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Abstract: The concept of targeted drug delivery can be described in terms of the drug’s ability to
mimic the other biological objects’” property to localize to target cells or tissues. For example, drug
delivery systems based on red blood cells or mimicking some of their useful features, such as long
circulation in stealth mode, have been known for decades. On the contrary, therapeutic strategies
based on macrophages have gained very limited attention until recently. Here we review two
biomimetic strategies associated with macrophages, that can be used to develop new therapeutic
modalities: First, the mimicry of certain types of macrophages (i.e., the use of macrophages,
including tumor-associated, or macrophage-like particles as a carrier for targeted delivery of
therapeutic agents); and Second, the mimicry of ligands, naturally absorbed by macrophages (i.e.,
the use of therapeutic agents specifically targeted at macrophages). We discuss potential
applications of biomimetic systems involving macrophages for the new advancements in treatment
of infections, inflammatory diseases, and cancer.

Keywords: macrophage-mediated therapy; macrophage-biomimetics; macrophage-derived
particles; selective ligands

1. Introduction

Due to the increased risk of infectious diseases, with the lack of ways to effectively treat
oncology, the need to develop and improve treatment methods, in particular, drug therapy, increases.
However, drug therapy of inflammatory diseases, including oncology and infectious diseases, has
limitations, since drugs in current use often have significant drawbacks, such as toxicity to healthy
tissues, immunoreactivity, short circulation time and low stability in the biological media. In this
regard, systems of targeted drug delivery to the pathology area (site of inflammation, tumor) and/or
to individual pathogens (viruses, bacteria, parasites, etc.) are of the greatest interest. Due to the
selectivity of the drug in this case, it is possible to avoid its effect on healthy tissues and organs of the
body and reduce the effective dose required for treatment.

Thanks to the use of nanoparticles, it became possible to partially overcome such problems as
the low solubility of the drug in biological fluids, the low stability of biodegradable therapeutic agents
and their toxic effect on biological systems [1-3]. However, despite the high ability of nanoparticles
to cross many biological barriers and diffuse in intercellular and cellular media, the development of
a targeted drug delivery method is still required. Recently, cell-mediated drug delivery using red
blood cells, neutrophils, macrophages, stem cells and lymphocytes has attracted much attention, due
to its multifunctionality and inherent stability in biological media.

During the course of diseases and inflammatory processes, a complex of immune reactions takes
place in the body, among which infiltration and targeted transportation of immune system cells -
leukocytes are primary. In particular, macrophages play an active role in the course of the immune
response, the main function of which is the selective engulfment and utilization of pathogens and
necrosis products of cells, as well as the activation of lymphocytes in the site of inflammation [4,5].
Since macrophages play an important role in a variety of pathological processes, many biomimetic
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approaches inspired by the biological functions of macrophages have recently appeared. Among
them two distinct macrophage-mediated therapeutic strategies are developed: utilizing macrophage-
like particles for targeted therapy, and utilizing therapeutic agents specifically targeting
macrophages in vivo (Figure 1).
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Figure 1. Macrophage-mediated strategies: (A) utilization of macrophage-like particles obtained ex
vivo to deliver therapeutic agents; (B) and utilization of therapeutic agents designed for macrophage-
targeting in vivo.

The first strategy is based on the targeting ability of macrophages, which is due to their
functional proteins, namely Pattern-Recognition Receptors (PRRs), such as TLR4 and CD14, receptors
which bind proinflammatory cytokines, such as CD120, CD126 and CD119, and receptors which bind
factors of inflamed endothelium, such as CD44 and Mac-1. Applications of therapeutic agents, such
as drugs, nucleic acids, proteins, encapsulated into macrophage-like particles or adhered to
macrophages has proved to be a potent strategy to treat various diseases, especially cancer and
infections, due to targeting ability, affinity to cytokines and biocompatibility of these biomimetic
formulations inherited from macrophages. In this regard, biomimetically modified drug delivery
systems using macrophages, macrophage membranes or macrophage-derived vesicles harness the
long circulation time, abundant surface receptors, high biocompatibility, low immunogenicity and
active targeting ability inherited from macrophages.

The potency of the second strategy is related to the close connection of macrophages with the
development of pathological processes. The plasticity of macrophage is extraordinarily recruited,
activated, and polarized under pathological conditions, playing crucial role in occurrence,
development, and prognosis of various chronic diseases, such as atherosclerosis, and cancer.
Moreover, some diseases, such as HIV infection, Tuberculosis, Leishmaniasis, granulomatosis,
atypical pneumonia caused by Chlamydia pneumoniae etc are caused by microorganisms that use
macrophages as safe reservoirs, which reduces exposure to chemotherapy and prevents immune
detection. Therefore, macrophage has become an important therapeutic target. In this regard,
immunomodulators, such as cytokines, siRNA, macrophage receptor agonists/antagonists and some
other therapeutic agents have attracted attention. In addition, with the development of
nanotechnologies, drug-loaded nanoparticles are presented to be potential macrophage-targeted
therapeutic agents, especially when modified with ligands, such as mannose, galactose, glucans,
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hyaluronic acid and others, for enhanced macrophage uptake via recognition by macrophage
receptors.

2. Macrophages as immune system cells

Macrophages are present in almost all tissues of the body [6]. The origin of macrophages in
different tissues is not fully established [7-9], although it is generally believed that some macrophages
originate during embryonic development, and other macrophages represent a mature form of
monocytes. [10-13]. The lifetime of macrophages ranges from a few days to several years, and during
this time they perform several different functions within the framework of innate and adaptive
immunity [6,14].

The phagocytic function of macrophages consists in the absorption and utilization of pathogens
and infected cells and can be carried out both without the participation of other cells of the immune
system, and within the framework of the complement system; in both cases, macrophages act through
specific receptors. Macrophages also play an important role in the participation and regulation of
immune responses - macrophages induce inflammation by producing a variety of inflammatory
mediators that activate cells of the immune system and involve them in the immune response.

Macrophages represent an important class of sensory cells capable of detecting pathogens and
initiating an immune response through mediators. This is possible due to the presence of pattern
recognition receptors (PRRs), which detect small molecules and/or regular pathogen-associated
molecular patterns (PAMPs). These structures are usually mannose-rich oligosaccharides,
peptidoglycan and lipopolysaccharides of the bacterial cell wall, as well as nucleic acids. Among
PRRs membrane bound Toll-like receptors (TLRs) and Scavenger receptors (SRs) play significant role
in phagocytosis and regulating immune responses.

2.1. Two macrophage phenotypes

Due to the variety of functions performed, two phenotypes are distinguished among
macrophages: M1- and M2-macrophages [15,16]. It is known that macrophages are highly plastic cells
and can change the phenotype depending on various environmental factors, such as cytokines,
pathogens and stress factors [16-19].

M1 macrophages are the most characterized subpopulation and are known primarily for their
phagocytic function [20,21]. These macrophages are activated during cell-mediated immune
reactions through the action of stress factors [22,23] and cytokines, mainly IFN-y [24], TNF-a [25],
and the recognizing of PAMPs via TLRs [26,27]. Activation provokes the secretion of various
cytokines (TNF-a, IFN-y, IL-1, IL-6, IL-12, IL-23) [28-30] and enzymes (MMPS, MMP12,
hyaluronidase, collagenase) [31-34] by macrophages, which leads to an amplification of the immune
response and destruction of the extracellular matrix. The main functions of M1 macrophages are
phagocytosis, utilization of the remnants of destroyed cells, regulation of the immune response,
presentation of antigen and destruction of the extracellular matrix for tissue reorganization.

M2 macrophages are a subpopulation of alternatively activated macrophages [35], namely by
IL-13 [36,37], IL-10 [38], TGF-f [39], glucocorticoids [40] and some other factors [41,42]. A distinctive
feature of M2 macrophages is their homeostatic, regenerative and anti-inflammatory functions,
which is due to their production of STAB-1 [43], IL-10 [44,45], fibronectin, collagen [46,47] and IL-1
receptor antagonists [48].

3. The use of macrophage-derived vesicles in therapy

Macrophages are differentiated cells of the immune system that are able to engulf
microorganisms, particles and macromolecules. This property of macrophages attracted attention to
them as potential carriers of various therapeutic agents that allow achieving such advantages as
sustained drug release, targeting ability, prolonged half-life and circulation in the blood, high
biocompatibility and low immunoreactivity [49] (Figure 2).


https://doi.org/10.20944/preprints202308.0872.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2023 do0i:10.20944/preprints202308.0872.v1

Interest in this area has increased with an improved understanding of the mechanisms of
pathogen recognition by macrophages and their involvement in inflammatory processes due to the
presence of PRRs receptors and cytokine receptors. In this regard, a large number of studies have
been conducted aimed at developing biomimetic macrophage-mediated systems for selective drug
delivery by means of macrophage-like nanoparticles obtained ex vivo.
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Figure 2. Advantages of using macrophage-like particles for drug delivery.

3.1. Ex vivo preparation of macrophage-like carriers of therapeutic agents

In recent years, this concept has been developed in combination with advances in
nanotechnology. Since macrophages are able to phagocytize nanoparticles (NPs), therapeutic NPs
can be loaded into them ex vivo via simple incubation and then injected into an organism [50,51].
Moreover, in addition to incubation, special methods of introducing therapeutic agents into
macrophages, such as hypotonic dialysis [52] and electroporation [53], have been presented. In order
to preserve the biological functions of carrier macrophages, which are key to the benefits of a
macrophage-mediated drug delivery system, methods of attaching therapeutic agents to the surface
of the cell membrane are also used.

