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Article

Dual Neighborhoods Search for Solving The
Minimum Dominating Tree Problem

Ze Pan, Xinyun Wu ∗ and Caiquan Xiong

School of Computer Science, Hubei University of Technology, Wuhan 430068, China
* Correspondence: xinyun@hbut.edu.cn

Abstract: The minimum dominating tree (MDT) problem consists of finding a minimum weight
sub-graph from an undirected graph, such that each vertex not in this sub-graph is adjacent to at
least one of the vertices in it, and the sub-graph is connected without any ring structures. This
paper presents a Dual Neighborhoods Search (DNS) algorithm for solving the MDT problem, which
integrates several distinguishing features, such as two neighborhoods collaboratively working for
optimizing the objective function, a fast neighborhood evaluation method to boost the searching
effectiveness, and several diversification techniques to help the searching process jump out of the
local optimum trap thus obtaining better solutions. DNS improves the previous best-known results
for 4 public benchmark instances while providing competitive results for the remaining ones. Several
ingredients of DNS are investigated to demonstrate the importance of the proposed ideas and
techniques.

Keywords: meta-heuristic; dominating tree; dual neighborhoods; fast neighborhood evaluation;
optimization

1. Introduction

The minimum dominating tree problem for weighted undirected graphs is to find a dominating
tree in a weighted undirected graph such that all vertices in this weighted undirected graph are either
in or adjacent to this tree, and the sum of the edge weights of this tree is minimized [1]. Adjacent
means that there is an edge between this vertex and at least one vertex in the tree. The minimum
dominating tree is a concept in graph theory and one of the important classes of tree structures in
graph theory.

A highly related problem, the Minimum Connected Dominating Set (MCDS), has been extensively
studied for building routing backbone wireless sensor networks (WSNs) [2,3]. One of the goals of
introducing MCDS in WSNs is to minimize energy consumption; if two devices are too far away
from each other, they may consume too much power to communicate [4,5]. Using a routing backbone
to transmit messages will greatly reduce energy consumption, which increases dramatically as the
transmission distance becomes longer [6]. However, some directly connected vertices in MCDS
may still be far away from each other because MCDS does not account for distance [7]. Therefore,
considering each edge in the routing backbone is more in line with energy consumption purposes [8].
The Minimum Dominating Tree (MDT) problem was first proposed by Zhang et al. [9] for generating a
routing backbone that is well adapted to broadcast protocols.

Shin et al. [1] proved that MDT is NP-hard and introduced an approximate framework for solving
it. They also provided heuristic algorithms and mixed integer programming (MIP) formulations
for the MDT problem. Adasme et al. [10] introduced two other MIP formulations, one based on a
tree formulation in the bidirectional counterpart of the input graph, and the other obtained from a
generalized spanning tree polyhedron. Adasme et al. [11] proposed a primal dyadic model for the
minimum cost dominated tree problem and an effective inequality to improve the linear relaxation.
Álvarez-Miranda et al. [12] proposed an precise solution framework that combines a primal-dual
heuristic algorithm with a branch-and-cut approach to transform the problem into a Steiner tree
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problem with additional constraints. Their framework solves most instances in the literature within
three hours and proves its optimality.

In recent years, efficient heuristic algorithms for MDT problems have flourished. Sundar and
Singh [13] proposed two meta-heuristic algorithms, the Artificial Bee Colony (ABC-DT) algorithm and
the Ant Colony Optimization (ACO-DT) algorithm, for the MDT problem. These two algorithms are the
first meta-heuristics for the MDT problem and provide better performance than previous algorithms.
They also provided 54 randomly generated instances in their work, which are considered challenging
instances of the MDT problem and are widely used to evaluate the performance of algorithms for
the MDT problem. Based on the latter work, Chaurasia and Singh [14] proposed an evolutionary
algorithm with guided mutation (EA/G-MP) for MDT problems. Dražic et al. [15] proposed a variable
neighborhood search algorithm for MDT problems. Singh and Sundar [16] proposed another artificial
bee colony (ABC-DTP) algorithm for the MDT problem. This new ABC-DTP method differs from
ABC-DT in the way it generates initial solutions and in the strategy for determining neighboring
solutions. Their experiments show that for the MDT problem, ABC-DTP outperforms all existing
problem-specific heuristics and meta-heuristics available in the literature. Hu et al. [17] proposed
a hybrid algorithm combining genetic algorithms (GAITLS) and iterative local search to solve the
dominated tree problem. Experimental results on classical instances show that the method outperforms
existing algorithms. Xiong et al. [18] present a two-level meta-heuristic (TLMH) algorithm for solving
the MDT problem with a solution sampling phase and two local search based procedures nested in a
hierarchical structure. The results demonstrate the efficiency of the proposed algorithm in terms of
solution quality compared with the existing meta-heuristics.

Metaheuristics have been shown to be very effective in solving many challenging real-world
problems [19]. However, for some problems, due to the complexity of the problem structure and the
large search space, the classical metaheuristic framework fails to produce the desired results [20]. Many
researchers have relied on composite neighborhood structures. If properly designed, most composite
neighborhood structures have proven successful [21]. These methods include Variable Depth Search
(VDS), which searches a large search space through a series of successive simple neighborhood search
operations. Although understanding of the basic concepts of VDS algorithms dates back to the 1970s
[22], researchers have maintained a sustained enthusiasm for the term [23,24]. For a more detailed
survey of VDS, we refer to Ahuja et al. [25–27]. Another idea for dealing with complex structural
problems is to use a hierarchical meta-trial approach, where several trials are combined in a nested
structure. Wu et al. [28] successfully implemented a two-level iterative local search for a network
design problem with traffic sparing. According to their analysis, hierarchical metaheuristics must be
carefully designed to balance the complexity of the algorithm and its performance. In particular, for the
outer framework, keeping it as simple as possible makes the algorithm converge faster. Pop et al. [29]
proposed a two-level solution to the generalized minimum spanning tree problem. Carrabs et al. [30]
introduced a meta-heuristic algorithm implementing a two-level structure to solve the shortest path
problem for all colors. Contreras Bolton and Parada [31] proposed an iterative local search method to
solve the generalized minimum spanning tree problem using a two-level solution.

