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Abstract: Efficient train driving plays a vital role in reducing the overall energy consumption in the
railway sector. An energy minimising control strategy can be computed using the framework given by
optimal control theory, in particular the Pontryagin maximum principle. Our optimisation approach
is based on an algorithm presented by Khmelnitsky [1] that considers electric trains equipped with
regenerative braking. A derivation of Khmelnitsky’s theory from a more general formulation of the
maximum principle is given in this article, and a complete list of switching cases between different
driving regimes has been included that is essential for practical application. A number of numerical
examples are added to visualise the various switching cases. Energy consumption data from real-life
operation of passenger trains are compared to the calculated energy minimum. In the presented
study, the optimised strategy was able to save 37 percent of the average energy demand of the train
in operation.

Keywords: energy-efficient train driving; regenerative braking; optimal control theory; Pontryagin
maximum principle; Khmelnitsky’s algorithm

1. Introduction

Energy-efficient driving strategies have shown to substantially lower the total energy consumption
of railway trains. With an increased demand for energy saving technologies, numerous research studies
have been devoted to this subject in recent years, showing that in many cases an average energy saving
of 15 to 30 % could be achieved by assisted driving [2-9]. A comprehensive review on energy-efficient
train control, commonly abbreviated as EETC, is given by Scheepmaker, Goverde, and Kroon [10]. The
majority of the mathematical models that have been developed to calculate energy minimised driving
are based on Pontryagin’s maximum principle (PMP), a fundamental theorem of optimal control
theory. The maximum principle was formulated in 1961 by Pontryagin, Boltyanskii, Gamkrelidze, and
Mishchenko [11,12]. The first application of Pontryagin’s maximum principle to the operation of trains
dates back to Japanese research in 1968 (Ichikawa [13]). The model of Ichikawa was restricted to a flat
track and linear train resistance depending on speed. Another early contribution is due to Strobel,
Horn, and Kosemund [2]. They considered non-constant altitude and found that the optimal solution
is always in one of the drive regimes full traction, partial traction with constant speed, coasting, partial
braking with constant speed, and full braking. Based on their model, they set up a first driver advisory
system for the Berlin S-Bahn (suburban trains).

Since those pioneering research on this topic, models have gained complexity. Important
developments have been: (1) the application to variable altitude and variable speed limit, (2) the
inclusion of regenerative braking in electric locomotives or motor coaches, (3) improved modelling
for train resistance, tractive, and brake force depending on speed, (4) the energy minimisation with
non-zero speed boundary conditions, (5) advanced modelling of efficiency as dependent on speed,
tractive, and brake force, (6) multiple-train problems.

Regarding the second aspect, some (especially the earlier) authors are dealing only with
mechanical braking of trains. When regenerative braking is considered, most authors base
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their energy-efficient driving strategy on the exclusive use of the regenerative brake. A few
recent contributions cover the combined application of mechanical and regenerative brake in their
optimisation strategy.

We proceed with some important developments for purely mechanical braking. Starting from the
PhD thesis of Milroy [14] in 1980, a reaserch team at the University of South Australia introduced the
system Metromiser (Howlett and Pudney [3]). The system covered both timetable planning and driver
advisory. Metromiser was restricted to constant track gradients during both coasting and braking.
The system was first applied on trains in Adelaide (Australia) in 1984, followed by Toronto (Canada),
Melbourne (Australia), and Brisbane (Australia). Howlett, Milroy, and Pudney [15] were the first to
assume variable speed limit, but only for the special case of discrete traction control. In 2003, Liu
and Golovitcher [16] presented a method covering variable altitude, variable speed limit, continuous
traction control, and quadratic train resistance dependence on speed. Except being bound to purely
mechanical braking, this algorithm is therefore quite general with respect to the other assumptions.
The article contains a complete description of switching between the possible drive regimes. In 2013,
Albrecht, Howlett, Pudney, and Vu [17] introduced the driver advisory system Energymiser that has
been applied by French railway SNCF on TGV high speed trains. They proved the uniqueness of the
energy optimum being derived. A multi-objective algorithm combining energy minimisation and
punctuality of trains was developed by Aradi, Becsi, and Gaspar [7].

Regenerative braking was first considered in 1985 by Asnis, Dmitruk, and Osmolovskii [18] in the
context of train energy minimisation. They assumed constant altitude and speed limit in their model.
Franke, Terwiesch, and Meyer [4] introduced an energy optimisation algorithm for variable altitude,
variable speed limit, and purely regenerative braking that was restricted to piecewise constant traction
and brake force. They suggested a discrete dynamic programming (DDP) method for solution. In 2000,
Khmelnitsky [1] developed a model that covered variable altitude, variable speed limit, continuous
traction control, arbitrary maximum tractive and brake force depending on speed, quadratic train
resistance with respect to speed, and exclusively regenerative braking. Regarding this features, it
is a broadly applicable approach with little restrictions. Due to this advantages, the algorithm of
Khmelnitsky has been chosen as the basis for our research. In a recent article by Ying et al. [19], the
EETC problem solved by Khmelnitsky has been revisited, with a special focus on solutions touching
the speed limit. The paper of Ying et al. [19] can be especially recommended for its comprehensive
illustration of the large variety of cases that can arise during construction of the optimum solution. The
EETC problem with prescribed non-zero speed boundary conditions was solved by Ying et al. [20].

There are relatively few research contributions dealing with the EETC problem using combined
mechanical and regenerative braking. Baranov, Meleshin, and Chin’ [21] were the first considering this
topic, but an algorithm to solve the problem was left as an open question in their article. Lu et al. [22]
studied combined mechanical and regenerative braking, but excluded both variable speed limit and
variable track gradients. Zhou et al. [23] studied synchronisation of accelerating and braking trains,
considering both kinds of braking, but again did not include variable speed limit. Fernandez-Rodriguez
et al. [24] combined both brake systems in a multi-objective optimisation method, but did not derive a
rigorous energy minimum. In the paper of Scheepmaker and Goverde [25], the optimisation problem
with combined mechanical and regenerative braking was solved for the first time under general
assumptions, i.e., with speed dependent tractive and brake effort, variable speed limit, and variable
altitude. Scheepmaker and Goverde have used the Gauss-Radau pseudospectral method implemented
in GPOPS [26] to solve the optimal control problem.

Several authors have considered advanced efficiency modelling, in particular efficiency depending
on speed, tractive, and brake force. This assumption is more realistic but substantially complicates the
approach. Most notably, the optimal trajectory for this problem is no more restricted to the driving
regimes of full traction, constant speed, coasting, and full brake. Therefore, other methods than PMP
techniques are used in this case, in particular track length discretisation combined with nonlinear
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programming. Research on advanced efficiency modelling was carried out, e.g., by Franke, Terwiesch,
and Meyer [4], Ghaviha et al. [27], Kouzoupis et al. [28], and Feng, Huang, and Lu [29].

