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Simple Summary: For accurate radiotherapy a secure definition of organs and tumor volume are important.
Due to the laborious task of manually drawing these contours, automatic segmentation models are becoming
available. These models still need to be visually evaluated by radiation oncology experts. Since this again, takes
up valuable time an efficient and clinically relevant validation of auto-segmented results is desirable. An
accurate 3D dose prediction model can help create dose awareness prior to the actual dose planning step. It
can provide useful information for the quality assurance of the contouring step. In this study we train a 3D
dose predictor for volumetric modulated arc therapy (VMAT) treatment of glioblastoma patients based on an
existing cascaded 3D U-Net. Accordingly, we test the model’s sensitivity and robustness for the purpose of
spotting possible dose changes due to contour variations.

Abstract: Background: External beam radiation therapy requires a sophisticated and laborious
planning procedure. To improve the efficiency and quality of the planning procedure, machine
learning predictions of the dose distributions have been introduced to speed up the planning
procedure and to serve as quality assurance. The most recent dose prediction models are based on
deep learning U-Nets that give good approximations of the dose in 3D almost instantly. It is our
purpose to train a 3D dose prediction for glioblastoma VMAT treatment and test its robustness and
sensitivity for the purpose of quality assurance of automatic contouring. Methods: From a cohort of
125 glioblastoma (GBM) patients, VMAT plans were created according to a clinical protocol. The
initial model was trained on a concatenated 3D U-Net. A total of 60 cases were used for training, 15
for validation and 20 for testing. The prediction model was tested for sensitivity to dose changes
according to realistic contour variations. Additionally, the model was tested for robustness by
exposing it to a worst-case test set containing out-of-distribution cases. Results: The initially trained
prediction model had a dose score of 0.94 Gy and a mean DVH score for all structures of 1.95 Gy. In
terms of sensitivity, the model was able to predict the dose changes that occurred due to the contour
variations with a mean error of 1.38 Gy. Conclusions: We obtained a 3D VMAT dose prediction
model for GBM with limited data, providing good sensitivity to realistic contour variations. We
tested and improved the model's robustness, by targeted updating the training set, making it a
useful technique for dose awareness in the contouring evaluation and quality assurance.
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1. Introduction

Many cancers are currently treated by a combination of local and systemic therapy. Local
therapy often consists of a combination of surgery and radiotherapy. The latter requires a
sophisticated planning process to guarantee a successful treatment. To improve the efficiency and
quality of treatment planning in radiotherapy, methods for predicting possible dose distributions or
dose volume histograms (DVH) curves have been introduced in the previous years. Since 2012,
knowledge-based methods have been used to predict what is achievable in treatment planning. This
was not only used for quality assurance in treatment planning [1,2], but also, to speed up the planning
process by initiating the treatment plan based on the prediction [3]. By reducing the number of inputs
for the user, treatment planning becomes much more consistent, more resource-efficient and
potentially beneficial for treatment quality.

In recent years, three-dimensional dose prediction through neural networks have shown to be a
viable method for this purpose. In 2016 the first study using neural networks for dose predictions
was published by Shiraishi et al. [4]. In the following years, approximately 30 more studies were
published that try to predict the 3D dose distribution with deep learning. Most of these studies are
based on treatments with a relative standard target orientation, with minor anatomical variations
from patient to patient, such as prostate and oro/nasopharyngeal cancers. However, there are also
promising results for models in the brain, breast and lungs [5-7]. In 2020 the open-access knowledge-
based planning (OpenKBP) Challenge was organized providing an open-access data set of head and
neck treatment plans to train prediction models and evaluate them on a set of standardized metrics
[8]. A total 195 participants competed in this challenge. The best-ranked team scored a mean absolute
error (MAE) of 2.43 and 1.48 for the dose and DVH scores respectively (see methods section). Their
methodology is publicly available and described as a technical note [9].

Dose prediction models are mainly used for treatment planning. This means that in practice, in
addition to the dose prediction, a second model is required to convert the predicted dose into an
actual plan that is executable for the specific treatment technique. In this latter step, a final
optimization incorporates individual case properties, physical constraints and dose delivery
hardware. In our case, we want to use the dose prediction model for another purpose.