In this paper, we design a meta-heuristic algorithm for two-neighborhood search to solve the
MDT problem that uses two neighborhood moves to perform the search and combines a taboo search
to escape local optima. The DNS algorithm is described in detail in Section II, the experimental
results of the DNS algorithm and comparison with other algorithms are given in Section III, and some
comparative experiments within the DNS algorithm are done in Section IV.

2. Dual Neighborhood Search

2.1. Main Framework

The basic idea of our proposed DNS algorithm is to tackle the MDT problem by optimizing
the candidate dominating tree weight using a neighborhood search based meta-heuristic with two
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neighborhood move operators. The search space of DNS consists of all the minimum spanning trees of
all the possible dominating sets of the instance graph. The proposed NDS algorithm optimizes the
following objective function:

f (T) = α f1 (X) + f2
(

E′
)

(1)

Where T = (X, E′) stands for the current configuration, i.e., the candidate dominating tree; Notations
X and E′ represents the vertex and edge sets of T respectively. Function f1 (X) calculates the number
of vertices not dominated by T. Function f2 (E′) calculates the weights of the minimum spanning
tree of T. And α is a constant parameter to balance the importance between f1 and f2. T is a feasible
solution to the minimum dominating tree problem if and only if f1(X) = 0.

The algorithm primarily comprises several key steps. Firstly, an initial solution is generated,
followed by a neighborhood evaluation. Subsequently, the best neighborhood move is selected and
executed iteratively. During the iteration, the ever best configuration is recorded. The framework of
the algorithm can be represented in pseudo-code as follows:

Algorithm 1 Algorithm for the MDT problem

Require: The instance graph G(V, E)
Ensure: A DPT configuration Tb

1: procedure DNS(G)
2: Ti ← GENERATE_INITIALSOLUTION(G)
3: Tb ← Ti
4: Repeat
5: EvaluateMatrices← DO_NEIGHBOREVALUATE(G)
6: BestMove← SELECT_BESTMOVE(EvaluateMatrices)
7: Tc ← EXECUTE_BESTMOVE(Tc, BestMove)
8: if f (Tc) < f (Tb) then
9: Tb ← Tc

10: end if
11: until The termination condition is met
12: return Tb
13: end procedure

In Algorithm 1, Ti represents the initial configuration, Tb represents the recorded ever best
solution, and Tc represents the current configuration. In each iteration, the sub-procedure
DO_NEIGHBOREVALUATE evaluates all the neighborhood moves in the current configuration. The
following two sub-procedure select and execute the best move. The termination condition can be the
time or iteration limits.

2.2. Initial Solution Generation

The proposed DNS algorithm uses a feasible dominating tree as the initial configuration. The
sub-procedure GENERATE_INITIALSOLUTION generates this initial dominating tree. It first find the
minimum spanning tree for the whole graph, and try to trim the tree by removing leaves iteratively
until removing one more leave will break the dominancy of the tree. The pseudo-code of this procedure
is defined in Algorithm 2.
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Algorithm 2 Algorithm for generating initial solution

Require: The instance graph G(V, E)
Ensure: A DPT configuration Ti

1: procedure GENERATE_INITIALSOLUTION(G)
2: Ti ← KRUSKAL(G)
3: repeat
4: v← null
5: for n ∈ AllLeafVertices do
6: if n can remove and w(n) > w(v) then
7: v← n
8: end if
9: end for

10: if v 6= null then
11: Ti.remove(v)
12: end if
13: until v = null
14: return Ti
15: end procedure

The procedure starts from the minimum spanning tree Ti generated by Kruskal’s algorithm. Then
it tries to delete the leaf with the largest edge weight. The process terminates if no more leaf can be
deleted. The algorithm returns a feasible dominating tree as the initial configuration. In the following
sections, we focus on the meta-heuristic part of the proposed DNS algorithm, i.e., the neighborhood
structure as well as its evaluation.

2.3. Definition

For better description, we first define some important concepts and notations used in the proposed
DNS algorithm.

• X : the set of vertices in the current dominator tree.
• Xplus : the set of vertices dominated by X and not in X.
• A1 : An array of the number of un-dominated vertices, the length of the array is the number of

graph vertices.

A1[i] = |{j ∈ V \ (X ∪ Xplus) : (i, j) ∈ E, ∀k ∈ (X ∪ Xplus), (k, j) /∈ E}| (2)

A1[i] denotes the number of vertices not dominated by the new X if move i from X to Xplus (or
from Xplus to X).

• A2 : array of minimum spanning tree weights for X. The length of the array is the number of
graph vertices.

A2[i] =

{

w(MST(G[X \ {i}])) if i ∈ X

w(MST(G[X ∪ {i}])) if i ∈ Xplus

(3)

A2[i] denotes the weight of the new minimum spanning tree of X if move i from X to Xplus (or
from Xplus to X).

The following example illustrates how A1 and A2 are calculated.
As shown in the Figure 1, the current dominating tree is T<B,D> containing two vertices, B and

D. Therefore, X = B, D. The vertices dominated by X are A, C, and E. Thus, Xplus = A, C, E. We
correspond the vertices A, B, C, D, and E to the array subscripts 0, 1, 2, 3, and 4, respectively. To
evaluate the neighborhood moves, the algorithm takes vertex A out and puts it in the set of the other
side. The number of vertices that are not dominated by the new X after this move is 0, thus A1[0]
is assigned to 0. The weight of the new minimum spanning tree of X is 13, thus A2[0] is assigned
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to 13. After evaluating all the neighborhood moves, the resulting arrays are A1 = [0, 1, 0, 1, 0] and
A2 = [13, 0, 17, 0, 3]. A1 and A2 are used to evaluate the neighborhood moves.