In addition to methods of direct use of living cells, methods have been developed for
encapsulating therapeutic agents in macrophage membranes or in vesicles derived from
macrophages, since they can preserve the biological functions of macrophages necessary for effective
drug delivery [54-56].
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Figure 3. Two approaches to the use of macrophages in the development of delivery systems: (A)
utilization of living cells (methods of incubation, hypotonic dialysis, electroporation and adhesion);
(B) and utilization of macrophage-derived membrane structures (cell membranes and vesicles).

3.1.1. Sources of macrophages

As part of the use of macrophages in the design of drug delivery systems, researchers proceed
either from primary macrophages directly isolated from the animal’s body, or from already cultured
macrophages stored in appropriate banks. Macrophages isolated from the body are usually bone
marrow macrophages [57], alveolar macrophages [58] or peritoneal macrophages [59]. Well-known
cultured macrophage cell lines are murine cell lines RAW264.7 [60-63] and ]J774A.1 [64,65], and
human monocytic cell line THP-1 [66,67].

In studies for the direct isolation of BMMs, BALB/c or C57BL/6 house mice are often used, from
which bone marrow is isolated and dispersed in an environment containing factors that stimulate the
proliferation of monocytes into macrophages (usually cytokines M-CSF, GM-CSF, CSE-1 or IL-3) [68];
this is followed by the isolation of macrophages and their incubation [51,69,70]. In the case of isolation
of peritoneal macrophages, the serous contents of the peritoneum are collected [71,72].

3.1.2. Obtaining of macrophage-like carriers

In order to avoid the disadvantages of pure drugs, such as immunogenicity, non-selectivity,
instability in biological media, low permeability in tissue, etc., an approach using carrier
nanoparticles is often preferred. Thus, many studies in this area are devoted to drug delivery systems
involving micelles [73], dendrimers [74] or microgels [75]. These particles are often modified by
biomolecules, special ligands or synthetic polymers, for example PEG [76,77], to avoid the
deactivation and degradation of drugs by mononuclear phagocyte system [3,78]. A different way to
increase the therapeutic effectiveness of drugs is to use a cell-mediated delivery system, in particular
with the involvement of macrophages.

Drugs can be loaded directly into living cells (encapsulation), or they can be bound to the outer
surface of the cell membrane (adhesion). The methods currently used to obtain macrophages-like
particles loaded with therapeutic agents are discussed below and summarized in Table 1.
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Table 1. Examples of current use of macrophages to design biomimetic drug-delivery system.
Utilization of living cells
Method of
Lo Carrier Loading L
binding to Source . Cargo . Cell viability Ref.
formulation efficiency
macrophages
79% at 72 h
Doxorubicin (400 ~14% (after 10 s
- . . after [63]
pg/ml) of incubation) . .
incubation
AuNRs (150 pg/ml) 13.34%
+ (after 6 h of 85% after 6 h [61]
RAW264.7 . Doxorubicin (25 incubation) of incubation
Liposomes
pg/ml) 35.2%
. . 220+ 13 CFU
Bioengineered >90% after 60
/100 cells (after .
- Salmonella min of [79]
60 min of
typhimurium . . incubation
incubation)
about 30-60%
Doxorubicin (1-200 after 12 h of
- No data . )
. Mouse pg/ml) incubation
Incubation .
peritoneal [80]
(engulfment)
macrophages . about 80-90%
. Doxorubicin (1-200
Liposomes No data at 12 h after
pg/ml) . .
incubation
=100% for
Polymeric
. =77% (after 2h incubation
BMM NPs (100 Nitric oxide [70]
of incubation) period of 24 h
pg/mL)
and 48 h
No effect of
d
Human 8 .
. encapsulation
monocyte- Liposomes o 85% (after 4 h of
Indinavir on [81]
derived (100 uM) incubation)
macrophage
macrophages o
viability was
observed
Catalase
. ] 89% after
Hypotonic (osmolality of 75.67 53% .
THP-1 - encapsulation [52]
dialysis mOsm/L during 15
min of dialysis)
Drug-loading
. Doxorubicin 5% (after <20 s of | significantly
Electroporation 1774 - . [53]
(20mg/mL) electroporation) decreased
cell viability
Attachment
of cell
Multilayer 80% (after a brief | backpacks to
o Catalase (2.3 ] ) .
Raw 264.7 microfilm incubation with | macrophages [82]
pU/cell backpack) .
(“backpack”) the “backpacks”) | did not alter
Adhesion . .
their major
functions
Multilayer “Cellular
o Bovine serum ~95% (after
J774 microfilm ] . ) . backpacks” [83]
albumin incubation with
(“backpack”) didn’t affect
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7
the “backpacks” | macrophage
for 4 h) biological
functions
Utilization of macrophage-derived membrane structures
Source Carrier Cargo Method of Detected Ref.
formulation encapsulation proteins
J774 Polymeric - Sonication CD126, [54]
NPs CD130,
CD120,
CD119, CD14
§ and TLR4
:.‘é Mouse Polymeric Paclitaxel Sonication No data [84]
qé peritoneal NPs
jz macrophages
g RAW264.7 - Methyltransferase Coextrusion No data [85]
like 14 + RS09
RAW 264.7 Bi2Se3 hollow Quercetin Coextrusion a4 integrin, [86]
mesoporous CCR2
NPs
RAW264.7 - Paclitaxel Sonication Alix, TSG101, [87]
CD9, iNOS,
Arg-1
J774A1 Liposomes Doxorubicin Vortexing, CD81, CD63 [88]
sonication and and CD9
coextrusion
% RAW 264.7 Polymeric - Sonication CD45, CD14, [56]
§ NPs CD44, CD18,
Mac-1 etc.
RAW264.7 - Brain derived Simple mixing Alix, Tsg 101, [89]
neurotrophic factor LAMP 2 and
cytosolic
protein {3-
actin

3.1.2.1. Using of living cells

a. Encapsulation of drugs in macrophages via incubation

The convenience of using macrophages in cell-mediated drug delivery systems is partly due to
the fact that drugs, and, in particular, therapeutic nanoparticles, can penetrate macrophages through
endocytosis mechanisms (phagocytosis, micropinocytosis, clathrin-mediated endocytosis, caveolar
endocytosis) [90]. In this regard, the method of obtaining biomimetic therapeutic agents by
incubating macrophages in the presence of drug particles became the first and widespread [51,91,92].

Due to the fact that the drug may have cytotoxicity, therapeutic agents are usually encapsulated
in macrophages in the form of drug-loaded particles, which often enables preservation of biological
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functions of macrophages. For instance, Choi et al. [80] showed that doxorubicin-loaded liposomes
enclosed into mouse peritoneal macrophages via simple incubation exhibited much less toxicity to
macrophages than doxorubicin.

In addition to reducing cytotoxicity, loading the drug into special carriers enables to increase its
stability and maintain therapeutic activity in the biological environment. In the assay [92], Batrakova
et al. demonstrated that the macrophage-taken nanozime in the form of catalase enclosed in a block
ionomer complex showed enzymatic activity after release, while pure catalase lost its activity after
incubation with macrophages.

It is known that hydrophobic particles are better engulfed by macrophages [93]. However,
modification of nanocarriers, which increases their hydrophilicity, makes it possible to improve the
biocompatibility and stability of the therapeutic agent [94,95]. For example, Madsen et al. [96] utilized
gold-silica nanoshells coated with PEG, since PEGylation prevented aggregation of particles and
allowed efficient encapsulation into macrophages.

b. Encapsulation of drugs in macrophages using hypotonic/resealing method

Osmotic shock of cells by hypotonic dialysis, using hypotonic buffers, induces cell swelling and
the formation of pores, without causing apparent lysis. The presence of pores and the placing of cells
in contact with an appropriate concentration of the substance allow the latter to be incorporated
inside the cell by a passive mechanism. When normal conditions of osmotic pressure are reinstated
later on, the pores close and the substance remains encapsulated inside the cell at a suitable
proportion [97,98]. This method can be applied to create drug delivery systems with macrophages as
drug carriers. For instance, the membrane-impermeable enzyme catalase was packaged into THP-1
cells using this method [52]; It is worth noting that to protect degradation by protease enzymes,
encapsulation was carried out in the presence of protease inhibitors, thus enzymatic activity was
preserved.

c.  Encapsulation of drugs in macrophage cell membranes using electroporation/resealing method

Electroporation is a technique enabling to increase the permeability of the cell membrane by
applying an electrical field to cells; thus, using this method, drugs, chemicals and biomolecules can
be loaded into cells [99], in particular, into macrophages. For example, in the assay [53] macrophages
were electroporated, and doxorubicin diffused into the cells through the small pores; compared to
passive loading, electroporation increased the loading yield of doxorubicin.

d. Adhesion of therapeutic particles to the macrophage membrane (cellular backpacks)

Cellular backpacks, micron-scale patches of a few hundred nanometers in thickness, can be
fabricated by layer-by-layer assembly and attached to the surface of cell-carriers [100]. Due to their
shape, size and composition, cellular backpacks are not engulfed by macrophages, making them an
attractive strategy that sequesters the cargo outside the cells to protect both the cell and the drug from
degradation [83,101].

