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Abstract: Aiming at the decision-making problem in the anti-torpedo hydroacoustic countermeasure

scenarios, this paper proposes an intelligent adversarial strategy based on the game theory. By

discretizing the strategy space of both sides, a matrix game model is established with the payoff

characterized by the capture probability of attacking torpedo. An improved simplex algorithm

is developed to get the mixed-strategy Nash equilibrium of the game model, by which preferred

avoiding strategies can be obtained to minimize the risk of being captured by the attacking torpedo.

Considering the urgent stage when the sonar equipment detects the torpedo without identification of

its attacking direction, the proposed intelligent strategy provides an probabilistic overview on the

countermeasure scenarios, which could improve the success capability of surface warships for the

anti-torpedo cases.

Keywords: hydroacoustic countermeasure; game theory; gaussian distribution; linear programming;

simplex method

1. Introduction

With the development of the international situation, as well as the emergence of new types of

confrontation targets, it is urgent to re-examine the hydroacoustic confrontation to adapt to the needs

of naval operations in the new situation [1]. Hydroacoustic countermeasures are devoted to using

hydroacoustic equipment and devices [2], luring, interfering with the enemy acoustic guided torpedo

detection and attack, to avoid enemy torpedo attacks, and thereby improving their own survival

capability [3–7]. Hydroacoustic countermeasures technology has been investigated for more than

60 years since the Second World War, which contributes to some representative systems such as the

United States / Britain joint Surface Ship Torpedo Defence (SSTD) system, the France Systeme-de Lutte

Anti-Torpille (SLAT) system, the Israel Torpedo Self Defence System (TSDS) system, the United States

/ United Kingdom joint Surface Ship Torpedo Defence (SSTD) system, the French system, the Israeli

Torpedo Self Defence System (TSDS) system, the United States and United Kingdom joint Surface

Ship Torpedo Defence (SSTD) system, the Defence System (TSDS) system of France, the Torpedo Self

Defence System (TSDS) system of Israel, as well as the research of the USSR and its post-dissolution

republics [8]. Recently, there are popular researches on anti-submarine search mode abroad [9], and a

few researches on submarine countermeasures against torpedoes are reported on the countermeasure

characteristics of individual countermeasures [10,11]. Based on the Mote-Carlo simulating method and

the manoeuvre evasion strategy, some preliminary researches have been reported for the anti-torpedo

scenarios [12,13].

Some researches have implemented the game theory to develop intelligent strategies of naval

warfare. Levine [14] studied aspects of naval warfare in the previous centuries using concepts from

game theory. Since the powerful nations in the 18th and 19th centuries built warships with cannons

positioned along their sides, neither fleet would gain from turning towards the enemy and neither

would get ahead. Levine concluded that this strategy—forming a line of battle and sailing parallel to

the other fleet—was each fleet’s best response, and thus represented a Nash equilibrium.
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Maskery et al. [15] investigated the problem of deploying counter-measures against anti-ship

missiles using a network-enabled operations framework, where multiple ships communicate and

coordinate to defend against a missile threat. Here, the missile threats were modelled as a discrete

Markov process, and the ships which are equipped with countermeasures were modelled as the

players of a transient stochastic game, where the actions of the individual players include the use

of countermeasures to maximize their own safety while cooperating with other players which are

essentially aiming to achieve the same objective. The optimal strategy of this game-theoretic problem

is a correlated equilibrium strategy and is shown to be achieved via an optimization problem with

bilinear constraints. In [16], Maskery et al. considered the problem of network-centric force protection

of a task group against anti-ship missiles. The decision-makers in this model are the ships equipped

with hard-kill/soft-kill weapons (counter-measures) and these ships are also considered the players in

the formulation of this problem in a game-theoretic setting. Here, the ships play a game with each

other instead of with a missile. This approach naturally lends itself to decentralised solutions which

may be implemented when full communication is not feasible. Moreover, this formulation leads to an

interpretation of the problem as a stochastic shortest past game for which Nash Equilibrium solutions

are known to exist.

