [20], there is a lack of empricial evidence 
on the issues affecting maintenance performance from a management perspective. As such, there is 
lack of evidence regarding the impact of latent factors affecting output maintenance performance 
metrics (e.g., MTBF, MTTR). 

Nevertheless, entering digitalisation and cloud computing era, many companies incorporate 
visual analytics [21] for assessing business issues by relying on MDA (Multivariate Data Analysis) 
[22]. The benefits of using MDA is in its ability to incorporate multidimensional data: unstructured 
text, categorical data, numerical data, logs, binary data, etc., and project such data in a lower-
dimensional subspace for investigating latent indicators [23] that impact production performance. 
Although there has not been much engagement in maintenance management, visual analytics with 
MDA are landscaping other fields, such as business management, disaster management, and many 
other fields [24]. As such, the study intent is to use MDA for allocating features impacting 
maintenance performance that can be considered for improvement of higher-level maintenance 
decision-making. 

1.3. Aims and objectives 

With the idea of using textual and numerical data, performed experimental analysis is done by 
surveying companies utilising hydraulic systems. By conducting longitudinal study over the course 
of three years, the evidence gathered helped us gain insights into potential relationships between 
applied MPs and output results. Namely, using MDA, we extrapolate feature subspace through 
Correspondance Analysis (CA). Using CA, the aim of the study is to generate components by 
combining MPs with associated CFT (Component Failure Types) and RCF (Root Causes of Failure) 
for benchmarking MPs in terms of output performance. Next, the goal is to extract most important 
features impacting maintenance performance (e.g., MTBF, MTTR) using machine learning 
algorithms. 

The rest of the study is structured as follows. The methodology describes survey design, 
synthesis and processing data with an in-detail description of the analysis. The third chapter provides 
descriptive statistics and research results. The fourth chapter includes discussion of research results 
and post hoc analysis considering MMPs. The last chapter provides concluding remarks, implications 
and future research directions. 
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2. Methodology 

2.1. Study design 

The study workflow consists of three parts: (a) survey design and realisation; (b) survey data 
processing and wrangling; and (c) feature subspace extraction and data analysis. The design of the 
survey is performed in several iterations consistsing of the organisational, maintenance management 
and performance characterstics. After data was obtained the CA and Agglomerative Hierarchical 
Clustering (AHC) are used to generate a feature subspace. Finally, selected MPs are used in 
conjunction with output performance metrics to isolate the features, including programs, factors and 
activities using machine learning (ML) algorithms. 

2.2. Survey design and realisation 

Design of survey items started with a systematic review of the literature (Task 1) regarding 
keywords and search strings: “maintenance performance indicators” AND “hydraulic system”. After the 
review, the authors individually synthesised indicators (Task 2) from the literature and extracted the 
most important ones (Task 3) while respecting interrater agreement using Cohens’ K = 0.89. The first 
draft is used to target companies utilising hydraulic applications in West Balkan Penninsula (Task 
4). Consultations with experts helped eliminate unnecessary indicators and modify the survey (Task 
5). After redesigning the first draft (Task 6), the simulation is performed within the sample of 5 
companies (Task 7). The feedback from experts (Task 8) helped eliminate most survey items due to 
time, understanding of metics, and lack of records. In the final version of the survey (Task 9) all three 
companies agreed to 22 questions (with 5 sub-questions). The first realisation phase started on 
September 2019 (Task 10). In the first run, a total of 81 samples were collected. In the second run 
(September 2020 - June 2021), 100 companies participated. In the final run, 115 companies participated 
and shared the data. The survey is available in Supplementary Material 1. 

2.3. Survey items and data extraction 

The survey design (Figure 1) started in February 2019 and lasted until June 2019. Segmentation 
of survey questions include three facets, namely: (i) organisational characteristics; (ii) characteristics 
of maintenance functions; and (iii) output data as performance metrics. The organisational facet 
includes questions regarding organisational structure and asset characteristics. The maintenance 
characteristics include department size and staff; qualifications; condition monitoring (e.g., sensors, 
instruments); preventive/corrective activities (e.g., filter replacement time). The output performance 
metrics measured include MTBF; MTTR (Mean-time-to-repair); CFT; RCF; and WOMM (wasted oil 
per month-machine). 
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Figure 1. Study design and data wrangling process. 
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Figure 1. Survey design workflow. 

2.4. Correspondence analysis 

Since survey contains mostly categorical data, the contingency tables is formed and χ2 distance 
metrics is used for CA. The contingency table(s) considers i categories (rows) of variable V1, where i 
= 1, 2… I, and j categories (columns) of variable V2 where j = 1, 2…J. The value xi,j corresponds to the 
values of variable with i rows and j columns, with n instances. Using contingency tables, we first 
calculate probabilities as follows: 𝑓௜௝ = 𝑥௜௝𝑛  , (1)

where the sum of rows equals marginal probability: 𝑓.௝ = ∑ 𝑓௜௝ூ௜ୀଵ ,  (2)

and for the sum of columns, the marginal probability: 𝑓௜. = ∑ 𝑓௜௝௃௝ୀଵ .   (3)

The relationship between selected variables measured by the χ2-distance: 𝜒௢௕௦ଶ = ∑ ∑ (௡௙೔ೕି௡௙೔.௙.ೕ)మ௡௙೔.௙.ೕ௃௝ୀଵூ௜ୀଵ ,  (4)

where nfij is observed probability and nfi.f.j is the theoretical probability, and factoring out n out 
of eq. 4, we get total inertia Φ2: 
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𝜒௢௕௦ଶ = ∑ ∑ 𝑛 (௙೔ೕି௙೔.௙.ೕ)మ௙೔.௙.ೕ = 𝑛Φଶ௃௝ୀଵூ௜ୀଵ .  (5)