Such microscale structures are usually composed of 4-5 multilayer films, including payload
region and cell attachment region [82,83]. For instance, in the research [82] catalase, a proposed
therapeutic agent, was loaded into payload region of the backpack, which conjugated with
macrophages via polyclonal antibodies inserted into cell attachment region. Most importantly, the
attachment of cell backpacks to macrophages did not alter their major functions, including adherence
capability, or cell activation.

3.1.2.2. Encapsulation of drugs in macrophage-derived membrane structures

a. Encapsulation inside macrophage cellular membranes

The key properties of macrophages, due to which they can be effectively used in therapy as drug
carriers, are mainly associated with proteins integrated into their cell membrane. For example, the
membrane proteins CD14 and TLR4 bind lipopolysaccharides [102], and CD44 and Mac-1 bind
inflamed endothelium expressing P-selectin and ICAM-1 [56]. Several membrane receptors bind
proinflammatory cytokines: CD120a and CD120b bind tumor necrosis factor (TNF); CD126 and
CD130, interleukin 6 (IL-6); and CD119, interferon-y (IFN-y) [54]. In this regard, the isolated cell


https://doi.org/10.20944/preprints202308.0872.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2023 do0i:10.20944/preprints202308.0872.v1

membrane of macrophages, as well as macrophage-derived vesicles, can serve as the basis of
macrophage-mediated drug delivery system, which enables high targeting ability and anti-
inflammatory properties.

In order to remove cell contents extraction of macrophage membranes is usually carried out
using a combination of hypo-osmotic swelling, mechanical destruction and several gradient
centrifugation steps. In addition, to preserve the structure and activity of transmembrane proteins,
protease inhibitors are often added to the medium with macrophages before extraction, and the
process itself is carried out at a low temperature [54,84].

In the assay [54] it was shown that the membrane derivation process not only preserved the
transmembrane PRRs (CD14 and TLR4) and receptors of cytokines (CD126, CD130, CD120a, CD120b
and CD119), but also resulted in significant enrichment of these proteins, which enabled high
therapeutic efficacy in vivo.

b. Encapsulation inside macrophage-derived vesicles

In order to avoid the difficulties of isolating pure cell membranes of macrophages while
preserving the structure and activity of transmembrane proteins, key to the biomimetic parameters
of therapeutic particles, macrophage-derived vesicles can be used.

Batrakova et al. [55] attained efficient enzyme incorporation into macrophage-derived vesicles
and properties of obtained nanocarriers, including targeting ability, indicated that key proteins of
macrophage cell membrane were preserved in the vesicles.

Pang et al. [56] developed this approach by using cytochalasin B to stimulate macrophages to
produce many microvesicles for nanoparticle cloaking. Analysis proved that the key membrane
proteins, such as those involved in self-tolerance (CD45 and CD14) and in adhesion to the inflamed
endothelium (CD44, CD18, and Mac-1) were maintained in the obtained microvesicles.

3.2. Macrophage- derived membranes (or particles) as anti-inflammatory agents

Inflammation is a complex, local and general protective and adaptive process that occurs in
response to pathology or the presence of a pathogen in the body [103]. Monocytes and tissue
macrophages circulating in the blood play a major role in the occurrence of inflammation and its
course [104]. Important inflammatory mediators are pro-inflammatory cytokines [105], most of which
are secreted by M1 macrophages at the site of inflammation and lead to an amplification of the
immune response [106].

Transmembrane proteins, in particular endotoxin and cytokine receptors, can be preserved in
macrophage-like particles, which means they can be used as therapeutic agents that reduce
inflammatory processes by binding inflammatory mediators and endotoxins [54].

Thus, a group of researchers [54] developed a therapeutic detoxification strategy to treat sepsis
via biomimetic macrophage-mediated system; for this purpose, macrophage-derived membranes
were used as a coating for polymeric nanoparticles. It is reported that the designed macrophage-like
particles showed perfect absorption of LPS and cytokines both in vitro and in vivo due to the
preservation of key macrophage transmembrane proteins (PRRs and cytokine-receptors) after
membrane isolation. The assay indicated that macrophage-like nanoparticles represent a promising
biomimetic detoxification strategy aimed at relieving inflammation by neutralizing endotoxins and
LPS.

Using macrophage derived membranes Tan et al. [107] demonstrated that they can be effectively
used to design therapeutic agents reducing the level of pro-inflammatory cytokines at the site of
inflammation. Obtained nanoparticles inherited the membrane antigenic profile from macrophages
and disguised as a mini macrophage to absorb multiple pro-inflammatory substances competitively.
It was shown that these macrophage-like particles can effectively suppress cytokine-induced
activation of macrophages and neutrophils, acting as decoy for cytokines and other inflammatory
mediators, thus offering a promising strategy to alleviate inflammatory processes and prevent
cytokine storm.

In addition to anti-inflammatory properties of macrophage-like particles caused by
transmembrane proteins inherited from macrophages, these nanoparticles can be employed as the
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carriers of drugs. For instance, in the assay [108], macrophage-mediated system was successfully used
to deliver a model drug (atorvastatin) to atherosclerotic lesion area in mice: biomimetic approach
allowed drug loaded nanoparticles coated with macrophage membranes to evade MPS and endowed
them with targeting ability. Due to the fact that cooperative binding of cytokines and releasing of
atorvastatin by macrophage-like nanoparticles decreased atherosclerotic lesion area this technique
was proposed to be a promising way to treat various inflammatory diseases.

3.3. Macrophage- derived membranes (or particles) particles as anti-tumor agents

At present, anti-tumor drugs often show low efficiency, mainly because of their lack of tumor
targeting and their high toxicity to healthy tissues. Since macrophages, as immune antigen-
presenting cells, have a long blood half-life and can specifically bind to tumor tissue (Figure 4),
applying macrophages in drug delivery can lead to a substantial drug accumulation in tumors (Table

2).
Pt .
‘ Tumor cell " Macrophage-like
delivery vehicle
Healthy cell :',i Released
therapeutic agent
Figure 4. Illustration of the targeted ability of macrophages-like carriers of anticancer therapeutic
agents.
Table 2. Examples of the recent use of macrophages for anti-tumor therapy.
Carrier Highlighted features Therapeutic
Vehicle . Cargo Target of macrophage-like effect Ref.
formulation R
particles
Tumor Stability Dose-
cells: Biocompatibility dependent
’ and anti-tumor
Hela, | 1 cmocompatibili roliferati
Macrophage . MCEF7 emocompa ty profuerative
Chitosan NPs - Triggering apoptosis | properties and | [109]
membrane and . .
MDA- due to the presence trlggermg of
MB-231 of TNFa in apoptosis
L macrophage
(in vitro)
membrane
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Meaningful content Significant
4T1 of the drug inhibition of
mouse High targeting tumor growth
Macrophage . Doxorubicin breast ability and incre{ising (63]
cancer the survival
cells (in rate among
vivo) tumor-bearing
mice
Poly(D,L- Main biological Significant
lactide-co- functions of tumor cell
. Human
glycolide) lioma macrophages were growth
M micelles and . & 107 preserved inhibition
acrophage Pluronic Paclitaxel cell line Anfi-tumor effect [110]
U87 (in
block . was enhanced
copolymer vitro) compared to nano-
micelles Paclitaxel
Targeting ability Inhibition of
4T1 Enhanced tumor growth
Poly(D,L- mouse accumulation in and extension
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a. Therapeutic effect obtained from macrophages

In accordance with their functions, the cell membrane of M1 macrophages contains pro-
inflammatory cytokines, which lead to the suppression of tumor growth. Thus, after coating
polymeric nanoparticles with macrophage derived membranes, enriched with TNFa, Bhattacharyya
and Ghosh [109] showed that the fabricated nanoassemblies triggered apoptosis in cancer cells after
treatment in vitro. Therefore, a method of cancer treatment using macrophage-like nanoparticles of
the core-shell type with a membrane shell isolated from macrophages and containing inflammatory
mediators with antiproliferative activity was proposed.

b.  Therapeutic effect due to drug loaded nanoparticles inside macrophages

In addition to the inflammatory properties of macrophage-like particles and their protein profile,
which determines their anti-cancer activity, they can also serve as carriers of therapeutic agents such
as drugs, genes, nanoparticles etc. Many studies are devoted to anti-tumor properties of ex vivo
obtained macrophages or their membrane structures loaded with a therapeutic agent in the form of
drug molecules or nanoparticles. Fu et al. [63] reported that therapeutically significant amount of
doxorubicin (DOX) could be loaded into macrophages without evident cytotoxicity. The DOX loaded
macrophages exhibited tumor-tropic capacity towards 4T1 cancer cells and showed anti-cancer
efficacy via tumor suppression, life-span prolongation and metastasis inhibition.

Loading of drug molecules into macrophages, however, may have a limitation in the form of
cytotoxicity. In this regard, the use of nanoparticles is more effective, due to which it is possible to
achieve low cytotoxicity for healthy cells, high stability of the therapeutic agent in biological media
and controlled release of the drug. Tao et al. [110] encapsulated polymer nanoparticles loaded with
PTX in macrophages and used them in the treatment of glioma. It was shown that nano-PTX-loaded
macrophages had a stronger anti-cancer effect on U87-tumor-cells than naked nano-PTX. It is also
worth noting that the use of nanoformulations made it possible to reduce the cytotoxicity of PTX for
healthy cells and preserve the biological functions of macrophages, thanks to which it is possible to
achieve the penetrating ability of macrophage-like carriers of antitumor drugs. Thus, the ability of
DOX-PLGA nanoparticles encapsulated in macrophages to cross the blood-brain-barrier and
accumulate in glioma region was demonstrated in vivo [117].

