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Abstract: Building on the carbon reduction targets agreed in the Paris Agreements, many nations have renewed 

their efforts toward achieving carbon neutrality by the year 2050. In line with this ambitious goal, nations are 

seeking to understand the appropriate combination of technologies which will enable the required reductions 

in such a way that they are appealing to investors. Around the globe, solar and wind power lead in terms of 

renewable energy deployment, while carbon capture and storage (CCS) is scaling up toward making a 

significant contribution to deep carbon cuts. Using Japan as a case study nation, this research proposes a linear 

optimization modeling approach to identify the potential contributions of renewables and CCS toward 

maximizing carbon reduction and identifying their economic merits over time. Results identify that the 

combination of these three technologies could enable a carbon dioxide emission reduction of between 55 and 

67 percent in the energy sector by 2050 depending on resilience levels and CCS deployment regimes. Further 

reductions are likely to emerge with increased carbon pricing over time. The findings provide insights for 

energy system design, energy policy making and investment in carbon reducing technologies which underpin 

significant carbon reductions, while identifying potential regional social co-benefits. 

Keywords: carbon neutrality; renewables; carbon capture and storage; emission trading system; optimization; 

socioeconomic analysis 

 

1. Introduction 

As nations around the world contend with ambitious carbon reduction goals, predominantly 

derived from the Paris agreements [1], Japan, under former Prime Minister Suga, has declared that it 

will become carbon neutral by 2050 [2]. As part of this declaration, alongside innovations such as 

renewable energy (RE), the management of carbon is also expected to play a role. Carbon capture 

and storage (CCS) represents a technology which could assist in rapidly reducing the carbon dioxide 

emissions, particularly those from electricity and heat, i.e., from fossil fuel power stations, responsible 

for some 610 million tons (Mt) or ~52% of CO2 emissions each year in Japan [3]. The role and timeline 

for commercialization of CCS is discussed in the Basic Energy Plan of Japan [4], and the processes of 

capture, transportation, injection and storage in Japan are under investigation along with studies on 

suitable sites for storage. At the global scale, CCS has also been identified as one of the key pillars to 

achieve net-zero CO2 emissions by 2050 [5]. 

CCS, however, is one approach among many for carbon reduction. These include RE, nuclear 

power, energy efficiency and forestry, among others. For example, carbon capture and utilization 

(CCU) has the potential to take CO2 from the atmosphere and convert it into useful products through 

energy provided by renewables, potentially engendering a carbon negative outcome [6]. There is also 

the potential to use renewable energy as a heat source to convert biomass to create low-carbon 

hydrogen to offset the use of fossil fuels [7]. Recently, the cost of RE has decreased significantly [8], 

identifying the potential for replacement of some fossil fuels currently used for power generation 

which is responsible for a significant share of carbon emissions. Therefore, research is required to 
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determine the appropriate contribution from each carbon reducing technology or approach, 

according to their scale of potential contribution and economic merits. Taking into account the unique 

Japanese situation, where all fossil fuels are imported, the role, scale and cost of alternative 

approaches to energy generation and carbon management are required.  

Toward achieving carbon neutrality, along with a suite of technologies, a number of policy 

approaches exist, including feed in tariffs (FITs), carbon taxes, renewable portfolio standards and 

carbon trading, to name a few. Each has its own benefits and drawbacks, and can tend to favor certain 

technologies, as has been the case for solar power under the FIT in Japan [9].  

The aim of this research is to uncover the optimal combination of technologies to achieve carbon 

neutrality at the best cost, i.e., empowering the market to choose the best technologies based on their 

environmental and economic merits conscious of varying energy policy approaches. Further, we seek 

to explore the policy settings, including the carbon price required to stimulate different carbon 

reducing technology deployments in Japan, to the target year of 2050, cognizant of recent Japanese 

carbon reduction ambitions.  

This paper is structured as follows. Section 2 investigates previous research contributions in this 

area, identifying the gaps filled by this research. Section 3 details the methodology used to investigate 

potential future combinations of renewable energy and CCS to best contribute to Japanese energy 

goals. Section 4 describes the results of our linear optimization model across multiple future 

scenarios. Section 5 discusses the findings, including technological, environmental, and economic 

merits along with policy implications. Finally, Section 6 describes the conclusions, limitations and 

future directions of this research. 