The CA is described as point clouds proposed by [25], alongside mathematical formulations 
[26,27]. Considering row profiles i, we obtain a cloud of profiles NI. With generated point cloud, we 
add GI point, depicted as the centre of gravity with coordinate f.j. The GI can be considered a centre 
of gravity if we associate each point i with the weight proportional to its marginal value (fi.). The 
space then compares profile i with the GI by distance measure. As stated, distance between i and i’ is 
defined: 𝑑ఞమଶ (𝑖, 𝑖ᇱ) = ∑ ଵ௙.ೕ௃௝ୀଵ ቀ௙೔ೕ௙೔. − ௙೔ᇲೕ௙೔ᇲ. ቁଶ.  (6)

Although it can suggest Euclidian distance, the χ2 compares the sum of differences where each 
dimension J is associated with the weight 1/f.j. Therefore, the centre of the gravity GI corresponds to 
the mean profile as: 𝑑ఞమଶ (𝑖, 𝐺ூ) = ∑ ଵ௙.ೕ௃௝ୀଵ ቀ௙೔ೕ௙೔. − 𝑓.௝ቁଶ.  (7)

The same principles are used for estimating the distances in the column profile. A column profile 
is a set of I values in ℝI dimensional space. The coordinate of the jth point is fij/f.j, and j points together 
to form the Nj cloud. The central point, i.e., the centre of gravity GJ, is added with coordinate fi. in the 
Ith dimension. The GI is the centre of gravity as long as we assign a column profile j a weight 
corresponding to its marginal probability f.j. Same as row profiles, we estimate the distances between 
points j and j’ with χ2 distance as: 𝑑ఞమଶ (𝑗, 𝑗ᇱ) = ∑ ଵ௙೔.ூ௜ୀଵ ൬௙೔ೕ௙.ೕ − ௙೔ೕᇲ௙.ೕᇲ൰ଶ,  (8)

and the centre of gravity GJ is estimated as: 𝑑ఞమଶ ൫𝑗, 𝐺௃൯ = ∑ ଵ௙೔.ூ௜ୀଵ ൬௙೔ೕ௙.ೕ − 𝑓௜.൰ଶ.  (9)

If independence exists, the conditional probability equals marginal probability for all i (f.j = fij/fi.), 
meaning that all profiles are the same as the mean, i.e., NI becomes GI. As such, we measure the inertia 
by the eq. 5 as: Inertia ቀே಺ீ಺ቁ = ∑ ∑ ൫௙೔ೕି௙೔.௙.ೕ൯మ௙೔.௙.ೕ௃௝ୀଵ = ఞమ௡ = Φଶூ௜ୀଵ .  (10)

The same holds for NJ, Inertia(NJ/GJ) = Inertia(NI/GI). Therefore, Φ2 presents the strength of the 
link. The CA proceeds, as all components (i.e., factors), by projecting NI to axes C1 and C2, forming a 
plane P. Finding a plane P is determined by the criteria of maximum inertia, such that: ∑ 𝑓௜.ூ௜ୀଵ (𝑂𝐻௜)ଶ,  (11)

is maximal and is used to determine the Mi point that corresponds to the Ith profile on the plane 
P, where OHi represents the distance to the origin GI = O. The plane P is the sum of the inertia such 
that projected Hi overall i is maximal. The C1 and C2 axes (components) represent maximal inertia 
such that C2⊥C1, and as a result, we get plane P. The inertia λs of the sth axis is then: ∑ 𝑓௜.ூ௜ୀଵ (𝑂𝐻௜௦)ଶ = 𝜆௦,  (12)

and λs represents the eigenvalue of the Cs. Calculating fi. on Cs (same for column) over the total 
inertia of the λs is: 𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛(𝑓௜., 𝜆௦) = 𝑓௜.(𝑂𝐻௜௦)ଶ𝜆௦ , (13)

where summation leads to the inertia of Cs, and we determine the quality (Qual) of the 
representation as: 
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𝑄𝑢𝑎𝑙௦ = ∑ ௙೔.಺೔సభ ൫ைு೔ೞ൯మ∑ ௙೔.಺೔సభ (ைெ೔)మ = ఒೞ∑ ఒೖೖ಼సభ ,  (14)

where OMi is the distance of Mi point to origin O. The numerator represents the inertia of NI on 
the axis Cs, and the denominator is the total Inertia(NI) = Φ2. Calculating position on the plot of rows 
and columns, we use transitional formulas for determining coordinates of i row on the sth axis (Fs) 
as: 𝐹௦(𝑖) = ଵඥఒೞ ∑ ௙೔ೕ௙೔. 𝐺௦(𝑗)௃௝ୀଵ  ,  (15)

where Gs(j) is the coordinate of the column j on the sth axis, and λs is the inertia of the sth axis. 
Permuting Gs and Fs, we get the same outcome for the different barycentre. Intuitively, the number 
axes is S ≤ min(J – 1, I – 1) that contain non-zero inertia. Estimating Φ2 of points axes gives us: Φଶ = ∑ 𝜆௞୫୧୬ (ூିଵ,௃ିଵ)௞ୀଵ ≤ min(𝐼 − 1, 𝐽 − 1).  (16)