Figure 1. T<B,D>

2.4. Neighborhood move and Evaluation

There are two kinds of neighborhood moves in DNS algorithm, one is to take out one vertex
in X and put it into Xplus , and the other one is to take out one vertex in Xplus and put it into X. In
each iteration, the best neighborhood move is selected and performed among all the two kinds of
neighborhood moves. There are two criteria to evaluate the quality of the moves, one is the dominance
and the other is the weight of the dominating tree. The pseudo-code for neighborhood evaluation is
described in Algorithm 3.

Algorithm 3 Algorithm for doing neighborhood evaluation

Require: EvaluateMatrices = (A1, A2), G(V, E)
Ensure: EvaluateMatrices

1: procedure DO_NEIGHBOREVALUATE(G)
2: for v ∈ X ∪ Xplus do
3: move v to other set
4: A1[v]← CALCULATE_NODOMINUMBER(X, Xplus, v)
5: A2[v]← CALCULATE_NEWMINSPANTREE(X, Xplus, v)
6: move v back
7: end for
8: end procedure

The evaluation is done by trying to move each vertex to the other set, then calculate the A1 and
A2 values. Based on these two arrays, the best move is selected as described in Algorithm 4.

Algorithm 4 Algorithm for selecting the best move

Require: EvaluateMatrices = (A1, A2)
Ensure: The best move

1: procedure SELECT_BESTMOVE(EvaluateMatrices)
2: Mbest ← 0
3: for v ∈ V do
4: if A1[v] < A1[Mbest] then
5: Mbest ← v
6: end if
7: if A1[v] = A1[Mbest] and A2[v] < A2[Mbest] then
8: Mbest ← v
9: end if

10: end for
11: return Mbest
12: end procedure

Procedure SELECT_BESTMOVE picks the move with the smallest A1 and A2, higher priority for
A1. Then, the best move selected is performed by Algorithm 5.
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Algorithm 5 Algorithm for executing the best neighborhood move

Require: X, BestMove
Ensure: Tc

1: procedure EXECUTE_BESTMOVE(X, BestMove)
2: if BestMove ∈ X then
3: move BestMove from X to Xplus
4: else
5: move BestMove from Xplus to X
6: end if
7: Tc ← KRUSKAL(G(X))
8: return Tc

9: end procedure

Procedure EXECUTE_BESTMOVE moves the selected vertex to Xplus if it is in X, and vice versa.
After the move, the minimum spanning tree of G(X) is calculated using Kruskal’s algorithm and
assigned to Tc . The following example illustrates how the best move is evaluated and performed.

As shown in Figure 2, the current domination tree is T<B,D>, X = {B, D}, Xplus = {A, C, E}. To
evaluate vertex A, we first move it from Xplus to X, then X becomes {A, B, D}. The number of vertices
that are not dominated by the new X at this point is 0, thus A1[A] = 0. The minimum spanning
tree weight of X = {A, B, D} is 13, thus A2[A] = 13. We then move A back to its original set. The
evaluation for A is done. The B, C, D, and E are evaluated sequentially by the same process. After the
evaluation for each vertex, A1 = [0, 1, 0, 1, 0] and A2 = [13, 0, 17, 0, 3].

Figure 2. Move T<B,D> to T<B,D,E>

Then we pick the best neighborhood move, finding the minimum value from A1 and A2, prior to
A1. There are 3 minimum values in A1, corresponding to A, C, and E. Then we compare the value
of these three vertices in A2, the minimum value is 3, corresponding to vertex E. Therefore, the best
vertex is E, and the best neighboring move is to move E. After the move, the new X = {B, D, E}. We
calculate the minimum spanning tree of the new X. The new minimum spanning tree is T<B,D,E> with
a weight of 3.

2.5. Fast Neighborhood Evaluation

In order to improve the efficiency of the algorithm, this paper proposes a method to dynamically
update the neighborhood evaluation matrices A1, A2.

2.5.1. Fast evaluation for A1

The number of un-dominated vertices may increase or remain unchanged when vertices are
removed from X to Xplus. The newly added un-dominated vertices must be originally in the Xplus set
and connected to the moved vertex. Since the number of un-dominated vertices is zero throughout the
algorithm, we can count the newly introduced un-dominated vertices by counting the vertices in Xplus,
which the moved vertex is its only connection to X.

When we move vertices from Xplus to X, the number of un-dominated vertices may decrease or
remain the same. Because X is dominated throughout the algorithm, the number of un-dominated
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vertices after this kind of moves is still 0. The above observation can be utilized to dynamically
compute A1 without having to traverse the entire graph. The formula is as follows:

A1[i] =

{

|{j ∈ Xplus : (i, j) ∈ E}| if i ∈ X

0 if i ∈ Xplus

(4)

2.5.2. Fast evaluation for A2

For A2, we use a dynamic Kruskal’s algorithm. The algorithm dynamically maintains a set Roads,
which is the set of edges contained in the subgraph G(X), i.e., the set of edges whose two vertices are
in X. The Roads set is sorted from smallest to largest by the weights of the edges. When a X to Xplus

move is performed, the edges connecting to the moved vertex and X are deleted from the Roads set.
Similarly, when a Xplus to X move is performed, the edges connecting to the moved vertex and X are
inserted to the Roads set. Note that, edges should be inserted into the appropriate position in Roads

to guarantee that it is sorted. The dynamic Kruskal’s algorithm then assumes that the edges before
the deletion or insertion position are sure to be in the new minimum spanning tree, then start the
normal procedure from that position. The pseudo-code for dynamic Kruskal’s algorithm is described
in Algorithm 6 and 7.