2. Background and Literature Review 

This study builds on a body of work which has investigated the potential for national and 

regional emission trading and carbon reducing technology combinations. Previous modeling efforts 

have considered the suite of existing and emerging technologies required to meet carbon reduction 

goals in Japan [10]. Some of these models consider hydrogen as a key technology, while still 

recognizing the strong role required of CCS in achieving decarbonization [11]. In regional modeling 

efforts, the role of electrification, the need for energy carriers such as hydrogen and the role of CCS 

in decarbonizing fossil fuels and some industrial processes is also recognized [12]. Most recently, 

Nguyen et al., detailed an emission trading system (ETS) model which incorporated the technologies 

of wind and solar power in Japan, to maximize carbon reductions, cognizant of energy system 

resilience and best cost [13]. This work identified that an ETS can increase the amount of renewable 

energy deployed overall, however, requiring a resilient energy system reduces overall deployment 

while increasing energy system cost. With regard to return on investment, it was also clarified that a 

carbon price approaching $100 USD is required to keep payback periods under 20 years [13] for 

investors in renewable energy deployment. 

As many nations move toward carbon neutrality, researchers are investigating the potential of 

ETS to increase renewable deployment, along with complementary carbon reducing technologies 

(including CCS) to meet national carbon reduction goals. For example, it was identified that for China 

to achieve its Paris Agreement targets, that an ETS creates a potential least cost system. A carbon 

price above $40 per ton of CO2 (tCO2) was found to be conducive to wind power and coal fired power 

with CCS, however, for a wide-scale deployment of CCS, prices above $100/tCO2 are required to 

achieve national carbon goals [14]. These findings are complemented by Zhou et al., who found that 

in order to stimulate CCS deployment for combined heat and power plants, different carbon prices 

engender differing CCS retrofitting timelines, i.e., the year 2033 for a carbon price of $14.5 USD/ tCO2, 

2030 at $20.7, and as early as 2025 at prices above $23.4/tCO2 [15]. These prices are much lower than 

European Union (EU) ETS prices. A study on the policies which are conducive to solar photovoltaic 

(PV) deployment and CCS deployment in China, namely power tariffs and an ETS found that low 

carbon prices disadvantaged CCS compared to PV, and in order to engender further CCS 

deployment, power tariffs would need to be rebalanced, or carbon prices significantly increased [16]. 
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For the EU, in order to achieve carbon neutrality by 2050, a significant tightening of the ETS 

regulations was identified by Pietzcker et al., who showed that with more ambitious targets (i.e., -

63% CO2 by 2030) and a carbon price of about 129 Euros/tCO2, RE could make up to 74% of electricity 

by 2030, and fossil fuel-based generation could be phased out approximately 15 years earlier than 

under previous conditions. Under ambitious energy system transition pathways, CCS only plays a 

small role, and overall, energy system costs increase by a moderate 5% compared to 2020 levels, 

despite a tripling of carbon prices compared to the reference targets [17]. When investigating multiple 

modeling approaches to the European Union ETS, Ruhnau et al., found that different models can give 

different results, with a carbon price of 27 Euros/tCO2 in 2030 effects a decrease in emissions in the 

range of 36-57%, while higher prices of 57 and 87 Euros/tCO2 yield reductions in the range of 45-75% 

and 52-80% respectively. They described the variance in emission reductions due to a number of 

factors including market driven decommissioning of fossil fueled power generation, fuel switch 

impacts captured by dispatch type models, and the consideration of market based investments in 

renewables [18]. 

For Japan, the case study nation of this research, a nationwide ETS is yet to be successfully 

conducted, with test cases only occurring in Tokyo and Saitama, engendering relatively low carbon 

prices of between $2 and $12/tCO2 and limited trading between entities [13]. Recent evaluation of the 

Tokyo ETS identified that participant’s carbon reductions were due to electricity price increases as a 

result of the Great East Japan Earthquake in 2011, and the ETS, in approximately equal parts [19]. 