2.5. Clustering CA-components using AHC 

Agglomerative Hierarchical Clustering (AHC) is added to replace the inability of CA to project 
data in more than three dimensions. The two important measures of the AHC is distance and linkage. 
The AHC assumes that each point x is a singleton [28]. The algorithm creates a collection of higher-
level clusters ci by merging the point(s) (singletons) into a new cluster ci’. For measuring distances 
between points, the Euclidian distance is used [29]: 𝐸𝐷(𝑝, 𝑞) = ඥ∑ (𝑝௜ − 𝑞௜)ଶ௡௜ = ‖𝑥௖ − 𝑥௖ᇲ‖ ,  (17)

where p and q are coordinates of c. For the cluster linkage we use Ward’s method [30]. The 
method is imputed by the Lance-Williams algorithm [29] and calculated as: 𝑑൫𝐠௜ , 𝐠௝൯ = |௜||௝||௜|ା|௝| ฮ𝐠௜ − 𝐠௝ฮଶ,  (18)

where agglomeration factors are estimated by the Lance-Williams dissimilarity: 𝛼௜ = |௜|ା|௞||௜|ା|௝|ା|௞| ;  𝛽 = − |௞||௜|ା|௝|ା|௞| ;  𝛾 = 0 ,  (19)

such that ǀiǀ represents the number of objects in cluster i, g represents the centre coordinates 
estimated as: 𝐠 = |௜|𝐠೔ା|௝|𝐠ೕ|௜|ା|௝| .  (20)

After obtaining the distance metrics the clustering of principal components, the CA-AHC is 
performed. 

3. Research results 

3.1. Survey insights and descriptives 

From the sample of 297 companies, the 7.41% (22 companies) of respondents strictly underlined 
that they were unwilling to participate in the study. The 19.53% (58 companies) of respondents were 
willing to participate in the survey; however, the results were not obtained even after contacting three 
times. Next 34.3% of respondents (102 companies) did not respond. The final dataset comprises 115 
companies (38.72% response rate). 

The samples consists of large (51.3%), medium (37.4%), and small (11.3%) companies. According 
to NACE (Nomenclature of Economic Activities), respondents comprise of: 8.7% AFF (Agriculture, 
forestry, and fishing), 19.1% CON (Construction), 47.0% MAN (Manufacturing) and 25.2% M&Q 
(Mining and Quarrying). Considering the asset characteristics, the HMA (Hydraulic Machinery Age) 
shows average distribution across classes (Table 1). The NoM (Number of Machines) is the largest in 
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M&Q. The MPPM (Maintenance Personnel per Machine) is highest in MAN (0.75), and lowest in 
CON (0.45). 

Table 1. Descriptive statistics of survey results. 

Feature AFF1 CON1 MAN1 M&Q1 

HMA 10.5 10.25 11.80 10.54 
NoM 62.4 41.86 52.94 85.2 

MPPM 0.55 0.37 1.09 0.62 
1AFF=Agriculture, forestry, and fishing; CON=Construction; MAN=Manufacturing; 

M&Q=Mining and quarrying; 

The CFT (Component Failure Types) item is used to construct categories based on the text 
mining. Hence, the most reported failures include “hoses OR pipes” 85.65%; pumps in 71.3%; 
“actuators OR cylinders” OR “linear OR rotary” 53.05%; sensors 23.48%; “servo OR proportional” 
21.6%; “pressure OR flow OR check OR regulation valves” 4.35%; accumulators 3.48%; “ice OR 
internal combustion engine” OR “em OR electrical motor” 3.48%; and other 3.4%. The categories are 
devised into ten categories for the analysis. Considering RCF (Root Causes of Failure), most reported 
RCFs relate to seals (92.2%); leakage (64.35%); overload (42.61%); temperature (24.35%); technician 
and operator mistakes (23.48%); air and water contamination (10.43%); “wear OR fatigue” (4.35%), 
particle contamination (3.48%), and other stoppages (27.83%) failures. 

The reader should note that most companies do not use a single but a combination of different 
MPs, and for the sake of understanding we use curly brackets for reporting cases where companies 
utilise MP variants. For instance, in cases where a company is utilising OM, CBM and PdM practice, 
they are noted as “{OM. CBM. PdM.}”. 

3.2. Relationship between MP and CFT using CA-AHC 

Obtained results show that the total inertia is Φ2 = 1.435, out of which first two components 
account for 50% of the total inertia (Error! Reference source not found.). Out of the mentioned MPs, 
only {OM} and {PM. CBM. PdM.} account > 0.95 of the quality (Error! Reference source not found.). 
On the other hand, we can see that {PdM} accounts significantly less to the inertia λPdM = 0.05; 
however, with the proposed three axes, the Qual{PdM} = 0.568, shows high interpretability. 

Table 2. The quality of interpretation of MP and CFT. 

Dimension SV* Inertia Chi2 Sig. 
Proportion of Inertia Confidence SV 

AccountedCumulative St. dev Corr. C2 Corr. C3 
C1 .673 .452   .315 .315 .051 .159 .417 
C2 .526 .277   .193 .508 .083  .160 
C3 .515 .265   .185 .693 .099   
C4 .406 .165   .115 .808    
C5 .355 .126   .088 .896    
C6 .267 .071   .050 .946    
C7 .187 .035   .024 .970    
C8 .156 .024   .017 .987    
C9 .130 .017   .012 .999    

C10 .040 .002   .001 1.00    
Total  1.435 165.021 .000 1.00 1.00    
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Table 3. Overview of row components of MP and CFT. 

MP Mass 
Coordinates 

λ 
Correlation Contribution  

C1 C2 C3 C1 C2 C3 C1 C2 C3 Qual 
CBM .113 -.915 .288 .338 .160 .209 .034 .049 .591 .058 .081 .731 
FBM .096 .055 -.508 -.021 .105 .001 .089 .000 .003 .234 .000 .238 

FBM. PM. .104 -.885 .012 .143 .160 .181 .000 .008 .510 .000 .013 .523 
FBM. PM. 

