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Abstract: Efficient train driving plays a vital role in reducing the overall energy consumption in the

railway sector. An energy minimising control strategy can be computed using the framework given by

optimal control theory, in particular the Pontryagin maximum principle. Our optimisation approach

is based on an algorithm presented by Khmelnitsky [1] that considers electric trains equipped with

regenerative braking. A derivation of Khmelnitsky’s theory from a more general formulation of the

maximum principle is given in this article, and a complete list of switching cases between different

driving regimes has been included that is essential for practical application. A number of numerical

examples are added to visualise the various switching cases. Energy consumption data from real-life

operation of passenger trains are compared to the calculated energy minimum. In the presented

study, the optimised strategy was able to save 37 percent of the average energy demand of the train

in operation.

Keywords: energy-efficient train driving; regenerative braking; optimal control theory; Pontryagin

maximum principle; Khmelnitsky’s algorithm

1. Introduction

Energy-efficient driving strategies have shown to substantially lower the total energy consumption

of railway trains. With an increased demand for energy saving technologies, numerous research studies

have been devoted to this subject in recent years, showing that in many cases an average energy saving

of 15 to 30 % could be achieved by assisted driving [2–9]. A comprehensive review on energy-efficient

train control, commonly abbreviated as EETC, is given by Scheepmaker, Goverde, and Kroon [10]. The

majority of the mathematical models that have been developed to calculate energy minimised driving

are based on Pontryagin’s maximum principle (PMP), a fundamental theorem of optimal control

theory. The maximum principle was formulated in 1961 by Pontryagin, Boltyanskii, Gamkrelidze, and

Mishchenko [11,12]. The first application of Pontryagin’s maximum principle to the operation of trains

dates back to Japanese research in 1968 (Ichikawa [13]). The model of Ichikawa was restricted to a flat

track and linear train resistance depending on speed. Another early contribution is due to Strobel,

Horn, and Kosemund [2]. They considered non-constant altitude and found that the optimal solution

is always in one of the drive regimes full traction, partial traction with constant speed, coasting, partial

braking with constant speed, and full braking. Based on their model, they set up a first driver advisory

system for the Berlin S-Bahn (suburban trains).

Since those pioneering research on this topic, models have gained complexity. Important

developments have been: (1) the application to variable altitude and variable speed limit, (2) the

inclusion of regenerative braking in electric locomotives or motor coaches, (3) improved modelling

for train resistance, tractive, and brake force depending on speed, (4) the energy minimisation with

non-zero speed boundary conditions, (5) advanced modelling of efficiency as dependent on speed,

tractive, and brake force, (6) multiple-train problems.

Regarding the second aspect, some (especially the earlier) authors are dealing only with

mechanical braking of trains. When regenerative braking is considered, most authors base
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their energy-efficient driving strategy on the exclusive use of the regenerative brake. A few

recent contributions cover the combined application of mechanical and regenerative brake in their

optimisation strategy.

We proceed with some important developments for purely mechanical braking. Starting from the

PhD thesis of Milroy [14] in 1980, a reaserch team at the University of South Australia introduced the

system Metromiser (Howlett and Pudney [3]). The system covered both timetable planning and driver

advisory. Metromiser was restricted to constant track gradients during both coasting and braking.

The system was first applied on trains in Adelaide (Australia) in 1984, followed by Toronto (Canada),

Melbourne (Australia), and Brisbane (Australia). Howlett, Milroy, and Pudney [15] were the first to

assume variable speed limit, but only for the special case of discrete traction control. In 2003, Liu

and Golovitcher [16] presented a method covering variable altitude, variable speed limit, continuous

traction control, and quadratic train resistance dependence on speed. Except being bound to purely

mechanical braking, this algorithm is therefore quite general with respect to the other assumptions.

The article contains a complete description of switching between the possible drive regimes. In 2013,

Albrecht, Howlett, Pudney, and Vu [17] introduced the driver advisory system Energymiser that has

been applied by French railway SNCF on TGV high speed trains. They proved the uniqueness of the

energy optimum being derived. A multi-objective algorithm combining energy minimisation and

punctuality of trains was developed by Aradi, Becsi, and Gaspar [7].

Regenerative braking was first considered in 1985 by Asnis, Dmitruk, and Osmolovskii [18] in the

context of train energy minimisation. They assumed constant altitude and speed limit in their model.

Franke, Terwiesch, and Meyer [4] introduced an energy optimisation algorithm for variable altitude,

variable speed limit, and purely regenerative braking that was restricted to piecewise constant traction

and brake force. They suggested a discrete dynamic programming (DDP) method for solution. In 2000,

Khmelnitsky [1] developed a model that covered variable altitude, variable speed limit, continuous

traction control, arbitrary maximum tractive and brake force depending on speed, quadratic train

resistance with respect to speed, and exclusively regenerative braking. Regarding this features, it

is a broadly applicable approach with little restrictions. Due to this advantages, the algorithm of

Khmelnitsky has been chosen as the basis for our research. In a recent article by Ying et al. [19], the

EETC problem solved by Khmelnitsky has been revisited, with a special focus on solutions touching

the speed limit. The paper of Ying et al. [19] can be especially recommended for its comprehensive

illustration of the large variety of cases that can arise during construction of the optimum solution. The

EETC problem with prescribed non-zero speed boundary conditions was solved by Ying et al. [20].

There are relatively few research contributions dealing with the EETC problem using combined

mechanical and regenerative braking. Baranov, Meleshin, and Chin’ [21] were the first considering this

topic, but an algorithm to solve the problem was left as an open question in their article. Lu et al. [22]

studied combined mechanical and regenerative braking, but excluded both variable speed limit and

variable track gradients. Zhou et al. [23] studied synchronisation of accelerating and braking trains,

considering both kinds of braking, but again did not include variable speed limit. Fernández-Rodríguez

et al. [24] combined both brake systems in a multi-objective optimisation method, but did not derive a

rigorous energy minimum. In the paper of Scheepmaker and Goverde [25], the optimisation problem

with combined mechanical and regenerative braking was solved for the first time under general

assumptions, i.e., with speed dependent tractive and brake effort, variable speed limit, and variable

altitude. Scheepmaker and Goverde have used the Gauss-Radau pseudospectral method implemented

in GPOPS [26] to solve the optimal control problem.

Several authors have considered advanced efficiency modelling, in particular efficiency depending

on speed, tractive, and brake force. This assumption is more realistic but substantially complicates the

approach. Most notably, the optimal trajectory for this problem is no more restricted to the driving

regimes of full traction, constant speed, coasting, and full brake. Therefore, other methods than PMP

techniques are used in this case, in particular track length discretisation combined with nonlinear
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programming. Research on advanced efficiency modelling was carried out, e.g., by Franke, Terwiesch,

and Meyer [4], Ghaviha et al. [27], Kouzoupis et al. [28], and Feng, Huang, and Lu [29].