Another issue, which is central to the deployment of an ETS, is how it affects the sharing of costs 

and benefits, or if certain regions benefit, at the expense of others. In China for example, the pilot ETS 

system was found to reduce urban-rural income inequality, however the effect was most pronounced 

in regions with relatively high CO2 emissions and per capita GDP [20], meaning that lower emitting 

and per capita GDP regions did not realize the same benefits. For the EU on the other hand, carbon 

taxes and ETS as strategies toward carbon neutrality were found to comparatively disadvantage 

lower income households, increasing the risk of energy poverty [21]. This risk may be alleviated 

through a redistribution of ETS revenues toward these at-risk households. Under a global evaluation 

of carbon pricing regimes, Chepeliev et al., found that inter-regional inequality moderately increases, 

while intra-region inequality is decreased [22]. Overall, lower economic growth leads to a slightly 

higher incidence of global poverty levels, however, carbon pricing regimes also allow for burden 

shifting to higher income households and a change in pricing outcomes for other necessities causing 

positive effects in some nations. Overall, there is agreement among researchers that redistribution of 

carbon pricing regime profits in a progressive manner may alleviate some of the negative outcomes 

[22,23]. In terms of redistribution, progressive distributional outcomes are suggested to be more likely 

for lower income nations, and also for regimes which consider indirect effects and consumer 

spending patterns [24]. 

In our previous investigation of Japan, prior to the incorporation of CCS as a complementary 

carbon reducing measure, we identified that different carbon target and energy system settings 

engendered different RE deployment outcomes for the 47 prefectures of Japan, with a resilience 

constraint increasing overall participation and benefit sharing [13].  

This study seeks to evaluate an ETS in Japan which can incorporate CCS as a complementary 

carbon reducing approach, cognizant of geographic and cost limitations. The novelty of this research 

is the capability of our model to pinpoint where, when, and in what quantity renewables and CCS 

should be deployed to achieve both carbon reduction and energy system resilience targets. Further, 

we identify the optimal CO2 transportation route, forming the basis of a peer-to-peer carbon emission 

trading system between prefectures. Based on the technological, economic and environmental 

findings, this study identifies the social outcomes of these deployment regimes over time, identifying 

the sharing of costs and benefits at the prefectural level. Our model is not limited to the case study 

nation of Japan and is adaptable to various nations and regions where appropriate data are available. 
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3. Methodology 

This section describes our proposed modeling approach for assessing the maximum carbon 

emission reduction potential in a large geographical area (e.g., nation, continent, inter-continent, etc.) 

composed of smaller regions, each of which have potential RE sources and some of which have 

physical CCS deployment potential, while others do not. Hence, the proposed model is well fitted to 

reality, where physical CCS sites are available only at some specific regional locations. Moreover, the 

proposed model is helpful for analyzing the potential carbon emission trading between smaller 

regions, depending on the existence of physical CCS storage sites.  

The proposed model is presented in the form of a linear programming problem over a defined 

time period, whose objective is to minimize investment costs while maximizing benefits obtained by 

regions as a result of carbon emission trading and RE-based electricity trading with the national grid. 

Model inputs consists of a yearly carbon emission cap for the whole large geographical area, RE and 

CCS potentials of each of the regions, unit costs for RE and CCS deployments, unit transportation 

cost for CCS, carbon emission trading prices, geographical distances between smaller regions, FIT 

electricity prices for RE-based generation, and RE conversion factors. On the other hand, model 

outputs consist of the amounts of CCS and each type of RE source deployed in each discrete region 

in each year over the analyzed time period. A schematic of the proposed model is depicted in Figure 

1. Details of the proposed model are given below. 

 

Figure 1. Illustration of the proposed linear optimization model. 

The variables used in the proposed model and their definitions are detailed in Table 1. The 

individual components included in the objective function of the proposed linear optimization model 

are described as follows.   