CBM. 
.096 .259 -.760 -.319 .114 .014 .200 .037 .056 .483 .085 .624 

FBM. PM. OM. .061 -.339 .208 -.324 .044 .015 .009 .024 .158 .059 .145 .362 
OM .035 1.861 .382 2.115 .290 .266 .018 .586 .415 .018 .536 .969 
PdM .026 .321 .224 -.964 .050 .006 .005 .091 .054 .026 .488 .568 
PM .330 -.031 .022 .075 .061 .001 .001 .007 .005 .003 .031 .038 

PM. CBM. .052 1.092 -1.023 -.343 .175 .138 .197 .023 .356 .313 .035 .704 
PM. CBM. 

PdM. 
.078 .945 1.246 -.760 .244 .155 .439 .170 .286 .497 .185 .968 

PM. DM. .009 -.869 .489 .360 .031 .015 .008 .004 .210 .066 .036 .312 
Total 1.00    1.435 1.00 1.00 1.00     

The analysis from CA (Error! Reference source not found.), interpreting and making 
conclusions solely on biplot can be insufficient. For instance, points on the left ({PM. DM.}; {CBM}; 
{FBM. PM. OM.}; {FBM. PM.}) clusters, while same can be said for ({FBM}; {FBM.PM.CBM.}; {PM. 
CBM.}). However, looking at points one cannot confirm that {FBM} and {PM. CBM.} cluster even 
when similarity might suggest association within the two. Looking at {PM. CBM.} and {PM. CBM. 
PdM.}, the results imply no association between the two. However, interpreting results in the Error! 
Reference source not found., coordinates of C1{PM. CBM.};coord = 1.092 and C3{PM. CBM.};coord = -0.343 are 
closely associated with C1{PM. CBM. PdM.};coord = 0.945 and C3{PM. CBM. PdM.};coord = -0.760. 

 
Figure 2. MP biplot of C1 and C2. 

Observing column profiles, the results show that {Hoses. Pipes. Pumps.} λHPP = 0.236; followed 
by {Hoses. Pipes. Sensors.} λHPS = 0.211; and {Pressure. Flow. Contr.-Reg.} valves λPFCR = 0.181 account 
for most of the explained inertia. However, {Hoses. Pipes. Actuators.} suggest higher quality QualHPA 
= 0.851 > QualPFCR = 0.686. 
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Looking at the left side of the C1 (Error! Reference source not found.), we can assume poor 
effectiveness based on frequency and variety of failures, while on the right side of the C1-axis 
(positive), there is an increase in sensor failures. This is a valuable insight for detecting association 
with MPs and a better interpretation of the biplot. 

 

Figure 3. CFT biplot of C1 and C2. 

Although CA (Error! Reference source not found.) provides different ways to interpret the 
association between categories, the post hoc analysis can be misleading if one neglects the quality of 
visualisations. Looking at the row profile (Error! Reference source not found.) and column profile 
(Error! Reference source not found.) tables, we see that only 8/20 components show quality of 
representation > 0.70. Therefore, at least 80.8% of inertia must be preserved, consequently the fourth 
component is added. 

Table 4. Overview of column components of MP and CFT. 

CFT Mass C1 C2 C3 λ 
Correlation Contribution  

C1 C2 C3 C1 C2 C3 Qual 
Hoses. Pipes. .096 .269 .239 -.236 .079 .015 .020 .020 .088 .069 .068 .225 

Hoses. Pipes. Actuators. .070 1.090 .483 .611 .147 .183 .059 .098 .563 .111 .177 .851 
Hoses. Pipes. Actuators. 

Pumps. 
.200 -.537 -.052 -.024 .104 .127 .002 .000 .556 .005 .001 .562 

Hoses. Pipes. Accumulators. .035 -.573 -.340 .021 .078 .025 .015 .000 .147 .052 .000 .199 
Hoses. Pipes. Act. Pumps. S-

PV. 
.217 -.585 .257 .185 .130 .164 .052 .028 .569 .110 .057 .737 

Hoses. Pipes. Act. Pumps. 
Sensors. 

.043 -.258 -.260 .174 .066 .006 .011 .005 .044 .045 .020 .109 

Hoses. Pipes. Pumps. .070 .897 1.05 -1.12 .236 .124 .277 .326 .237 .324 .366 .927 
Hoses. Pipes. Pumps. ICE/EM. .035 -1.02 .289 .435 .070 .080 .011 .025 .521 .042 .094 .657 
Hoses. Pipes. Pumps. Sensors. .148 .289 -.645 -.350 .134 .027 .222 .068 .092 .458 .135 .684 

Hoses. Pipes. Sensors. .043 1.414 -.081 1.57 .211 .192 .001 .402 .412 .001 .506 .920 
Pressure/Flow Control-Reg. .043 .759 -1.45 -.406 .181 .055 .332 .027 .139 .508 .040 .686 

Total 1.00    1.435 1.00 1.00 1.00     
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Figure 4. MP and CFT biplot. 

The results (Error! Reference source not found.) show that the first cluster (blue) consisting of 
{CBM} and {PM. DM.} report variety of failures, alongside the second (red) where {FBM} and {PM. 
CBM.} report reduced variety of failures. The third cluster (green) implies higher association among 
MPs. The fourth cluster (yellow) shows the smallest distance between {PM. CBM. PdM.} and failures 
{Hoses. Pipes. Pumps.}, suggesting the higher performance within applications. Finally, the last 
cluster (purple) shows small distances between {OM} and ({Hoses. Pipes. Sensors.} and {Hoses. Pipes. 
Actuators}). 
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Figure 5. Dendrogram of MP and CFT. 

3.3. Relationship between MP and CFT using CA-AHC 

Considering the RCF variable, the category of {Leakage. Seals. Operator and Maintenance 
mistakes.} is the most dominant. The frequency of reported root causes, the highest frequency fij 
association is among {PdM} and OST {Overload. Seals. Temperature.} (fPdM.OST =.667). Aside from 
failures associated with leakage and seals, operator/maintenance personnel mistakes are dominant 
in {PM. DM.} and {OM}. 