Multiple train problems have often been studied with a focus on timetable design in order to
synchronise accelerating and braking trains for best distribution of regenerative energy. See, for
example, Zhou et al. [23] for research on this topic. More references can be found in Scheepmaker
and Goverde [25]. Szkopiniski and Kochan [30] have studied energy-efficient train driving when
approaching a train on the track ahead.

Apart from the many research contributions based on an application of Pontryagin’s maximum
principle, a variety of other methods exist to solve the EETC problem. In particular, so-called direct
methods have recently gained attention. They are characterised by the fact that the problem is first
discretised, usually by dividing the track length into smaller intervals. The resulting nonlinear
programming (NLP) problem is then solved by nonlinear programming methods as, for example,
the pseudospectral one. Wang et al. [31] were the first to apply the pseudospectral method to an
EETC problem. Scheepmaker and Goverde [25] also utilised a pseudospectral approach. Direct
methods have the advantage of being very flexible with respect to the problem under consideration.
In addition, optimal control solvers like DIDO (Direct and Indirect Dynamic Optimization) [32,33],
PSOPT [34], or GPOPS (General Pseudospectral Optimal Control Software) [26] are readily available.
The implementation is much easier than a solution of the problem along the lines of Pontryagin’s
maximum principle. On the other hand, the pseudospectral method often shows an inaccurate
oscillatory behaviour of solutions, and it tends to be time consuming. [28] Recently, Kouzoupis et al.
[28] were able to reduce the computing time of a direct method using multiple shooting.

Based on the above-mentioned approach of Khmelnitsky [1], a programme called opTop (optimum
train operation) has been developed at Fraunhofer Institute for Factory Operation and Automation
(IFF), Magdeburg, Germany. The code is written in MATLAB and currently features energy
minimisation with exclusively regenerative braking, except for fastest train motion in the case of
tight timetables where additional mechanical braking is considered. The choice of Khmelnitsky’s
method was mainly motivated by superior accuracy at an acceptable computing time. An extension of
the code to fully include mechanical braking into the optimisation is subject to further development,
as well as non-zero speed boundary conditions and smooth switching from fastest to energy-efficient
driving in case of a train delay. The code has been tested offline in numerous cases based on real railway
tracks and timetables, and computing time has been substantially reduced by code optimisation. A
couple of tests with driver advisory in real-life operation have shown energy savings of about 20 %
compared to an average of unassisted runs.

The present article was driven by two main motivations. The first one was to show a direct
derivation of Khmelnitsky’s theory from a more general formulation of Pontryagin’s maximum
principle given by Hartl, Sethi, and Vickson [35]. By seeing Khmelnitsky’s theory in this general
framework, extensions to other conditions could be elaborated. A second motivation was to provide a
comprehensive illustration of the behaviour of the method of Khmelnitsky using a couple of numerical
examples. We have felt that this very useful method would strongly benefit from some illustrative
examples that show the behaviour of the trajectory field including kink points as well as the large
variety of switching cases from one driving regime to another. We have, therefore, put a strong focus
on the examples in Sections 2.4 and 2.5, in which most of the possible switching cases can be studied
in detail.

The article is structured in the following way: In Section 2.1, the model of train motion is
introduced. Section 2.2 is devoted to the Pontryagin maximum principle that provides a couple
of necessary conditions the energy minimising solution has to fulfil. In Section 2.3, the maximum
principle is applied to the specific minimum energy problem for train motion. This leads to the
observation that only four driving regimes full traction, constant speed, coasting, and full regenerative
braking are feasible for an energy minimising motion. The regime constant speed can be driven only at
two specific velocities or at speed limit. Sections 2.4 and 2.5 describe the algorithm of Khmelnitsky [1]
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for the construction of the minimum energy solution. A complete list of switching cases is given and
explained in Section 2.4, and four numerical examples are introduced to illustrate those cases. Some
directions are given that lead to a substantial reduction of computing time. Finally, in Section 3, the
energy optimum is compared to energy consumption of various train runs on a specific railway line
in real-life operation. As a result, the optimal strategy consumed only 63 % of the average energy
demand of the unassisted runs in real operation.

2. Materials and methods

2.1. Model of train motion

The equation of motion of a train with an electric engine and both regenerative and mechanical
brake can be given by

Fiv — Bor — Fbr — Fair — Fronl — Fg = crot M 4, 1)

where F; is tractive force, F,, is the force applied by the regenerative brake, F, is the force of
the mechanical brake, F;, is air drag, F, is rolling friction, F is the downhill slope force, crot is a
coefficient representing rotating masses, m is the mass and a the acceleration of the train. This is
Newton’s second law of motion with the extension that rotating masses as, for example, the wheels
of the train, are accounted for by a factor crot. A model of this type is commonly be used for train
motion, see for example the review article of Scheepmaker, Goverde, and Kroon [10] or the textbook of
Ihme [36]. According to Ihme [36], crot = 1.06...1.11 for passenger trains, depending on their length,
where longer trains will generally have smaller values of cyot.

The tractive force F is limited by both engine power and rail friction (adhesion). According to
Fassbinder [37],

Fr < Ftr,max = min(Ptr,mech /v, Had & mloc)/ (2)

where Py mech is the mechanical engine power used for traction, v is the velocity of the train, 1,4 is the
adhesion coefficient, g is gravity, and m,. the mass of the locomotive. The adhesion coefficient y,4 has
been obtained experimentally in 1943 by Curtius and Kniffler [38], see, e.g., Schlecht [39], leading to
the empirical relation

7.5
fad = —5—— +0.161. 3)

The adhesion coefficient 1,4 attains a maximum value of 0.331 when v = 0.

The regenerative brake force R, is, as the tractive force, restricted by engine power and rail
adhesion. However, it must be further limited to avoid a derailing of coaches behind the braking
locomotive. Thus, for the regenerative brake force there holds

Fbr < Fbr,max = min<P br,mech/ 0, Had & Mocs Fbr,lim)r (4)

where Py, mech is the mechanical engine power for regenerative braking, and F, i, is the additional
limit to avoid derailing. In general, Py mech = Pormech Will hold. According to [40], the limit force
Fyrlim has been recently enlarged in Germany from 150 kN to 240 kN, a value that is also considered in
Scheepmaker and Goverde [25]. The maximum forces Fi,max and F,;ax are shown in Figure 1.
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Figure 1. Maximum force for traction and regenerative brake.

Remark. In practical operation, regenerative braking of trains is not possible when the speed is
too small, meaning that for a final halt, the mechanical brake always has to be applied. This has been
pointed out by Scheepmaker and Goverde [25], who have estimated a minimum speed of 8 km/h for
application of regenerative braking based on data from Netherlands Railways. However, since kinetic
energy below 8 km/h is relatively small, we have neglected this consideration in our model.