It is known that M1 macrophages can selectively accumulate in hypoxic areas of tumors, which
are known for their key role in tumor development and resistance to chemotherapy. In the assay
[111], Mitragotri et al. demonstrated the tropism of PLGA nanoparticles containing tirapazamine
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(TPZ) and internalized in macrophages (MAC-TPZ) towards hypoxic regions of 4T1 tumors;
eventually it resulted in a 3.7-fold greater reduction in tumor weight compared to TPZ alone.

c.  Therapeutic effect due to surface engineering of macrophages

Therapeutic agents encapsulated in macrophages can be exposed to phagosomes, which causes
restrictions on the utilization of macrophages as drug carriers; drug can affect biological functions of
macrophages, and its isolation in phagosomes can lead to its degradation and a reduced drug release
rate. For this reason, phagocytosis-resistant drug loaded backpacks that are able to attach to the outer
membrane of macrophages have been developed [83,118-120]. There are known methods of
modifying the cell membrane of macrophages with other particles, for example, quantum dots and
dendrimers [121]. Sugimoto et al. [113] showed that the surface modification of macrophages with
nucleic acid aptamers improved the capture of T-cell acute lymphoblastic leukemia cells and
enhanced their anticancer immune response.

d. Therapeutic effect due to bioengineered species

In addition to the use of nanoparticles, bioengineered organisms capable of having an anti-
cancer effect can also be loaded into macrophages. For instance, in the assay [79] researchers showed
that macrophage mediated tumor-targeted delivery of modified bacteria VNP20009 substantially
suppressed melanoma in mice. Muthana et al. [114] utilized macrophages as carriers of oncolytic
adenovirus, which effectively accumulated in hypoxic tumor areas, inhibited tumor growth and
reduced pulmonary metastases of prostate cancer in mice.

e. Photothermal therapy

Macrophage-like particles can also be used in photothermal cancer therapy, in which a
nanomaterial with high photothermal conversion efficiency is injected into the body. Such
nanomaterials, when used by themselves, often accumulate in healthy tissues and organs, which is
why they can cause long-term harmful effects [122]. Encapsulating such materials into macrophage
membranes can solve these this problem and lead to drug delivery systems with good photothermal
conversion ability, biocompatibility, ability to escape immune responses, and ability to target tumors.
In many studies, this has been proven by the example of Au nanorods (AuNRs) encapsulated in
macrophages [123]. Moreover, photothermal therapy can be carried out in conjunction with other
types of anti-cancer therapy; for instance, it is reported that the joint encapsulation of DOX loaded
into temperature-sensitive liposomes and AuNRs into macrophages results in synergetic
chemo—photothermal therapy enabling to target and kill tumor cells in vivo [61].

3.4. Macrophage-derived particles for the treatment of infectious diseases

Macrophages mediate a wide range of infectious diseases. They play a key role in protecting the
body against many pathogens, including viruses, bacteria and parasites. Due to the functional activity
of transmembrane proteins of macrophages, macrophage-like particles can serve as targeting carriers
of antimicrobial agents.

a. Treatment of viral infections

In the already mentioned study [107], in addition to alleviating inflammation by absorbing
inflammatory mediators, polymer nanoparticles wrapped in a macrophage membrane reduced virus
replication, thereby increasing the survival rate among mice infected with the SARS-CoV-2 model. It
was shown that the membrane shell of the particles contained the receptor ACE II which is essential
for SARS-CoV-2 targeting.

Due to the ability of macrophages to pass through the blood-brain barrier, macrophage-derived
particles loaded with antiviral drugs can be used for antiviral therapy of neurological complications
of AIDS. For instance, macrophages loaded with indinavir were used to treat mice with HIV-1
encephalitis (HIV), and the study revealed a steady accumulation of the drug and a decrease in HIV-
1 replication in HIVE brain regions [124].

b. Wound healing and treatment of bacterial infections
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Macrophage membranes, which contain TLRs, can be used for developing targeted drug
delivery systems to bacteria. In this regard, before wrapping therapeutic agents in the membrane,
macrophages are often pre-exposed to pathogen in order to enrich the membrane with the necessary
proteins.

Using hydrogels or particles surrounded by a macrophage membrane, it is possible to increase
the effectiveness of healing of bacteria-infected wounds with photothermal therapy. Liu et al. [125]
developed AuNRs-containing hydrogel coated with bacteria-pretreated macrophage membrane. The
resultant hydrogels could recognize specifically the source bacteria, and destroy 98% bacteria in vitro
under NIR irradiation. Moreover, the hydrogels implanted on the dorsal area of rats could facilitate
the infected wound healing and avoid secondary damage during peeling. Similarly, Zhang et al. [126]
showed that applying a pretreated macrophage membrane to the surface of a gold-silver
nanoparticles increased targeting ability and prolonged blood circulation time. The developed
membrane-coated nanoparticles also were proposed as potential drug delivery vehicles, so that
photothermal therapy could be applied synergistically with drug therapy.

Due to their affinity to inflammatory mediators and ability to bear drugs macrophage-like
particles have high therapeutic potential in the treatment of inflammatory diseases, such as
atherosclerosis and sepsis. For instance, to simultaneously realize the pathogen elimination and
inflammation resolution in the region infected with pathogen in periodontitis, Xu et al. [127] utilized
simvastatin-loaded nanoparticles coated with pathogen-pretreated macrophage membranes, which
simultaneously diminished the atheromatous plaque formation in atherosclerosis and rejuvenated
the alveolar bone loss in periodontitis. In the study on the treatment of sepsis [128], macrophage
membrane coated antimicrobial peptide nanoparticles effectively delivered the drug and retained at
the site of infection, and eventually reduced the level of inflammatory factors and ultimately gave
infected mice a significant survival advantage.

4. Macrophage-mediated therapy via macrophage targeting

4.1. Design of therapeutic agents targeting macrophages

Macrophages mediate the pathological processes of inflammatory diseases, including oncology
and infectious diseases. Since macrophages are closely related to tumor development, as well as due
to the existence of pathogens acting through macrophages, studies aimed at the design of drug-
loaded micro- and nanoparticles targeting macrophages are of great interest.

Therapeutic agents in the form of drug-loaded particles can be delivered to particular organs or
cells based on their physicochemical properties, such as size, shape, charge and solubility (passive
targeting); or can be delivered to macrophages via specific targeting ligands (active targeting).

4.1.1. Passive macrophage-targeting therapeutic agents

Passive delivery is based on the pharmacokinetics of NPs, enhanced permeability and retention
(EPR) effect, and immune responses of the targeted tissue, leading to the accumulation of NPs. The
efficiency of capture of particles by macrophages as part of passive delivery strategy is affected by
their following parameters: size, shape, surface charge and hydrophilicity.

a. Size

The size of the particles can affect the efficiency of their capture by macrophages, although the
cellular uptake depends on environmental conditions. For instance, the uptake of non-modified
liposomes by rat alveolar macrophages in-vitro increased with an increase in particle size over the
range of 100-1000 nm, and became constant at over 1000 nm, while the uptake of non-modified
liposomes by alveolar macrophages after pulmonary administration to rats in-vivo increased with an
increase in particle size in the range 100-2000 nm due to the increasing extent of opsonization by lung
surfactant proteins [129]. In addition, it is reported that the size of the particles affects the phagocytic
capacity, endocytosis speed and endocytosis mechanism of the cell [130,131].
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It is also known that the bio-distribution in RES organs is affected by the particle size. For
example, large NPs (up to 500 nm) mainly accumulate in the liver and lungs; medium NPs (10-300
nm) accumulate predominantly in the liver and spleen; and small NPs (1-20 nm) are usually
degraded by macrophages in the kidneys [132,133]. In addition, epithelial destruction and vascular
leakage occur in areas of inflammation and in solid tumors [103,134]. Therefore, NPs with proper size
can preferentially extravasate from the blood into the interstitial spaces and accumulate in
inflammation sites or tumor tissues via EPR effect [135,136].

b. Shape

Particle shape has significant impact on macrophage cellular uptake and can be exploited for
controlling the efficacy of drug delivery to macrophages. Smith et al. [137] proved that particle shape
independently influences binding and internalization by macrophages. Interestingly, they found that
the attachment of particles to macrophages could be ranked in the following order: prolate
ellipsoids>oblate ellipsoids>spheres, but internalization of particles followed a different rank: oblate
ellipsoids>>spheres>prolate ellipsoids. The effect of the particle shape can be explained by the fact
that endocytosis is an actin-dependent process, and therefore the internalization of particles with a
larger aspect ratio requires more energy to perform the cytoskeleton remodeling [133,137,138].

c.  Surface charge and hydrophilicity

Surface charge is another factor that influences macrophage uptake and many assays both in
vitro and in vivo indicate that charged particles are more likely to be taken up by macrophages than
neutral particles. Despite the fact that the absorption of positively charged particles by cells is usually
easier as a result of electrostatic interactions [139], it has been shown that the same increase in cellular
uptake by macrophages can be achieved with an increase in both the negative and positive charge of
particles [139-141]. However, the role of charge on macrophage uptake is still controversial with
contradictory observations in the literature [142].