Algorithm 6 Algorithm for calculate new minimum spanning tree

Require: MovedVertex, G, Roads, Tc

Ensure: weight of minimum spanning tree Ts

1: procedure CALCULATE_NEWMINSPANTREE(X, Xplus, MovedVertex)
2: min← MAX_VALUE
3: U ← CALCULATELINKVERTEX(G, MovedVertex)
4: for v ∈ U do
5: if v ∈ X then
6: if w(E(v, MovedVertex)) < min then
7: index ← RECORDINDEXINROADS(E(v, MovedVertex))
8: min← w(E(v, MovedVertex))
9: end if

10: if MovedVertex ∈ X then
11: Roads.delete(E(v, MovedVertex))
12: end if
13: if MovedVertex ∈ Xplus then
14: Roads.insert(E(v, MovedVertex))
15: end if
16: end if
17: end for
18: Ts ← DYNAMICKRUSKAL(Roads, index, G, Tc)
19: return w(Ts)
20: end procedure

In Algorithm 6, The notate E(a, b) represents the edge connecting vertices a and b, Tc is the
original minimum spanning tree, i.e., the entire algorithm of the current solution. The main job for this
procedure is to update the Roads set. And the Algorithm 7 calculates the spanning tree dynamically
according to Roads.
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Algorithm 7 Algorithm for dynamic kruskal algorithm

Require: Roads, index, G, Tc

Ensure: a minimum spanning tree Ts

1: procedure DYNAMICKRUSKAL(Roads, index, G, Tc)
2: Ts ← null
3: for i from 0 to index do
4: if Roads[i] ∈ Tc then
5: Ts.add(Roads[i])
6: end if
7: end for
8: for i from index to Roads.size do
9: if Roads[i] can add to Ts then

10: Ts.add(Roads[i])
11: end if
12: end for
13: return Ts

14: end procedure

The following example illustrates the above procedures:
As shown in Figure 3, the original tree is T<A,B,D,F>, currently, X = {A, B, D, F}, Xplus =

{C, E, G}, Roads = {< D, F >,< A, B >,< B, D >}, and the weights of the edges w(Roads) =

{1, 4, 8}. Let’s evaluate the move of vertex E from Xplus to X. After the move X = {A, B, D, E, F},
Xplus = {C, G}. Since E was originally in Xplus, A1[E] = 0. The new edge added after the move is the
edge {< B, E >,< E, F >} with weights {2, 5}. Then we insert these two edges into the appropriate
position in Roads according to their weights from smallest to largest in w(Roads) = {1, 2, 4, 5, 8}, and
the corresponding Roads = {< D, F >,< B, E >,< A, B >,< E, F >,< B, D >}. We only need to
start from position of < B, E > to determine the new minimum spanning tree. The edges before
< B, E > must be in the new minimum spanning tree. The evaluated minimum spanning tree is
T<A,B,D,E,F> = {< D, F >,< B, E >,< A, B >,< E, F >} with weight 12, thus A2[E] = 12.

Figure 3. T<A,B,D,F> to T<A,B,D,E,F>

2.6. Tabu strategy and aspiration mechanism

The proposed DNS algorithm implements tabu strategy. The vertex is prohibited to be moved
again within a tenure once it is moved. The tabu strategy is implemented to both kinds of moves
in the algorithm. Since there is no intersection of X and Xplus, only one taboo table is needed. We
denote the tabu tenure of the move from Xplus to X as TabuLength1 and the move from X to Xplus as
TabuLength2. These two tabu tenures are set to the number of vertices in X and Xplus, respectively,
thus implementing dynamic tabu tenures in this way. This tabu strategy improves the accuracy and
efficiency makes the algorithm to jump out of the local optimum more easily.

In order to avoid missing some good solutions, an aspiration strategy is introduced. If one tabu
move may improve the ever best solution, the searching process breaks its tabu status and selects it as
a candidate best move.

Note that we do not describe the details of how the tabu and aspiration is implemented in the
previous pseudo-codes to give a clearer layout for better understanding. For more details of tabu we
recommend readers to the literature [32].
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2.7. Perturbation Strategy

In order to further improve the quality of the solution, the proposed DNS algorithm implements
a perturbation strategy. The specific perturbation is to move some vertices from Xplus to X randomly.
The algorithm set a parameter as the perturbation period. When the number of iterations reaches the
perturbation period a perturbation will be triggered, and the number of iterations will be cleared to
zero if the ever best solution is updated within this period. There are another two parameters, the
perturbation amplitude and the perturbation tabu tenure. The perturbation amplitude is the number
of vertices taken out from Xplus in the perturbation. The perturbation tabu tenure is the tabu tenure
used during the perturbation period. In addition, after a certain number of small perturbations, a
larger perturbation needs to be triggered to give a larger spatial span to the search process. The larger
perturbation is implemented by moving one-third of the vertices from Xplus to X randomly.

3. Algorithm Experimentation

3.1. Datasets and Experimental Protocols

The experiments are carried out on the following two data sets:

• The DTP dataset is a dataset proposed by Dražic et al. [15], with the number of vertices ranging
from 150 to 1000.

• The Range dataset is a dataset proposed by Sundar and Singh [13], with the number of vertices
ranging from 50 to 500 and a transmission range of 100 to 150 meters.

Both datasets are randomly generated and can be downloaded online or obtained from the authors.
The DNS algorithm is implemented in Java (JDK17) and tested on a desktop computer equipped with
an Intel® Xeon® W-2235 CPU @3.80GHz, with 16.0GB of RAM.