When a train brakes, using the regenerative brake is clearly advantegeous with respect to saving
energy. However, the force of the regenerative brake is limited and, especially for long freight trains,
much weaker than the force of the mechanical brake. This is due to the fact that regenerative braking
applies only to the wheels of the locomotive, while the mechanical brake acts on every wheel of the
train. If the time required by timetable is too short for a certain distance, purely regenerative braking
might not be sufficient. But, as Scheepmaker and Goverde [25] have proven by means of optimal
control theory, the mechanical brake is always ‘second choice’ in an energy-minimising solution. This
means that mechanical braking is only applied when regenerative braking is operating at maximum
force, i.e.,, when F,. = F, max holds. In the optimisation method presented here, the mechanical brake
is not incorporated into the theory and will only be considered in the calculation of the fastest possible
motion. This will be explained in more detail in the following sections.

The mechanical work applied for traction is given by

S 15}
Wy = / Fy ds = /t Pamech df, )
51

1

where s is track length and ¢ is time. The electric energy required for traction is
Ey = Wi/ Nt (6)

The efficiency #ir of electric locomotives is usually given in a range of 83 to 87 percent [25,37,41]. Within
this paper, we will use an intermediate value of #, = 0.85. Likewise, the mechanical work applied for
regenerative braking is

Sn ty
Wbr = /s Fbr ds = /t Pbr,mech dt, (7)
1

1

and the electric energy returned will be

Epr = Mor Why. 8)

We use a braking efficiency #,, = i = 0.85 according to Fassbinder [37]. The difference Enet =
Eyr — Epy is called the net energy, which should be minimised.
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In real operation, additional energy E,qq will be required that is not directly related to traction or
brake, including energy for air commpression, air conditioning, lighting and so on. However, since
this additional energy is mainly a function of time, it can not be reduced by a driving strategy when
the total time is constant as given by the train’s timetable. Therefore, the additional energy does not
enter the net energy minimisation problem and can be excluded here.

For air drag, Ihme [36] recommends the so called Hanover Formula that goes back to Vof,
Gackenholz and Wiebels [42]. It takes the form

1
Pair = E Pair Aref Cw 02’ (9)

with air density p,ir = 1.25kg/ m3. In this formula, Aef is not the cross-sectional area of the train, but
a reference area of 10m?. The air drag coefficient ¢y, is calculated according to

Cw = Cwloc 1 Cw first + (n - 2) Cw,middle T Cw,lasts (10)

n being the number of coaches. Thme [36] gives the values ¢y joc = 0.26, Cyy first = 0.13, ¢y middie = 0.10,
Cwlast = 0.23 as appropriate for Intercity coaches.

The rolling friction can be modelled by F,,; = ;o1 7 § with c,op1 = 0.0015 according to Ihme [36].
The downhill slope force is given by

dz
F, sl=mg E’ (11)
where z is the altitude of the track.

2.2. The maximum principle

The problem of minimising the net energy of a scheduled train can be formulated as an optimal
control problem, as it has been proposed by Khmelnitsky [1] who also presented an algorithm to
obtain the unique net energy minimum. The algorithm of Khmelnitsky is essentially based on the
maximum principle of optimal control theory that has been developed by Pontryagin, Boltyanskii,
Gambkrelidze, and Mishchenko [11,12]. A variety of formulations of the maximum principle can be
found in Hartl, Sethi, and Vickson [35]. While some of the results of the maximum principle for the
particular problem of a minimum energy train ride are already given in Khmelnitsky’s paper [1], a
direct derivation from the more general formulation of the maximum principle as presented in Hartl,
Sethi and Vickson [35] is not included in Khmelnitsky. We are, therefore, going to show this derivation
here. In Section 2.2, the maximum principle will be presented, based on the ‘Informal Theorem 4.1
in [35]. The subsequent Section 2.3 contains the application to the train problem. Equipped with this
general framework, extensions of the theory (for example the inclusion of the mechanical brake) are
possible.

We consider the following problem: Let s be the track length coordinate between two stations at
s = 0and s = S. The motion of the train is described by the time ¢(s) it takes for the train to move from
the first station to position s. We assume #(0) = 0 and a fixed duration ¢(S) = T given by the timetable.
The velocity v of the train is restricted by a piecewise constant function vmax(s) that accounts for speed
limits on the track. Tractive and regenerative brake force, Fir and F,,, are limited according to (2) and
(4), respectively. The optimisation problem is to find a motion, i.e., a function #(s), that minimises the
net energy Epet.

We introduce some notation, closely following Khmelnitsky [1]. Let Eyj, = crotm0? /2 be the
kinetic energy of the train. Dividing by crott leads to a specific kinetic energy

2

Ekin v
K= = — 12
Crot M 2 (12)
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limited by speed restrictions: K(s) < Kmax(s) = (vmax(s))?/2. Likewise, a specific potential energy is
defined by

Epot 4
p— Pt _ 8%
Crot M Crot

(13)

A total specific mechanical energy is then given by E = K 4 P. In the same way, specific forces are

defined as
F tr
Ugr Crot M s ( )
Fbr
= 7, 15
Upy Crot M ( )
F tr,max
= 4 , 16
8tr Crot 1 (16)
Fbr max
= 4 7 1 7
8br Crot 1M ( )
w= Fair + Froll. (18)
Crot M

A total recuperation efficiency is given by & = #u#,,. The aim of minimising the net energy Epet is
equal to maximising

S
J=- s Enet = _/O (utr(s) - “ubr(s)) ds. (19)

Crot M
With this notation, the optimisation problem can be written in the following canonical form:

e  state vector x = (E, )
e control vector u = (U, Upy)
e  state differential equations

sty —w (20)
dt 1
& - V2K (21)
*  state boundary conditions
E(0) = P(0) (22)
t(0) =0 (23)
E(S) = P(S) (24)
HS)=T (25)
*  maximum
S
] = _/0 (ue(s) — attpe(s)) ds — max (26)

. state constraint E < Kyax + P
. control constraints 0 < uy < g and 0 < uy,, < gy

Remark. Further constraints could be added here, especially 0 < t < T and K > 0. However,
K > 0 will always hold for the energetic optimum solution inside the intervall (0, S). The condition
0 < t < T follows from (21), (23), and (23). Therefore, conditions 0 < + < T and K > 0 need not
be set explicitly as a constraint. Simultaneous traction and brake, i.e. uy(s) > 0 and up,(s) > 0 for
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the same s, is also not explicitly prevented by a constraint since such a solution will surely not be
energetically optimal.

Remark. In equation (20), we have excluded mechanical braking. This means that, in accordance
with Khmelnitsky [1], we formulate the optimisation problem only for purely regenerative braking. An
extension of the presented theory to the case with simultaneous application of both regenerative and
mechanical brake is possible in a straightforward manner, and is, in a slightly different formulation,
given by Scheepmaker and Goverde [25].

Introducing the notation

Flx,u,s) = (““1_/”\‘}’572 w) , 27)

F(“) = —Uy + Ay, (28)
Utr
Upy
X, Uu,s) = ’ 29
8( ) — (29)
&br — Upr
h(x,s) = Kmax — K, (30)

we have an optimisation problem of the form given in Hartl, Sethi and Vickson [35]:

= flxus), (31)

J= /OS F(u(s))ds — max, (32)
g(x,u,s) >0, (33)
h(x,s) = 0. (34)

In Hartl, Sethi, and Vickson [35], the problem is formulated with a time ¢ being the independent variable
instead of s. This is due to the fact that many practical optimisation problems are formulated in a
time-dependent way. In our case, however, the position-dependent formulation has some advantages,
especially since also the speed restriction depends on position, not on time.