The results show a statistically significant value (Error! Reference source not found.) of χ2 = 
85.769 (p = 0.016), which suggests existance of the relationship between categories. Comparing to the 
previous case, the total inertia of Φ2 = 0.746 with components C1-3 (75.7%) suggests better 
interpretability than MP and CFT (69.3%). 

Table 5. The quality of interpretation of MP and RCF. 

Component Inertia Chi2 Sig. 
Proportion of Inertia Confidence Singular Value 

Accounted Cumulative C1 C2 C3 
1 .245   .329 .329 .064 .044 -.450 
2 .196   .262 .591 .090  .144 
3 .124   .166 .757 .081   
4 .113   .151 .909    
5 .052   .070 .979    
6 .016   .021 1.00    

Total .746 85.769 0.016 1.00 1.00    

Observing the row profiles’ inertia (Error! Not a valid bookmark self-reference.), selected 
components (dimensions) show that {OM} provides the highest percentage of variation λOM = 0.127 
(17%), followed by {PM. CBM. PdM.} λPM.CBM.PdM = 0.116 (15.6%), and {FBM. PM.} λFBM.PM = 0.095 
(12.7%). Looking at the Qual of interpretation, we can see that for the suggested categories of row 
profiles, the selected components contribute highly (Qual > 0.80) to the inertia. 

Table 6. Row profiles inertia of MP and RCF. 

MP Mass C1 C2 C3 λ 
Correlation Contribution  

C1 C2 C3 C1 C2 C3 Qual 
CBM .113 -.436 .245 .135 .065 .088 .035 .016 .329 .104 .031 .465 
FBM .096 -.085 -.166 .309 .024 .003 .013 .074 .029 .111 .386 .525 

FBM. PM. .104 .072 .570 .707 .095 .002 .173 .420 .006 .357 .549 .911 
FBM. PM. 

CBM. 
.096 -.400 .157 -.60 .063 .062 .012 .275 .242 .037 .541 .820 

FBM. PM. OM. .061 .760 .476 -.10 .067 .143 .071 .005 .526 .206 .010 .742 
OM .035 .259 -1.78 .532 .127 .010 .566 .079 .018 .870 .077 .966 
PdM .026 .985 .658 -.22 .045 .103 .058 .010 .558 .249 .027 .834 
PM .330 .347 -.177 -.18 .075 .163 .053 .083 .532 .139 .137 .809 

PM. CBM. .052 -.296 -.008 -.15 .040 .019 .000 .010 .114 .000 .030 .145 
PM. CBM. 

PdM. 
.078 -1.11 -.077 -.08 .116 .395 .002 .005 .835 .004 .005 .844 

PM. DM. .009 -.588 -.615 .569 .028 .012 .017 .023 .106 .116 .099 .321 
Total 1.00    .746 1.00 1.00 1.00     

Looking at the inertia by individual components (Error! Reference source not found.), {OM} 
seems not to be associated with previous points. Although {PM. CBM. PdM.} and {PdM} closely 
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associate in the previous analysis; the points here repel on C1. The biplot (Error! Reference source 
not found.) provides significant insights without the explicit use of data. 

 

Figure 6. MP biplot of C1 and C2. 

The data (Error! Reference source not found.) suggests that within dimensions (C1-3) {AWCS} 
has the highest inertia λAWCS = 0.149, followed by {OST} λAWCS = 0.136 and {LS} λAWCS = 0.120. The Qual 
metric suggests that AWCS {Air contamination. Water contamination. Seals.} contains enough 
information for visualisation (QualAWCS = 0.950). 

Table 7. Column profiles inertia of MP and RCF. 

MP Mass C1 C2 C3 Inertia 
Correlation for column Contribution  
C1 C2 C3 C1 C2 C3 Qual 

AWCS .070 .548 -1.306 .175 .149 .085 .607 .017 .140 .796 .014 .950 
LS .226 -.509 .073 -.415 .120 .239 .006 .313 .489 .010 .324 .823 

LSOMM .235 -.291 -.272 .200 .067 .081 .089 .076 .299 .261 .141 .701 
OSL .183 .227 .533 .472 .115 .038 .265 .328 .082 .451 .354 .887 
OST .209 .618 .170 -.351 .136 .325 .031 .207 .584 .044 .188 .817 

OTOPAW .035 .562 .021 .126 .045 .045 .000 .004 .243 .000 .012 .256 
WFF .043 -1.024 .110 .395 .114 .186 .003 .055 .401 .005 .060 .466 
Total 1.00    .746 1.00 1.00 1.00     

The graph (Error! Reference source not found.) shows that C1 (positive side) suggests that 
failures are associated with contamination, while the left side of C1 (negative) associate with failures 
of operator/maintenance mistakes. Results from the biplot (Error! Reference source not found.) 
suggests high association between {OM} and {Air/Water contamination. Seals.}. The positive side of 
C1-C2 components suggest association among practices that report failures due to contamination, 
whilst centre and negative side report variety of failures. 

Considering of 75.7% of inertia, representation shows Qual > 0.70 holds 12/18 categories while 
the extension on the fourth component all except {PM. DM.} have Qual > 0.70. Thus, interpretation 
only on three components (75.7% inertia) was enough. The first cluster (blue) on dendrogram (Error! 
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Reference source not found.) has the largest association among MPs and failures associated with 
{Leakage. Seals. Operator and Maintenance Mistakes}, especially {FBM}. The second cluster (green) 
shows the smallest distance between {FBM. PM. CBM.} and {Leakage. Seals.}. The third (red) cluster 
shows similarity between {FBM. PM.} and {Overload. Seals. Leakage.}. The forth (purple) cluster 
shows similarity across different applied MPs and failures regarding overload and temperature. 
Finally, the last cluster (yellow) shows similarity {OM} and {Air contamination. Water contamination. 
Seals.}. 