Bachmann et al. [17] analyzed the interaction between radar and jammer using a noncooperative

two-player zero-sum game. In their approach, the radar and jammer were considered ‘players’ with

opposing goals: the radar tries to maximize the probability of detection of the target while the jammer

attempts to minimize its detection by the radar by jamming it. This game-theoretic formulation was

solved by optimizing these utility functions subject to constraints in the control variables (strategies),

which for the jammer are jammer power and the spatial extent of jamming while for the radar

the available strategies include the threshold parameter and reference window size. The resulting

matrix-form games were solved for optimal strategies of both radar and jammer from which they

identify conditions under which the radar and jammer are effective in achieving their individual goals.

Consider the scenario that a surface ship encounter with an enemy submarine, where the

submarine would like to launch a torpedo attacking the ship. While the coming torpedo is alarmed by

sonar equipments of the ship, the defensive crew of ship would take some countermeasure strategies

to survive from the dangerous situation. For most cases, the enemy submarine would maintain silence

for a long time to attack in a advantageous situation, and accordingly, this scenario of hydroacoustic

confrontation is very emergent, due to the faster maneuvering speed and unknown attacking direction

of the torpedo. Thus, it is of great help to improvement of its survival capability by predicting

the attacking intention of the enemy torpedo. In this paper, we address it based on the theory of

matrix game [18,19]. Taking the avoidance angle and the attacking advance angle as the antagonizing

strategies of the defensive surface ship and the attacking torpedo, respectively, a matrix game model is

constructed by discretizing them in their value ranges, taking the payoff as the probability of being

captured by the torpedo. Then, the linear programming (LP) model for matrix game is proposed, and

an improved initialization strategy of the simplex method to get the Nash equilibrium solution to the

game model as soon as possible. In this way, a realtime antagonizing strategy can be generated to

address the emergent scenario of Hydroacoustic countermeasure.

Rest of this paper is organized as follows. Section 2 presents some preliminary introductions

on the theory of matrix game and the simplex method for LP, and a matrix game model for the

investrigated hydroacoustic countermeasure scenario is proposed in Section 3. To efficiently put

into practice the proposed game model, Section 4 validate the construction of payoff matrix and

an improved initialization method for the simplex method (SM) is put forward in Section 5. Then,

numerical simulation is implemented in Section 6 to demonstrate the applicability of the proposed

strategy, and Section 7 presents conclusions and discussions.
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2. Preliminaries

2.1. Introduction to the Game Theory

• Pure vs. mixed strategies [20]

A game typically consists of two or more players, a set of strategies available to these players, and

a corresponding set of payoff values for each player. A pure strategy in a game provides a complete

definition of how a player will play a game, and a mixed strategy is a combination of pure strategies

where a particular probability p (where 0 ≤ p ≤ 1 ) is associated with each of these pure strategies.

Therefore, any pure strategy is actually a degenerate case of a mixed strategy, in which that particular

strategy is selected with probability 1 and every other strategy is selected with probability 0.

• Nash equilibrium [20]

The solution to a game model refers to the Nash equilibrium (solution). Let (S, f ) be a game with

n players, where Si is the strategy set of a given player i. Thus, the stragety profile S consisting of

the strategy sets of all players would be S = S1 × S2 × · · · × Sn. Let f (x) = ( f1(x), . . . , fn(x)) be the

payoff function for strategy set x ∈ S. Suppose xi is the strategy of player i and x−i is the strategy set of

all players except player i. Thus, when each player i ∈ {1, . . . , n} chooses strategy xi that would result

in the strategy set x = (x1, . . . , xn), giving a payoff of fi(x) to that particular player, which depends

on both the strategy chosen by that player (xi) and the strategies chosen by other players (x−i). A

strategy set x∗ ∈ S is in Nash equilibrium if no unilateral deviation in strategy by any single player

would return a higher utility for that particular player. Formally put, x∗ is in Nash equilibrium if and

only if:

∀i, xi ∈ Si : fi(x∗i , x∗−i) ≥ fi(xi, x∗−i). (1)

x∗ is called a pure/mixed-strategy Nash equilibrium when x∗i is pure/mixed-strategy for any player i,

i ∈ {1, . . . , n}.