Multiple train problems have often been studied with a focus on timetable design in order to

synchronise accelerating and braking trains for best distribution of regenerative energy. See, for

example, Zhou et al. [23] for research on this topic. More references can be found in Scheepmaker

and Goverde [25]. Szkopiński and Kochan [30] have studied energy-efficient train driving when

approaching a train on the track ahead.

Apart from the many research contributions based on an application of Pontryagin’s maximum

principle, a variety of other methods exist to solve the EETC problem. In particular, so-called direct

methods have recently gained attention. They are characterised by the fact that the problem is first

discretised, usually by dividing the track length into smaller intervals. The resulting nonlinear

programming (NLP) problem is then solved by nonlinear programming methods as, for example,

the pseudospectral one. Wang et al. [31] were the first to apply the pseudospectral method to an

EETC problem. Scheepmaker and Goverde [25] also utilised a pseudospectral approach. Direct

methods have the advantage of being very flexible with respect to the problem under consideration.

In addition, optimal control solvers like DIDO (Direct and Indirect Dynamic Optimization) [32,33],

PSOPT [34], or GPOPS (General Pseudospectral Optimal Control Software) [26] are readily available.

The implementation is much easier than a solution of the problem along the lines of Pontryagin’s

maximum principle. On the other hand, the pseudospectral method often shows an inaccurate

oscillatory behaviour of solutions, and it tends to be time consuming. [28] Recently, Kouzoupis et al.

[28] were able to reduce the computing time of a direct method using multiple shooting.

Based on the above-mentioned approach of Khmelnitsky [1], a programme called opTop (optimum

train operation) has been developed at Fraunhofer Institute for Factory Operation and Automation

(IFF), Magdeburg, Germany. The code is written in MATLAB and currently features energy

minimisation with exclusively regenerative braking, except for fastest train motion in the case of

tight timetables where additional mechanical braking is considered. The choice of Khmelnitsky’s

method was mainly motivated by superior accuracy at an acceptable computing time. An extension of

the code to fully include mechanical braking into the optimisation is subject to further development,

as well as non-zero speed boundary conditions and smooth switching from fastest to energy-efficient

driving in case of a train delay. The code has been tested offline in numerous cases based on real railway

tracks and timetables, and computing time has been substantially reduced by code optimisation. A

couple of tests with driver advisory in real-life operation have shown energy savings of about 20 %

compared to an average of unassisted runs.

The present article was driven by two main motivations. The first one was to show a direct

derivation of Khmelnitsky’s theory from a more general formulation of Pontryagin’s maximum

principle given by Hartl, Sethi, and Vickson [35]. By seeing Khmelnitsky’s theory in this general

framework, extensions to other conditions could be elaborated. A second motivation was to provide a

comprehensive illustration of the behaviour of the method of Khmelnitsky using a couple of numerical

examples. We have felt that this very useful method would strongly benefit from some illustrative

examples that show the behaviour of the trajectory field including kink points as well as the large

variety of switching cases from one driving regime to another. We have, therefore, put a strong focus

on the examples in Sections 2.4 and 2.5, in which most of the possible switching cases can be studied

in detail.

The article is structured in the following way: In Section 2.1, the model of train motion is

introduced. Section 2.2 is devoted to the Pontryagin maximum principle that provides a couple

of necessary conditions the energy minimising solution has to fulfil. In Section 2.3, the maximum

principle is applied to the specific minimum energy problem for train motion. This leads to the

observation that only four driving regimes full traction, constant speed, coasting, and full regenerative

braking are feasible for an energy minimising motion. The regime constant speed can be driven only at

two specific velocities or at speed limit. Sections 2.4 and 2.5 describe the algorithm of Khmelnitsky [1]
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for the construction of the minimum energy solution. A complete list of switching cases is given and

explained in Section 2.4, and four numerical examples are introduced to illustrate those cases. Some

directions are given that lead to a substantial reduction of computing time. Finally, in Section 3, the

energy optimum is compared to energy consumption of various train runs on a specific railway line

in real-life operation. As a result, the optimal strategy consumed only 63 % of the average energy

demand of the unassisted runs in real operation.

2. Materials and methods

2.1. Model of train motion

The equation of motion of a train with an electric engine and both regenerative and mechanical

brake can be given by

Ftr − Fbr − Fmbr − Fair − Froll − Fsl = crot m a, (1)

where Ftr is tractive force, Fbr is the force applied by the regenerative brake, Fmbr is the force of

the mechanical brake, Fair is air drag, Froll is rolling friction, Fsl is the downhill slope force, crot is a

coefficient representing rotating masses, m is the mass and a the acceleration of the train. This is

Newton’s second law of motion with the extension that rotating masses as, for example, the wheels

of the train, are accounted for by a factor crot. A model of this type is commonly be used for train

motion, see for example the review article of Scheepmaker, Goverde, and Kroon [10] or the textbook of

Ihme [36]. According to Ihme [36], crot = 1.06 . . . 1.11 for passenger trains, depending on their length,

where longer trains will generally have smaller values of crot.

The tractive force Ftr is limited by both engine power and rail friction (adhesion). According to

Fassbinder [37],

Ftr ≤ Ftr,max = min(Ptr,mech/v, µad g mloc), (2)

where Ptr,mech is the mechanical engine power used for traction, v is the velocity of the train, µad is the

adhesion coefficient, g is gravity, and mloc the mass of the locomotive. The adhesion coefficient µad has

been obtained experimentally in 1943 by Curtius and Kniffler [38], see, e.g., Schlecht [39], leading to

the empirical relation

µad =
7.5

v
km/h + 44

+ 0.161. (3)

The adhesion coefficient µad attains a maximum value of 0.331 when v = 0.

The regenerative brake force Fbr is, as the tractive force, restricted by engine power and rail

adhesion. However, it must be further limited to avoid a derailing of coaches behind the braking

locomotive. Thus, for the regenerative brake force there holds

Fbr ≤ Fbr,max = min(Pbr,mech/v, µad g mloc, Fbr,lim), (4)

where Pbr,mech is the mechanical engine power for regenerative braking, and Fbr,lim is the additional

limit to avoid derailing. In general, Ptr,mech = Pbr,mech will hold. According to [40], the limit force

Fbr,lim has been recently enlarged in Germany from 150 kN to 240 kN, a value that is also considered in

Scheepmaker and Goverde [25]. The maximum forces Ftr,max and Fbr,max are shown in Figure 1.
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Figure 1. Maximum force for traction and regenerative brake.

Remark. In practical operation, regenerative braking of trains is not possible when the speed is

too small, meaning that for a final halt, the mechanical brake always has to be applied. This has been

pointed out by Scheepmaker and Goverde [25], who have estimated a minimum speed of 8 km/h for

application of regenerative braking based on data from Netherlands Railways. However, since kinetic

energy below 8 km/h is relatively small, we have neglected this consideration in our model.