Contouring of targets and organs at risk (OAR), the step that takes place prior to planning, is
also subject to automation to improve efficiency and consistency with respect to the current manual
process. To ensure quality, an assessment of the contours is required. Usually, visual inspection is the
go-to method; however, this is a time-consuming task. For each target and OAR, every slice needs to
be visually inspected and if necessary, manually adjusted if deemed incorrect. Especially for deep
learning based auto-segmentation models, a lack of robustness could result in unpredictable errors
that can happen anywhere within the image volume [10]. Although often such errors are small and
might not have a critical effect on the treatment, in assessing the contours, we postulate that it would
be beneficial to know the possible clinical impact of critical errors and of those where no further
assessment is required. A deep learning model that can give an accurate prediction of the dose
received by an OAR instantly, could provide the required information to assess the clinical impact of
contour variations.

In this study, we aim for a deep learning model that can predict the dose for glioblastoma cases.
Based on the network of Liu et al. [9] that was used in the OpenKBP challenge, a model is trained on
a set of curated glioblastoma (GBM) cases. Unlike current dose prediction algorithms, we want to
verify the model’s performance for contouring quality assessment (QA). This means that specific
accuracy and sensitivity are required as well as robustness for a broad range of situations. To do so,
we test our trained model on specific sets of contour alterations to assess its sensitivity. Furthermore,
we submit the model to a specific worst-case test-set, including rare cases where we expect it to fail.
This enables us to determine the robustness of the model and understand where further
improvements are required. Subsequently, based on the outcome observed on the worst-case test set,
we improved the robustness of the model by augmenting the training set with synthetically
generated cases characterizing the observed failure patterns.
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2. Materials and Methods

2.1. Data collection and preparation

A cohort of 125 GBM patients treated with radiotherapy at the Inselspital University Hospital
(Bern, Switzerland) was available. For all patients, the planning target volume (PTV) and the OARs
were curated by mutual agreement of radiation oncology professionals. A plan was constructed
consistently using a strict dose prescription and standard templates for planning setup and dose
optimization initiation for all cases. Of the first 95 cases, 60 were randomly selected for model training,
15 were randomly chosen as validation, and 20 (also randomly chosen) were used as a test set. Of the
remaining 30 cases, 10 were used to construct a “worst case” test set manually, and the other 20 for
improving the training by adding specific out-of-distribution cases. The following sections further
detail how the worst-case test set and the out-of-distribution cases were designed.

2.2. Dose planning

All cases were planned according to the clinical dose prescription of 60 Gy in 30 fractions in the
Eclipse treatment planning system (TPS) V15.06.05 (Varian Medical Systems, Palo Alto). All OARs
were subject to a dose constraint, which according to a priority list, could or could not be
compromised (Table 1). All plans used a volumetric arc technique (VMAT) with a double full co-
planar arc with 6 MV beams containing a flattening filter. The plans were optimized with the photon
optimizer, and doses where calculated with the Anisotropic Analytical Algorithm. After dose
calculation, the dose was normalized so that 50% of the PTV was covered by 100% of the prescribed
dose, according to the institutional clinical guidelines.

Table 1. Clinical dose planning guidelines for GBM treatment.

OAR Constraint Priority
Brain-PTV . Veocy <3 cc 2
Brainstem o Doosee< 60 Gy (Hard constraint) 1

o Doosec < 54 Gy 4

. o Doosee< 54 Gy (Hard constraint) 1

Chiasm . Doosec <50 Gy 3

. o Dimean <45 Gy (< 30 % hearing loss) 5

Cochlea (Ipsi-lat) ¢ Dumen <32 Gy (< 20 % Tinnitus) 9

. ) Diean <45 Gy (< 30 % hearing loss) 7

Cochlea (Bi-lat ¢ Dmen<32Gy (<20 % Tinnitus) 9

L4 Dmean < 30 Gy (< 30 % IQ IOSS) 8

Hippocampus o Doosee < 30 Gy 14

o Du0%< 7.3 Gy (long term NCF) 11

Lacrimal Gland o Dimean < 25 Gy (clinic) (Hard constraint) 1

Lens o Do.osec< 7 Gy (<25% cataract) 12

Optic nerves (Ipsi- o Doosee< 54 Gy (Hard constraint) 1

lat) . Doosec <50 Gy 3

. } o Do.osec< 54 Gy (Hard constraint) 1

Bi-1
Optic nerve (Bi-lat) . Dogsee < 50 Gy

oy . Dumean < 45 Gy (Panhypopituitarism) 10

Pituitary . Dumean < 20 Gy (Growth hormone deficiency) 13

Retina o Do.osec< 45 Gy (Hard constraint) 1
Target Objective Priority

PTV o Do > 57 Gy (95%) 1

CTV ) D100% > 60 Gy (100%) 2

PTV e Doos <64 Gy (107%) 3
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2.3. Training