• Matrix (Two-person zero-sum) games [20]

Zero-sum games are a class of competitive games where the total of the payoffs of all players

is zero. In two-player games, this implies that one player’s loss in the payoff is equal to another

player’s gain in the payoff. A maxtrix (two-player zero-sum) game can therefore be represented by

a payoff matrix that shows only the payoffs of one player. The mini-max theorem [21] states that

in a zero-sum game there is a set of strategies that minimizes the maximum losses (or maximises

the minimum payoff) of each player, which can be addressed by solving LP problems. Note that

the linear programming problems given for both players are dual to each other. The optimal mixed

strategies for both players can be found by solving only one of the linear programming problems

because the optimal dual solution is an automatic by-product of the simplex method calculations to

find the optimal primal solution. In general, you always can find optimal mixed strategies for both

players by choosing just one of the models (either one) and then using the simplex method to solve for

both an optimal solution and an optimal dual solution [22].

2.2. The Simplex Method for LP Problems [23]

An LP problem with n′ variables and r constraints takes the form

max z′ = c′Tx′

s.t.

{

A′x′ ≤ b,

x′ ≥ 0, b ≥ 0
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where n′ and r are positive integers, c′ ∈ R, x′ ∈ R
n′

, A′ ∈ R
n′×n′

, and b ∈ R
r. Let N′ = {1, . . . , n} be

the set of variable indices and R = {1, . . . , r} be the set of constraint indices. The feasible region of

an LP is denoted by S′ = {x′ ∈ R
n′
+ : A′x′ ≤ b} and the optimal solution of an LP is x′∗ ∈ S such that

z′∗ = c′Tx′∗ ≥ c′Tx′′ for all x′′ ∈ S.

One of the most popular algorithms to LP problems is the simplex method (SM) created by George

Dantzig [24]. Given an LP, the SM requires that all constraints be converted into linear equations by

adding r slack variables. This new problem is called the canonical linear program (CLP) and is defined

as
max z = cTx

s.t.

{

Ax = b,

x ≥ 0, b ≥ 0,

where x ∈ R
n+r, c ∈ R

n+r is c′ augmented with r zeros, and A ∈ R
r×(n+r) is A′ augmented with an

r × r identity matrix. Let N = {1, . . . , n + r} be the variable indices and S = {x ∈ R
n+r
+ : Ax = b} be

the feasible region of an CLP.

Initially, SM requires a starting basic feasible solution. Formally, BV ⊆ N is called a basis if

|BV| = |R| and A.BV is nonsigular. The set of nonbasic indices is NBV = N\BV. The corresponding

vasic and nonbasic variables are xBV and xNBV , respectively. If A−1
.BVb ≥ 0, then BV is a feasible

basis with xBV = A−1
.BVb and xNBV = 0 being the corresponding vasic feasible solution. Here, A.BV

represents the columns of A restricted to the indices in BV, and xBV is the x values of the indices in

BV.

The input to SM is an CLP and a feasible basise BV ⊆ N that produces a feasible basis solution.

The algorithm evaluates each nonbasis variable’s reduced cost, which is euql to cBV A−1
.BV A.i − ci for

all i ∈ NBV. If all nonbasic reduced costs are nonnegative, then the corresponding vasic feasible

solution represents an optimal solution of CLP. Furthermore, BV is said to be an optimal basis. If BV

is not optimal, then there exists an entering variable with index p ∈ NBV such that its reduced cost

is negative. In order to determine the leaving variable, define R+ = {j ∈ R : (A−1
.BV A.p)j > 0}. If

R+ = ∅, then the problem is unbounded. If not, SM performs the ratio test and identifies j∗ ∈ R+ such

that
(A−1

.BV b)j∗
(A−1

.BV A.p)j∗
≤ (A−1

.BV b)j

(A−1
.BV A.p)j

for all j ∈ R+. SM replaces the j∗th element in BV with p. This process is

referred to as a pivot. The algorithm continues pivoting until an optimal basis of CLP is identified or

CLP is shown to be unbounded.