When a train brakes, using the regenerative brake is clearly advantegeous with respect to saving

energy. However, the force of the regenerative brake is limited and, especially for long freight trains,

much weaker than the force of the mechanical brake. This is due to the fact that regenerative braking

applies only to the wheels of the locomotive, while the mechanical brake acts on every wheel of the

train. If the time required by timetable is too short for a certain distance, purely regenerative braking

might not be sufficient. But, as Scheepmaker and Goverde [25] have proven by means of optimal

control theory, the mechanical brake is always ‘second choice’ in an energy-minimising solution. This

means that mechanical braking is only applied when regenerative braking is operating at maximum

force, i.e., when Fbr = Fbr,max holds. In the optimisation method presented here, the mechanical brake

is not incorporated into the theory and will only be considered in the calculation of the fastest possible

motion. This will be explained in more detail in the following sections.

The mechanical work applied for traction is given by

Wtr =
∫ s2

s1

Ftr ds =
∫ t2

t1

Ptr,mech dt, (5)

where s is track length and t is time. The electric energy required for traction is

Etr = Wtr/ηtr. (6)

The efficiency ηtr of electric locomotives is usually given in a range of 83 to 87 percent [25,37,41]. Within

this paper, we will use an intermediate value of ηtr = 0.85. Likewise, the mechanical work applied for

regenerative braking is

Wbr =
∫ s2

s1

Fbr ds =
∫ t2

t1

Pbr,mech dt, (7)

and the electric energy returned will be

Ebr = ηbr Wbr. (8)

We use a braking efficiency ηbr = ηtr = 0.85 according to Fassbinder [37]. The difference Enet =

Etr − Ebr is called the net energy, which should be minimised.
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In real operation, additional energy Eadd will be required that is not directly related to traction or

brake, including energy for air commpression, air conditioning, lighting and so on. However, since

this additional energy is mainly a function of time, it can not be reduced by a driving strategy when

the total time is constant as given by the train’s timetable. Therefore, the additional energy does not

enter the net energy minimisation problem and can be excluded here.

For air drag, Ihme [36] recommends the so called Hanover Formula that goes back to Voß,

Gackenholz and Wiebels [42]. It takes the form

Fair =
1

2
ρair Aref cw v2, (9)

with air density ρair = 1.25 kg/m3. In this formula, Aref is not the cross-sectional area of the train, but

a reference area of 10 m2. The air drag coefficient cw is calculated according to

cw = cw,loc + cw,first + (n − 2) cw,middle + cw,last, (10)

n being the number of coaches. Ihme [36] gives the values cw,loc = 0.26, cw,first = 0.13, cw,middle = 0.10,

cw,last = 0.23 as appropriate for Intercity coaches.

The rolling friction can be modelled by Froll = croll m g with croll = 0.0015 according to Ihme [36].

The downhill slope force is given by

Fsl = m g
dz

ds
, (11)

where z is the altitude of the track.

2.2. The maximum principle

The problem of minimising the net energy of a scheduled train can be formulated as an optimal

control problem, as it has been proposed by Khmelnitsky [1] who also presented an algorithm to

obtain the unique net energy minimum. The algorithm of Khmelnitsky is essentially based on the

maximum principle of optimal control theory that has been developed by Pontryagin, Boltyanskii,

Gamkrelidze, and Mishchenko [11,12]. A variety of formulations of the maximum principle can be

found in Hartl, Sethi, and Vickson [35]. While some of the results of the maximum principle for the

particular problem of a minimum energy train ride are already given in Khmelnitsky’s paper [1], a

direct derivation from the more general formulation of the maximum principle as presented in Hartl,

Sethi and Vickson [35] is not included in Khmelnitsky. We are, therefore, going to show this derivation

here. In Section 2.2, the maximum principle will be presented, based on the ‘Informal Theorem 4.1’

in [35]. The subsequent Section 2.3 contains the application to the train problem. Equipped with this

general framework, extensions of the theory (for example the inclusion of the mechanical brake) are

possible.

We consider the following problem: Let s be the track length coordinate between two stations at

s = 0 and s = S. The motion of the train is described by the time t(s) it takes for the train to move from

the first station to position s. We assume t(0) = 0 and a fixed duration t(S) = T given by the timetable.

The velocity v of the train is restricted by a piecewise constant function vmax(s) that accounts for speed

limits on the track. Tractive and regenerative brake force, Ftr and Fbr, are limited according to (2) and

(4), respectively. The optimisation problem is to find a motion, i.e., a function t(s), that minimises the

net energy Enet.

We introduce some notation, closely following Khmelnitsky [1]. Let Ekin = crotmv2/2 be the

kinetic energy of the train. Dividing by crotm leads to a specific kinetic energy

K =
Ekin

crot m
=

v2

2
(12)
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limited by speed restrictions: K(s) ≤ Kmax(s) = (vmax(s))2/2. Likewise, a specific potential energy is

defined by

P =
Epot

crot m
=

g z

crot
. (13)

A total specific mechanical energy is then given by E = K + P. In the same way, specific forces are

defined as

utr =
Ftr

crot m
, (14)

ubr =
Fbr

crot m
, (15)

gtr =
Ftr,max

crot m
, (16)

gbr =
Fbr,max

crot m
, (17)

w =
Fair + Froll

crot m
. (18)

A total recuperation efficiency is given by α = ηtrηbr. The aim of minimising the net energy Enet is

equal to maximising

J = − ηtr

crot m
Enet = −

∫ S

0
(utr(s)− αubr(s))ds. (19)

With this notation, the optimisation problem can be written in the following canonical form:

• state vector x = (E, t)
• control vector u = (utr, ubr)
• state differential equations

dE

ds
= utr − ubr − w (20)

dt

ds
=

1√
2K

(21)

• state boundary conditions

E(0) = P(0) (22)

t(0) = 0 (23)

E(S) = P(S) (24)

t(S) = T (25)

• maximum

J = −
∫ S

0
(utr(s)− αubr(s))ds → max (26)

• state constraint E ≤ Kmax + P
• control constraints 0 ≤ utr ≤ gtr and 0 ≤ ubr ≤ gbr

Remark. Further constraints could be added here, especially 0 ≤ t ≤ T and K ≥ 0. However,

K > 0 will always hold for the energetic optimum solution inside the intervall (0, S). The condition

0 ≤ t ≤ T follows from (21), (23), and (23). Therefore, conditions 0 ≤ t ≤ T and K ≥ 0 need not

be set explicitly as a constraint. Simultaneous traction and brake, i.e. utr(s) > 0 and ubr(s) > 0 for

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2023                   doi:10.20944/preprints202308.0875.v1

https://doi.org/10.20944/preprints202308.0875.v1


8 of 31

the same s, is also not explicitly prevented by a constraint since such a solution will surely not be

energetically optimal.

Remark. In equation (20), we have excluded mechanical braking. This means that, in accordance

with Khmelnitsky [1], we formulate the optimisation problem only for purely regenerative braking. An

extension of the presented theory to the case with simultaneous application of both regenerative and

mechanical brake is possible in a straightforward manner, and is, in a slightly different formulation,

given by Scheepmaker and Goverde [25].