The function

H=F+A"f (35)

with Lagrange multipliers A(s) is called the Hamiltonian of problem (31)-(34). (Here and in the
following, ()T means the transposed of a column vector, i.e. AT f is the scalar product of vectors A and
f.) The Lagrange multipliers A(s) are also called the costates of the problem. In order to agree with the
notation of Khmelnitsky [1], we denote the costates according to

RO
AE) (VJT(S)) (36)

Furthermore, the Lagrangian is introduced by
L=H+pu"g+vh, (37)

where y(s) and v(s) are also called Lagrange multipliers. The Lagrange multipliers A(s), u(s) and v(s)
are continuous functions in s, except for positions s; where h(x,s;) = 0.

The ‘Informal Theorem 4.1" of Hartl, Sethi, and Vickson [35] states the following necessary
conditions for (x,u) to be a solution of the optimisation problem (31)-(34):
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e The control vector u(s) maximises the Hamiltonian H pointwise for any s € [0, S].
(38)
®  Their holds
ou_ ou H au_o' (39)
e The costate equation
da oL
=== 4
ds ox (40)
is satisfied.
e Let y; be the components of vector y, and g; be the components of vector g. There holds
pi(s) = 0and pi(s)gi(s) = 0 (41)
for alliand all s € [0, S]. This is called complementary slackness in Khmelnitsky [1].
¢ Another complementary slackness condition,
v(s) > 0and v(s)h(s) =0, (42)

holds for all s € [0, S].
*  The following jump condition is satisfied: At every point s; where A is discontinuous, there exists
a number #; with

Msi) = As) = i 3)
oh

H(s) = H(s;) = ni5, (44)

7; > 0and #;h(s;) = 0. (45)

Here, the argument s;~ corresponds to the left-hand limit, and s to the right-hand limit at s;. The
vector equation (43) is meant component-wise.

The Hamiltonian maximisation condition (38) is called the Pontryagin Maximum Principle, and
equations (39)—(42) are referred to as the Karush-Kuhn-Tucker (KKT) conditions [43,44]. In Hartl, Sethi,
and Vickson [35], the maximum principle is presented also for the case of multiple state constraints, i.e.,
when h is extended to a vector. The maximum principle does not, as we shall see, tell the solution to the
energy minimisation problem directly, but it provides essential information such that a construction of
the solution becomes possible in an iterative trial-and-error process.

2.3. Application of the maximum principle to the enerqy minimisation problem

From the costate equation (40) it follows for the second component of A

dgr _ oL _

= =0, 46
ds ot 0 (16)
since L does not depend explicitly on t. Equation (43) gives, again for the second vector component,

d
Pr(st) — () = —migr =0 )
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Thus, the Lagrange multiplier ¢ is a constant. Equation (39) results in
oL
=1 — i3 = 4
. T+ —pus =0, (48)
oL
= — — = Uu. 4
Gu =R =0 (49)
From the costate equation (40), first component, we have
dp  JL dw 32 dgir dgby

When travelling below the speed limit, i.e. # > 0, then v = 0 holds due to (42). (In Khmelnitsky’s
notation, y3 and ji4 are called ay and ay,, respectively.) We now apply a case distinction to the multiplier
¥, and evaluate uy, up,, and the y; using the conditions (38), (41), (48), (49), and the continuity of the
multipliers. The results are given in Table 1.

Table 1. Case distinction for ¢. ‘cont.” means that the continuity of the Lagrange multipliers has been
exploited. The corresponding value is only valid in the interior of the state domain, i.e., when v < vmax.

case Uy = Upr = m = M2 = U3 = Ha =
Pp>1 Str 0 0 Yp—a Pp-—-1 0

(full traction) (38) (38) (41) (49) (48) 41)
Pp=1 — 0 0 1—un 0 0

(partial traction) (38) cont. (49) cont. (41)
a<yp<l 0 0 1-¢ ¢—ua 0 0

(coasting) (38) (38) (48) (49) (41) (41)
Y=u 0 — 1—«a 0 0 0

(partial reg. brake)  (38) (48) cont. (41) cont.

P < 0 8br 1-9¢ 0 0 x—1

(full reg. brake) (38) (38) (48) (41) (41) (49)

From the values given in Table 1 it follows that, in the interior of the state domain, y3 and 4 can
be directly expressed in terms of :

Jw(s) =1 ify(s) >0

pals) = {0 if y(s) <0 G
Ja—y(s) ify(s) <a

pals) = {0 ify(s) > a (52)

The cases indicated in Table 1 are the only driving modi that are possible for the optimum solution
of the problem. This means that the interval [0, S] can be completely segmented into subintervals
S; = (sj—1,5;) with0 = sy <51 < --- < s, = S, where every subinterval S; corresponds to one of the
drive modi full traction, partial traction, coasting, partial regenerative brake, and full regenerative brake. The
cases full traction, coasting, and full regenerative brake are regular in the sense that the control variables uy,
and uy, are both defined, and therefore the equation of motion is completely given by the underlying
physics. On the contrary, the modi partial traction and partial brake are singular, meaning that here
only one control variable is defined. Therefore, they need some additional consideration. We will
distinguish the following four cases:
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Case 1: partial traction below speed limit. Let S; be an interval of partial traction in the interior
of the state domain, i.e., an interval where ¥(s) = 1 and v < vmax hold. It follows u3(s) = ps(s) =0
on this interval, see Table 1. The costate equation (50) reduces to

= —2%2R(K) (53)

with R(K) = K%/ 2% being a known and monotonely increasing function in K. Moreover, the function
value R(K) is strictly positive for K > 0. Since ¢t is constant, we have

K(s) = R (—2*3/21/@) =: Kpir, (54)

where R~ stands for the inverse function of R. This means that, for the optimal solution, partial traction
in the interior of the state domain is only possible at constant speed with K(s) = Kpt. From equation
(54) it follows that 1 < 0 must hold.

Case 2: partial regenerative brake below speed limit. Likewise, if S; be an interval of partial
regenerative brake in the interior of the state domain, then ¢(s) = « and p3(s) = us(s) = 0 will hold,
and the costate equation now reads

2 dw

_ _n3/2
g = ~2PaR(K). (55)

pr = —a(2K)?/
Since ¥t is constant,
K(s) = R™! (—2—3/2¢T/a) —: Ky (56)

holds, meaning that partial regenerative brake in the interior of the state domain is only possible at
constant speed with K(s) = Kppr- (In Khmelnitsky [1], the constants Kptr and Kip, are called Ks and
Kys, respectively.)

Case 3: partial traction on the speed limit. Let S; be an open interval of partial traction on the
speed limit. Then ¢(s) = 1 fors € S;. Both uy and u3 are unknown, but the equation of motion
is entirely determined by the speed limit with v(s) = Umax(s) and K(s) = Kmax(s). Since vmax is
piecewise constant, and v can not be discontinuous, v, Umax, K, and Kmax must be constant in the
interval S;.