3.2. Calibration

This section we conduct experiments to fix the value of key parameters of DNS algorithm:

• Parameter DisturbPeriod, the first perturbation period. Values from 14 to 17 are tested.
• Parameter DisturbLevel, the perturbation amplitude. Values from 7 to 12 are tested.
• Parameter DisturbTL1, The tabu length of the neighborhood move of taking a vertex from Xplus

and putting it into X during perturbation. Values from 1 to 2 are tested.
• Parameter DisturbTL2, The tabu length of the neighborhood move of taking a vertex from X and

putting it into Xplus during perturbation. Values from 3 to 8 are tested.

We select 13 representative instances to tackle the calibration experiments. Representatives are
instances 200-400-1, 200-600-1, 300-600-1 and 300-1000-1 In DTP; instances 300-1, 400-1 and 500-1
respectively in Range100, Range125 and Range150. The experiment is done as following steps: First,
roughly experiment with parameter combinations to select better parameter combinations. Then for
each set of parameters, run these 13 instances in sequence. Each instance is run five times with different
random seeds for 300 seconds each time. We compare the gap rates for each parameter setting. The
gap is calculated as:

gap =
n1− n2

n2
(5)

, where n1 is the average result obtained and n2 is the known best objective. Table 1 shows the result
for the calibration experiment.
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Table 1. Experimental results of parameter testing for DNS

DisturbPeriod DisturbLevel DisturbTL_1 DisturbTL_2 TotalGap AverageTime

14 7 1 3 0.083 1959
14 7 1 4 0.082 1696
14 7 1 5 0.083 1806
14 8 1 3 0.093 1803
14 8 1 4 0.077 1776
14 8 1 5 0.080 1733
14 9 1 3 0.093 1910
14 9 1 4 0.090 1985
14 9 1 5 0.095 2084
15 8 1 4 0.075 1822
15 8 1 5 0.086 1768
15 8 1 6 0.083 1854
15 9 1 4 0.096 1956
15 9 1 5 0.095 1772
15 9 1 6 0.107 1835
15 10 1 4 0.077 1945
15 10 1 5 0.093 1955
15 10 1 6 0.096 1906
16 9 2 5 0.097 1930
16 9 2 6 0.110 1932
16 9 2 7 0.094 2168
16 10 2 5 0.087 1919
16 10 2 6 0.089 2025
16 10 2 7 0.101 2054
16 11 2 5 0.101 2013
16 11 2 6 0.093 1769
16 11 2 7 0.093 1895
17 10 2 6 0.106 1662
17 10 2 7 0.106 1781
17 10 2 8 0.111 1968
17 11 2 6 0.108 1835
17 11 2 7 0.117 1863
17 11 2 8 0.108 1896
17 12 2 6 0.113 1942
17 12 2 7 0.114 1892
17 12 2 8 0.110 1707

According to the experimental data, the minimum total gap rate is 0.075, corresponding to
DisturbPeriod of 15, DisturbLevel of 8, DisturbTL1 of 1, and DisturbTL2 of 4. In the following
experiment, we set the parameters of the algorithm to this setting. Note that this experiment does not
guarantee the optimal values of the parameters and the optimal scheme may vary from one benchmark
to another. It can also be seen that for different parameter combinations, the gap rate is small, indicating
the robustness of the algorithm.

3.3. Comparison on DTP Data Set

In this section, we compare the proposed DNS algorithm with other methods in the literature on
DTP data set. There are two DTP datasets: dtp_large and dtp_small. Since all algorithms can obtain the
best results for dtp_small with little difference in speed, only the experimental results for dtp_large are
shown here. The compared algorithms are TLMH, VNS, and GAITLS algorithms. For each instance, 10
runs with different random seeds are made, each lasting 1000 seconds. The best, average objective
values, and average time are recorded for each instance. The experimental results and comparisons are
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shown in Table 2. Bolded numbers represent that the current best value has been obtained and the
results are not worse than other algorithms. The start marks represent that DNS algorithm updates the
best objective in the literature.

Table 2. Computational results of DNS and comparisons on DTP-large

DNS TLMH VNS GAITLS

instance best average time best average time best average best average

100-150-0 152.57 152.57 14 152.57 152.57 2 152.57 154.61 152.57 152.57
100-150-1 192.21 192.21 6 192.21 192.21 11 192.21 194.22 192.21 192.21
100-150-2 146.34 146.34 <1 146.34 146.34 87 146.34 148.35 146.34 146.34
100-200-0 135.04 135.04 <1 135.04 135.04 60 135.04 136.41 135.04 135.04
100-200-1 91.88 91.88 <1 91.88 91.88 13 91.88 92.03 91.88 91.88
100-200-2 115.93 115.93 17 115.93 115.93 9 115.93 117.11 115.93 115.93
200-400-0 257.09 257.52 376 257.09 257.23 370 306.06 343.95 257.09 257.09
200-400-1 258.77 258.88 181 258.77 258.88 486 303.53 331.10 258.93 258.93
200-400-2 241.07 241.42 6 238.27 241.72 370 274.37 389.51 238.29 238.29
200-600-0 121.62 122.94 307 121.62 127.73 460 132.49 150.39 121.62 121.62
200-600-1 135.08 137.63 293 135.08 145.20 441 162.92 198.21 135.08 135.08
200-600-2 123.70 124.04 166 123.31 123.70 264 139.08 154.36 123.31 123.31
300-600-0 352.32 353.36 297 348.03 351.22 529 471.69 494.62 348.03 348.03
300-600-1 416.23 416.99 157 413.93 416.64 753 494.91 542.46 415.32 415.32
300-600-2 354.35 356.52 57 352.15 353.77 760 500.72 535.30 385.53 385.53
300-1000-0 148.86 151.05 331 148.63 150.10 629 257.72 264.33 149.57 149.57
300-1000-1 *164.65 165.77 404 165.21 165.91 477 242.79 325.16 165.19 165.19
300-1000-2 *154.59 158.90 434 154.64 169.39 595 233.18 251.41 154.61 154.61
average 197.91 198.83 169 197.26 199.75 351 241.86 267.97 199.25 199.25

From Table 2, it can be seen that this algorithm runs most instances to the best value, and those
that do not reach the optimal value are also very close to it. The overall best values are slightly worse
than the TLMH algorithm but better than the VNS and GAITLS algorithms. The overall average of this
algorithm outperforms other algorithms, demonstrating its stability and faster speed. It also improves
the best solution for two instances.