The planning CT and the structures where available in DICOM format for each case. All data is
converted from DICOM to nifti files using the PyRaDise package [11]. The RTSS files containing the
PTV and the OARs are divided into 14, separate 3D binary masks each containing a single structure.
The input files consisted of 16 3D volumes per case; the planning CT, the dose distribution, the PTV
binary mask and 13 OAR binary masks (Figure 1).

Training

| Standard training

! Planning CT

dose cose
R Concatenated 7
i —> 300ounes- ——> SN L8

Net
Loss function

— . i Binary masks
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Figure 1. Schematic overview of the training and testing process. The upper block represents the
training procedure of the initial model with its inputs and outputs. The initial model will be tested on
the test cases which result in Dose and DVH scores for each test set. The initial model (green block)
will be updated threefold with concave cases, multiple lesion cases and a combination of the two. The
updated models will be tested on the same test sets. Results will be compared (blue blocks).

Training took place on a two-level, cascaded 3D (C3D) U-Net [9] as the dose prediction network
(i.e., the input to the second U-Net is the output of the first concatenated with the input to the first U-
Net). The model input was a normalized CT volume and binary segmentation masks for each of the
13 OARs and target volume. As output, the model predicts a continuous-valued 3D dose (upscaled
from [0,1] to [0, 70 Gy] ) of the same dimension as the input. The loss was computed as:

Loss = 0.5 x L1(reference, A) + L1 (reference, B)

Where A and B are the outputs of the first and second U-Nets respectively. In this equation,
reference indicates the reference dose and L1 refers to the L1 loss. All volumes were resampled to
1283 voxels, due to GPU memory constraints. The hyperparameters for training the C3D model were
unchanged from the original implementation [9], except the number of input binary masks was
updated to 14, to match the number of structures in our data set. The model’s weights were randomly
initialized using the ‘He” method [12]. The training process ran for 80 000 iterations and the model
with the best validation dose score was saved. All experiments were run with PyTorch1.12 on an
NVIDIA RTX A5000 graphics processing unit. We trained the model five times with the same
hyperparameter set but different random seed initialization to ensure reliable convergence. Each
training run took 24 hours.

2.4. Assessing the model’s sensitivity

One of the goals of the dose predictor is to provide realistic dosimetric information based on
given contours. It should be able to predict realistic dose changes produced by an organ’s small and
realistic contour changes of an organ (i.e., inter-expert variability). To analyze the sensitivity of the
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dose prediction model to these changes, a specific case was chosen where the GBM target is near the
left optic nerve (ONL). In practice the optic nerves are prone to variability in contours due to the inter
and inter-fractional movement of the eyes which also affect the optic nerves. In this case, small
changes in the contour of the ONL would lead to significant dose changes. Manually, 10 alternative
contours of the ONL where drawn. The dose was re-optimized and recalculated on the TPS for each
alternative contour, to serve as a reference dose. The reference doses were then compared
qualitatively and quantitatively to the doses predicted by the model. Dice similarity coefficients (DSC)
for the alternatives are calculated to correlate the dose differences to the geometric discrepancy of the
ONL contours.

2.5. Improving the model — Worst case test set

To assess the robustness of the model, and upon first analysis and evaluation of the standard
test set of 20 cases, a specific “worst-case” test set was selected of cases where we expect the model
to fail or have difficulties. The PTVs of these cases were manually manipulated to simulate rare cases
not described by the training dataset (out-of-distribution cases), but also present a challenge in terms
of the physical limitations of obtaining perfect dose conformity. Among these 10 cases, we included:
(i) targets of larger and smaller size than those present in the training set, (ii) targets consisting of
multiple lesions, (iii) irregular shapes such as elongated or concave targets, and (iv) present an
overlap between the target and OARs.