Introducing the notation

f (x, u, s) =

(
utr − ubr − w

1/
√

2K

)
, (27)

F(u) = −utr + αubr, (28)

g(x, u, s) =




utr

ubr

gtr − utr

gbr − ubr


 , (29)

h(x, s) = Kmax − K, (30)

we have an optimisation problem of the form given in Hartl, Sethi and Vickson [35]:

dx

ds
= f (x, u, s), (31)

J =
∫ S

0
F(u(s))ds → max, (32)

g(x, u, s) ≥ 0, (33)

h(x, s) ≥ 0. (34)

In Hartl, Sethi, and Vickson [35], the problem is formulated with a time t being the independent variable

instead of s. This is due to the fact that many practical optimisation problems are formulated in a

time-dependent way. In our case, however, the position-dependent formulation has some advantages,

especially since also the speed restriction depends on position, not on time.

The function

H = F + λT f (35)

with Lagrange multipliers λ(s) is called the Hamiltonian of problem (31)-(34). (Here and in the

following, (·)T means the transposed of a column vector, i.e. λT f is the scalar product of vectors λ and

f .) The Lagrange multipliers λ(s) are also called the costates of the problem. In order to agree with the

notation of Khmelnitsky [1], we denote the costates according to

λ(s) =

(
ψ(s)

ψT(s)

)
. (36)

Furthermore, the Lagrangian is introduced by

L = H + µT g + νh, (37)

where µ(s) and ν(s) are also called Lagrange multipliers. The Lagrange multipliers λ(s), µ(s) and ν(s)

are continuous functions in s, except for positions si where h(x, si) = 0.

The ‘Informal Theorem 4.1’ of Hartl, Sethi, and Vickson [35] states the following necessary

conditions for (x, u) to be a solution of the optimisation problem (31)-(34):
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• The control vector u(s) maximises the Hamiltonian H pointwise for any s ∈ [0, S].

(38)

• Their holds

∂L

∂u
=

∂H

∂u
+ µT ∂g

∂u
= 0. (39)

• The costate equation

dλ

ds
= −∂L

∂x
(40)

is satisfied.
• Let µi be the components of vector µ, and gi be the components of vector g. There holds

µi(s) ≥ 0 and µi(s)gi(s) = 0 (41)

for all i and all s ∈ [0, S]. This is called complementary slackness in Khmelnitsky [1].
• Another complementary slackness condition,

ν(s) ≥ 0 and ν(s)h(s) = 0, (42)

holds for all s ∈ [0, S].
• The following jump condition is satisfied: At every point si where λ is discontinuous, there exists

a number ηi with

λ(s+i )− λ(s−i ) = −ηi
∂h

∂x
, (43)

H(s+i )− H(s−i ) = ηi
∂h

∂s
, (44)

ηi ≥ 0 and ηih(si) = 0. (45)

Here, the argument s−i corresponds to the left-hand limit, and s+i to the right-hand limit at si. The

vector equation (43) is meant component-wise.

The Hamiltonian maximisation condition (38) is called the Pontryagin Maximum Principle, and

equations (39)–(42) are referred to as the Karush-Kuhn-Tucker (KKT) conditions [43,44]. In Hartl, Sethi,

and Vickson [35], the maximum principle is presented also for the case of multiple state constraints, i.e.,

when h is extended to a vector. The maximum principle does not, as we shall see, tell the solution to the

energy minimisation problem directly, but it provides essential information such that a construction of

the solution becomes possible in an iterative trial-and-error process.

2.3. Application of the maximum principle to the energy minimisation problem

From the costate equation (40) it follows for the second component of λ

dψT

ds
= −∂L

∂t
= 0, (46)

since L does not depend explicitly on t. Equation (43) gives, again for the second vector component,

ψT(s
+
i )− ψT(s

−
i ) = −ηi

∂h

∂t
= 0. (47)
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Thus, the Lagrange multiplier ψT is a constant. Equation (39) results in

∂L

∂utr
= −1 + ψ + µ1 − µ3 = 0, (48)

∂L

∂ubr
= α − ψ + µ2 − µ4 = 0. (49)

From the costate equation (40), first component, we have

dψ

ds
= − ∂L

∂E
= ψ

dw

dK
+ ψT · (2K)−3/2 − µ3

dgtr

dK
− µ4

dgbr

dK
+ ν. (50)

When travelling below the speed limit, i.e. h > 0, then ν = 0 holds due to (42). (In Khmelnitsky’s

notation, µ3 and µ4 are called atr and ab, respectively.) We now apply a case distinction to the multiplier

ψ, and evaluate utr, ubr, and the µi using the conditions (38), (41), (48), (49), and the continuity of the

multipliers. The results are given in Table 1.

Table 1. Case distinction for ψ. ‘cont.’ means that the continuity of the Lagrange multipliers has been

exploited. The corresponding value is only valid in the interior of the state domain, i.e., when v < vmax.

case utr = ubr = µ1 = µ2 = µ3 = µ4 =

ψ > 1 gtr 0 0 ψ − α ψ − 1 0
(full traction) (38) (38) (41) (49) (48) (41)

ψ = 1 − 0 0 1 − α 0 0
(partial traction) (38) cont. (49) cont. (41)

α < ψ < 1 0 0 1 − ψ ψ − α 0 0
(coasting) (38) (38) (48) (49) (41) (41)

ψ = α 0 − 1 − α 0 0 0
(partial reg. brake) (38) (48) cont. (41) cont.

ψ < α 0 gbr 1 − ψ 0 0 α − ψ
(full reg. brake) (38) (38) (48) (41) (41) (49)

From the values given in Table 1 it follows that, in the interior of the state domain, µ3 and µ4 can

be directly expressed in terms of ψ:

µ3(s) =

{
ψ(s)− 1 if ψ(s) ≥ 0

0 if ψ(s) < 0
(51)

µ4(s) =

{
α − ψ(s) if ψ(s) ≤ α

0 if ψ(s) > α
(52)

The cases indicated in Table 1 are the only driving modi that are possible for the optimum solution

of the problem. This means that the interval [0, S] can be completely segmented into subintervals

Si = (si−1, si) with 0 = s0 < s1 < · · · < sn = S, where every subinterval Si corresponds to one of the

drive modi full traction, partial traction, coasting, partial regenerative brake, and full regenerative brake. The

cases full traction, coasting, and full regenerative brake are regular in the sense that the control variables utr

and ubr are both defined, and therefore the equation of motion is completely given by the underlying

physics. On the contrary, the modi partial traction and partial brake are singular, meaning that here

only one control variable is defined. Therefore, they need some additional consideration. We will

distinguish the following four cases:
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Case 1: partial traction below speed limit. Let Si be an interval of partial traction in the interior

of the state domain, i.e., an interval where ψ(s) ≡ 1 and v < vmax hold. It follows µ3(s) ≡ µ4(s) ≡ 0

on this interval, see Table 1. The costate equation (50) reduces to

ψT = −(2K)3/2 dw

dK
= −23/2R(K) (53)

with R(K) = K3/2 dw
dK being a known and monotonely increasing function in K. Moreover, the function

value R(K) is strictly positive for K > 0. Since ψT is constant, we have

K(s) ≡ R−1
(
−2−3/2ψT

)
=: Kptr, (54)

where R−1 stands for the inverse function of R. This means that, for the optimal solution, partial traction

in the interior of the state domain is only possible at constant speed with K(s) ≡ Kptr. From equation

(54) it follows that ψT < 0 must hold.