 

Figure 7. RCF biplot of C1 and C2. 
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Figure 8. MP and RCF biplot. 

 

Figure 9. Dendrogram of MP and RCF. 

3.4. Clusters and performance metrics 

The obtained clusters (MP-CFT and MP-RCF) are benchmarked against performance metrics, 
including both technical (i.e., MTTR, MTBF) and sustainable (e.g., WOMM). Although there is no 
significant variation among MTTR considering clusters, the MTBF metric show difference amongst 
metrics. Namely, in both cases clusters 2, 3, and 4, outperform other clusters, where the second cluster 
shows the best performance considering mean value of MTBF. Considering WOMM metric, the result 
suggests that 2nd, 3rd and 4th cluster show lower average WOMM. Note: The cluster 0* (n = 21) 
considers respondents that were not clustered and were left out of the analysis. 

Table 8. MP-CFT clusters and performance metrics. 

Metric MTTR MTBF WOMM 
Cluster 0* 1 2 3 4 5 0* 1 2 3 4 5 0* 1 2 3 4 5 

Med 5 3 5.1 5 5 4 950 550 1950 1500 1650 945.5 26.3 40.7 22.7 23.4 9.6 30.3 
Mean 5.1 4.1 5.3 5.2 4.7 4 1196 907.1 1558 1495 1616 1010.2 39.8 39.8 41.2 27.9 30.1 30.3 
Stdev 2.3 2.7 1.5 3.1 1.8 1.1 706.6 673.6 1157.7 735.5 728.8 655.5 45.6 19.1 50.2 26.1 26.7 1.1 
Min 1 2 3 2 2 3 200 350 150 100 250 450 2.22 16.1 2.5 1.25 7.2 29.4 
Max 12 10 7.5 15 8 5 2650 2500 2950 3500 2500 1700 250 71.43 136.3 142.9 62.5 31.2 

Table 9. MP-RCF clusters and performance metrics. 

Metric MTTR MTBF WOMM 
Cluster 0* 1 2 3 4 5 0* 1 2 3 4 5 0* 1 2 3 4 5 

Med 5 5 3 5.5 4 3 1250 950 1995.5 950 1575 1570.5 26 36.5 19.4 11.9 31.3 29.4 
Mean 5 5.1 3.5 6.9 4.7 3 1290.8 1087.5 2023.5 1341.7 1418.7 1570.5 36.1 41.3 19.2 29.5 27.6 29.4 
Stdev 2.8 2 1.3 3.3 2.6 0 710.5 805.6 1096.3 651.5 745.4 183.1 40.3 28.9 5.9 39.3 19.5 0 
Min 1 2 2 3.5 1 3 150 150 850 950 100 1441 2.2 2.5 12.2 7.1 1.3 29.4 
Max 15 10 5.3 12 12 3 2950 2500 3500 2500 2750 1700 250 129.4 26.8 108.3 71.4 29.4 

3.5. Machine learning feature importance 
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For the selection of machine learning algorithms, we check normality of data using Shapiro-Wilk 
test. The test shows that normality assumption is violated, thus we used non-parametric ML 
algorithms that consists of: RF (Random Forest), SVM (Support Vector Machine), kNN (k-Neirest 
Neighboor) and DT (Decision Tree). Also, the decision for selecting these non-parametric regression 
algorithms is that they can be used with continuous and categorical predictors. Finally, from obtained 
results we use feature importance for allocating most important predictors. 

Table 10. Performance results of MTTR. 

ML RF SVM kNN DT 
MSE 3.412 1.009 4.846 877137.904 
RMSE 1.847 1.004 2.201 936.556 
MAE/MAD 1.314 0.627 1.694 767.94 
R2 0.125 0.002 0.033 0.009 

Table 11. Performance results of MTBF. 

ML RF SVM kNN DT 
MSE 463982.999 833283.033 648621.198 877137.904 
RMSE 681.163 912.843 805.37 936.556 
MAE/MAD 584.637 712.324 633.333 767.94 
R2 0.304 0.059 0.156 0.058 

Table 12. Performance results of WOMM. 

ML RF SVM kNN DT 
MSE 853.157 991.228 1560.16 979.015 
RMSE 29.209 31.484 39.499 31.289 
MAE/MAD 22.789 23.051 27.713 20.396 
R2 0.222 0.03 0.02 0.056 

Based on the obtained results considering performance indicators, in all cases RF outperforms 
other ML models. Hence, we use feature importance of RF algorithm to investigate the most relevant 
features impacting the regression. The results from out-of-bag MSE shows that within each 
observation MSE does not change significantly (Error! Reference source not found.), as with all cases, 
approximately up to 10 trees was enough to reduce the descrepancy between training and testing. 
However, there exist a significant error in all cases due to low prediction accuracy of such complex 
data. The regression plot (Error! Reference source not found.) shows significant variation in 
validation (predicted vs observed values). Conducting feature perturbations to measure mean 
descrease in accuracy, i.e., increase of MSE, shows that MDS (Maintenance Department Staff), NWEC 
(Nominal Working Energy Consumption), TTCOC (Time To Complete Oil Change), MPPM, and FAP 
are most important maintenance features (Error! Reference source not found.). On the other side, 
looking at increase in node purity (Error! Reference source not found.) it shows that NWEC, MPPM, 
and TTOR (Time To Oil Refilling) mostly contribute to the homogeneity of the output, i.e., reduction 
of variance. In addition, negative features such as CMS (Condition Monitoring Sensors), TTCOC, and 
MA, suggests noise and/or overfitting, which questions their suitability for modeling since they do 
not seem to positively contribute to the prediction. 
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Figure 10. Results of clusters considering MTTR metric via (a) OOB-MSE error; (b) predicted versus 
observed test value; (c) mean decrease in accuracy; and (d) total increase in node purity of features. 