According to the “worst case test set” results, we gained insight into which situations the model
performs poorly and where it could benefit from additional training. Our observations showed that
the prediction model mainly struggled with the physical limitations of conforming the dose
according to the targets outlines for specific shapes. Where conformity decreases with concave shapes
or multiple targets close to each other, the dose predictor overestimates the dose fall-off in these
regions. To increase the overall robustness of the model but specifically to improve the model for
these situations, we updated the trained model by including a set of concave-shaped target cases and
a set of cases where the target consists of multiple lesions.

The respective new training sets were constructed by means of manually adjusting the target
volume (Figure 2). The 10 cases used for both sets are from different patients and have not been used
in any previous model training. All new cases received a dose planning according to the same
protocol described above, to serve as the reference dose.

Examples of
"Concave"
cases

Examples
of "Multiple
Lesion"
cases

Figure 2. Examples of the additional training cases for the concave targets (above) and the multiple
targets (below). The targets are drawn manually in red and do not represent actual tumor situations.
Structures in other colors represent OARs.
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First, we trained an updated “Concave Model” with 60 standard cases + 6 concave cases. The
remaining 4 concave cases were used as test-set. Second, we trained an updated “Multiple Lesion
Model”, with the 60 standard cases + 6 concave cases. Again, 4 cases were used as a test-set. Finally,
we retrained the initial model with 60 standard cases + 6 concave cases + 6 multiple lesion cases. We
tested the latter model on the standard test set as well as on the specific test cases, and compared this
with the results of the initial model. An overview of the experimental setup is given in Figure 1.

2.6. Evaluation

The trained models were tested on the test set and the prediction of the dose was compared to
the actual planned dose by means of the standardized metrics used by the OpenKBP challenge [8]:
The dose score and the DVH score. The dose score measures the mean error over all the voxels
between the two 3D volumes. In this case, we used the whole brain to measure the dose score instead
of the whole CT volume or whole body volume. Taking a larger volume will dilute the results to a
more positive outcome. The DVH score is the mean error over a set of criteria specific to the given
volume. For OARs, these criteria are the mean dose (Dmean) and the maximum dose to 0.1cc (DO0.1cc).
For the target volume the criteria are the dose received by 1%, 95% and 99% of the voxels within the
volume (D1, D95 and D99). The DVH score is calculated for all OARs used in training (lens and retina
are combined within the eye, since overlapping masks were not possible). We report the mean results
over the 5 trained models in a five-fold split for the evaluation.

Additionally, the initially trained model and the updated models were tested on a set of concave
target cases, a set of multiple lesion cases and a combined test set that includes both plus the standard
test set.

3. Results

Based on the initial training set of 60 cases, the performance of the initial model was determined
on the standard test set of 20 cases. The mean results over 5 independently trained models showed a
dose score, measured over the whole brain volume of 0.94 (standard deviation [SD] = 0.36). The mean
DVH score over all OARs and the target was 1.95 (SD = 0.95).

3.1. Reults on sensitivity

An overview of the 9 alternative left optic nerve contours is shown in Figure 3. The mean dose
to the ONL based on the treatment planning system and the mean dose based on the prediction model
for the reference and the 9 alternative contours are shown in Table 2. There is a reasonable variation
in mean dose among the different alternative contours with respect to the reference contour. In some
cases, only minor changes to the mean dose occur, even though the DSC metric shows a significant
difference in contour similarity. In other cases, the mean dose change with respect to the reference
contour can be up to 5 or 7 Gy difference. The difference between the calculated dose and the
predicted dose seems to follow a trend and varies between a maximum of 3.50 Gy with a mean of
1.38 Gy. This states that the predicted dose is more often overestimated.
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Figure 3. On the left an overview of all the 9 alternative contours of the ONL. On the right, the
respective DVH curves of the dose are calculated with the treatment planning system, which shows
the variation in the dose that these particular contours have.

Table 2. Predicted mean doses in Gy. to the different optic nerve left contours.