Hydrophilicity is another parameter that strongly affects the capture of particles by
macrophages in vivo. Hydrophilicity, as well as surface charge, can impact the adsorption of opsonin,
thus influencing the uptake of NPs by macrophages. Increased hydrophilicity results in a lower
degree of protein adsorption and reduced uptake by macrophages [143-145]. It is often used to hide
NPs from MPS via covering them with PEG [146].

4.1.2. Active macrophage-targeting therapeutic agents

Active targeting can significantly enhance the selectivity of macrophage-mediated therapy due
to specific interactions between the therapeutic agent and the cell. This approach involves the direct
use of agonists or antagonists of macrophage receptors, or modification of the surface of NPs with
ligands or antigen in order to establish selective interaction with macrophage receptors. Many studies
demonstrate the advantages and therapeutic potential of active targeting of macrophages in the
treatment of oncological and infectious diseases. In this regard, promising results can be attained by
using therapeutic agents specifically delivering drugs to macrophages (Table 3).
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Below are main approaches to active macrophage targeting based on the interaction of
therapeutic agents with different macrophage receptors (Figure 5).
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Figure 5. Active macrophage targeting via different macrophage receptors.

a. Toll-like receptors targeting

Toll-like receptors (TLRs) are well-defined pattern recognition receptors responsible for
pathogen recognition and induction of innate immune responses via signaling pathways. TLRs can
detect various endogenous damage-associated molecular patterns (DAMPs) and pathogen-
associated molecular patterns (PAMPs) [165]. The activation of TLRs initiate a variety of downstream
signaling cascades and signaling pathways, leading to production of inflammatory cytokines or type
I IFNs [166]. The activation of TLR signaling is also crucial to the induction of antigen-specific
adaptive immune responses by activating the adaptive immune cells for the clearance of invading
pathogens [165].

Among identified in humans functional TLRs, some are localized on the cell surface (TLR1,
TLR2, TLR4, and TLR5) and others in intracellular compartments (TLR3, TLR7, TLR8, and TLR9)
[165]. Cell surface TLRs mainly detect membrane components of the pathogens such as proteins,
lipoproteins, lipids and lipopolysaccharides (LPS), while intracellular TLRs mainly recognize nucleic
acids derived from pathogens or self-nucleic acids in a pathological condition [165].

Since TLRs are involved in the production of pro-inflammatory mediators and activation of
immune responses, TLRs present an attractive target for more precise manipulation of the function
of macrophages [167]. Recent studies demonstrate that TLRs —pathways play an important role in
polarizing macrophages. Therefore, TLRs can serve as a target for modeling macrophage phenotype,
for example, as part of tumor treatment via TAMs reprogramming [168]. In addition, TLR ligands
have found application in the context of infectious diseases, inflammatory and autoimmune diseases
[167].

b. Scavenger receptors targeting

Scavenger receptors (SRs) are a diverse superfamily of cell surface receptors. They are expressed
by myeloid cells (macrophages and dendritic cells) and certain endothelial cells. Being a subclass of
the membrane-bound pattern recognition receptors (PRRs), they play an important role in cellular
uptake and clearance of endogenous host molecules and apoptotic cells, and exogenous components
marked with pathogen-associated molecular patterns (PAMPs) [169]. Removal is often carried out by
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simple endocytosis but might entail more complex processes, such as micropinocytosis or
phagocytosis, which both require elaborate signal transduction [169,170].

Due to the fact that SRs are involved in phagocytosis and in endocytosis, these receptors are
potential intermediaries in macrophage-targeting therapy, which can facilitate the selective delivery
of therapeutic agents into macrophages. C-type lectin receptors (CLRs), which recognize conserved
carbohydrate structures, attract a lot of attention [171]. In this regard, many assays are devoted to
developing drug nanocarriers targeting mannose receptor (also known as CD206) [172,173]. Thus,
mannosylated therapeutic agents are of great interest and many researchers show that high targeting
ability can be achieved via modification of drug nanocarriers with mannose [174-176]. Other
pathogen-associated components which are used for SRs-mediated targeted delivery are galactose
[177-179], dextran and its derivatives [180-182]. Selective delivery can also be achieved by
encapsulating therapeutic agents in glucan particles derived from yeast cell wall, which can be
recognized by CLR Dectin-1 [154,155]. In addition, bio-nanocapsules (BNCs) derived from
pathogens, such as virus envelope particles [183] or bacteria-like particles [184,185], can be directly
used as macrophage-targeted drug carriers.

c.  Fc-receptors targeting

Cellular receptors for the different immunoglobulin isotypes (IgA, IgE, IgM, and IgG), so-called
Fc-receptors (FcRs), are involved in regulating and executing antibody-mediated responses [186].
FcRs are widely expressed on cells of the immune system, including macrophages [186]. These
receptors recognize antibodies that are attached to infected cells or invading pathogens and stimulate
phagocytosis and endocytosis [187].

Since FcR activation stimulates phagocytosis and endocytosis, FcR-mediated drug delivery
strategies targeting macrophages have been developed. In this regard, tuftsin - a tetrapeptide formed
by enzymatic cleavage of the Fc portion of the immunoglobulin (IgG) molecule, has gained a lot of
attention due to its ability to activate FcR [156,188-190]. For instance, Jain et al. [156] developed
tuftsin-modified NPs and noted much higher cellular uptake by macrophages in vitro than non-
modified or scrambled peptide-modified NPs. In addition, tuftsin derivative, tuftsin tetramer, can
dramatically enhance uptake into macrophages [191].

d. Other receptors targeting

In addition to the above-mentioned important receptors expressed by macrophages, the folate
receptors [192] and CD44 [193] are considered to be potential mediators in macrophage-targeting
therapy strategies.

Folate receptors are expressed on the surface of activated macrophages, known to be
upregulated in the macrophages in rheumatoid arthritis and pulmonary fibrosis [194]. High
macrophage-targeting ability can be achieved by modification of therapeutic agents with folic acid.
Thus, folate-conjugated particles, such as dendrimers [158], chitosan NPs [195], liposomes [196] and
human serum albumin NPs [159] exhibited enhanced macrophage uptake when compared with non-
folated particles.

CD44 is a receptor for hyaluronic acid-mediated motility (RHAMM). Nanoparticles modified
with hyaluronic acid (HA) can be recognized by CD44 and be taken by macrophages [193]. In recent
assays such modification of drug-loaded nanoparticles, such as micelles [160], liposomes [161] and
polymeric NPs [162], enabled efficient cellular uptake by macrophages.

e. Tumor-associated macrophage targeting

Due to their significant role in tumor development and progression, tumor-associated
macrophages (TAMs) are considered to be a therapeutic target. In this regard many strategies are
proposed, including blocking CCL2/CCR2 axis [197] and CD47-SIRPa pathway [198].

CCR2 is predominantly expressed by monocytes/macrophages with strong proinflammatory
functions. CCR2 is a CC chemokine receptor for monocyte chemoattractant protein-1 (CCL2) which
is involved in macrophage recruitment. In this regard, in order to inhibit TAMs recruitment, CCR2
antagonists, such as RS 504393 [199], BMS CCR2 22 [200] and CCX872 [201], can be used. For instance,
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CCX872 has exhibited good inhibition of macrophage recruitment due to its high affinity to CCR2
[201].

Signal regulatory protein a (SIRPa) is a regulatory membrane glycoprotein from SIRP family
expressed mainly by myeloid cells (macrophages, monocytes, granulocytes, and myeloid dendritic
cells) [202]. SIRPa acts as inhibitory receptor and interacts with a broadly expressed transmembrane
protein CD47 also called the “don’t eat me” signal, which inhibits phagocytosis [203]. Therefore,
SIRPa inhibitors, such as CD47 analogues [204] or anti-SIRPa antibodies [205,206], are proposed as
therapeutic agents that promote phagocytosis of tumor cells by macrophages. For example, the
monoclonal antibody KWAR23, which binds human SIRPa with high affinity and disrupts its
binding to CD47, has been shown to be a promising candidate in therapy, though in combination
with tumor-opsonizing monoclonal antibodies [206].

In addition, TAM-targeted delivery of therapeutic agents is another promising strategy. In this
regard, Siglec, cell surface receptors that bind sialic acid (SA), are a potential target. Among the Siglec
family receptors, the SA adhesion protein Siglec-1 is one of the most abundant superficial receptors
of TAMs and can mediate endocytosis after binding to SA. Recently, modification of drug-loaded
liposomes [163,164] with sialic acid has enabled high targeting ability of drug nanocarriers. For
instance, Deng et al. [207] demonstrated that the cellular uptake of liposomes modified with sialic
acid-cholesterol conjugate was increased compared with other formulations.

4.2. Macrophage-targeting in anti-inflammation therapy

Since macrophages play indispensable role in initiating and developing of inflammatory
processes, they are a potential target in the anti-inflammatory therapy. Important factors which
promote macrophage recruitment into the site of inflammation are cell adhesion molecules, such as
ICAM-1 and VCAM-1, inhibiting of which can suppress the inflammation. For instance, Sager et al.
[208] showed that silencing endothelial cell adhesion molecules using siRNA reduced monocyte
recruitment into atherosclerotic lesions.