Case 2: partial regenerative brake below speed limit. Likewise, if Si be an interval of partial

regenerative brake in the interior of the state domain, then ψ(s) ≡ α and µ3(s) ≡ µ4(s) ≡ 0 will hold,

and the costate equation now reads

ψT = −α(2K)3/2 dw

dK
= −23/2αR(K). (55)

Since ψT is constant,

K(s) ≡ R−1
(
−2−3/2ψT/α

)
=: Kpbr (56)

holds, meaning that partial regenerative brake in the interior of the state domain is only possible at

constant speed with K(s) ≡ Kpbr. (In Khmelnitsky [1], the constants Kptr and Kpbr are called Ks and

Kbs, respectively.)

Case 3: partial traction on the speed limit. Let Si be an open interval of partial traction on the

speed limit. Then ψ(s) ≡ 1 for s ∈ Si. Both utr and µ3 are unknown, but the equation of motion

is entirely determined by the speed limit with v(s) = vmax(s) and K(s) = Kmax(s). Since vmax is

piecewise constant, and v can not be discontinuous, v, vmax, K, and Kmax must be constant in the

interval Si.

Case 4: partial regenerative brake on the speed limit. Likewise, if Si is an open interval of partial

regenerative brake on the speed limit, then ψ(s) ≡ α for s ∈ Si. Both ubr and µ4 are unknown in this

case, but the equation of motion is again entirely determined by the speed limit with v(s) ≡ vmax and

K(s) ≡ Kmax. Both vmax and Kmax must be constant on Si, using the same argument as in Case 3.

Remark. In recent literature (not in Khmelnitsky), the constant speed driving regimes are often

called cruising.

2.4. The algorithm of Khmelnitsky for fixed ψT

In this section we are going to desribe the algorithm of finding a solution to the optimisation

problem under the assumption that the Lagrange multiplier ψT < 0 is a given number. Then, Kptr

and Kpbr are defined according to (54) and (56), respectively. Following Khmelnitsky [1], we define

intervals with possible constant speed that correspond to the four cases studied in Section 2.3. In the

case of constant speed, dK/ds = 0 holds, and the state differential equation (20) takes the form

utr − ubr =
dP

ds
+ w. (57)
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Definition 1. A sub-interval I of [0, S] with

0 ≤ dP(s)

ds
+ w(Kptr) ≤ gtr(Kptr) and Kptr < Kmax(s) (58)

for all s ∈ I that cannot be extended, i.e., any enlargement of the interval would violate (58), is called a

PT-interval. PT stands for partial traction.

Definition 2. A sub-interval I of [0, S] with

−gbr(Kpbr) ≤
dP(s)

ds
+ w(Kpbr) ≤ 0 and Kpbr < Kmax(s) (59)

for all s ∈ I that cannot be extended is called a PB-interval. PB stands for partial regenerative brake.

Definition 3. A sub-interval I of [0, S] with

0 ≤ dP(s)

ds
+ w(Kmax(s)) ≤ gtr(Kmax(s)) and Kmax(s) = const. (60)

for all s ∈ I that cannot be extended is called a PT-SL-interval. PT-SL stands for partial traction on speed limit.

Definition 4. A sub-interval I of [0, S] with

−gbr(Kmax(s)) ≤
dP(s)

ds
+ w(Kmax(s)) ≤ 0 and Kmax(s) = const. (61)

for all s ∈ I that cannot be extended is called a PB-SL-interval. PB-SL stands for partial regenerative brake on

speed limit.

Intervals of type PT, PB, PT-SL, and PB-SL are intervals where a constant speed motion of the

optimum solution would be allowed by the control constraints. Those intervals are summarised under

the name pcs-intervals, meaning ‘possible constant speed’. (In Khmelnitsky [1], PT is called minor

grade, PB is called steep fall, PT-SL is called minor grade imitation, and PB-SL is called steep fall imitation.)

Due to their definition, pcs-intervals will never intersect. In this paper, the start point at s = 0, the

pcs-intervals, and the stop point at s = S are summarised under the name ports. Additional speed limit

ports might be introduced as will be explained later. All ports are numbered in the order of increasing s.

The optimal solution is found by connecting ports by trajectories of regular motion, namely full

traction, coasting, or full regenerative brake. Below the speed limit, regular motion is governed by the

differential equations

dK

ds
= −dP

ds
+ u − w, (62)

dψ

ds
= ψ

dw

dK
+ ψT · (2K)−3/2 − µ3

dgtr

dK
− µ4

dgbr

dK
. (63)

with

u =





gtr if ψ > 1

0 if α ≤ ψ ≤ 1

−gbr if ψ < α

(64)

and µ3 and µ4 as defined in (51) and (52), respectively. Equation (62) follows from (20) and Table 1,

while (63) results from (50). Since u is discontinuous at ψ = α and ψ = 1, the trajectory of K will have a

kink point whenever ψ crosses these values.
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It follows from the maximum principle that if the optimal solution touches the speed limit at a

position si, then h(si) = 0 and ηi might be positive by equation (45). This means for the first component

of equation (43),

ψ(s+i )− ψ(s−i ) = −ηi
∂h

∂E
= −ηi

∂h

∂K
= ηi ≥ 0, (65)

i.e., ψ might have a positive jump whenever the speed limit is attained. The height of this jump,

however, is not defined in the maximum principle. It must be found by one-dimensional search.

If one tries to connect the ports A and B by a trajectory of regular motion, and this trajectory

violates the speed limit, then a connection from A to B is not possible by this trajectory. In this case,

one looks for a connection to the speed limit itself. If a trajectory is found that touches the speed

limit in a single point, a new port is inserted there. It is called a speed limit touchpoint (SL-TP). Ports

are now renumbered to be in the order of increasing s again. If the new speed limit touchpoint is

located between the begin and the end position of a pcs-interval, then numbering is done such that

the speed limit touchpoint comes first. If the speed limit touchpoint has number i, the ψ-value of the

incoming trajectory is stored as ψi. At the speed limit touchpoint, ψ is allowed to have a positive jump.

A connection of ports in order to construct the optimal solution is only allowed in the direction of

increasing port numbers.

When a trajectory of regular motion leaves a port, it is called a take-off, when it arrives at a port, it

is called a landing. When trying to connect a port A with a port B by a trajectory of regular motion,

there is always one of the variables s, K, and ψ not fixed at both take-off and landing. These variables

can be adjusted to make the connection possible. The following cases of take-off and landing can exist:

• (T1): take-off from the start point at s = 0 with K = 0. The value of ψ is not fixed, but must be

greater than 1 since full traction is applied.
• (T2): take-off from interval of type PT with K = Kptr and ψ = 1 ± ǫ, with some small ǫ > 0. Since

dK/ds is discontinuous at ψ = 1, the trajectories of K will leave in different directions depending

on the choice of ψ slightly above or below 1, so both must be checked. The take-off position s is

not fixed.
• (T3): take-off from interval of type PB with K = Kpbr and ψ = α ± ǫ, again with some small ǫ > 0.