3.4. Range Dataset Experiments

In this section, the widely used Range dataset with 54 instances is tested and compared with the
TLMH, ACO-DT, EA/G-MP, and ABC-DTP algorithms. The experimental results of these algorithms
compared in this paper are the best results obtained using the best parameters in the original literature.
In this section, this algorithm is run 10 times for each dataset with the previously measured best
parameters and different random seeds. Each run lasts 1000 seconds and the best, average objective
values, and average time are calculated. The results and comparisons are shown in Tables 3–5:
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Table 3. Computational results of DNS and comparisons on Range-100

DNS TLMH ACO-DT EA/G-MP ABC-DTP

instance best average time best average time best average best average best average

50-1 1204.41 1204.41 29 1204.41 1204.41 1 1204.41 1204.41 1204.41 1204.41 1204.41 1204.41
50-2 1340.44 1340.44 25 1340.44 1340.44 <1 1340.44 1340.44 1340.44 1340.44 1340.44 1340.69
50-3 1316.39 1316.39 6 1316.39 1316.39 <1 1316.39 1316.39 1316.39 1316.39 1316.39 1316.39

100-1 1217.47 1217.47 <1 1217.47 1217.47 17 1217.47 1217.47 1217.47 1217.61 1217.47 1218.59
100-2 1128.40 1128.40 7 1128.40 1128.40 44 1152.85 1152.85 1128.40 1128.54 1128.40 1136.50
100-3 1252.99 1252.99 20 1252.99 1253.41 202 1253.49 1253.49 1253.49 1257.37 1252.99 1253.30
200-1 1206.79 1206.79 23 1206.79 1206.80 515 1206.79 1207.61 1206.79 1208.26 1206.79 1210.25
200-2 1213.24 1213.24 170 1213.24 1213.27 395 1216.23 1217.73 1216.41 1222.23 1216.41 1219.38
200-3 1247.25 1247.25 114 1247.25 1247.41 313 1247.25 1248.94 1247.63 1250.78 1247.73 1252.15
300-1 1217.59 1224.32 587 1215.48 1217.40 564 1228.24 1243.70 1225.22 1230.48 1215.48 1220.39
300-2 1170.85 1171.53 441 1170.85 1171.08 341 1176.45 1193.95 1170.85 1171.30 1170.85 1171.15
300-3 1247.51 1254.16 453 1247.51 1249.51 348 1261.18 1276.75 1252.14 1260.83 1249.54 1254.67
400-1 1211.33 1216.45 426 1211.33 1213.51 502 1220.62 1237.45 1211.72 1220.79 1212.51 1214.36
400-2 1201.74 1205.34 425 1197.66 1198.99 432 1209.69 1246.14 1199.92 1202.82 1199.23 1202.90
400-3 1257.52 1262.98 487 1245.31 1248.47 633 1254.10 1270.34 1248.29 1268.38 1246.94 1258.76
500-1 1202.12 1209.06 482 1197.26 1202.81 678 1219.66 1240.05 1206.07 1222.12 1200.06 1208.73
500-2 *1220.47 1233.98 624 1221.76 1226.81 570 1273.86 1295.51 1226.78 1240.62 1220.68 1230.07
500-3 *1231.81 1244.93 381 1231.84 1236.64 583 1232.71 1259.08 1232.15 1250.48 1231.95 1236.33

average 1227.13 1230.56 261 1225.91 1227.32 348 1235.10 1245.68 1228.03 1234.10 1226.57 1230.57
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Table 4. Computational results of DNS and comparisons on Range-125

DNS TLMH ACO-DT EA/G-MP ABC-DTP

instance best average time best average time best average best average best average

50-1 802.95 802.95 10 802.95 802.95 1 802.95 803.26 802.95 802.95 802.95 802.95
50-2 1055.10 1055.10 19 1055.10 1055.10 2 1055.10 1055.10 1055.10 1055.10 1055.10 1055.10
50-3 877.77 877.77 3 877.77 877.77 4 877.77 877.77 877.77 877.77 877.77 877.83

100-1 943.01 943.01 3 943.01 943.01 102 943.01 946.37 943.01 943.01 943.01 943.01
100-2 917.00 917.00 126 917.00 917.23 281 935.71 938.71 917.95 917.95 917.00 917.38
100-3 998.18 998.18 5 998.18 998.18 44 998.18 1006.11 998.18 998.18 998.18 999.91
200-1 910.17 910.17 11 910.17 910.17 195 910.17 910.50 910.17 910.17 910.17 911.66
200-2 921.76 921.76 79 921.76 921.76 184 928.84 942.72 921.76 923.03 921.76 925.38
200-3 939.58 939.58 452 939.60 939.61 333 951.36 959.63 939.58 949.18 939.58 943.20
300-1 977.65 978.33 412 977.65 977.65 416 978.91 980.11 977.65 981.04 979.81 981.85
300-2 913.01 913.01 228 913.01 913.01 402 918.40 949.05 913.01 914.08 913.01 913.88
300-3 974.85 974.94 383 974.78 974.78 315 981.15 981.33 974.85 979.34 974.78 978.35
400-1 965.99 966.08 292 966.01 966.03 225 968.66 980.60 965.99 966.59 965.99 966.71
400-2 938.54 942.45 643 934.17 937.88 506 941.52 961.71 941.02 943.53 941.02 942.59
400-3 1002.61 1003.13 579 1002.61 1002.67 525 1002.61 1009.07 1002.97 1003.62 1002.61 1003.33
500-1 963.89 964.10 484 963.89 965.91 272 986.49 991.85 963.89 963.89 963.89 964.80
500-2 950.18 956.48 539 948.57 949.57 457 953.77 996.85 948.57 952.96 948.96 950.12
500-3 982.02 988.86 514 980.67 982.73 553 1006.23 1007.36 980.67 992.64 981.90 986.01

average 946.35 947.38 265 945.94 946.45 283 952.27 961.01 946.39 948.61 946.53 948.00
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Table 5. Computational results of DNS and comparisons on Range-150