ONL Contour Calc. Dose Pred. Dose A D(I))srdealc- DSC A to Calc-Ref A to Pred-Ref
Reference 34.7 35.5 -0.8 n.a. n.a. n.a
Alternative - 1 32.2 35.7 -3.5 0.31 -2.5 0.2
Alternative - 2 30.7 324 -1.7 0.26 -4 -3.1
Alternative - 3 34.2 34.5 -0.3 0.63 -0.5 -1
Alternative - 4 31.8 34.1 -2.3 0.59 -2.9 -1.4
Alternative - 5 26.9 30.1 -3.2 0.51 -7.8 5.4
Alternative - 6 32.8 36 -3.2 0.20 -1.9 0.5
Alternative-7  41.8 41.2 0.6 0.16 7.1 5.7
Alternative - 8 35.3 33.1 2.2 0.58 0.6 2.4
Alternative - 9 34.5 36.1 -1.6 0.05 -0.2 0.6
Mean 33.49 34.87 -1.38 0.37 Corr. Coeff.: 0.89

The average difference of the calculated mean dose for the alternatives with respect to the
calculated reference mean dose was 2.44 Gy. (i.e., the difference between the alternatives to the
reference dose). For the predicted dose, this difference was 2.32 Gy. This means the correlation
coefficient between reference and predicted dose differences across the contour alternatives was 0.89,
while the correlation coefficient with the DSC was only -0.42 [13].

3.2. Improving the model — Worst case test set

While analyzing the results of the worst-case test set, in particular we saw some flaws,
particularly in cases where targets have concave shapes and where target consists of multiple lesions
(see Figure 4). In such cases the prediction model overestimated the ability to conform the dose to the
targets. This is mainly reflected in higher dose scores and less so in the DVH scores of the target since
the dose discrepancy occurs just outside of the target structure. We updated our training data with 6
concave target cases and 6 multiple lesion target cases as well as a combination of both. The results
for different test sets are given for the dose score, the DVH score for the OARs and the DVH score for
the Targets in Table 3.

Table 3. Results of the dose score and DVH scores of the initial and the updated dose prediction
models. Lower values represent better scores.

. Concave updated Multiple lesion Combined
Test set Initial model
model updated model updated model
Dose scores whole brain volume
standard test set 0.94 0.94 0.92 0.98
concave test set 0.87 0.81 0.81 0.87
multiple test set 1.30 0.84 1.24 1.02
combined test set 0.98 0.90 0.95 0.97
DVH scores OARs
standard test set 2.01 1.73 1.85 1.89
concave test set 211 1.67 1.99 2.08
multiple test set 3.05 1.86 3.05 2.67
combined test set 2.18 1.74 2.04 2.03
DVH scores Targets
standard test set 1.19 1.12 1.20 1.26
concave test set 1.72 1.67 1.51 1.66
multiple test set 3.62 1.92 3.18 291

combined test set 1.61 1.31 1.53 1.55
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Figure 4. Dosimetric comparison of the calculated dose, the initial prediction model and the updated
model for a concave (above) and a multiple lesion case (below). The images represent a single axial
slice. On the right the dose difference maps of the corresponding axial slice is given. The difference
between the latter show improvements of the dose prediction. The depicted cases have not been used
in the training of the initial model or the updated model.

Based on the standard test set, the updated models scored similar to the initial model on the
dose score and the DVH score for targets. The DVH score for OARs improved for all updated models.
The updated model with the concave target cases shows by far the best results of all trained models.

Focusing on the concave updated model we observed improvements in dose and DVH score on
the concave test set, but also improved results on the multiple test set. This means that on this small
set of specific cases the concave updated model scores significantly better than the initial model, as
expected. For the multiple-lesion updated model we also observed an improvement, but to a lesser
extent. The combined updated model, containing both concave and multiple target lesions scored the
worst of all updated models. For the standard test set, the combined updated model did not show
improved scores with respect to the initial model.

For the combined test set, which is a combination of the 3 previous test sets, the updated models
score consistently better than the initial model.

Qualitatively we can see an improvement in the spatial distribution of the predicted dose in the
updated models at exactly the locations of concern, the concave parts of the target and the space
between multiple lesions especially in the axial direction.