The take-off position s is not fixed.
• (T4): take-off from interior of a PT-SL interval with K = Kmax and ψ = 1. The take-off position s

is not fixed.
• (T5): take-off from the end of a PT-SL interval with K = Kmax and ψ ≥ 1, since a jump in ψ is

allowed here.
• (T6): take-off from interior of a PB-SL interval with K = Kmax and ψ = α. The take-off position s

is not fixed.
• (T7): take-off from the end of a PB-SL interval with K = Kmax and ψ ≥ α, since a jump in ψ is

allowed here.
• (T8): take-off from an SL-TP with number i: start with K = Kmax and ψ ≥ ψi, since a jump in ψ is

allowed here.
• (L1): landing on PT interval with K = Kptr and ψ = 1. The landing position s is not fixed.
• (L2): landing on PB interval with K = Kpbr and ψ = α. The landing position s is not fixed.
• (L3): landing on the start of a PT-SL interval with K = Kmax and ψ < 1. Then, a new speed limit

touchpoint is inserted at the landing position, is connected with the PT-SL interval, and port

renumbering is done such that the new speed limit touchpoint comes before the PT-SL interval. If

the new speed limit touchpoint has number i, the ψ-value of the incoming trajectory is stored

as ψi.
• (L4): landing on the start of a PT-SL interval with K = Kmax and ψ = 1. Since any jump of ψ

here would lead to full traction, it would violate the speed limit. Therefore, no new speed limit

touchpoint is inserted.
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• (L5): landing on the interior of a PT-SL interval with K = Kmax and ψ = 1. The landing position s

is not fixed.
• (L6): landing on the start of a PB-SL interval with K = Kmax and ψ < α. Then, a new speed limit

touchpoint is inserted at the landing position, is connected with the PB-SL interval, and port

renumbering is done such that the new speed limit touchpoint comes before the PB-SL interval.

If the new speed limit touchpoint has number i, the ψ-value of the incoming trajectory is stored

as ψi.
• (L7): landing on the start of a PB-SL interval with K = Kmax and ψ = α. Since any jump of ψ here

would lead to coasting, it would violate the speed limit. Therefore, no new speed limit touchpoint

is inserted.
• (L8): landing on the interior of a PB-SL interval with K = Kmax and ψ = α. The landing position s

is not fixed.
• (L9): landing on an SL-TP with K = Kmax. The ψ-value of the incoming trajectory is stored, and ψ

is allowed to jump here.
• (L10): landing on the end point at s = S with K = 0. The value of ψ is not fixed.

The construction of an optimal solution is best illustrated using a numerical example.

Example 1. A train is driven from Station A at s = 0 to Station B at s = S = 20 km. The altitude is

given by z = 40 m · sin(s/km) + 100 m, see Figure 2. Parameters are set according to Table 2.

Table 2. Parameters of Example 1.

parameter symbol value

number of coaches n 6

mass of locomotive mloc 84 t

total mass of train m 414 t

engine efficiency ηtr 0.85

efficiency of regenerative brake ηbr 0.85

max. mechanical power for traction Ptr,mech 5.6 MW

max. mechanical power for regenerative brake Pbr,mech 5.6 MW

max. force of regenerative brake Fbr,lim 240 kN

air drag coefficient for locomotive cw,loc 0.26

air drag coefficient for first coach cw,first 0.13

air drag coefficient for middle coaches cw,middle 0.10

air drag coefficient for last coach cw,last 0.23

rolling friction coefficient croll 0.0015

coefficient accounting for rotating masses crot 1.08

Figure 2. Track altitude in Example 1.

In Example 1, no speed limit is assumed, and we consider the case ψT = −1. Equations (54) and

(56) lead to Kptr = 536 m2/s2 and Kpbr = 665 m2/s2. Figure 3 shows the pcs-intervals calculated with
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equations (58) to (61), together with the kinetic energy of fastest motion. In our example, this leads to

the exclusion of the first PT-intervall since it cannot be reached.

Figure 3. Example 1: pcs-intervals PT and PB, fastest motion, and numbering.

The first step in connecting ports would be the take-off from the start point at s = 0. This is

take-off case (T1). The trajectories of K and ψ are calculated according to equations (62) and (63).

Different values of ψ at s = 0 lead to different trajectories that are shown in Figures 4 and 5. When the

ψ-trajectory crosses the value 1, full traction changes to coasting, and the corresponding K-trajectory

has a kink point. When the ψ-trajectory crosses the value α = ηtrηbr = 0.7225, coasting changes to full

regenerative brake, and the corresponding K-trajectory has a kink point again. The blue line marks the

only trajectory that would land on the PB-interval with number 2 (landing case (L2)). It is found by

iterative bisection of the ψ-values at s = 0.

Figure 4. Example 1: K-trajectories starting from s = 0 (port 1) for various values of ψ at s = 0.

Trajectories change from full traction to coasting and then to full regenerative braking. The blue

trajectory connects port 1 with port 2.
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Figure 5. Example 1: ψ-trajectories starting from s = 0 (port 1) for various values of ψ at s = 0.

Trajectories change from full traction to coasting and then to full regenerative braking. The blue

trajectory connects port 1 with port 2.

Figures 6 and 7 show the take-off from the PT-interval number 3. This is take-off case (T2). On the

interval, the trajectories show an unstable behaviour with respect to ψ. If ψ is slightly above the value

of 1, both K and ψ will move upwards. If ψ is slightly below the value of 1, both K and ψ will move

downwards. Note that ψ takes off tangentially on the entire interval while K does so only from the

ends of the interval. Close to the right end of the interval, the upwards moving K- and ψ-trajectories

will soon turn downwards, and by that change the driving modus from full traction to coasting. This

is a typical picture for take-off from PT- and PB-intervals.

Figure 6. Example 1: K-trajectories starting from PT-interval with number 3.
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Figure 7. Example 1: ψ-trajectories starting from PT-interval with number 3.

Figures 8 and 9 show the K- and ψ-trajectories when trying to connect intervals 4 and 8. The

K-trajectories have a kink point when the driving modus changes from coasting to full traction or full

regenerative brake, corresponding to ψ crossing the values 1 or α. Both the K- and ψ-trajectories are

able to cross pcs-intervals, but the trajectory field often splits at pcs-intervals, as here at interval 7,

where a shadowed region lies behind that cannot be reached by the trajectories.

Figure 8. Example 1: K-trajectories starting from interval 4, heading for interval 8.
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Figure 9. Example 1: ψ-trajectories starting from interval 4, heading for interval 8.

Remark. There is great potential for speeding-up the algorithm by detection of those shadowed

regions. For example, one can conclude immediately from Figure 4 that interval 3 cannot be reached

from starting point 1, and from Figure 8 that interval 9 cannot be reached from interval 4. When

solving the optimisation problem, it will always pay-off to invest into good statistics, showing which

connections should be checked and which ones can safely be excluded.