Case 4: partial regenerative brake on the speed limit. Likewise, if S; is an open interval of partial
regenerative brake on the speed limit, then ¢(s) = a for s € S;. Both uy, and py are unknown in this
case, but the equation of motion is again entirely determined by the speed limit with v(s) = vmax and
K(s) = Kmax- Both Umax and Kmax must be constant on S;, using the same argument as in Case 3.

Remark. In recent literature (not in Khmelnitsky), the constant speed driving regimes are often
called cruising.

2.4. The algorithm of Khmelnitsky for fixed

In this section we are going to desribe the algorithm of finding a solution to the optimisation
problem under the assumption that the Lagrange multiplier ¢r < 0 is a given number. Then, Kptr
and Kpp, are defined according to (54) and (56), respectively. Following Khmelnitsky [1], we define
intervals with possible constant speed that correspond to the four cases studied in Section 2.3. In the
case of constant speed, dK/ds = 0 holds, and the state differential equation (20) takes the form

dpP
Uty — Upy = 5 +w. (57)
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Definition 1. A sub-interval I of [0, S| with
dP(s
0< dg ) + w(Kptr) < gtr(Kptr) and Kpyy < Kmax(8) (58)

for all s € I that cannot be extended, i.e., any enlargement of the interval would violate (58), is called a
PT-interval. PT stands for partial traction.

Definition 2. A sub-interval I of [0, S] with

dP(s
—8&br (Kpbr) < % + w(Kpbr) < 0and Kpbr < Kimax(s) (59)

forall s € I that cannot be extended is called a PB-interval. PB stands for partial regenerative brake.

Definition 3. A sub-interval I of [0, S| with

dP(s)
<
0= ds

+ w(Kmax () < gtr(Kmax (s)) and Kmax(s) = const. (60)
forall s € I that cannot be extended is called a PT-SL-interval. PT-SL stands for partial traction on speed limit.

Definition 4. A sub-interval I of [0, S| with

dP(s)

_gbr(KmaX (S)) < ds

+ w(Kmax(s)) < 0and Kmax(s) = const. (61)

forall s € I that cannot be extended is called a PB-SL-interval. PB-SL stands for partial regenerative brake on
speed limit.

Intervals of type PT, PB, PT-SL, and PB-SL are intervals where a constant speed motion of the
optimum solution would be allowed by the control constraints. Those intervals are summarised under
the name pcs-intervals, meaning ‘possible constant speed’. (In Khmelnitsky [1], PT is called minor
grade, PB is called steep fall, PT-SL is called minor grade imitation, and PB-SL is called steep fall imitation.)
Due to their definition, pcs-intervals will never intersect. In this paper, the start point at s = 0, the
pcs-intervals, and the stop point at s = S are summarised under the name ports. Additional speed limit
ports might be introduced as will be explained later. All ports are numbered in the order of increasing s.

The optimal solution is found by connecting ports by trajectories of regular motion, namely full
traction, coasting, or full regenerative brake. Below the speed limit, regular motion is governed by the
differential equations

dK dpP
E——E+u—w, (62)
dy o dw —3/2 dgir _ dgpr
G5~ Yag TYr (2K) T o (63)
with
Str if lP >1
u=<0 ifa <y <1 (64)
—&br if p<a

and y3 and 4 as defined in (51) and (52), respectively. Equation (62) follows from (20) and Table 1,
while (63) results from (50). Since u is discontinuous at { = « and ¢ = 1, the trajectory of K will have a
kink point whenever ¢ crosses these values.
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It follows from the maximum principle that if the optimal solution touches the speed limit at a
position s;, then /i(s;) = 0 and #7; might be positive by equation (45). This means for the first component
of equation (43),

. o o
P(s) = ¢(s) = —Mimp = Mz =1 =0, (65)

i.e., ¥ might have a positive jump whenever the speed limit is attained. The height of this jump,
however, is not defined in the maximum principle. It must be found by one-dimensional search.

If one tries to connect the ports A and B by a trajectory of regular motion, and this trajectory
violates the speed limit, then a connection from A to B is not possible by this trajectory. In this case,
one looks for a connection to the speed limit itself. If a trajectory is found that touches the speed
limit in a single point, a new port is inserted there. It is called a speed limit touchpoint (SL-TP). Ports
are now renumbered to be in the order of increasing s again. If the new speed limit touchpoint is
located between the begin and the end position of a pcs-interval, then numbering is done such that
the speed limit touchpoint comes first. If the speed limit touchpoint has number i, the ¢-value of the
incoming trajectory is stored as ;. At the speed limit touchpoint, 1 is allowed to have a positive jump.
A connection of ports in order to construct the optimal solution is only allowed in the direction of
increasing port numbers.

When a trajectory of regular motion leaves a port, it is called a take-off, when it arrives at a port, it
is called a landing. When trying to connect a port A with a port B by a trajectory of regular motion,
there is always one of the variables s, K, and 1 not fixed at both take-off and landing. These variables
can be adjusted to make the connection possible. The following cases of take-off and landing can exist:

e (T1): take-off from the start point at s = 0 with K = 0. The value of ¢ is not fixed, but must be
greater than 1 since full traction is applied.

*  (T2): take-off from interval of type PT with K = Kty and ¢ = 1+ €, with some small € > 0. Since
dK/ds is discontinuous at i = 1, the trajectories of K will leave in different directions depending
on the choice of ¢ slightly above or below 1, so both must be checked. The take-off position s is
not fixed.

e (T3): take-off from interval of type PB with K = Ky, and ¢ = a + €, again with some small € > 0.
The take-off position s is not fixed.

. (T4): take-off from interior of a PT-SL interval with K = Knax and ¢ = 1. The take-off position s
is not fixed.

. (T5): take-off from the end of a PT-SL interval with K = Kpax and 3 > 1, since a jump in ¢ is
allowed here.

. (T6): take-off from interior of a PB-SL interval with K = Knax and ¢ = a. The take-off position s
is not fixed.

. (T7): take-off from the end of a PB-SL interval with K = Kyax and ¢ > «, since a jump in ¢ is
allowed here.

. (T8): take-off from an SL-TP with number i: start with K = Knax and ¢ > ;, since a jump in 1 is
allowed here.

e (L1): landing on PT interval with K = Kty and ¢ = 1. The landing position s is not fixed.

*  (L2): landing on PB interval with K = Ky, and ¢ = a. The landing position s is not fixed.

U (L3): landing on the start of a PT-SL interval with K = Knax and ¢ < 1. Then, a new speed limit
touchpoint is inserted at the landing position, is connected with the PT-SL interval, and port
renumbering is done such that the new speed limit touchpoint comes before the PT-SL interval. If
the new speed limit touchpoint has number i, the -value of the incoming trajectory is stored
as y;.