DNS TLMH ACO-DT EA/G-MP ABC-DTP

instance best average time best average time best average best average best average

50-1 647.75 647.75 <1 647.75 647.75 1 647.75 647.75 647.75 647.75 647.75 647.75
50-2 863.69 863.69 <1 863.69 863.69 2 863.69 863.69 863.69 863.69 863.69 864.04
50-3 743.94 743.94 <1 743.94 743.94 2 743.94 743.94 743.94 743.94 743.94 745.68

100-1 876.69 876.69 7 876.69 876.79 297 881.37 885.36 876.69 876.69 876.69 877.02
100-2 657.35 657.35 <1 657.35 657.35 11 657.35 657.35 657.35 657.53 657.35 657.53
100-3 722.87 722.87 <1 722.87 722.87 2 722.87 722.87 722.87 722.87 722.87 722.87
200-1 809.90 809.90 23 809.90 809.90 138 809.90 810.87 809.90 810.49 809.90 809.90
200-2 736.23 736.23 2 736.23 736.23 354 736.23 736.23 736.23 736.23 736.23 736.23
200-3 792.71 792.71 17 792.71 792.71 97 792.71 793.73 792.71 795.65 792.71 793.48
300-1 796.15 796.60 288 796.15 796.15 283 796.70 797.17 796.15 798.12 796.29 796.99
300-2 741.02 741.72 257 741.02 741.03 298 748.94 752.33 741.02 743.05 741.02 742.88
300-3 819.76 819.76 171 819.76 819.78 129 826.48 826.56 819.76 821.67 819.76 820.45
400-1 796.70 797.42 435 795.53 795.88 445 796.70 798.24 795.53 798.82 795.53 797.92
400-2 779.63 780.64 477 779.67 779.67 388 782.91 787.66 779.63 783.14 779.63 781.40
400-3 814.14 816.62 589 814.14 814.18 388 826.48 831.32 814.14 817.38 814.14 815.35
500-1 792.32 793.49 469 792.21 792.31 357 794.47 797.13 792.21 793.59 793.98 796.16
500-2 779.35 779.92 465 779.38 779.41 274 779.35 791.20 779.35 781.28 779.35 780.04
500-3 808.64 810.00 538 808.37 808.39 281 808.50 811.35 808.50 810.27 808.50 808.50

average 776.60 777.07 207 776.52 776.56 208 778.69 780.82 776.52 777.90 776.53 777.46
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This algorithm obtains best solutions for most instances in the Range dataset, and those that
are not optimal are close to the optimal solution. It updates the best solution for two instances and
outperforms the TLMH algorithm in speed.

4. Analysis and Discussion

4.1. The Importance of the Initial Solution

A procedure for generating the initial solution was proposed in the previous chapter. To see
the effect of this procedure, experiments were conducted on it in this section, where 18 instances of
Range150 were tested. The objective value obtained by this procedure were compared with both the
minimum spanning tree weights and the known best objective value to see how much this procedure
improves on the initial solution and how close this initial solution is to the minimum domination tree.
The experimental results are shown in Table 6.

Table 6. Experimental results of the initial dominating tree algorithm

instance Tm Ti Tb

50-1 2368.21 1145.40 647.75
50-2 2521.75 1222.31 863.69
50-3 2461.33 1103.13 743.94

100-1 3313.79 1324.04 876.69
100-2 3155.53 1212.55 657.35
100-3 3354.60 1043.87 722.87
200-1 4618.79 1327.49 809.90
200-2 4704.18 1322.38 736.23
200-3 4720.93 1353.97 792.71
300-1 5685.14 1559.49 796.15
300-2 5718.30 1269.55 741.02
300-3 5839.22 1516.01 819.76
400-1 6599.33 1730.84 795.53
400-2 6618.89 1833.34 779.63
400-3 6524.29 1638.08 814.14
500-1 7356.76 1375.03 792.21
500-2 7342.62 1334.51 779.35
500-3 7305.09 2111.56 808.37

In Table 6, Tm represents the minimum spanning tree, Ti represents the objective value obtained
from the initialization procedure, Tb represents the known best objective value. From the results, it
can be seen that using the initialization procedure to obtain a domination tree as the initial solution
improves significantly over using the minimum spanning tree as the initial solution. The weight
of this initial domination tree is relatively close to that of the minimum domination tree, allowing
the algorithm to converge quickly to a near-optimal solution at the very beginning. To verify this
improvement, this paper also uses the minimum spanning tree of graph G(V, E) as an initial solution
and conducts experiments on Range150 for comparison. This method is denoted as DNS-ms. The
experimental results are in Table 7.
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Table 7. Computational results of initial solution experiment on Range-150

DNS DNS-ms

instance best average time best average time

50-1 647.75 647.75 <1 647.75 647.75 <1
50-2 863.69 863.69 <1 863.69 863.69 <1
50-3 743.94 743.94 <1 743.94 743.94 <1