Considering the MTBF (Error! Reference source not found.) metric, evidence suggest that 
highest impact on MTBF is the machine age. This is also supported with empirical evidence [19], as 
equipment age significantly contributes to the reduction of MTBF. Also, MPPM, TTOR, TTCOC, MAP 
(Maintenance Analysis Program) and FRT (Filter Replacement Time) are the most important 
indicators of MTBF. This suggests that hydraulic fluid condition significantly affects the MTBF of 
hydraulic machinery. Observing the sustainability metric of WOMM, it shows that MPPM, TTCOC, 
NWEC, MDS, and FRT are the most impactful factors when it comes to fluid waste (Error! Reference 
source not found.), considering both reduction in MSE and decrease in variance. For the sake of 
understanding, we use ranking of feature importance to establish most important features (Error! 
Reference source not found.). From the ranking, it can be seen that number of maintenance personnel 
per machine plays an important role in hydraulic system’s maintenance, followed by time to oil 
refilling, the equipment size measured by nominal working energy consumption, machinery age, 
filter replacement time, etc. Surprisingly, although only 9.6% of companies apply data analysis tools 
in hydraulic machine maintenance, only slight improvement is noticable considering the output 
metrics. This also stands for laboratorial analysis of hydraulic oil, which shows that there is no 
significant impact on improving the output metrics. 
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Figure 11. Results of clusters considering MTBF metric via (a) OOB-MSE error; (b) predicted versus 
observed test value; (c) mean decrease in accuracy; and (d) total increase in node purity of features. 
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Figure 12. Results of clusters considering WOMM metric via (a) OOB-MSE error; (b) predicted versus 
observed values; (c) mean decrease in accuracy; and (d) total increase in node purity of features. 
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Figure 13. RF-Feature Importance scores summarised by rankings in respect to the performance 
metrics of MTTR, MTBF and WOMM. 

4. Discussion 

4.1. Research results from the analysis of MP and CFT 

The results show a high association between investigated variables of MP and CFT, χ2 = 165.021, 
with a p-value < 0.001. Looking at the categories of MP, the {PM} is reported as the most applied MP, 
while CFT suggest that {Hoses. Pipes. Actuators. Pumps. Servo/Proportional valves.} is the most 
report category of component failures. 

The results obtained show that the first cluster {CBM} and {Pipes. Actuators. Pumps. DV 
(Servo/Proportional) valves.} with {Hoses. Pipes. Pumps. ICE/EM.}, suggests poor performance of 
MPs. Namely, filtering {CBM} by using different items it turns out that companies reporting using 
strictly {CBM} had the lowest MTBFCBM = 835h, and in that sense had the worst performance 
considering this metric. The results show that maintenance activities behind {CBM} mostly consider 
visual inspection (56%) while up to 75% of the cases using condition monitoring instruments like PFT 
(Pressure/Flow/Temperature) are not used for maintenance decision-making. Considering data 
analysis, the results show that only 7% of {CBM} respondents report using data analysis tools. This 
also poses a question whether maintenance practitioners trully apply CBM and at what level. The 
second (red) and third (green) cluster show mixed MPs and variety of failures reported, although 
with less severity and variation unlike the first one. The fourth (yellow) and fifth (purple) cluster 
show presumably better performance in terms of reducing severity of failures of main components. 

Taking a practical standpoint regarding the association between MPs and CFT using CA-AHC 
analysis, the results suggests advanced maintenance practices, such as CBM and PdM, seem to report 
a smaller variety of failures while at the same time an increased frequency of sensor failures. This can 
be attributed to the fact that some serious failures can be avoided with the use of sophisticated 
monitoring technology and instruments. On the other hand, applying traditional practices – FBM and 
PM – stoppages are mostly associated with failures associated with actuators and power units. This 
can suggest poor maintenance skills and lack competences for preventing this types of failures. The 
absence of such abilities leads to severe type of failures and productivity drop. 
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4.2. Results from the analysis of MP and RCF 

The results show an existence of relationship between the MP and RCF, χ2 = 85.769 (p < 0.05). As 
{PM} is reported as the most applied practice, {Leakage. Seals. Operator and Maintenance personnel 
mistakes.} is the most reported category of RCF, while leakage and seals are most reported root causes 
of failure across categories. 

From the CA-AHC analysis the obtained clusters suggest the following. The first (blue) cluster 
(Error! Reference source not found.) show similarity mostly between {CBM}; {PM. CBM.}; {FBM} and 
failures associated with {Leakage. Seals. Operator and Maintenance mistakes.} on one side, while at 
the higher distance among categories at the same cluster {PM. CBM. PdM.} and {PM. DM.} show 
association with {Wear out. Fatigue.} of hydraulic components. Comparing with other items from the 
survey considering quantitative data, the {Wear out. Fatigue.} indeed report highest MTBF{Wear out. 