. (Lil; : landing on the start of a PT-SL interval with K = Kpnax and ¢ = 1. Since any jump of ¢
here would lead to full traction, it would violate the speed limit. Therefore, no new speed limit
touchpoint is inserted.
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U (L5): landing on the interior of a PT-SL interval with K = Kmax and i = 1. The landing position s
is not fixed.

. (L6): landing on the start of a PB-SL interval with K = Knax and ¢ < a. Then, a new speed limit
touchpoint is inserted at the landing position, is connected with the PB-SL interval, and port
renumbering is done such that the new speed limit touchpoint comes before the PB-SL interval.
If the new speed limit touchpoint has number i, the i-value of the incoming trajectory is stored
as ;.

e (L7): landing on the start of a PB-SL interval with K = Kpax and ¢ = a. Since any jump of ¢ here
would lead to coasting, it would violate the speed limit. Therefore, no new speed limit touchpoint
is inserted.

U (L8): landing on the interior of a PB-SL interval with K = Knax and ¢ = «. The landing position s
is not fixed.

e (L9): landing on an SL-TP with K = Knax. The y-value of the incoming trajectory is stored, and ¢

is allowed to jump here.
¢ (L10): landing on the end point at s = S with K = 0. The value of ¢ is not fixed.

The construction of an optimal solution is best illustrated using a numerical example.
Example 1. A train is driven from Station A at s = 0 to Station B at s = S = 20 km. The altitude is
given by z = 40m - sin(s/km) + 100 m, see Figure 2. Parameters are set according to Table 2.

Table 2. Parameters of Example 1.

parameter symbol  value
number of coaches n 6
mass of locomotive Mioc 84t
total mass of train m 414t
engine efficiency Nir 0.85
efficiency of regenerative brake Hbr 0.85
max. mechanical power for traction Pymech 5.6 MW

max. mechanical power for regenerative brake  Pyrmech 5.6 MW

max. force of regenerative brake Forlim 240kN
air drag coefficient for locomotive Cw loc 0.26
air drag coefficient for first coach Cyy first 0.13
air drag coefficient for middle coaches Cymiddle 0.10
air drag coefficient for last coach Cuy last 0.23
rolling friction coefficient Croll 0.0015
coefficient accounting for rotating masses Crot 1.08
,H,150
N
£ 100F
E
E
T 50 ' '
0 5 10 ) 15 20
position s [km]
Figure 2. Track altitude in Example 1.
In Example 1, no speed limit is assumed, and we consider the case v = —1. Equations (54) and

(56) lead to Kpyr = 536 m?/s? and Ky, = 665m?/s2. Figure 3 shows the pcs-intervals calculated with
p pb g P
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equations (58) to (61), together with the kinetic energy of fastest motion. In our example, this leads to
the exclusion of the first PT-intervall since it cannot be reached.

800 1

700 2 5 8

600

500

excluded

400

300

2001

specific kinetic energy K m®/s®

100

1

0 5 10 15 20
position s [k

PT-interval PB-interval fastest motion

Figure 3. Example 1: pcs-intervals PT and PB, fastest motion, and numbering.

The first step in connecting ports would be the take-off from the start point at s = 0. This is
take-off case (T1). The trajectories of K and ¢ are calculated according to equations (62) and (63).
Different values of i at s = 0 lead to different trajectories that are shown in Figures 4 and 5. When the
y-trajectory crosses the value 1, full traction changes to coasting, and the corresponding K-trajectory
has a kink point. When the ¢-trajectory crosses the value & = #i#, = 0.7225, coasting changes to full
regenerative brake, and the corresponding K-trajectory has a kink point again. The blue line marks the
only trajectory that would land on the PB-interval with number 2 (Ianding case (L2)). It is found by
iterative bisection of the ip-values at s = 0.

800

-~
=1
=1

[~

=2}
=
=1

2]
=1
=1

=
=]
=]

(=)
=]
o

2001

specific kinetic energy K m®/s*

-
=
=1

=

2 3 4 5

] 1
position s [km|
PT-interval PB-interval connection 1-2
full traction coasting full reg. brake

Figure 4. Example 1: K-trajectories starting from s = 0 (port 1) for various values of i at s = 0.
Trajectories change from full traction to coasting and then to full regenerative braking. The blue
trajectory connects port 1 with port 2.
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2\
1871

16T

trajectories start at different o

14

12+

081
0.6
0.4
0.2r
o ! ! | ! )
0 1 2 3 4 5
position s [km]
PT-interval PB-interval conneetion 1 -2
full traction coasting full reg. brake

Figure 5. Example 1: t-trajectories starting from s = 0 (port 1) for various values of ¢y at s = 0.
Trajectories change from full traction to coasting and then to full regenerative braking. The blue
trajectory connects port 1 with port 2.

Figures 6 and 7 show the take-off from the PT-interval number 3. This is take-off case (T2). On the
interval, the trajectories show an unstable behaviour with respect to . If ¢ is slightly above the value
of 1, both K and ¢ will move upwards. If ¢ is slightly below the value of 1, both K and 3 will move
downwards. Note that i takes off tangentially on the entire interval while K does so only from the
ends of the interval. Close to the right end of the interval, the upwards moving K- and -trajectories
will soon turn downwards, and by that change the driving modus from full traction to coasting. This
is a typical picture for take-off from PT- and PB-intervals.

o
(=4}
o

T~

o
=
o

&
=1

o
o
o

z
o

520 r

specilic kinetic energy K m®/s°
o
(8]
==

o
Pt
o

o
o
o

430 - !
4.5 5 55 6 6.5

position s [k

PT-interval full traction coasting

Figure 6. Example 1: K-trajectories starting from PT-interval with number 3.
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1.0005
1.0004
1.0003
1.0002

1.0001

0.9999

0.9998

0.9997

0.9996

0.9985 ! :
4.5 5 5.5 G 6.5

position s k]

PT-interval full traction coasting

Figure 7. Example 1: ip-trajectories starting from PT-interval with number 3.

Figures 8 and 9 show the K- and y-trajectories when trying to connect intervals 4 and 8. The
K-trajectories have a kink point when the driving modus changes from coasting to full traction or full
regenerative brake, corresponding to ¢ crossing the values 1 or a. Both the K- and ¢-trajectories are
able to cross pcs-intervals, but the trajectory field often splits at pcs-intervals, as here at interval 7,
where a shadowed region lies behind that cannot be reached by the trajectories.

41000

BOO

600

400

specific kinetic energy A m®/

2001

0 . . .
6 8 10 12

position s [k

NN |

18

PT-interval PB-interval connection4- 8

full traction coasting full reg_ brake

Figure 8. Example 1: K-trajectories starting from interval 4, heading for interval 8.
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D.95
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081
D.75
0.7 r

065

0.6 . . I . |
6 B 10 12 14 16 18
position s k]

PT-interval PB-interval connection 4 -8

full traction coasting full reg. brake

Figure 9. Example 1: ip-trajectories starting from interval 4, heading for interval 8.

Remark. There is great potential for speeding-up the algorithm by detection of those shadowed
regions. For example, one can conclude immediately from Figure 4 that interval 3 cannot be reached
from starting point 1, and from Figure 8 that interval 9 cannot be reached from interval 4. When
solving the optimisation problem, it will always pay-off to invest into good statistics, showing which
connections should be checked and which ones can safely be excluded.