Anti-inflammatory cytokines, such as IL-10, and anti-inflammatory drugs can also be applied to
suppress inflammation. Thus, IL-10 delivered by polymeric nanocarriers was bioactive and reduced
the production of pro-inflammatory cytokine IL-1f3 in the atherosclerotic lesion and led to significant
regression in the plaque size [209]. Local inflammation treatment based on mannose-modified
nanoparticles loaded with anti-inflammatory diclofenac was successfully applied to wound healing
[210]; drug-loaded macrophage-targeted nanoparticles showed an enhanced anti-inflammatory
effect in the wound healing compared to free drug-coated suture.

Overactivation of TLRs may lead to the production of high levels of IFN and other cytokines,
leading to chronic inflammation [211]. Moreover, the chronic activation of TLRs exerted by DAMPs
may stimulate T- and B-cells responses and, together with the release of cytokines, contributes to the
development of autoimmunity [211]. Therefore, TLR antagonists, such as TLR2 antagonists AT1-AT8
[212], have been proposed as agents to attenuate inflammation.

4.3. Macrophage-targeting in anti-tumor therapy

In the case of oncological diseases, due to the influence of macrophages on tumor development,
macrophages are the preferred target for various therapeutic agents. On the one hand, M1
macrophages inhibit tumor growth and metastasis, on the other hand, TAMs (M2 macrophages)
provoke tumor growth and angiogenesis. Therefore, a promising strategy is to increase the ratio of
M1 macrophages/TAMs at the tumor site, which can be achieved by inhibiting macrophage
recruitment, direct depletion of TAMs, blocking “don’t eat me” signals, reprogramming TAMs.

a. Inhibition of macrophage recruitment

Biomolecules recruiting monocytes, such as VEGF, CSF-1, CCL2 and CCL5, are involved in
macrophage recruitment to the tumor area and, as a result, in increasing the number of TAMs.
Inhibitors of these chemoattractants and their receptors can suppress macrophage recruitment and
monocyte proliferation in TAMs, thereby reducing tumor growth and dissemination [213].
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Approach to blocking CCL2/CCR?2 axis through inhibition of the mRNA translation is shown in
the research [214]. Wang et al. used cationic nanoparticles for targeted delivery of CCR2siRNA. Due
to the charge modification, the particles were effectively engulfed by monocytes, due to which an
efficient inhibition of macrophage recruitment and TAM infiltration was achieved.

b. Targeting Anti-Phagocytic Checkpoints

Being important immune cells, macrophages are able to engulf tumor cells and present tumor-
specific antigens to induce adaptive immunity. However, tumor cells can evade phagocytosis by
macrophages due to the high expression of “don’t eat me” signals [215].

Among “don’t eat me” signals, CD47 is the most studied antiphagocytic signal, and it is known
that it prevents phagocytosis through interaction with the SIRPa integrated into the macrophage
membrane [216]. Blocking the CD47-SIRPa pathway via anti-CD47 therapy or anti-SIRPa therapy is
a way to restore the antitumor activity of TAMs [217].

Chao et al. [218] demonstrated that a blocking monoclonal antibody against CD47 enabled
phagocytosis of acute lymphoblastic leukemia (ALL) cells by macrophages in vitro and inhibited
tumor engraftment in vivo. Moreover, anti-CD47 antibody eliminated ALL in the peripheral blood,
bone marrow, spleen, and liver of mice engrafted with primary human ALL. It has been shown that
in addition to antibodies, SIRPa analogues can be used to neutralize CD47. For instance, Koh et al.
[219] utilized exosomes containing SIRPa variants, which induced significantly enhanced tumor
phagocytosis and primed cells for an effective anti-tumor T cell response. Encouraging results can be
achieved with the CD47 inhibitor, magrolimab, the ongoing phase 2 trial of which evaluates its
tolerability, safety and effectiveness in the treatment of myeloma, especially in combination with
other anti-cancer therapies [220].

CD47 is expressed in all types of cells, while SIRPa is only expressed on the surface of myeloid
cells (macrophages, monocytes, granulocytes, and myeloid dendritic cells). Therefore, in some cases
anti-SIRPa therapy is preferable [221]. In this regard, monoclonal antibodies which bind SIRPa with
high affinity can be used. For instance, Ring et al. [206] showed that the anti-SIRPa antibody KWAR23
in combination with tumor-opsonizing monoclonal antibodies greatly augmented myeloid cell-
dependent killing of human tumor-derived cell lines in vitro and in vivo.

c. TAMs depletion

TAMs depletion is another approach to macrophage-targeted therapy that can help reduce
angiogenesis, reactivate immune surveillance, and ultimately suppress tumor growth. For this
purpose, various anti-cancer drugs or colony stimulating factor inhibitors, such as CSF-1, can be used.

Diphtheria toxin treatment during tumor initiation or in established tumors depletion of TAMs
prevented pancreatic cancer initiation [222]; in the case of pre-established tumors, TAMs depletion
inhibited tumor growth and, in some cases, induced tumor regression.

Drug-carrying nanoparticles modified for targeted delivery to macrophages can also be
effectively used to deplete TAMs. Zhou et al. [207] utilized sialic acid—cholesterol conjugate modified
liposomes loaded with epirubicin (EPI-SAL) and showed that EPI-SAL achieved enhanced
accumulation of the drug into TAMs; the antitumor studies indicated that EPI-SAL provided strong
antitumor activity via modulating the tumor microenvironment with the depletion of TAMs. Another
anti-cancer drug, doxorubicin, was loaded into liposomes modified with PEG-D-mannose and PEG-
L-fucose conjugates as macrophage receptor ligands [223]; the dual-ligand modified PEGylated
liposomes achieved an increased distribution of DOX in tumor tissues and the superior tumor
inhibitory rate via modulation of the tumor microenvironment with the exhaustion of TAMs was
shown.

d. Reprogramming of TAMs

Under the influence of various factors, TAMs can switch their phenotype between tumoricidal
M1- and protumorigenic M2 macrophages, which inspires the design of therapeutic agents targeting
this macrophage plasticity. Thus, one of the promising immunotherapeutic strategies for cancer
therapy is repolarization (reprogramming) of TAMs towards anti-tumor M1 phenotype [224]. Drugs,
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cytokines, immunoagonists, CpG oligonucleatids, siRNA and ROS/O2 generating nanoparticles can
be used to reprogram TAMs.

In many studies, liposomes are used to encapsulate drug and its targeted delivery to
macrophages. Sousa et al. [225] showed that the effect of liposome-encapsulated zoledronate on
macrophages cultured in a conditioned environment of breast cancer cells increased the content of
markers of the M1 phenotype of macrophages (iNOS and TNF-a). Later, Tan et al. [164] designed
liposomes modified with sialic acid (SL) and loaded zoledronic acid (ZA) into them; thanks to the
modification, these drug nanocarriers (ZA-SL) could effectively deliver ZA to TAMs. In vivo
experiments showed that ZA-SL cancer treatment increased the M1/M2 ratio, which was partly
caused by phenotypic remodeling of M2-like TAMs.

Polymer-based nanoparticles can also be used as nanocarriers of drugs targeted at macrophages
for TAMs repolarization. Wang et al. [226] developed poly -amino ester-based NPs which could
adopt by systemic administration and release IL-12 in the tumor microenvironment, subsequently re-
educating TAMs. The nanocarriers loaded with IL-12 exhibited enhanced tumor accumulation,
extended the circulation half-life and therapeutic efficacy of encapsulated IL-12 compared to free IL-
12. Cheng et al. [227] proposed a multifunctional macrophage targeting system to deliver CpG
oligodeoxynucleotides to macrophages; they utilized mannosylated carboxymethyl
chitosan/protamine sulfate/CaCO3/CpG nanoparticles, which were efficiently taken by macrophages
and exerted a polarizing effect on them increasing the production of proinflammatory cytokines
including IL-12, IL-6, and TNFa.

Downregulation of CSF-1R is known to reprogram the immunosuppressive M2 macrophages to
the immunostimulatory phenotype, M1 macrophages. Sialic acid-targeted cyclodextrin-based
nanoparticles were developed to deliver CSF-1R siRNA to TAMs [228]; in in vitro experiments the
nanoparticles achieved cell specific delivery to TAMs, eventually polarized M2-like TAMs to M1
phenotype, which enhanced the level of apoptosis in the prostate cancer cells.

Since reactive oxygen species (ROS) are important modulators of macrophage activation and
polarization towards tumoricidal M1 phenotype, ROS-generating NPs can be used as therapeutic
agents modulating tumor microenvironment. Nascimento et al. [229], using breast cancer models in
vitro, found that polyaniline-coated maghemite (Pani/y-Fe203) nanoparticles could be easily taken
by M2-like macrophages and could re-educate them towards a pro-inflammatory profile via ROS
generating. Immunotherapy can be enhanced by using tumor-derived antigenic microparticles
loaded with nano-Fe304 and CpG-containing liposomes, which can convert TAMs to Ml
macrophages and induce abundant infiltration of cytotoxic T lymphocytes at the tumor site in vivo
[230].

Additionally, due to TAM recruitment driven by hypoxia and accumulation of TAMs in hypoxic
regions of solid tumors, oxygen-generating NPs can regulate TAM repolarization by reducing
hypoxia. Thus, Youn et al. [231] developed mannose-decorated/macrophage membrane-coated
upconverting nanoparticles which contained particles generating ROS and oxygen under light
irradiation.