Fatigue} = 2080 h. 
Looking at qualitative items, 60% of cases show the utilisation of 

Pressure/Flow/Temperature/Contamination sensors, suggesting that failures were avoided using an 
effective maintenance program. The second (green) cluster reports failures mainly {Leakage. Seals.} 
and similarity with {FBM. PM. CBM.}. Looking at the analysis of MP and CFT, this type of practice 
shows small distance to {Hoses. Pipes. Pumps. Sensors}, suggesting CM practice, however, the 
leakage/seals was unable to be prevented. The third (red) and fourth (purple) clusters show similarity 
to failures associated with overload, unlike previous cases. This also justifies failures associated with 
the temperature since overload leads to dissipation and transformation of power into heat. Finally, 
the last (yellow) cluster shows similarity between {OM} and {Air/Water contamination. Seals.} 
suggesting that these failures are associated with constant inspections and activities (e.g., filter 
replacements, oil refilling). Indeed, looking at quantitive data, MTTR{AirWater cont.} = 6.13h, which is 
second to highest (operator/maintenance mistakes being the top) suggests long time to repair leaves 
the system exposed to the environment. The time to complete oil change shows 3995h on average, 
when usual practice and equipment manufacturers suggest approx. 2000h. Also, looking at the 
activity of TTOR, which is usual maintenance activity applied to “refresh” the oil properties, is 191.7h. 
Such practice of trying to compensate the loss of fluid properties (e.g., viscosity), consequently system 
response, by constantly adding the fluid into the system is associated with oxidation and particle/air 
contamination. 

Taking altogether, we derive several remarks. Firstly, component failures and root causes of 
failures in hydraulic system can be clustered into three categories: (1) Random events – typically 
include failures of components such as pipes and hoses. This can also be said for failures associated 
with leakage and seals, since over 90% of companies report these failures. (2) Non-random events – 
usually include degradational events under advanced maintenance practices. For instance, pumps 
and actuators’ failures for which the usage of indicators of pressure, flow and temperature can 
explain or indicate degradational behavior. Looking at RCF, non-random effects include failures 
associated with contamination in which instruments (e.g., particle counters) can be implemented to 
monitor and reduce the severity of wear. (3) Human-related events – the obtained evidence suggest 
lack of industrial maintenance personnel, especially considering advanced data analytics and 
specialist in the domain of hydraulic system maintenance. 

4.3. Feature importance considering performance metrics 

Generated CA-AHC feature subspace of devised categories are used with RF to extract relevant 
predictors, i.e., features considering performance metrics. From the asset and machine perspective 
equipment size (i.e., NWEC) and machine age are the most important predictors. Introducing the 
variable of NWEC for measuring the maintenance performance prooved to be significant and not 
available in the literature, by authors knowledge. From maintenance perspective, number of 
maintenance personnel per machine, i.e., MPPM has the highest impact on prediction properties of 
the RF regression, overall. This is also an important remark, since by authors knowledge no empirical 
evidence exists in the literature. 
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Also, considering maintenance activities TTOR, FRT, TTCOC, TTCOC criteria, are the most 
important features. Hence, considering statements that fluid contamination is one of the common 
causes of failure, the constant refilling of hydraulic oil and complete oil change in the system, 
pressumably by overhaul, does in fact reduce the probability of failure, increasing MTBF and at the 
same time reducing MTTR of hydraulic machinery. From a technological perspective, LCMI 
(Lubricant Condition Monitoring Instruments) is the most important feature overall; however, it is 
questionable the impact on MTTR, unlike MTBF and WOMM where it has significant impact. Also, 
the CMS and LCML (Lubricant Condition Monitoring Laboratory) analysis show poor or negative 
prediction properties considering performance metrics. 

Finally, the features that show negative or poor contribution to the regression model suggest 
that existing maintenance of hydraulic systems show low technological and digital readiness level. 
Namely, the fact that 45.2% of MDS consists only of operators and technicians’ questions whether 
companies perceive maintenance as a “strategic move” or still as a “neccesary evil”. Rhetorically, 
companies utilising advanced PdM solutions face difficulties in managing assets, and report high 
amount of failures. This prooved to be a business opportunity for companies and maintenance 
experts in engaging and providing outsourced maintenance services with in-door solutions, which is 
why many engage with MaaS (Maintenance as a Service) concepts [31]. Also, the results show that 
13.1% of companies outsource their maintenance activities, while 50.4% of rely on external experts or 
companies to perform failure analysis of their equipment. Moreover, confounding statistics regarding 
application of data analysis show that only 9.6% companies apply some statistical or data analysis 
tools in hydraulic machine maintenance, which is why no actual contribution to the prediction 
properties was observed. 

5. Conclusions 

The study presents an extensive and in-depth study of features affecting the maintenance 
performance of companies utilising hydraulic machines. The study uses empirical evidence and data 
synthesised from questionnaire-based survey disseminated on the territory of West-Balkan countries. 
Since extensive amount of data is gathered, the study uses correspondance analysis in combination 
with agglomerative hierarchical clustering for generating feature subspace, afterwhich components 
are used to allocate predictors impacting maintenance performance metrics, such as MTBF, MTTR 
and WOMM. Obtained evidence show that maintenance personnel, machine age, equipment size 
measured by nominal working energy consumption level, filter replacement time and time to 
complete oil change are the highest ranked predictors, which was established by using random forest 
algorithm. 

Although obtained evidence show significant contributions to the body of knowledge regarding 
hydraulic system maintenance, there are limitations of the study. Namely, obtained results include 
variety of companies under different NACE classifications, thus environmental conditions and 
working regimes can differ. Next, obtained results performed via non-parametric ML algorithms due 
to violation of normality needed to be further verified with a larger sample size. Also, further analysis 
needs to be conducted to verify and validate the impact of features on operational performance. 

In the future, we plan to to conduct study regarding the impact of maintenance features on 
maintenance performance metrics, considering both categorical and numerical data. Specifically, we 
will include measuring the impact of outsourced versus in-door maintenance and the impact of data 
analysis tools in hydraulic machine maintenance. The underlying reason is that there is an obvious 
barriers in transitioning between preventive and predictive maintenance, which also supported by 
evidence showing lack of success with implemented advanced maintenance practices in this domain. 

Supplementary Materials: The following supporting information can be downloaded at: 
www.mdpi.com/xxx/s1, Figure S1: title; Table S1: title; Video S1: title. 
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