Example 2. We consider Example 1, but now with a speed limit according to Table 3.

Table 3. Speed limits in Example 2.

from position s [km] to position s [km] max. speed vmax [km/h]

0 5.5 160
55 7.0 110
7.0 9.6 150
9.6 12.0 105
12.0 20.0 140

The multiplier i is again set to —1. Figures 10-12 show that all types of pcs-intervals occur. The
speed limit touchpoints 4, 10, and 14 have been inserted during the run of the algorithm.
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Figure 10. Example 2: K-trajectories.
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Figure 11. Example 2: ip-trajectories.
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position & k)
Figure 12. Example 2: zoom into -trajectories.
Table 4 shows the possible port connections in Example 2.
Table 4. Port connections in Example 2.
port connection take-off and landing type remark
1—-2 (T1), (L2) K has kink point when full traction changes to coasting.
2545 (T3), (L3) New SL-TP 4 included, connected to 5, i jumps at 4.
56 (T5), (L5) 1§ jumps at end of 5.
1 jumps at end of 5. Since ¢ = 1 at the beginning of
59 (15), (L4) interval 9, no new speed limit touchpoint is included.
6—7 (T5), (L1) Y jumps at end of 6.
A connection with constant speed, but with a jump of ¢ at
9—=10=11 (17), (L3) new SL-TP 10, which is connected to 11.
11 — 12 (T5), (L1) 1 jumps at end of 11.
1 jumps at end of 11. Same K-trajectory as 11 — 12 at the
=13 (T5), (L2) beginning, but then change to coasting.
13— 14 (T3), (L9) Landing at newly included SL-TP 14.
14 — 15 (T8), (L1) Take-off from SL-TP 14 with ¢p-jump.
15 — 16 (T2), (L1) Full traction.
15— 17 (T2), (L10) Coasting to stop.

It has been shown by Khmelnitsky [1] that there exists always exactly one connection from the
start point (1) to the stop point (here 17). In Example 2, this is the connection1 -2 -4 -5 —9 —
10 — 11 — 13 — 14 — 15 — 17. The total time T required on this connection is not known a priori,
but can be calculated from the K-curve. Since K = v?/2 is the specific kinetic energy,

~ S ds
T:/O = (66)

holds.

Remark. Here, we distinguish between the scheduled time T, and the time T that is evaluated
from the algorithm. The final goal of the algorithm is to match T to the prescribed T by variation of ir.
This will be explained in Section 2.5.
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Example 3. We consider Example 2, but now with 7 = —0.3. Trajectories of K and i are
illustrated in Figure 13 and 14, respectively.

& 1000 ;
. 80O T
4]
& 4 7
2 600t \ i
>
é 400 |
= 2 =3 =T
& 3 5 P 8 510
¢ o00f 7
0 / : : ; 11
0 5 10 15 20
position & [km)|
PT PE  full traction coasting
Figure 13. Example 3: K-trajectories.
1.1
5 8 10
2
0.9
4
0.8 7
0.7+ 3 & g
0.6 ' ' ' '
1] 5 10 15 20
position s [km]
PT PB  full traction coasting

Figure 14. Example 3: ip-trajectories.

The connections shown in Figures 13 and 14 are listed in Table 5.
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Table 5. Port connections in Example 3.
port connection  take-off and landing type remark
1—-2 (T1), (L)
1—-3 (T1), (L2) K-trajectories of 1 — 2 and 1 — 3 coincide at the beginning.
34 (13), 19) NI eedsto com e membering,
4—-5 (T8), (L1) ¥ jumps at SL-TP 4.
56 (T2), (L2)
6—7 (T3), (L9) SL-TP 7 is inserted, lying exactly between intervals 6 and 8.
7—8 (T8), (L1) ¥ jumps at SL-TP 7.
8§—9 (T2), (L2)
8§ — 10 (T2), (L1) Trajectory is close to speed limit but does not touch.
10— 11 (T2), (L10) Coasting to stop.

2.5. The algorithm of Khmelnitsky: variation of the multiplier P

Khmelnitsky [1] has shown that the time T between two stops of the train is a strictly
monotonously increasing function of the Lagrange multiplier 7. Moreover, v < 0 and

lim T = oo (67)
Ppr—0
hold. Therefore, whenever the scheduled time T is possible to be driven on a track section by a
particular train, it can be approached by the optimisation algorithm by adjusting 1 with iterative
bisection. The complete algorithm for the minimum energy operation would read as follows:
Consider a track section with stops at s = 0 and s = S to be driven in a scheduled duration T.

e Step 1: Calculate the fastest possible motion on the track section with purely regenerative braking.
If the time T needed for that is larger than the scheduled time T, add mechanical braking and
leave the algorithm. If T < T, choose an arbitrary negative value for 7 and proceed the algorithm
with Step 2.

U Step 2: Calculate Kyt by (54), Kpbr by (56), and evaluate the pcs-intervals PT, PB, PT-SL, PB-SL by
(58)—(61). Skip pcs-intervals that cannot be reached by fastest motion. Numerate the ports, i.e.,
the remaining pcs-intervals, the start at s = 0, and the stop at s = S, in the order of ascending s.

e  Step 3: Try to connect ports by regular motion with equations (62) and (63). Use one of the
take-off cases (T1)—-(T8) and one of the landing cases (L1)—-(L10). Add speed limit touchpoints if
necessary, according to the instructions given above. Step 3 is complete when a connection from
the start point at s = 0 to the stop point s = S has been found.

e  Step 4: Calculate T according to (66). If T is sufficiently close to T, the algorithm is successfully
completed. If not, adjust 7 and proceed with Step 2.

If n is the number of ports then a maximum of (4 ) = (n* — n)/2 possible connections has to be checked,
unless the start-stop connection is found earlier. This means that the number of possible connections
grows quadratically with 7. The algorithm can be seen as a search tree, with port connections being the
branches of the tree that need to be checked. Therefore, it is crucial to follow a clever search strategy to
keep computing time at an acceptable level. We mention four important measures that dramatically
shortened computing time when the code was developed:

Parallel path exclusion. Khmelnitsky [1] has shown that any two ports can only be connected by
a at most one path. Therefore, it is wise to exclude all parallel paths in the search tree. For example, if a
connection 1 — 2 — 3 has been established, the parallel direct link 1 — 3 is not possible and need not
be checked.
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Start from the treetop. When choosing the next connection to check for in Step 3, start at the
highest port number that is connected to port 1 and not a known dead end. This strategy usually leads
to an early discovery of the start-stop connection.

Look out for shadowed ports. If ports lie in shadow, exclude impossible connections. See the
remark in the discussion of Example 1 in Section 2.3.

Estimate ¢ by interpolation. The adjustment of i in Step 4 can be sped up using interpolation
techniques.

Example 4. Example 4 is equal to Examples 2 and 3, except that 17 is not prescribed, and T is set
to 16 minutes.