3. Discussion

By means of an existing dose prediction model that was trained for head and neck cases, we
obtained good results for translating the dose prediction model to glioblastoma cases in the brain.
For these initial results, only 60 cases where used for training. Compared to the results of the
OpenKBP challenge, using their proposed metrics, our initial trained model shows better scores than
the top ranked participants. However, we are aware that the anatomies are different. It must be noted
that different 3D volumes are used, as well as different OAR structures, which will have an influence
on the scores. We do not yet have a benchmark for these metrics in the brain region. On the other
hand, whereas head and neck targets are much more similar from case to case, GBM targets vary
much more in size, shape and location. Nonetheless, the model was able to achieve good results on a
relatively small training set. We conclude from this that a cascade 3D U-Net is capable of predicting
dose if high-quality and curated data is used to train it.

Although some other groups have published on dose prediction in the brain [4,5,14], for both
VMAT and conventional intensity modulated radiotherapy (IMRT), they did not specify the nature
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of the brain tumors. Furthermore, different treatment prescriptions were included in these works,
certain tumor locations were excluded and additional planning parameters were used in the training
model. This is the first prediction model specified for GBM treatment.

It seems to be that 3D dose distribution prediction is a great application for deep learning models.
Although the predictions are not perfect, they are useful in the initiation processes of automatic
planning. It also provides a near-instant estimation of the dose distribution that outperforms any
currently available analytical or mathematical prediction method. Our work shows that a dose
prediction model for a specific purpose, i.e. treatment area and modality, is relatively easy to obtain.
For our specific purpose, we wanted to predict the dose to OARs. We were able to improve the
accuracy of the DVH score for the OARs with some minor additions to the training set.

In order to obtain the training data we used plans that were made according to a strict and
standardized protocol. This makes the resulting dose distribution better to predict. It might therefore
be one of the reasons for the good results. On the other hand, using such a strict protocol makes the
model only valid for treatments following this strict protocol. However, in clinical reality different
approaches are used depending on case specifics but also on the individual preference of doctors,
planners and the availability of specific hardware. In this case, we used a VMAT technique. The dose
distribution of such plans is easy to predict since in every case two full 360-degree co-planar arcs are
used. In other techniques such as conventional IMRT, using a set number of beam angles, or more
sophisticated VMAT techniques making use of non-coplanar arcs, the dose might be more difficult
to predict. Solving this issue really comes down to making a prediction model for the different
treatment strategies. Although this seems cumbersome, this can probably be singled down to a few
treatment strategies per treatment site. Given the results of our model, only a limited amount of data
is required to obtain a viable model.

The main contribution of this paper was to show the feasibility of training an accurate deep
learning-based dose predictor for GBM treatment. If data is limited for a particular scenario, but a
demarcated treatment protocol exists, even for non-homogeneous anatomies (lL.e., not prostate or
head and neck, where most of the dose prediction methods are proposed for) good results can be
obtained compared to currently reported outcomes. Although the main drive behind dose prediction
models is the purpose of automation in dose planning, dose prediction models can also be important
for many other purposes. Our hypothesis is that it can be useful in the quality management of the
steps prior to planning to make the (auto) contouring, the review and the quality assurance more
relevant towards the final goal; good dose coverage of targets while sparing the OARs.

We tested the obtained dose prediction model for some specific criteria that are important for a
dose predictor in terms of quality management, sensitivity and robustness. We have shown that the
initially trained model is sensitive enough to detect dose trends on realistic contour variability in a
critical organ such as the optic nerve. We also tested the initial model against robustness. Although
we found that the model did lack a certain accuracy in specific situations, we showed that with a
simple strategy of adding specific cases to the training set, the robustness and the overall accuracy of
the model increased. We anticipate that dose prediction models can be improved even more when
using larger data sets of carefully curated data. In addition, the models can be tailored to have specific
characteristics to fulfil the needs of different tasks in radiotherapy management.

5. Conclusion

With currently available deep learning networks, making a 3 dimensional dose prediction model
with a dataset of fewer than 100 cases is possible, provided they are carefully curated. The prediction
model shows good sensitivity to realistic minor changes in structure segmentations. It is also possible
to improve the model for specific cases by updating the training dataset based on analyzing its failure
patterns. Due to the near-instant results that 3D dose predictors can provide, it is a useful technique
for dose awareness in radiotherapy treatment steps, prior to the actual dose planning.
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