First, the CO2 emissions of each prefecture, which are used for trade with other prefectures via 

RE installation and CCS, is computed by: 𝐶௜(𝑡) = 𝐶௜(𝑡 − 1) − ෍ 𝑔௜,௞ (𝑡)௄
௞ୀ1

∗ 𝑅𝐸௜,௞(𝑡) − 𝐶𝐶𝑆௜(𝑡) (1) 

Second, the investment cost of RE technologies is: 𝐼𝑉௜,௞(𝑡) = 𝑟𝑝௜,௞(𝑡) ∗ 𝑅𝐸௜,௞(𝑡) (2) 

Third, the economic function for CO2 emissions obtained with RE deployment is: 𝐸𝐹௜,௞(𝑡) = 𝑐𝑝(𝑡) ∗ 𝑔௜,௞ (𝑡) ∗ 𝑅𝐸௜,௞(𝑡) (3) 

Fourth, the profit function of selling electricity from renewable generation is computed by: 𝑃𝐹௜,௞(𝑡) = 𝑠𝑝௞(𝑡) ∗ ℎ௜,௞ ∗ ෍ 𝑅𝐸௜,௞(𝜏)௧
ఛୀ1

(4) 

Fifth, the investment cost of CCS is: 𝐼𝐶௜(𝑡) = 𝑐𝑐𝑠𝑝(𝑡) ∗ 𝐶𝐶𝑆௜(𝑡), 𝑖 ∈ 𝑉௦  (5) 

For the prefectures with no physical injection sites, i.e., 𝑖 ∈ 𝑉௕, their CCS investment costs are zero. 
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Sixth, the cost for transporting CO2 to the prefectures (regions) which have physical injection 

sites is computed by: 𝑇𝐶௝(𝑡) = 𝑔𝑡(𝑡) ∗ ෍ 𝐶𝐶𝑆௝,௜௕ (𝑡) ∗ 𝑑௝௜(𝑡)௜∈௏ೞ , 𝑗 ∈ 𝑉௕ (6) 

This transportation cost will be paid to third parties who actually conduct such CO2 transport. For 

the prefectures having physical injection sites, their CO2 transportation costs 𝑇𝐶௜(𝑡) , 𝑖 ∈ 𝑉௦ , are 

obviously zero. 

Seventh, the cost for CO2 storage at physical CCS sites needs to be paid by CCS buying 

prefectures and transferred to CCS selling prefectures, computed thus: 𝑆𝐶௝(𝑡) = 𝑐𝑝(𝑡) ∗ 𝐶𝐶𝑆௝(𝑡) = 𝑐𝑝(𝑡) ∗ ෍ 𝐶𝐶𝑆௝,௜௕ (𝑡)௜∈௏ೞ , 𝑗 ∈ 𝑉௕ (7) 

Table 1. Variables and Functions used in the proposed model. 

Variable Definition Meaning 𝑛  Number of prefectures 𝑖  Subscript for prefecture index 𝑡  Time index [year] 𝑇  Number of years 𝑘  RE index 𝐾  Number of RE types 𝑉௦   
Set of prefectures with physical CO2 storage capability 

(CCS selling prefectures) 𝑉௕   
Set of prefectures having no physical CO2 storage 

capability (CCS buying prefectures) 𝑅𝐸௜,௞(𝑡) Capacity of RE type k 

in prefecture i [GW] 

The amount of RE type k in prefecture i to be deployed at 

year t 

𝑔௜,௞ (𝑡) 
Conversion ratio from 

RE type k in prefecture 

i to CO2 emission 

[t/GW] 

Showing how much CO2 emission can be reduced by 

installing 1 GW of RE type k in prefecture i 

𝐶௜(𝑡) CO2 emission 

[thousand ton/year] 

Showing the CO2 emission in prefecture i at year t 

obtained by emission trading system 𝑟𝑝௜,௞(𝑡) Unit cost of RE type k 

in prefecture i [Y/GW] 

The cost for deployment of 1 GW of RE type k in 

prefecture i 𝑐𝑎𝑝(𝑡) CO2 cap [ton] 
The cap on CO2 emission in Japan at year t, set by the 

emission reduction target 𝑅𝐸௜,௞୫ୟ୶(𝑡) 
Maximum capacity of 

RE type k in prefecture 

i [GW] 