3. The Matrix Game Model for Hydroacoustic Countermeasure

Knowing that both sides of the hydroacoustic countermeasure would like to maximize their

own profits, we construct a matrix game model to simulate the adversarial scenario, where the game

strategies of the two opposing sides in the static game are their own sailing/attacking directions.

Because the sailing speed of torpedo is much greater than that of the surface ship, we construct the

payoff matrix by the maximum capturing probabilities corresponding to pairs of sailing directions.

Since the capturing probability depend on relative positions of the opposite objects, we can get the

functional relationship between the relative positions of the torpedo and the ship under each game

situation as a function of time. Then, a component of the payoff matrix is obtained by taking the

maximum capture probability for a pair of sailing settings. If the probability of capture is less than

the given threshold, no evasion operation is carried out; otherwise, it is necessary to determine the

evasion strategy of the red ship.

To model the scenario of hydroacoustic confrontation, we establish a planar rectangular coordinate

system based on the relative positions of the torpedo and the ship. Assuming that the detected position

of the torpedo and the location of surface ship obey the normal distribution, we always place the

surface ship at the origin of the coordinate system. Then, the position of torpedo can be taken as a

two-dimensional random vector obeying a normal distribution.
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The hydroacoustic confrontation situations when the sonar system of the red ship detects the

incoming torpedo are shown in Figure 1, where the avoidance direction angle θ of the red surface

ship and the advance angle φ of the blue torpedo attack are supposed to be regulated to perform

the countermeasure game. For a strategy pair (φ, θ), the relative position of the mine-ship can be

calculated as a function of time according to the sailing speed of the red ship and the attack advance

angle and attack speed of the incoming torpedo. By incorporating a calculation method of capture

probability, one can get the capture probability function of sailing time, and take its maximum value as

the probability that an attacking torpedo captures the red ship.

(a) Detected torpedo attacks with

a small outboard angle.

(b) Detected torpedo attacks

with a small outboard angle.

Figure 1. Scenarios of hydroacoustic countermeasures.

Accordingly, the game model of hydroacoustic confrontation between red and blue parties can be

constructed, and the game strategy pair is (φ, θ). As illustrated in Figure 1, let θ ∈ [−θ0, θ0], φ ∈ [0, φ0].

To construct a discrete matrix game model, intervals [−θ0, θ0] and [0, φ0] are discretized as collections

of finite feasible values, that is, we set θ ∈ {θ1, . . . , θm} and φ ∈ {φ1, . . . , φn}. Then, we get the n × m

payoff matrix P = (pi,j)n×m, where the payoff pi,j is the probability that a red ship is captured by a

blue torpedo when the adversarial strategy pair is (φi, θj) (i = 1, . . . , n, j = 1, . . . , m).

A mixed/pure-strategy Nash equilibrium solution to this matrix game model can be obtained by

solving the linear programming model [22]

max z =
m

∑
j=1

rj

s.t.











m

∑
j=1

pijrj ≤ 1, i = 1, . . . , n,

rj ≥ 0, j = 1, . . . , m.

(2)

According to the optimal solution −→r = (r1, . . . , rm) of model (1), the sum of components

v = ∑
m
j=1 rj is the optimal payment corresponding to the mixed-strategy Nash equilibrium, and

the probability distribution σ∗ = ( r1
v , . . . , rm

v ) is the pure/mixed-strategy Nash equilibrium.

4. Calculation of the Payoff Corresponding to a Strategy Pair (φ,θ)

4.1. The Gaussian Model for Payoff of a Strategy Pair (φ,θ)

Figure 1 illustrates the confrontation posture at the time of alarm. We establish an inertial

coordinate system where the surface ship’s position is set as the origin of the coordinate system,

denoted by O. The sailing direction of the ship is set as the positive direction of the Y axis, labelled

as the due north direction, and the due east direction is taken as the positive direction of the X axis.