Applying the algorithm, 7 converges to —0.5237. The final K- and y-trajectories are shown in

Figures 15 and 16.
4 1000
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Figure 15. Example 4: K-trajectories.
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Figure 16. Example 4: ip-trajectories.
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Connections and type of take-off and landing are given for the final value yr = —0.5237 in
Table 6.
Table 6. Port connections in Example 4 at final value {7 = —0.5237.
port connection take-off and landing type remark
1—-2 (T1), (L2)
= R e
3—4 (T8), (L1) ¥ jumps at SL-TP 3.
45 (T2), (L2)
Landing on start of interval 6 with { = a. Any jump of ¢
46 (T2), (L7) here would lead to coasting and violate speed limit.
Therefore, no new speed limit touchpoint is inserted.
6—7 (T7), (L1) ¥ jumps at end of PB-SL 6.
7—8 (T2), (L2)
7—9 (T2), (L9) New SL-TP 9 is exactly between intervals 8 and 10.
9 —10 (T8), (L1) Take-off from SL-TP 9.
10 — 11 (T2), (L10) Coasting and finally full regenerative braking to stop.

In Figures 17 and 18, speed and electric energy are shown for Example 4 at ¢ = —0.5237.

200 ]
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D 1 1 1 1 1 1 1 1 1
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Figure 17. Example 4: train speed.
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Figure 18. Example 4: net electric energy.

3. Results and discussion

3.1. Estimating the potential of efficient train driving

In order to compare the optimal driving performance to the energy demand of trains in real-life
operation, a study has been carried out covering a total of 100 regional train runs on four track sections
in Germany. The trains were drawn by electric locomotives equipped with regenerative braking.
Time, velocity, energy supply from the catenary, and energy return by regenerative braking have
been recorded. Trains with five, six, or seven coaches were included in the study. Additional energy
requirements E,q4, as for air-conditioning, ventilation, air compression, etc. have been estimated to an
average value of 254 kW per train from the measured data. Train runs affected by speed restriction
due to signalling in the interior of the track section have been excluded.

In the study it would not be approapriate to compare the energy demand of a particular train run
to the energy optimum based on the duration given by the timetable. Trains that are delayed need to
drive faster, so the shorter time they have available needs to be considered in the optimum calculation.
On the other hand, trains that arrive early are seen to unnecessarily waste energy by driving too
fast. Therefore, for each train run a reference time is considered that allowes a fair comparison to the
optimum. Let

tLL ¢ be the departure time according to timetable,

t;rtgp be the arrival time according to timetable,

tiart be the recorded departure time, and

tstop De the recorded arrival time of the train run.
Then, the reference time duration is defined by T = max(tsTtgp, tgfgp) — titsst, and the energy optimum
is calculated with respect to this reference time.

A total energy demand is defined by Eiot = Er — Ep,r + Eaqq, Where Ey, is electric energy used
for traction, Ey, is electric energy returned by regenerative braking, and E,3q = 254 kW is the above
mentioned additional energy requirement. Figures 19-22 display the total energy Eo: over the reference
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time T. The stars in the figures are recorded measurements, while the lines indicate the calculated
energy optimum.
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Figure 19. Total energy demand Eio over reference time T for track section 1.
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Figure 20. Total energy demand Eiot over reference time T for track section 2.
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track section 3
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Figure 21. Total energy demand Eiot over reference time T for track section 3.
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Figure 22. Total energy demand Eiot over reference time T for track section 4.

Result. Figures 19-22 show that the recorded total energy spreads over a rather wide range. A
factor of approximately two lies between minimum and maximum energy consumption on each track
section, even for cases with quite similar reference time. Contrary to the expectation, the recorded
values do not show an increase of energy demand with train length, but this might be due to the small
size of the sample and the wide spread of values. For many train runs, the measured energy is far
above the corresponding optimum line, in some extremal cases by a factor of three.

Remark. In one case shown in Figure 19, a seven-coach train was in fact better than the optimum.
This is not a contradiction to the optimality property. As it has been pointed out, optimal control theory
ensures that the algorithm returnes the energy minimum, but this only holds for the given train motion
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model. This model is only a simplification, and some assumptions might not have been met during

the train drive experiment. For example, wind speed is neither measured nor considered in the model,

and the additional energy requirement E, 44 is only averaged for a lack of individual measurements.
If for the i-th train run the recorded total energy is denoted by E{;, and the corresponding

optimum energy is Ef(ﬁ;, then the energy ratio 77; = E:’(ﬁf{ / Egt; can be evaluated. Within the concept of
the Physical Optimum (PhO) [45,46], ; is called a PhO factor that quantitatively evaluates the efficiency
with respect to a feasible most efficient reference process. This energy ratio is shown in Figure 23 for
each of the 100 train runs of the study. A total energy ratio #iot = (Zi Efoli;.) / ( Y Efgtcl) = 0.627 is
obtained by summing over all train runs studied. This can be seen as an estimate of the potential that
energy optimised driving would have. Based on the results of the present study, an amount of 37.3
percent of energy could be saved by following an energy minimising driving strategy. One should,
however, bear in mind two limitations: First, due to model simplifications, the computed driving
strategy might differ from the real optimum under the current conditions. And second, even if an
optimum strategy is displayed to the driver by an assistance system, it can only be approached, and
interactions with other traffic will sometimes not allow to exactly follow the suggestions. However,
since the theoretical optimum turned out to be substantially lower than the measured energy demand
in operation, we think that there is still a large potential for energy saving by optimal control based

assistance for train drivers.

1.2

< <
[=2] e

energy ratio

<
B

0.2

] 10 20 30 40 50 60 70 BO a0 100
run munber ¢

Figure 23. Energy ratio #; for each run, shown in descending order.

4. Conclusion

Within this paper, energy-efficient train driving has been studied for the case of an exclusive usage
of the regenerative brake in electric trains. The code opTop written at Fraunhofer Institute Magdeburg
is based on the algorithm of Khmelnitsky that constructs the unique minimum energy solution. A
derivation of the statements given by Khmelnitsky from a more general formulation of Pontryagin’s
maximum principle is presented. In addition to the theory in Khmelnitsky’s article, a complete list of
switching cases has been provided and illustrated by a number of numerical examples. A comparison
to energy consumption data in real operation showed that the energy minimising strategy was able to
save, on average, about 37 % of energy. Extensions of the code to include mechanical braking, non-zero
speed boundary conditions, and dynamic response to train delays are subject to further research.
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Abbreviations

The following abbreviations are used in this manuscript:

DDP discrete dynamic programming

EETC energy-efficient train control

KKT Karush-Kuhn-Tucker (conditions)

NLP nonlinear programming

PB partial regenerative braking

PB-SL partial regenerative braking at speed limit
pes-interval  possible constant speed interval

PMP Pontryagin maximum principle

PT partial traction

PT-SL partial traction at speed limit

SL-TP speed limit touchpoint

SNCF Société nationale des chemins de fer frangais (French national railways)
TGV train a grande vitesse (French high speed train)
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