Example 2. We consider Example 1, but now with a speed limit according to Table 3.

Table 3. Speed limits in Example 2.

from position s [km] to position s [km] max. speed vmax [km/h]

0 5.5 160
5.5 7.0 110
7.0 9.6 150
9.6 12.0 105

12.0 20.0 140

The multiplier ψT is again set to −1. Figures 10–12 show that all types of pcs-intervals occur. The

speed limit touchpoints 4, 10, and 14 have been inserted during the run of the algorithm.
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Figure 10. Example 2: K-trajectories.

Figure 11. Example 2: ψ-trajectories.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2023                   doi:10.20944/preprints202308.0875.v1

https://doi.org/10.20944/preprints202308.0875.v1


20 of 31

Figure 12. Example 2: zoom into ψ-trajectories.

Table 4 shows the possible port connections in Example 2.

Table 4. Port connections in Example 2.

port connection take-off and landing type remark

1 → 2 (T1), (L2) K has kink point when full traction changes to coasting.

2 → 4 → 5 (T3), (L3) New SL-TP 4 included, connected to 5, ψ jumps at 4.

5 → 6 (T5), (L5) ψ jumps at end of 5.

5 → 9 (T5), (L4)
ψ jumps at end of 5. Since ψ = 1 at the beginning of

interval 9, no new speed limit touchpoint is included.

6 → 7 (T5), (L1) ψ jumps at end of 6.

9 → 10 → 11 (T7), (L3)
A connection with constant speed, but with a jump of ψ at

new SL-TP 10, which is connected to 11.

11 → 12 (T5), (L1) ψ jumps at end of 11.

11 → 13 (T5), (L2)
ψ jumps at end of 11. Same K-trajectory as 11 → 12 at the

beginning, but then change to coasting.

13 → 14 (T3), (L9) Landing at newly included SL-TP 14.

14 → 15 (T8), (L1) Take-off from SL-TP 14 with ψ-jump.

15 → 16 (T2), (L1) Full traction.

15 → 17 (T2), (L10) Coasting to stop.

It has been shown by Khmelnitsky [1] that there exists always exactly one connection from the

start point (1) to the stop point (here 17). In Example 2, this is the connection 1 → 2 → 4 → 5 → 9 →
10 → 11 → 13 → 14 → 15 → 17. The total time T̃ required on this connection is not known a priori,

but can be calculated from the K-curve. Since K = v2/2 is the specific kinetic energy,

T̃ =
∫ S

0

ds√
2K

(66)

holds.

Remark. Here, we distinguish between the scheduled time T, and the time T̃ that is evaluated

from the algorithm. The final goal of the algorithm is to match T̃ to the prescribed T by variation of ψT .

This will be explained in Section 2.5.
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Example 3. We consider Example 2, but now with ψT = −0.3. Trajectories of K and ψ are

illustrated in Figure 13 and 14, respectively.

Figure 13. Example 3: K-trajectories.

Figure 14. Example 3: ψ-trajectories.

The connections shown in Figures 13 and 14 are listed in Table 5.
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Table 5. Port connections in Example 3.

port connection take-off and landing type remark

1 → 2 (T1), (L1)

1 → 3 (T1), (L2) K-trajectories of 1 → 2 and 1 → 3 coincide at the beginning.

3 → 4 (T3), (L9)
New SL-TP 4 is inside the s-range of interval 5. SL-TP 4

needs to come first in numbering.

4 → 5 (T8), (L1) ψ jumps at SL-TP 4.

5 → 6 (T2), (L2)

6 → 7 (T3), (L9) SL-TP 7 is inserted, lying exactly between intervals 6 and 8.

7 → 8 (T8), (L1) ψ jumps at SL-TP 7.

8 → 9 (T2), (L2)

8 → 10 (T2), (L1) Trajectory is close to speed limit but does not touch.

10 → 11 (T2), (L10) Coasting to stop.

2.5. The algorithm of Khmelnitsky: variation of the multiplier ψT

Khmelnitsky [1] has shown that the time T̃ between two stops of the train is a strictly

monotonously increasing function of the Lagrange multiplier ψT . Moreover, ψT < 0 and

lim
ψT→0

T̃ = ∞ (67)

hold. Therefore, whenever the scheduled time T is possible to be driven on a track section by a

particular train, it can be approached by the optimisation algorithm by adjusting ψT with iterative

bisection. The complete algorithm for the minimum energy operation would read as follows:

Consider a track section with stops at s = 0 and s = S to be driven in a scheduled duration T.

• Step 1: Calculate the fastest possible motion on the track section with purely regenerative braking.

If the time T̃ needed for that is larger than the scheduled time T, add mechanical braking and

leave the algorithm. If T̃ < T, choose an arbitrary negative value for ψT and proceed the algorithm

with Step 2.
• Step 2: Calculate Kptr by (54), Kpbr by (56), and evaluate the pcs-intervals PT, PB, PT-SL, PB-SL by

(58)–(61). Skip pcs-intervals that cannot be reached by fastest motion. Numerate the ports, i.e.,

the remaining pcs-intervals, the start at s = 0, and the stop at s = S, in the order of ascending s.
• Step 3: Try to connect ports by regular motion with equations (62) and (63). Use one of the

take-off cases (T1)–(T8) and one of the landing cases (L1)–(L10). Add speed limit touchpoints if

necessary, according to the instructions given above. Step 3 is complete when a connection from

the start point at s = 0 to the stop point s = S has been found.
• Step 4: Calculate T̃ according to (66). If T̃ is sufficiently close to T, the algorithm is successfully

completed. If not, adjust ψT and proceed with Step 2.

If n is the number of ports then a maximum of
(

n
2

)
= (n2 − n)/2 possible connections has to be checked,

unless the start-stop connection is found earlier. This means that the number of possible connections

grows quadratically with n. The algorithm can be seen as a search tree, with port connections being the

branches of the tree that need to be checked. Therefore, it is crucial to follow a clever search strategy to

keep computing time at an acceptable level. We mention four important measures that dramatically

shortened computing time when the code was developed:

Parallel path exclusion. Khmelnitsky [1] has shown that any two ports can only be connected by

a at most one path. Therefore, it is wise to exclude all parallel paths in the search tree. For example, if a

connection 1 → 2 → 3 has been established, the parallel direct link 1 → 3 is not possible and need not

be checked.
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Start from the treetop. When choosing the next connection to check for in Step 3, start at the

highest port number that is connected to port 1 and not a known dead end. This strategy usually leads

to an early discovery of the start-stop connection.

Look out for shadowed ports. If ports lie in shadow, exclude impossible connections. See the

remark in the discussion of Example 1 in Section 2.3.

Estimate ψT by interpolation. The adjustment of ψT in Step 4 can be sped up using interpolation

techniques.

Example 4. Example 4 is equal to Examples 2 and 3, except that ψT is not prescribed, and T is set

to 16 minutes.

Applying the algorithm, ψT converges to −0.5237. The final K- and ψ-trajectories are shown in

Figures 15 and 16.

