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Abstract: We show that the entropy or information flow of a gravitational system constrains the

dependence of gravitational force on radial distance r which for very large r is equivalent to gravity

in two dimensions. This explains the "origin" of dark matter and provides a natural solution to the

problem of flat rotation curves of galaxies at very large distances and a larger deflection angle for a

gravitational lens.
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1. Introduction

The holographic principle[1,2] states that a 3D system is actually 2D at the fundamental level. This

conclusion came from the black hole physics[3–5]. AdS/CFT[6] presents another strong support for

this idea. The idea of the holographic principle basically concerns itself with the storage of information

of a black hole on a 2D surface. However, in[7], the authors showed that if we consider the information

"flow" then a black hole behaves essentially as a 1D system. Therefore, if the storage of information

is concerned, a black hole behaves as a 2D system, and if information flow is concerned a black

hole behaves as a 1D system. In[8], treating a Schwarzschild black hole as a 1D system, its correct

Bekenstein-Hawking(BH) entropy was derived while in[9], the correct form of BH entropy was derived

by treating them as a 2D system. In the first paper, the information flow of black holes was the basis

while the second paper claimed that since the phase space is modified which basically concerns the

storage of states of the system, information storage should be the basis thereby treating the phase

space as 2D. Some works on the 1D idea have been carried out[10–12]. In this paper, we show that

the information "flow" of a gravitational system constrains the dependency of the force of gravity on

radial distance r at very large distances. The force of gravity is shown to be modified as

F(r >> r0) ∝
1

r
(1)

where r0 is a cutoff length scale that marks the departure from Newton’s law of gravity. This modified

dynamics (Eq.(1)) solves the problem of observed flat rotation curves of galaxies at very large distances

which is in conflict with Newton’s law of gravity. This observation led to the advent of dark matter

which is hypothesized to provide the "extra" mass needed to fit with observation. This is the basis of the

standard cosmology ΛCDM. While another paradigm is Modified Gravity theories(see [13] for a nice

discussion) that try to modify the Lagrangian of standard GR to account for this observation without

any dark matter particles. This began with the proposal of Milgrom[14] who argued that Newton’s

law is modified at large distances or equivalently Newton’s law of gravity behaves differently at

these scales. Its relativistic generalization is Scalar-Vector-Tensor(STV) theory[15] which in the weak

field limit reduces to Newtonian potential plus a repulsive Yukawa potential that accounts for the

flat rotation curve. Theoretically, we can only account for the explanation of dark matter but we

can not explain its "origin" per se. In this paper, we will show how dark matter naturally arises in a

gravitational system. This is based on the idea that as far as information flow is concerned, black holes

behave as a 1D system.

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 November 2023                   doi:10.20944/preprints202308.0891.v3

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202308.0891.v3
http://creativecommons.org/licenses/by/4.0/


2 of 6

The paper is organized as follows: In section II, we briefly review the idea of entropy flow needed

for the discussion of this paper. We elucidate our idea in section III and end the paper with some

discussion.

2. Entropy Flow: A Brief Review

The entropy s(p) of any boson mode of momentum p in a thermal state at temperature T is[16]

s(p) =
ǫ(p)

eǫ(p)/T − 1
− ln(1 − e−ǫ(p)/T) (2)

The entropy current in one direction is given as

Ṡ =
∫

∞

0
s(p)v(p)

dp

2πh̄
(3)

dp/2πh̄ being the number of modes per unit length in the interval dp which propagate in one direction.

After integration by parts on the second term coming from Eq.(2), we can write it as

Ṡ =
2

T

∫

∞

0

ǫ(p)

eǫ(p)/T − 1

dǫ(p)

dp

dp

2πh̄
(4)

The integral represents the unidirectional power P in the channel and gives

Ṡ = 2P/T (5)

The result of power is

P =
πT2

12h̄
(6)

On eliminating T, we get Pendry’s maximum entropy rate for power P[17]

Ṡ =

(

πP

3h̄

)1/2

(7)

This formula characterizes the one-dimensional transmission of entropy or information. For a hot

closed black body with temperature T and area A in 3D space, we similarly obtain

P =
π

2T4 A

120h3
(8)

Ṡ =
4P

3T
(9)

For a black hole system, Ṡ becomes[7]

Ṡ =

(

ν
2
ΓπP

480h̄

)1/2

(10)

similar to Pendry’s limit for one-channel flow. This led the authors of[7] to conclude that Black holes

are a 1D system in their entropy flow.

3. Behavior of Gravity at Large Distances

Let us reflect on the idea that black holes are 1D in their entropy or information flow. What was

needed to discuss this idea was a boundary so that it has a temperature T. Using this line of thought,

we can try to apply this idea to holographic screens which also have a finite temperature T. In our

approach, we choose a system of a mass M with a holographic screen at a distance r (the screen stores
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all the data of the bulk). We further assume the screen to be spherical. We now treat this system as

equivalent to the black hole system and claim that this behaves as a 1D system in its information flow.