Denote the sailing speed of the surface ship by vwarship, and the deflection angle to avoid the attack of

torpedo by θ. For the acoustic self-guided torpedo, let q and d0 be its relative bearing angle and the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 August 2023                   doi:10.20944/preprints202308.0885.v1

https://doi.org/10.20944/preprints202308.0885.v1


6 of 11

distance from the surface ship, respectively. While the torpedo attack with the speed vtorpedo uniform

linear search, the attacking direction can be computed by

C = q + φ + π, (3)

where φ is the favourable advance angle, ϕ is the angle between the torpedo heading extension line

and the Y-axis angle.

Set t = 0 for the moment when the sonar equipment reports attack of the torpedo. We get the

position M(t) = (xwarship(t), ywarship(t)) of the red warship at time t, where

xwarship(t) =
∫ t

0
vwarship sin θ dt, (4)

ywarship(t) =
∫ t

0
vwarship cos θ dt. (5)

Similarly, the torpedo’s position T(t) = (xtorpedo(t), ytorpedo(t)) can be identified by

xtorpedo(t) = d0 sin q +
∫ t

0
vtorpedo sin C dt, (6)

ytorpedo(t) = d0 cos q +
∫ t

0
vtorpedo cos C dt. (7)

The distance between the surface ship and the torpedo is

d(t) =
√

(xtorpedo(t)− xwarship(t))
2 + (ytorpedo(t)− ywarship(t))

2. (8)

The lead angle is changing with time t by

φ(t) = π − arccos
r1(t)r2(t)

‖r1(t)‖‖r2(t)‖
, (9)

where

r1(t) = T(0)− T(t), r2(t) = M(t)− T(t).

Since the positions of both surface ship and torpedo could not be precisely located, it is assumed

that their coordinate positions obey the two-dimensional normal distribution:

rM(t) ∼ N (M(t), Σwarship), (10)

rT(t) ∼ N (T(t), Σtorpedo). (11)

In case that rM(t) and rT(t) are independent, we know r(t) = rM(t)− rT(t) is a Gaussian random

vector with

r(t) ∼ N (r0(t), Σ),

where

r0(t) = M(t)− T(t), (12)

Σ = Σwarship + Σtorpedo. (13)

The probability density function (PDF) of r(t) is

f (r, t) =
1

2π|Σ| 1
2

exp[−1

2
(r − r0(t))

T
Σ
−1(r − r0(t))]. (14)
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While the surface ship is located in the self-guided sector S of the torpedo, it would be captured

by the torpedo. Thus, the capture probability Pc(t) can be computed by a double integral

PC(t) =
∫∫

S1

1

2π|Σ| 1
2

exp

[

−1

2
(r − r0(t))

T
Σ
−1(r − r0(t))

]

dxdy (15)

where S1 is the sector illustrated in Figure 2a. Maximizing PC(t) for time t we can get the payoff

(capture probability) corresponding to a strategy pair (θ, φ).

(a) The self-guided sector of the

attacking torpedo.

(b) The rectangle approximation

of the self-guided sector.

Figure 2. The self-guided sector for calculation of the capture probability.

4.2. Approximation of the Payoff Corresponding to a Strategy Pair (θ, φ)

Since the integral included in (15) cannot be analytically computed, we would like to get an

analytical approximation of PC(t) to get the payoff corresponding to a strategy pair (θ, φ).

Assuming that the position error in the x-direction is uncorrelated to the position error in the

y-direction, we get a diagonal covariance matrix

P =

[

σ2
x 0

0 σ2
y

]

. (16)

For any time moment t, denote r0(t) = (x0(t), y0(t)), and Equation (15) implies

PC(t) =
1

2πσxσy

∫∫

S1

exp

[

−1

2

(

x2

σ2
x
+

y2

σ2
y

)]

dxdy. (17)

Denote the radius and the sector angle of S1 by Lmax and λ, respectively. As illustrated in Figure

2a, any (x, y) ∈ S1 satisfies


















x2 + y2 ≤ Lmax
2,

− y tan(
λ

2
) ≤ x ≤ y tan(

λ

2
),

y ≥ 0.