Figure 15. Example 4: K-trajectories.

Figure 16. Example 4: ψ-trajectories.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2023                   doi:10.20944/preprints202308.0875.v1

https://doi.org/10.20944/preprints202308.0875.v1


24 of 31

Connections and type of take-off and landing are given for the final value ψT = −0.5237 in

Table 6.

Table 6. Port connections in Example 4 at final value ψT = −0.5237.

port connection take-off and landing type remark

1 → 2 (T1), (L2)

2 → 3 (T3), (L9)
New SL-TP 3 is inside the s-range of interval 4. The SL-TP

3 needs to come first in numbering.

3 → 4 (T8), (L1) ψ jumps at SL-TP 3.

4 → 5 (T2), (L2)

4 → 6 (T2), (L7)
Landing on start of interval 6 with ψ = α. Any jump of ψ

here would lead to coasting and violate speed limit.
Therefore, no new speed limit touchpoint is inserted.

6 → 7 (T7), (L1) ψ jumps at end of PB-SL 6.

7 → 8 (T2), (L2)

7 → 9 (T2), (L9) New SL-TP 9 is exactly between intervals 8 and 10.

9 → 10 (T8), (L1) Take-off from SL-TP 9.

10 → 11 (T2), (L10) Coasting and finally full regenerative braking to stop.

In Figures 17 and 18, speed and electric energy are shown for Example 4 at ψT = −0.5237.

Figure 17. Example 4: train speed.
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Figure 18. Example 4: net electric energy.

3. Results and discussion

3.1. Estimating the potential of efficient train driving

In order to compare the optimal driving performance to the energy demand of trains in real-life

operation, a study has been carried out covering a total of 100 regional train runs on four track sections

in Germany. The trains were drawn by electric locomotives equipped with regenerative braking.

Time, velocity, energy supply from the catenary, and energy return by regenerative braking have

been recorded. Trains with five, six, or seven coaches were included in the study. Additional energy

requirements Eadd, as for air-conditioning, ventilation, air compression, etc. have been estimated to an

average value of 254 kW per train from the measured data. Train runs affected by speed restriction

due to signalling in the interior of the track section have been excluded.

In the study it would not be approapriate to compare the energy demand of a particular train run

to the energy optimum based on the duration given by the timetable. Trains that are delayed need to

drive faster, so the shorter time they have available needs to be considered in the optimum calculation.

On the other hand, trains that arrive early are seen to unnecessarily waste energy by driving too

fast. Therefore, for each train run a reference time is considered that allowes a fair comparison to the

optimum. Let

• tTT
start be the departure time according to timetable,

• tTT
stop be the arrival time according to timetable,

• trec
start be the recorded departure time, and

• trec
stop be the recorded arrival time of the train run.

Then, the reference time duration is defined by T = max(tTT
stop, trec

stop)− trec
start, and the energy optimum

is calculated with respect to this reference time.

A total energy demand is defined by Etot = Etr − Ebr + Eadd, where Etr is electric energy used

for traction, Ebr is electric energy returned by regenerative braking, and Eadd = 254 kW is the above

mentioned additional energy requirement. Figures 19–22 display the total energy Etot over the reference
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time T. The stars in the figures are recorded measurements, while the lines indicate the calculated

energy optimum.

Figure 19. Total energy demand Etot over reference time T for track section 1.

Figure 20. Total energy demand Etot over reference time T for track section 2.
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Figure 21. Total energy demand Etot over reference time T for track section 3.

Figure 22. Total energy demand Etot over reference time T for track section 4.

Result. Figures 19–22 show that the recorded total energy spreads over a rather wide range. A

factor of approximately two lies between minimum and maximum energy consumption on each track

section, even for cases with quite similar reference time. Contrary to the expectation, the recorded

values do not show an increase of energy demand with train length, but this might be due to the small

size of the sample and the wide spread of values. For many train runs, the measured energy is far

above the corresponding optimum line, in some extremal cases by a factor of three.

Remark. In one case shown in Figure 19, a seven-coach train was in fact better than the optimum.

This is not a contradiction to the optimality property. As it has been pointed out, optimal control theory

ensures that the algorithm returnes the energy minimum, but this only holds for the given train motion
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model. This model is only a simplification, and some assumptions might not have been met during

the train drive experiment. For example, wind speed is neither measured nor considered in the model,

and the additional energy requirement Eadd is only averaged for a lack of individual measurements.

If for the i-th train run the recorded total energy is denoted by Erec
tot,i, and the corresponding

optimum energy is E
opt
tot,i, then the energy ratio ηi = E

opt
tot,i/Erec

tot,i can be evaluated. Within the concept of

the Physical Optimum (PhO) [45,46], ηi is called a PhO factor that quantitatively evaluates the efficiency

with respect to a feasible most efficient reference process. This energy ratio is shown in Figure 23 for

each of the 100 train runs of the study. A total energy ratio ηtot =
(

∑i E
opt
tot,i

)
/
(

∑i Erec
tot,i

)
= 0.627 is

obtained by summing over all train runs studied. This can be seen as an estimate of the potential that

energy optimised driving would have. Based on the results of the present study, an amount of 37.3

percent of energy could be saved by following an energy minimising driving strategy. One should,

however, bear in mind two limitations: First, due to model simplifications, the computed driving

strategy might differ from the real optimum under the current conditions. And second, even if an

optimum strategy is displayed to the driver by an assistance system, it can only be approached, and

interactions with other traffic will sometimes not allow to exactly follow the suggestions. However,

since the theoretical optimum turned out to be substantially lower than the measured energy demand

in operation, we think that there is still a large potential for energy saving by optimal control based

assistance for train drivers.

Figure 23. Energy ratio ηi for each run, shown in descending order.

4. Conclusion

Within this paper, energy-efficient train driving has been studied for the case of an exclusive usage

of the regenerative brake in electric trains. The code opTop written at Fraunhofer Institute Magdeburg

is based on the algorithm of Khmelnitsky that constructs the unique minimum energy solution. A

derivation of the statements given by Khmelnitsky from a more general formulation of Pontryagin’s

maximum principle is presented. In addition to the theory in Khmelnitsky’s article, a complete list of

switching cases has been provided and illustrated by a number of numerical examples. A comparison

to energy consumption data in real operation showed that the energy minimising strategy was able to

save, on average, about 37 % of energy. Extensions of the code to include mechanical braking, non-zero

speed boundary conditions, and dynamic response to train delays are subject to further research.
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Abbreviations

The following abbreviations are used in this manuscript:

DDP discrete dynamic programming

EETC energy-efficient train control

KKT Karush-Kuhn-Tucker (conditions)

NLP nonlinear programming

PB partial regenerative braking

PB-SL partial regenerative braking at speed limit

pcs-interval possible constant speed interval

PMP Pontryagin maximum principle

PT partial traction

PT-SL partial traction at speed limit

SL-TP speed limit touchpoint

SNCF Société nationale des chemins de fer français (French national railways)

TGV train à grande vitesse (French high speed train)
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