Maximum remaining potential of RE type k in prefecture i 

at year t 𝑐𝑝(𝑡) CO2 price [Y/t] Price for a ton of CO2 emission to be traded ℎ௜,௞  Conversion factor of RE 

type k in prefecture i 

from GW to GWh 

Showing how many GWh is obtained by deploying 1 GW 

of RE type k in prefecture i 

𝑠𝑝௞(𝑡) 

Feed-in-tariff electricity 

price for generation 

from RE type k 

[Y/GWh] 

Price for 1 WGh electricity generated by RE type k 

𝐶𝐶𝑆௜௦(𝑡) Captured CO2 emission 

[thousand ton/year] 

Showing the amount of CO2 emission captured by 

prefecture i with physical CO2 storage capability, at year t 
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𝐶𝐶𝑆௝,௜௕ (𝑡) 
Traded CO2 emission 

for CCS [thousand 

ton/year] 

Showing the amount of CO2 emission virtually captured 

by prefecture j having no physical CO2 storage capability, 

but bought from prefecture i with physical CO2 storage 

capability, at year t 𝑐𝑐𝑠𝑝(𝑡) CO2 capture price [Y/t] 
Unit price for a ton of CO2 emission to be captured and 

stored by CCS deployment 𝑔𝑡(𝑡) Unit transportation cost 

[Y/(t x km)] 

Unit price for ground transport of a ton of CO2 emission 

to storage sites incurred for prefecture i at year t 𝑑௜௝(𝑡) Distance [km] 

Distance between prefecture j having no storage site and 

prefecture i with storage capability for storing CO2 at year 

t 

𝐶𝐶𝑆௜௠௔௫(𝑡) 

Potential of captured 

and stored CO2 

emission [thousand 

ton] 

Showing the maximum amount of potential CO2 emission 

captured and stored by CCS deployment at prefecture i at 

year t 

Function  Definition Meaning 𝐼𝑉௜,௞(𝑡) Investment cost of RE 

type I in prefecture i [Y] 

Cost for installing the traded amount of RE type k in 

prefecture i for emission trading with other prefectures 𝐸𝐹௜,௞(𝑡) 
Economic function of 

CO2 emission in 

prefecture i [Y] 

How much prefecture i gains from emission trading 

system for deploying the traded amount of RE type k 

𝑃𝐹௜,௞(𝑡) 

Profit function of 

selling electricity from 

RE type k generation in 

prefecture i [Y] 

How much prefecture i gains by selling electricity from 

the deployed amount of RE type k 

𝐼𝐶௜(𝑡) Investment cost of CCS 

by prefecture i [Y] 

Cost incurred for prefecture i for storing CO2 at specific 

CCS sites 𝑇𝐶௜(𝑡) CCS transportation cost 

for prefecture i [Y] 

Cost incurred for prefecture i for transporting CO2 to 

specific CCS sites 𝑆𝐶௜(𝑡) CCS storage cost for 

prefecture i [Y] 

Cost incurred for prefecture i for storing CO2 at specific 

CCS sites 

Considering all of the components introduced above, the overall objective function in the 

proposed linear programming model is provided in (8). The constraints in this optimization model 

are as follows. The yearly cap for CO2 emission in the whole considering geographical area is 

described by the inequality in (9). The CCS buying constraint for regions having no physical CCS 

storage sites is given in (10). To account for the limit on CO2 storage in different regions, (11) is 

introduced. The yearly limited potential of each RE type in each region is shown in (12). Next, a 

resilience constraint placed upon the RE mix, i.e., the ratio of different types of RE to be deployed to 

contribute toward a stable power supply (i.e., the most available RE, engender through a ratio of 31% 

solar and 69% wind, detailed in [25]), is presented via the inequality in (13), where α_k>0 are given 

parameters to represent yearly limits on the total amounts of specific RE types to be installed based 

on a given energy policy.  