100-1 876.69 876.69 7 876.69 876.69 10
100-2 657.35 657.35 <1 657.35 657.35 <1
100-3 722.87 722.87 <1 722.87 722.87 <1
200-1 809.90 809.90 23 809.90 809.90 20
200-2 736.23 736.23 2 736.23 736.23 7
200-3 792.71 792.71 17 792.71 792.71 32
300-1 796.15 796.60 288 796.65 796.69 282
300-2 741.02 741.72 257 741.02 741.02 273
300-3 819.76 819.76 171 819.76 819.84 484
400-1 796.70 797.42 435 796.70 797.34 500
400-2 779.63 780.64 477 779.63 780.40 525
400-3 814.14 816.62 589 815.03 817.09 567
500-1 792.32 793.49 469 792.21 793.73 808
500-2 779.35 779.92 465 779.35 780.31 652
500-3 808.64 810.00 538 809.69 810.34 670

average 776.60 777.07 207 776.73 777.11 268

The experimental results show that DNS outperforms the DNS-ms algorithm in terms of best,
average objective values, and speed, indicating that the initial solution proposed in this paper improves
the efficiency of the algorithm. It can also be seen that there is not much difference between the best
and average values obtained by DNS and DNS-ms, demonstrating the robustness of the local search
procedure of DNS algorithm.

4.2. The Importance of the Fast Neighborhood Evaluation

The proposed DNS algorithm uses a fast neighborhood evaluation technique. To verify its
effectiveness, an experiment was conducted to test the time taken to reach the same result for 18
instances of Range150 with and without fast neighborhood evaluation. In this experiment, the
perturbation is disabled while only tabu mechanism is enabled. The best objective value that can be
reached at complete convergence is tested in advance for each instance and used as the target result.
The random seed is fixed for each instance because the difference in speed is only due to using fast
neighborhood evaluation. The program runs until it reaches the target result, and the time taken by
each instance to reach the target result under these two methods is recorded separately. The results are
shown in Table 8, where Method 1 represents the version without fast neighborhood evaluation and
Method 2 represents the version with fast neighborhood evaluation:

From Table 8, it can be seen that the version using fast neighborhood evaluation significantly
improves speed compared to the version without it, verifying the effectiveness of fast neighborhood
evaluation. To observe the convergence of these two methods, scatter plots are generated by outputting
the weights and corresponding times after each update. The convergence curves of some instances are
shown in Figure 4, where NDNU represents the method without fast neighborhood evaluation and
DNU represents the method with the fast neighborhood evaluation.
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Table 8. Comparison of fast neighborhood evaluation experiments

instance Target results Method 1 time Method 2 time

50-1 647.75 <1 <1
50-2 903.37 <1 <1
50-3 751.24 <1 <1
100-1 876.69 13 3
100-2 657.35 1 <1
100-3 722.87 1 <1
200-1 809.90 10 1
200-2 736.23 10 1
200-3 797.11 85 15
300-1 798.18 136 22
300-2 745.29 28 3
300-3 827.56 447 77
400-1 803.07 288 36
400-2 785.63 411 61
400-3 825.07 448 72
500-1 801.36 200 23
500-2 780.03 372 56
500-3 818.49 315 20

average 782.62 153 21
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Figure 4. Fast neighborhood evaluation scatter plot
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From Figure 4, it can be seen that the version using fast neighborhood evaluation converges to
the target value more quickly. For the version without the fast neighborhood evaluation, the curve is
slower and takes longer to converge to the same objective value.

4.3. Importance of the Perturbation

The proposed DNS algorithm also implements a perturbation strategy. In this section the
effectiveness of this strategy is verified through experiments by testing the version with and without
this strategy, for 18 instances in Range150. Each instance is run 5 times with different random seeds,
with a time limit of 1000 seconds, and the results of the experiments are shown in Table 9:

Table 9. Comparison of Disturbance Strategy Experiments

Using Perturbation Without Perturbation

instance best average best average

50-1 647.75 647.75 647.75 647.75
50-2 863.69 863.69 903.37 903.37
50-3 743.94 743.94 751.24 751.24

100-1 876.69 876.69 876.69 876.69
100-2 657.35 657.35 657.35 657.35
100-3 722.87 722.87 722.87 722.87
200-1 809.90 809.90 809.90 809.90
200-2 736.23 736.23 736.23 736.23
200-3 792.71 792.71 792.71 794.27
300-1 796.29 796.62 796.70 799.93
300-2 741.02 741.02 743.99 744.87
300-3 819.76 819.76 822.70 828.09
400-1 796.70 797.84 802.80 805.29
400-2 779.63 781.21 782.98 786.56
400-3 814.14 816.47 824.31 825.71
500-1 792.65 793.55 799.82 806.55
500-2 779.35 779.65 780.03 784.35
500-3 808.64 809.92 811.63 817.03

average 776.63 777.07 781.28 783.23

From Table 9, it can be seen that better solutions can be obtained by the version using the
perturbation strategy, especially in some larger instances, verifying the effectiveness of this strategy.

5. Conclusion

In this paper, a dual-neighborhood search algorithm is proposed to solve the minimum
dominating tree problem. In order to improve the efficiency of the algorithm, a fast neighborhood
evaluation method is proposed, in which the method of dynamically generating the minimum spanning
tree from the sub-graph deduced from the dominating set. The tabu and the perturbation mechanisms
help the algorithm jump out of the local optimum trap, thus obtaining better solutions. The DNS
algorithm is demonstrated to be highly effective in tests on a collection of widely used benchmark
instances where it is compared with the algorithms in the literature. Out of 72 public instances, DNS
improves the best result on 4 problems while being competitive on the remaining ones with less
computational time. Although the techniques proposed in this paper are specific to the minimum
dominating tree problem, most of these ideas can be applied to other combinatorial optimization
problems. For example, the dynamic spanning tree calculation used in the fast neighborhood evaluation
can be used in problems with spanning tree structures. And the collaboration of two neighborhood
structures can be also introduced to other relevant optimization problems. Finally, it is interesting to
test the proposed ideas in other meta-heuristic frameworks with other optimization problems.
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