In what follows, it is clear that this claim that the system of mass M with a holographic screen follows

the equation of a hot black body similar to a black hole is valid only if the distance of the holographic

screen r is very large since as we show in this paper, this idea directly constrains the dependency

of gravitational force on distance which is only possible to be modified at large distances only, in

agreement with at least our experience so far1. A technical explanation shall be given later on. For

now, let us verify whether or not Newton’s law of gravity satisfies our claim. The temperature T of the

screen is now given by Unruh temperature[18] as

T =
h̄a

2πkBc
(11)

We first put a = GM/r2 and since A = 4πr2 this gives

P =
πMT3

120h2
(12)

This value leads to the system as effectively 2D (using Eq.(9) and not 1D as required. Let us see what

happens if we modify acceleration due to gravity a as a = k/r where k is some constant. This gives the

power as

P =
k2T2

480πh
(13)

and we obtain

Ṡ =

(

k2P

270πh

)1/2

(14)

Now, this expression is similar to Pendry’s limit (Eq.(7)), and the system effectively behaves as 1D. So,

this expression for acceleration a satisfies our requirement. It is easy to check that no other dependency

of r will satisfy our requirement; thus, a ∝ 1/r is the unique dependency. Before we evaluate the

value of constant k, we return to how far the screen is placed. In general, the holographic screen can

be placed at any distance. However, it is clear that our system cannot be blindly treated as a black

body. But it turns out that in certain limits, it can be made to act as a black body (at least in the way

that it approximately follows the Stefan-Boltzmann law). We, therefore, drop the assumption that the

energy spectrum tends to infinity and keep the upper limit finite (yet large). The equation of power P

is therefore given by

P =
2πhA

c2

∫

ǫ(p)

0

ǫ(p)3

e
ǫ(p)
kBT − 1

dǫ(p) (15)

Let us perform the substitution u = ǫ(p)
kBT to obtain

P =
2πhA

c2

(

kBT

h

)4 ∫ ǫ(p)
kBT

0

u3

eu − 1
du (16)

When T is very small which happens when r is very large (since the Unrhuh temperature gives T,

T ∝ a ∝ 1/r2) and since ǫ(p) is finite (yet large), the upper limit of the integral can be approximated as

approaching infinity (
ǫ(p)
kBT → ∞) and Eq.(16) takes the standard form of power emitted by a black body

1 On solar system scales, Newton’s law of gravity holds perfectly well while chances of modifications in the law of gravity are
only possible at large distances in view of the peculiar behavior of rotation curves of galaxies. So far, this modification has
only come to our knowledge via experiment. But in this paper, we present a possible "origin" of this modification for the
first time.
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(Eq.(8)). If T is large (for relatively small r), the upper limit remains finite (and small), there is some

dependency on T as well as ǫ(p) coming from the finite integral, and therefore it is not of the form of

a black body and cannot be treated equivalently as a black hole system (which is taken to be a black

body) and therefore as a 1D system. This brings us to an important conclusion, a system of mass M

with a holographic screen at a distance r can be treated as a 1D system similar to a black hole only

when the screen is at a very large distance. The immediate question that comes up in the mind is, how

large r should be or what can be the minimum value of r. For this, we turn to the expression for a at a

large distance, which varies as 1/r. Let us apply this modified law for a spherical galaxy of mass M at

large r which becomes mv2/r = ma = mk/r. This gives

v2 = k (17)

This shows that the rotation curves are flat at large distances since k is a constant. From this, we

infer that this dependence solves the problem of dark matter. We can find the value of k using the

Tully-Fischer relation and MOND theory of Milgrom, where v4 = GMa0, which gives

k =
√

GMa0 (18)

where a0 = 1.2 × 10−10ms−2. We, therefore, obtain that at large distance r >> r0 with r0 being a cutoff

length scale, the law of gravity is modified as

F(r >> r0) =

√
GMa0

r
(19)

Thus, we find that at very large distances, the behavior of gravity is similar to gravity in two dimensions

and obtained its exact expression as Eq.(19)

3.1. Gravitational Lensing

The deflection angle of light due to a gravitational lens of mass M in this case is (following [19])

δ =
2

c2

∫

~∇⊥(VN + V)ds (20)

= δ1 +
2b
√

GMa0

c2

∫

∞

−∞

dx

(b2 + x2)
(21)

=
4GM

bc2
+

2π
√

GMa0

c2
(22)

≡ 4GM′

bc2
(23)

where M′ = M

(

1 + bπ

2

√

a0
GM

)

. Let us analyze this equation with an example. For this, we take

M = 1042kg, b = 100kpc ≈ 3.1 × 1021, then we find that M′ ≈ 7.5M. Thus, we find that the lensing is

7.5 times larger than the standard case. This can solve the problem of a larger deflection angle of light

around a lens than the standard case given simply by δ1.

4. Conclusions and Discussion

In this paper, we showed that a gravitational system with a very large radius can be treated as a

1D system in its entropy or information flow similar to a black hole. This idea led to the modification

of Newton’s law of gravity as F(r >> r0) ∝ 1/r. This modification solves the problem of flat

rotation curve of galaxies at large distances as well as gives a large deflection angle of light around

a gravitational lens of mass M. Viewed in this way, this approach explains the "origin" of dark

matter on theoretical grounds for the first time. A direct consequence of this approach is that it is not
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compatible with Verlinde’s idea of entropic gravity[20]. In the entropic case, a holographic screen

encloses a volume of space in which space is to emerge. Using the formula for entropic force given

by F∆x = T∆S, he obtains Newton’s law of gravity. But, as shown in this paper, at large distances,

Newton’s law of gravity is modified. Therefore, this conflicts with the idea that gravity is an entropic

force. Another aspect is that the presence of a holographic screen violates the Bekenstein bound[21].

As pointed out by Verlinde[20], this could be due to two reasons. Firstly, the screen is not in a thermal

state and second, the holographic screen does not follow the Bekenstein bound. But, our approach

requires the screen to be in a thermal state(at temperature T) so that maximal entropy current occurs.

We, therefore, take the second statement to be true that the Bekenstein bound is valid for bulk and not

the screen(see [22]). We are hopeful that further studies can be done on this idea.

Conflicts of Interest: The author declares no conflict of interest.
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