4.4. Macrophage-targeting in the therapy of infectious diseases

Macrophages, as crucial components of immune system, can engulf and digest microbes.
However, some pathogenic microorganisms have the ability to survive the digestion and utilize
macrophages as reservoirs for safe haven avoiding the action of other cells of the host immune system
[232-234]. These microorganisms can circumvent the effectiveness of antibiotics by surviving inside
host macrophages. Since, therapeutics in current use have varying ability to enter macrophages, there
is an interest in using special drug delivery systems via drug-loaded nanoparticles to treat
intracellular infections. The targeted delivery of drugs to macrophages is considered below on the
example of HIV, tuberculosis and leishmaniasis.

a. Viral infectious diseases

Human immunodeficiency virus (HIV) is a Lentivirus that leads to acquired immunodeficiency
syndrome (AIDS), an immunocompromised condition that increases susceptibility to macrophage
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resident diseases. Since The major cellular HIV reservoirs are macrophages and CD4+ T cells with
macrophages being responsible for carrying and spreading the virus, the development of methods
for direct delivery of anti-HIV drugs to macrophages is of great interest [235,236].

Recently, drug-loaded nanoparticles, such as liposomes, polymer NPs and dendrimers, have
been considered as potential therapeutic agents for treating HIV. In order to achieve high targeting
ability, Jain et al. [237] conjugated efavirenz-loaded dendrimers with tuftsin; the obtained therapeutic
agents not only exhibited excellent cellular uptake but also possessed relatively low cytotoxicity with
simultaneous high antiviral activity. Similarly, Jain et al. [238] developed stavudine-loaded
mannosylated liposomes, which also exhibited high targeting ability and increased biocompatibility
in comparison with pure drug. The study of the kinetics of release, the effectiveness of loading
antiviral drugs in polymeric nanoparticles and their targeting ability revealed their potential as anti-
HIV drug carriers [239-241]. Thus, Krishnan et al. [242] , using chitosan carriers loaded with
saquinavir, demonstrated a drug encapsulation efficiency of 75% and cell targeting efficiency greater
than 92%; as compared to the soluble drug control, the saquinavir-loaded chitosan carriers caused
superior control of the viral proliferation.

b. Tuberculosis

Tuberculosis (IB) is a lung infection caused by Mycobacterium tuberculosis (Mtb). Mtb
primarily infects host macrophages, developing special survival and reproduction strategies in these
highly specialized cells [243]. Most of the known anti-tubercular agents are less effective in vivo due
to the low macrophage permeability and rapid degradation of these drugs [244]. The use of antibiotic-
loaded, macrophage-targeted nanoparticles can enable a prolonged and systemic dose of antibiotics
[244].

Many assays are devoted to the development of nanoparticles for active targeted delivery, for
example, by modification with mannose [172,173]. For instance, Huang et al. [174] designed mannose-
modified solid lipid nanoparticles (SLNs) containing pH-sensitive prodrug of isoniazid (INH) for the
treatment of latent tuberculosis infection. In vitro assay showed a fourfold increase of intracellular
antibiotic efficacy and enhanced macrophage uptake compared to pure drug solution; for the in vivo
antibiotic efficacy test, the SLNs group displayed an 83% decrease of the colony-forming unit while
the free INH group only showed a 60% decrease. Later, in order to design macrophage-targeted
delivery in TB, Ambrus et al. [245] developed nanomediated isoniazid-loaded dry powder for
inhalation, based on mannosylated chitosan and hyaluronic acid hybrid nanoparticles, which were
found to be a promising vehicle for targeting TB-infected macrophages. Pi et al. [150] first reported
the bactericidal effects of selenium nanoparticles and introduced a novel nanomaterial-assisted anti-
TB strategy manipulating Isoniazid-incorporated mannosylated selenium (Ison@Man-Se) NPs for
synergistic drug killing and phagolysosomal destructions of Mtb. They found that Ison@Man-Se NPs
preferentially entered macrophages and accumulated in lysosomes releasing Isoniazid. Furthermore,
Ison@Man-Se/Man-Se NPs promoted the fusion of Mtb into lysosomes for synergistic lysosomal and
Isoniazid destructions of Mtb.

c. Protozoan infectious diseases

Leishmaniasis is a wide array of clinical manifestations caused by Leishmania, a parasitic
protozoan [246]. The intracellular localization of Leishmania inside the phagolysosome of host
macrophages limits chemotherapy treatment. In addition, the use of antileishmanial drugs is often
compromised because of their toxicity and limited bioavailability [247]. Macrophage targeted
therapeutic agents can solve these problems [247].

Compounds of pentavalent antimony, such as sodium stibogluconate (5SG), used in the
treatment of leishmaniasis have high toxicity; encapsulation of the drug in nanocarriers can help to
overcome this disadvantage. For instance, Khan et al. [248] developed nano-deformable liposomes
(NDLs) for the dermal delivery of SSG against cutaneous leishmaniasis; compared with pure drug
solution NDLs displayed an increase in the selectivity index, a decrease in the cytotoxicity and a
higher anti-leishmanial activity due to effective healing of the lesion and successful reduction of the
parasiticload in vivo. Recently, targeting nanoparticles loaded with other antileishmanial drugs, such
as amphotericin B (AmB) and paromomycin (PM) have also been utilized for treatment of
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leishmaniasis. Heli et al. [249] investigated the effect of ligand modification of PM-loaded chitosan
NPs on their anti-leishmanial activity and found the mannosylated formulation to be a suitable
targeted drug delivery system for uptake into Leishmania-infected macrophages without any
cytotoxic activity. Similarly, Das et al. [250] prepared a mannose containing composite hydrogel
loaded with AmB and showed it to be a suitable candidate for the treatment of Leishmaniasis due to
its injectability, biodegradability, non-cytotoxicity and efficient drug delivery properties.

4.5. Potency of macrophage targeting via CD206 receptor and future perspectives

The use of mannosylated targeted drug delivery systems using the idea of biomimetics for
oligosaccharidic patterns of microorganisms to target macrophage mannose receptors has been
studied in detail by our scientific group in a series of papers [172,251-255] (Figure 6), where we aimed
at creation of targeted drug delivery system for the treatment of both infectious and oncological
diseases. We propose the macrophage CD206 receptor as a target (Figure 6 shows a macrophage with
its receptors recognizing mannosylated polymers) [172,253,255-258,260-263], because it provides
high selectivity of drug delivery and does not require the use of immune-active compounds
(interleukins, proteins, microRNAs, etc.). Systematic studies of CD206 ligands conducted by our
group allowed us to develop a series of specific molecular container of different molecular
architecture carrying an oligomannoside ligand of complex structure with optimal affinity to the
mannose receptors of macrophages. We modeled the interaction of CD206 with more than a hundred
relevant carbohydrate structures [251], about two dozen of them were studied experimentally. As a
result, optimized polymeric ligands has been developed based on polyethylenimine, mannan,
chitosan, grafted with cyclodextrins (Figure 6 — center) provided the effect of accumulation of a
therapeutic “cargo” in macrophages, which significantly increased organ bioavailability (and
accumulation of drugs in the lungs) and the permeability of bacterial cells to drugs has been
developed.

Additionally, a significant increase in efficiency can be achieved by using adjuvants which
enhance the effect of the antibiotic by inhibiting efflux and increase the permeability of the bacterial
membrane [255,256,261]. Currently, the direction of biocompatible medicine is actively developing,
in other words, the use of safe natural extracts and essential oils, which have a number of remarkable
biological effects, including analgesic, antibacterial, anti-inflammatory, antitumor, antioxidant and
regenerating properties. As adjuvants, in our scientific group, compounds of the terpenoids,
flavonoids and allylbenzenes series (Figure 6 - in the center from the bottom), series are extensively
studied, which show synergism with the main drug—antibiotics fluoroquinolones, rifampicin, etc.
For the combination of fluoroquinolone—terpenoid, we observed a 2-3-fold increase in the
effectiveness of the antibiotic (a 2-3-fold decrease in MIC) [255,256,260]. Recently we showed that
adjuvants (allylmethoxybenzenes, terpenoids, flavonoids) have an enhancing effect on antibacterial
drugs, including LF and MF [172,253,255,256,260,261].