Since the self-conducting sector of torpedo is usually a sector with a large radius Lmax and a

comparatively small angle λ, we can approximate PC(t) by integrating the PDF in a rectangle S2

that is illustrated in Figure 2b by dashed lines, which is confirmed by

S2 = {(x, y)| − y tan(
λ

2
) ≤ x ≤ y tan(

λ

2
), 0 < y < Lmax}. (18)
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Thus, Equations (17) and (18) implies that the probability can be approximated by

PCA
(t) ≈ 1

2πσxσy

∫∫

S1

exp

[

−1

2

(

x2

σ2
x
+

y2

σ2
y

)]

dxdy = PCx(t) · PCy(t),

where

PCx(t) =
∫ Lmax tan( λ

2 )

−Lmax tan( λ
2 )

1√
2πσx

exp(− (x − x0(t))
2

2σ2
x

)dx,

= Φ(
Lmax tan( λ

2 )− x0(t)

σx
) + Φ(

Lmax tan( λ
2 ) + x0(t)

σx
)− 1,

PCy(t) =
∫ Lmax

0

1√
2πσy

exp(− (y − y0(t))
2

2σ2
y

)dy = Φ(
Lmax − y0(t)

σy
) + Φ(

y0(t)

σy
)− 1,

and Φ(·) is the cumulative distribution function (CDF) of the standard normal distribution. In

summary, the capture probability can be approximated by

PC(t) ≈
[

Φ(
Lmax tan( λ

2 )− x0(t)

σx
) + Φ(

Lmax tan( λ
2 ) + x0(t)

σx
)− 1

]

·
[

Φ(
Lmax − y0(t)

σy
) + Φ(

y0(t)

σy
)− 1

]

. (19)

5. The Generation Strategy of Initial Feasible Solution

To get real-time countermeasure strategy for the constructed matrix game model, an improved

simplex method algorithm addressing the linear programming model (2) is developed to get a

(mixed/pure) Nash equilibrium solution of the game model.

The simplex method can address the canonical form of a linear programming problem

max z = CTX

s.t.

{

AX = b,

X ≥ 0, b ≥ 0.

(20)

Starting with an initial basic feasible solution, the simplex method iterates successively to get the

optimal solution of (20). In this paper, we incorporate a tailored strategy included in Algorithm 1 to

accelerate the iteration process of the simplex method. By resorting the decision variables according

components of C, problem (20) is transformed to a reformed linear programming problem

max w = C
′ T

X
′

s.t.

{

A
′
X

′
= b

′
,

X
′ ≥ 0, b ≥ 0,

and a promising basis feasible solution X0 is generated by the Gaussian elimination method with

partial pivoting. Accordingly, the initial feasible basis can be obtained by picking up columns of A
′

that correspond to its leading entries.

The proposed method generates an initial feasible solution with a promising objective value

and tries to incorporate in it artificial variables as few as possible, which not only reduces the time

complexity of each iteration, but also reduces the number of iterations before the optimal solution is

achieved.

6. Numerical Simulation

In this section, we perform numerical simulation to validate the effectiveness of our proposed

method.
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Algorithm 1 Initialization for the Simplex Method

Input: A = (ai,j)n×m
, C = (c1, . . . , cm)T , X = (x1, . . . , xm)T , b = (b1, . . . , bn)T .

Output: A
′
, C

′
, X

′
, b

′
, X0.

1: Sort the components of C in descending order to get the reformed problem

max w = C
′ T

X
′

s.t. A
′
X

′
= b

′
,

where A
′
= (ai,kj

)n×m, X
′
= (xk1

, . . . , xkm
)T , b

′
= b, C

′
= (ck1

, . . . , ckm
)T , ck1

≥ · · · ≥ ckm
;

2: Perform the Gaussian elimination method with partial pivoting on the linear system A
′
X

′
= b

′
,

obtaining a linear system A
′′
X

′
= b

′′
, where A

′′
is a reduced row echelon form of matrix A

′
;

3: Set A
′
= A

′′
, b

′
= b

′′
, X0 = (b

′ T
, 0T)T .

6.1. Simulation Settings

Numerical simulation is carried out based on the settings presented as follows.