Finally, the proposed linear optimization model is presented below: 

Minimize ෍ ෍ ෍ൣ𝐼𝑉௜,௞(𝑡) + 𝐼𝐶௜(𝑡) + 𝑇𝐶௜(𝑡) + 𝑆𝐶௜(𝑡) − 𝑃𝐹௜,௞(𝑡) − 𝐸𝐹௜,௞(𝑡)൧௄
௞ୀ1

௡
௜ୀ1

்
௧ୀ1

(8) 

subject to: ෍ 𝐶௜(𝑡)௡
௜ୀ1

≤ 𝑐𝑎𝑝(𝑡) (9) 𝐶𝐶𝑆௝,௜௕ (𝑡) ≥ 0, 𝑗 ∈ 𝑉௕, 𝑖 ∈ 𝑉௦ (10) 
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0 ≤ ෍ 𝐶𝐶𝑆௝,௜௕ (𝑡)௝∈௏್ + 𝐶𝐶𝑆௜௦(𝑡) ≤ 𝐶𝐶𝑆௜௠௔௫(𝑡), 𝑖 ∈ 𝑉௦ (11) 

0 ≤ 𝑅𝐸௜,௞(𝑡) ≤ 𝑅𝐸௜,௞max(𝑡) (12) 

0 ≤ ෍ 𝑅𝐸௜,௞(𝑡)௡
௜ୀ1

≤ 𝛼௞ ෍ ෍ 𝑅𝐸௜,௞(𝑡)௡
௜ୀ1

௄
௞ୀ1

(13) 

Solving the linear optimization problem (8) with constraints (9)–(13) will identify the following:  

(i) the maximum amount of carbon emission reductions which can be achieved by 2050; and, 

(ii) the answers to the key questions of where, when, and how much solar, wind, and CCS should 

be deployed during the period 2018–2050.  

There are three sources of uncertainty in the proposed model. The first source of uncertainty 

comes from the CO2 price for trading, i.e., cp(t). The second source of uncertainty is due to the 

uncertainty on the unit cost of CCS deployment, i.e., ccsp(t). And the last source of uncertainty is on 

the CCS unit transportation cost to the CCS storage sites, i.e., gt(t). Therefore, model outcomes will 

be significantly influenced depending on how these costs vary. On the one hand this increases the 

difficulty of model operation, but also introduces the prospect of a range of resultant scenarios as 

settings are varied according to energy policy settings. For example, we can expect that for a fixed 

CO2 price, any change in CCS unit price will influence the amount of CO2 emissions captured by 

CCS each year. Further, any variation of CO2 price will impart influence on the above amount of CO2 

emissions captured by CCS. It is the contrast of this range of potential scenarios and results which 

will bring insights for policy implications to the fore.  

To facilitate the analysis of the proposed model and to compare outcomes with a previous study 

[13] in which CCS was not considered, Japan is employed as a case study nation hereafter. As such, 

each smaller region in the proposed model is associated with a prefecture in Japan (47 prefectures in 

total). The time period considered is from 2018 to 2050 to achieve greatest possible contribution 

toward the set carbon emission reduction goal of carbon neutrality. Data for model inputs are taken 

from the following sources, which are the same as that in [13] for the comparison purpose:  

• RE deployment potential (current and economically feasible future deployment; [21,22]) 

• RE unit investment costs [8] 

• RE technology learning curves [27] 

• RE conversion factors (wind speeds [28] and solar insolation [29,30]) 

• Current carbon emission profiles for each energy generation region (sourced from generator 

annual reports) 

• RE lifecycle GHG intensities [31] 

• CCS sites and potential for Japanese prefectures [32] 

In addition to the calculation of RE deployment, investment cost and ETS revenues, the value of 

electricity generated by each RE source is also calculated using current and future projected FITs for 

each RE type to the year 2020 for solar PV (10 years for small scale and 20 years for large scale 

contracts greater than 50kW capacity), and the year 2020 for wind (20 year contracts), reverting to 8 

yen per kWh post 2020 (in line with current projections and expected end of feed in tariff payment 

levels [33]). Solar panel and wind turbine replacement times are set conservatively at 20 years [34]. 

Furthermore, consideration of RE deployment is limited to solar and onshore wind, i.e., 𝑘 = 1 
corresponds to solar energy, while 𝑘 = 2 represents the index for wind energy.  