However, the binding constants of the antibiotics and adjuvants with the developed molecular
containers—polymer ligands—are not high enough (about 10* M), which will cause the dissociation
of the complexes upon intravenous administration and will not provide for a prolonged action of the
antibiotic. So, we also created a moxifloxacin (fluoroquinolone) prodrug—a covalent conjugates of
the antibiotic with mannosylated polymers (dendrimers) enhanced by a terpenoid adjuvant
(limonene) with the function of prolonging drug action. Due to application of such “intelligent”
prodrug system the selectivity has been achieved: in microbiological experiments an increased
antibacterial effect on E. coli and B. subtilis cells is observed, while the effect on “good” Lactobacillus
cells is reduced. We have developed pH, thermo- and stimulus-sensitive micelles [256-258], which
are smart molecular containers that release drugs in a slightly acidic environment and in the presence
of glutathione, corresponding to the microenvironment of tumors or in an inflammatory focus
potentially applicable for antibacterial and anticancer drug delivery to macrophages. The
pharmaceutical compositions developed [251-260] could significantly increase the effectiveness of
therapy for a number of infectious and other diseases, reduce the dosage of antibiotics, shorten the
duration of treatment, and reduce the risk of developing resistance.
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The interaction of macrophages with ligands and the study of macrophage-like particles is
classically studied by several methods, including flow cytometry, fluorescence microscopy,
immunological methods. We have developed techniques that allow us to study macrophages from a
different point of view. In particular, we demonstrated the phenomenon of efflux in bacteria and
eukaryotes and were able to inhibit it, which made it possible to increase the effectiveness of
antibiotics and anti-cancer drugs (Figure 6 - top left). The authors” works present classical and original
techniques (Table 4) of spectral approaches (FTIR, UV, NMR, fluorescence spectroscopy), computer
modeling (molecular dynamics and neural network analysis), microscopy (atomic force, confocal
scanning), biological and pharmacokinetic experiments to study both the fundamental aspects of
biomimetics for pathogenic patterns recognized by macrophages, and practical applications to
improve existing treatment regimens for macrophage-associated diseases. FTIR spectroscopy was
used for high-throughput screening of lectin-ligand interactions using concanavalin A as a model
mannose receptor to optimize the components and molecular architecture of the delivery system
[172,251,253,254,259,260]. FTIR spectroscopy potentially allows you to monitor the individual status
of therapy: whether drug compositions interact with bacteria, macrophages, tumor cells or they are
indifferent. Using FTIR spectroscopy, we demonstrated the selectivity of chitosan-based micellar
systems, observed the effect on A549 cells and, conversely, the protection of normal HEK293 cells
[256,257], and a similar effect was observed for bacterial E. coli cells vs Lactobacilli. The technique
allows testing drug delivery systems: if there is no effect on cells, then there are no changes in the
spectra, and vice versa. The use of UV spectroscopy, as well as fluorescence quenching, makes it
possible to determine the parameters of ligand-receptor complexation at concentrations of reagents
1-2 orders of magnitude lower than those described in the literature, including by isothermal
calorimetry, with the possibility of analyzing a wide range of ligands and reducing the complexity of
the process. Using fluorescent methods, we studied the interaction of ligands with cells, adsorption
and permeability over time, and the effect of efflux inhibitors on drug permeability and retention.
With the help of flow cytometry, the existence of fluorescent nanoparticles with the drug (not debris)
was proved, and adsorption on E. coli cells was studied, and quantified living cells by DAPI staining.

Table 4. The approaches for modeling the polymer drug delivery systems interaction with
macrophages-like systems and studying and their effects on cells.

Method Applications Brief description References
FTIR spectroscopy | Macrophage CD206 | The use of a model receptor | [253,260]
receptor - ligand | protein allows for rapid
interaction studies on the | primary screening of ligands
example of ConA model | and selection of the most
and mannosylated | affine ones, and it is not
polymers necessary to isolate hard-to-
reach CD206
Drug — delivery system (to | Registration of FTIR spectra | [258,260,261]
macrophages) interactions | of drug complexes with
different polymer ratios and
calculation of dissociation
constants, entrapment
efficiency. Study of molecular
details of binding ( functional
groups)
Cells — drug formulation | Provide information about | [252,258]
interactions. The effect of | the main components of the
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the drug on the cells. | cell interacting with the drug.
Selection of the optimal | Using this technique, efflux

composition of the drug | and its inhibition on bacterial

formulation and cancer cells were
demonstrated

Quantification of living | Centrifugation of cell | [255]

cells suspension and registration

of the FTIR spectra of
sediment. Low analysis time:
does not require seeding of

bacteria on a Petri dish

Characterization of | The presence of all | [172,253,255-258,260—
polymeric drug delivery | components, and the success | 263]
systems of crosslinking. Molecular
architecture
NMR Drug interaction with the | The NMR spectrum provides | [261]
spectroscopy delivery system valuable information about
the functional groups
involved
Characterization of | The presence of all | [172,255,260]
polymer drug delivery | components, and the success
systems of crosslinking
Fluorescence Macrophage CD206 | Quenching of tryptophan | [254]
spectroscopy receptor - ligand | fluorescence in the receptor

interaction studies on the | protein and an increase in

example of ConA model | fluorescence anisotropy

and mannosylated | during ligand binding. An

polymers alternative is using a FITC-
labeled ligand

Inclusion of fluorophores- | Change of fluorescent | [264]
drugs in polymer particles | properties: the position and
intensity of the maximum, as

well as FRET

Interaction of ligands with
cells, adsorption and
permeability over time,
and the effect of efflux
inhibitors on drug

permeability and retention

UV spectroscopy Macrophage CD206 | Change in protein uptake | [254]
receptor - ligand | during ligand binding and
interaction studies on the | change in secondary

example of ConA model | structure
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and mannosylated
polymers
Loading and release of | Absorption characterizes the | [253,256]
drugs from  polymer | amount of drug loaded or
carriers released from nanoparticles
Antibacteril activity A600 correlates with the | [255,256,261]
number of colony-forming
units
Circular dichroism | Secondary structure of | Changing  the  circular | [265]
spectroscopy macrophage CD206 | dichroism sometimes with a
receptor (or its model | cardinal reversal of the
protein on the example of | spectrum
ConA model) during
ligand binding
Loading of chiral drugs [266]
into polymeric particles
Isothermal Study of macrophage | Thermodynamic parameters | [267-270]
titration CD206 receptor — ligand | (enthalpy, entropy and Gibbs
calorimetry interaction studies on the | energy) of ligand-receptor
example of ConA model | complex formation
and mannosylated
polymers
Atomic force | Study of the morphology | High-quality images | [257,264,266]
microscopy, SEM | of nanoparticles, | providing information about
and TEM simulating epitops of | the structure of nanoparticles
pathogenic and their effect on bacteria
microoragnisms
recognized by
macrophages. Study of the
morphology of bacterial
and macrophage cells with
adsorbed polymers
Nanoparticle Characterization of | The rate of  particle | [256]
tracking analysis | macrophage terget drug | movement is related to a
(NTA) delivery system | sphere equivalent
(nanoparticles) hydrodynamic radius as
calculated  through  the
Stokes-Einstein equation
Dynamic light | Detection of polymeric | The zeta potential | [172,257,264]
scattering nanoparticles interaction | characterizes the stability of
with cells surface by | nanoparticles. For cells, there
changing of zeta potential | is a recharge during the
of bacteria and macrofages | adsorption of polymers
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cells during polymer

adsorption

Confocal laser | Interaction = of  drug | Images from multiple cells at | [172,252,271]

scanning formulations with | the micro and nanoscale.

microscopy bacterial and eukaryotic | Inhibition of efflux (reverse
(macrophage and | release of drugs from cells)
cancerous) cells has been demonstrated

Microbiological Study of the antibacterial | The strengthening and | [172,253,255,256,260,261]
studies effect of drugs including | prolonged (in wvitro) of
effect on bacteria inside | antibacterial drugs due to the
macrophage addition of adjuvants to them

has been demonstrated

Pharmacokinetics | Testing the macrophage | A multiple increase in the | [255,256,260]
studies terget drug  delivery | half-life of the drug is shown,
system in terms od the | especially for covalent pro-
drug circulation time in | drugs, and accumulation in
the bloodstream and bio- | the lungs

distribution

Flow cytometry The existence of fluorescent nanoparticles with the drug | [257]

(not debris)

Nanoparticles adsorption on E. coli cells, and quantification

of living cells by DAPI staining

Computer Molecular dynamics and | The study of ligands does not | [251,272]
modeling neural network analysis of | require synthesis in the
macrophage CD206- | laboratory and complex

ligand and drug-polymer | experiments - as the primary
interaction stage of selecting candidates
for drug delivery systems to
macrophages. Molecular
architecture of complexes,

binding sites and prediction

of binding energy.

Thus, targeting macrophages using the biomimetics of pathogen patterns is a very effective
strategy for creating therapeutic systems for a range of diseases. In addition, using macrophage-
derived particles, it is possible to selectively target therapeutic cargo to tumor cells, which makes it
possible to bypass biological barriers, “switch” the tumor microenvironment (hot/cold) and regulate
the status of inflammation. In other words, targeting macrophages and using macrophage-derived
membranes as drug carriers has huge prospects for creating a golden bullet for the treatment of
infectious, oncological, neurodegenerative, and autoimmune diseases.
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Figure 6. A brief presentation of the idea of macrophage-targeting through their CD206 receptors by
creating drug delivery systems that contain mannose residues mimicking pathogen patterns. The IR
spectra of concanavalin A complexes (a model mannose receptor) with mannosylated polymer are
shown at the top left — an example of primary screening for CD206 affinity. Confocal images of alone
macrophages with FITC-labeled (green channel) mannosylated polymers are shown at the bottom
left: we observe the greatest absorption by macrophages of particles with a trimannoside backbone,
mimicking the oligosaccharides of bacteria. The bottom center shows the main drugs (antibacterial
and anticancer drugs) that can be delivered to macrophages using our strategy, as well as their
adjuvants (enhancers). Confocal images of macrophages with absorbed E. coli (as a model of
intractable intramacrophage infection) are shown at the bottom right: pink — merged channels bacteria
+ doxorubicin. Due to the use of a high-affinity polymer to macrophages, the accumulation of the
drug inside macrophages is increased by 4 times, and in addition, adjuvants (eugenol, apiol, etc.)
inhibit efflux in bacteria and increase the penetration of the drug into bacteria. Polymer systems
significantly increase the circulation time of moxifloxacin in the body of rats (top right) and increase
the bio-distribution into the lungs to alveolar macrophages.
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