Torpedo:

The torpedo attacks at a speed of 50kn 1. When the sonar equipment alarms its attack, it is 28cab 2

far away from the surface ship, and the outboard angle is 30◦. The standard deviation of the reported

position is 150m for both the x-coordinate and the y-coordinate. The maximum self-guiding distance of

torpedo is 1500m, and the self-guiding sector angle is 30◦. The value of advance angle φ of the torpedo

ranges in [0◦, 35◦] with a stepsize of 5◦.

surface ship:

The sailing speed of surface ship is 18kn. The value of avoidance angle θ of the surface ship ranges

in [−35◦, 35◦] with a stepsize of 5◦.

6.2. Simulation Results

According to the discretization of (φ, θ), we can maximize PC(t) for time t to obtain the payoff

(capture probability) corresponding to each pair of game strategy(φ, θ), which contributes to a 8 × 15

payoff matrix. While numerical results demonstrate that when φ is greater than 25◦, the capture

probabilities are very small, which is ignored and deleted from the payoff matrix. Accordingly, we get

the payoff matrix presented in Table 1.

Table 1. The payoff matrix of game model.

φ
θ

−35◦ −30◦ −25◦ −20◦ −15◦ −10◦ −5◦ 0◦ 5◦ 10◦ 15◦ 20◦ 25◦ 30◦ 35◦

0◦ 0.00 0.00 0.00 0.00 0.00 0.02 0.06 0.17 0.35 0.58 0.79 0.92 0.98 0.99 0.98
5◦ 0.02 0.06 0.13 0.25 0.43 0.62 0.80 0.91 0.97 0.99 0.99 0.97 0.87 0.65 0.34
10◦ 0.66 0.79 0.89 0.95 0.98 0.99 0.99 0.99 0.95 0.84 0.62 0.35 0.13 0.03 0.00
15◦ 0.99 0.99 0.99 0.99 0.96 0.90 0.76 0.54 0.30 0.11 0.03 0.00 0.00 0.00 0.00
20◦ 0.91 0.83 0.71 0.54 0.34 0.17 0.06 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
25◦ 0.14 0.08 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1 1 kn = 1n mile/h= 0.514 m/s.
2 1cab=0.1 n mile=185.2m.
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The linear programming problem (2) is addressed by the simplex method with an initialization

method presented in Algorithm 1, and we get the Nash equilibrium solution, which demonstrates that

the ship-side mixed strategy is

SM = (0.40, 0.00, 0.00, 0.00, 0.00, 0.00, 0.20, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.4)

and the torpedo-side mixed strategy is

ST = (0.47, 0.00, 0.21, 0.32, 0.00, 0.00).

The corresponding equilibrium value is VG = 0.46.

The torpedo-side mixed strategy shows that the torpedo would attack the surface ship in the

directions characterized the advanced angles 0◦, 10◦ and 15◦, and the corresponding probabilities are

0.47, 0.21 and 0.35, respectively. Meanwhile, the ship-side mixed strategy suggests that the preferred

avoidance angles of surface ship are −35◦, 5◦, and 15◦, and the corresponding probabilities are 0.4,

0.2 and 0.4, respectively. The Nash equilibrium solutions could lead to a preliminary decision for

the hydroacoustic countermeasure scenario: the advance angle of attacking torpedo could range in

[10◦, 15◦], and the preferred avoidance strategy could be turning right for about 5◦ − 15◦, which could

provide a suggestive action before the attacking direction of torpedo is addressed, and in turn improve

the survival probabilities of surface ship for the emergent scenarios of hydroacoustic countermeasure.

7. Conclusions and Discussions

In order to improve the survival capability of surface ship in the scenarios of anti-torpedo

hydroacoustic countermeasure, this paper proposes a game-based strategy to predict possible attacking

directions of the hostile torpedoes. Based on the matrix game theory with the capture probabilities as

payoffs, our method can output a real-time Nash equilibrium solution that reports the probabilities of

all possible attacking directions. With this result, the defensive side can take actions before the sonar

equipment identifies the attack intention of the hostile torpedoes. However, the predicting probability

distribution does not given a definitive answer on what is the avoidance strategy of surface ship. Thus,

our future work will investigate how a definitive countermeasure strategy is derived from the Nash

equilibrium solution of the game model.
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