Figure 2 shows how the proposed optimization problem is solved to derive the optimal 

deployment quantities of solar, wind, and CCS over the considered time period. 
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Figure 2. Solving steps in the proposed linear optimization model. 

4. Results 

In this section, results for four future energy system scenarios are simulated and detailed for the 

proposed linear optimization model as follows: 

• Scenario 1: The physical limits of CCS storage capacity determined in Eq. (11) is equally divided 

for the years in the period 2018-2050. The power mix resilience constraint in Eq. (13) is not 

considered. 

• Scenario 2: Similar to Scenario 1, but the power mix resilience constraint in Eq. (13) is taken into 

account. 

• Scenario 3: No yearly constraint for the physical limits of CCS storage capabilities, only the total 

amount of CCS storage capacity as in Eq. (11) is considered for the period 2018-2050. The power 

mix resilience constraint in Eq. (13) is not considered. 

• Scenario 4: Similar to Scenario 3, but the power mix resilience constraint in Eq. (13) is considered. 

The first important outcome from simulation results is that consistently deploying CCS 

incrementally over the investigated time period is much better than rushing to deploy in the early 

years, due to: 

• A much higher amount of overall CO2 emission reductions achieved, and  

• An earlier start for and larger distribution of renewable deployment over prefectures and time. 

The second important outcome from simulation results is that CCS trading does not occur, even 

though the carbon and CCS prices are varied in the model. Instead, renewables deployment and local 

CCS injection at prefectures with physical storage sites is preferred throughout the investigated 

period. This can be explained via the economic viability of RE and CCS. More specifically, RE 

deployment in our model is more profitable than that of CCS, due to the accumulated profits 

obtained, due to RE-derived electricity sold back to the grid. Since our proposed model seeks to 

maximize profits while minimizing investment costs, local RE installation and CCS deployment are 

preferred to CCS trading between prefectures.  

Simulation results for each scenario are detailed with the carbon price, the CCS unit cost, and 

the CCS transportation cost fixed at 10,000 Y/ton, 10,000 Y/ton, and 8.1739 Y/ton per km, respectively. 

The amount of CO2 emissions for the whole of Japan in 2017 was approximately 1.25 billion tons [35].   

4.1. Scenario 1 

The maximum amount of CO2 which can be offset is 67%, which is much greater than the 

maximum of 42% CO2 reduction achieved in a previously investigated scenario without the use of 
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CCS [13]. This number is equivalent to approximately 834.24 million tons of CO2 offset by 2050, 

which clearly demonstrates the role of CCS in massively reducing carbon emissions overall. 

The results for deployment of solar, wind, and CCS are shown in Figures 3 and 4, respectively. 

For clarity of representation, only prefectures with high deployments of solar, wind, and CCS are 

shown in these figures and all subsequent figures.  

In this scenario, wind deployment starts earlier than solar installation, whereas the deployment 

of CCS is undertaken in equal yearly increments throughout the considered period in each prefecture 

with physical storage capability. 

  

(a) (b) 

Figure 3. Yearly solar (a) and wind (b) deployment obtained from the proposed model between 2018–

2050 for Scenario 1 enabling a 67% CO2 reduction. 

 

Figure 4. Yearly CCS deployment obtained from the proposed model between 2018–2050 for Scenario 

1 enabling a 67% CO2 reduction. 

4.2. Scenario 2 

Due to the consideration of the power mix resilience constraint, the maximum amount of CO2 

which can be offset in this scenario is 59%, lower than that for Scenario 1 but still significantly higher 

than the 34% achieved in a similar scenario but without CCS in [13]. Details on the deployment of 

solar, wind, and CCS are shown in Figures 5 and 6, respectively.  

As can be observed, solar deployment in this scenario begins earlier and is distributed more 

evenly over prefectures than was the case for Scenario 1. Moreover, the overall solar deployment 

level is increased, while wind is decreased because the power mix resilience constraint is taken into 

account. On the other hand, the CCS deployment level is not affected. 
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(a) (b) 

Figure 5. Yearly solar (a) and wind (b) deployment obtained from the proposed model between 2018–

2050 for Scenario 2 enabling a 59% CO2 reduction. 

 

Figure 6. Yearly CCS deployment obtained from the proposed model between 2018–2050 for Scenario 

2 enabling a 59% CO2 reduction. 

4.3. Scenario 3 

The maximum amount of CO2 reduced in this scenario is 55%, with simulation results shown in 

Figures 7 and 8. As seen, both solar and wind installation start much later than in Scenarios 1 and 2. 

On the other hand, the yearly CCS deployment is much higher than that for Scenarios 1 and 2, but it 

is only deployed in the early years of the investigated period leading to a reduced overall contribution 

to CO2 reductions. 
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(a) (b) 

Figure 7. Yearly solar (a) and wind (b) deployment obtained from the proposed model between 2018–

2050 for Scenario 3 enabling a 55% CO2 reduction. 

 

Figure 8. Yearly CCS deployment obtained from the proposed model between 2018–2050 for Scenario 

3 enabling a 55% CO2 reduction. 

4.4. Scenario 4 

The maximum amount of CO2 can be offset in this scenario is 58.3%, substantially smaller than 

that for Scenario 1 when the CCS is evenly deployed over time, a similar observation with that of 

Scenario 3, demonstrating the benefit of constant, incremental deployment regimes. Details on 

deployment of solar, wind, and CCS are shown in Figures 9 and 10, respectively.  

Similar to Scenario 2, the solar installation is more evenly distributed over prefectures in higher 

amounts, thanks to the existence of the power mix resilience constraint. CCS deployment is very 

different to that of Scenario 3. Specifically, CCS is deployed only in the first year of the considered 

period in all prefectures with physical storage capability, with a significant amount to be deployed 

in Fukushima prefecture, as detailed in Figure 10. 
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(a) (b) 

Figure 9. Yearly solar (a) and wind (b) deployment obtained from the proposed model between 2018–

2050 for Scenario 4 enabling a 58.3% CO2 reduction. 

 

Figure 10. Yearly CCS deployment obtained from the proposed model between 2018–2050 for 

Scenario 4 enabling a 58.3% CO2 reduction. 

Additionally, we consistently observe through four considered scenarios that CCS deployment 

in Fukushima is at the largest amount compared to other prefectures. This is an interesting 

observation and provides important socioeconomic implications for developing appropriate policies 

to revitalize Fukushima after the Great East Earthquake in 2011.    

In the following, we intend to analyze how the variation of uncertain factors, i.e., the carbon 

price 𝑐𝑝(𝑡), the CCS unit price 𝑐𝑐𝑠𝑝(𝑡), and the unit CCS transportation cost 𝑔𝑡(𝑡), affect proposed 

model outcomes.  

As mentioned before, no CCS trading occurs between prefectures in all four investigated 

scenarios. Hence, we aim to reduce the CCS unit price and the unit CCS transportation cost while 

increasing the carbon price to stimulate the potential for CCS trading. In spite of these modifications, 

CCS trading does not occur, suggesting that sequestration of local CO2 may be preferable in all cases. 

As an example, when the unit CCS transportation cost is set to zero, i.e., 𝑔𝑡(𝑡) = 0, the CCS unit 

price is reduced to 𝑔𝑡(𝑡) = 1 Y/ton, and the carbon price is increased to 𝑐𝑝(𝑡) = 210,000 Y/ton, the 

results of Scenario 1 are not changed. If the carbon price is further increased, then the maximum 

amount of CO2 reduction is also increased. For instance, if the carbon price exceeds 220,000 Y/ton, 

then the maximum CO2 reduction amount is significantly increased to 70.69% for Scenario 1. The 

deployment of solar, onshore wind, and CCS are also impacted significantly, as shown in Figures 11 

and 12. Both solar and wind deployments are now significantly boosted, especially for wind in 
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Hokkaido in the first year, whereas CCS deployment is halted for one year in the prefectures 

Hokkaido, Aomori, Iwate, Akita, and Yamagata. 

  
(a) (b) 

Figure 11. Yearly solar (a) and wind (b) deployment obtained from the proposed model between 

2018–2050 for sensitivity analysis of Scenario 1, with a 70.69% CO2 reduction. 

 

Figure 12. Yearly CCS deployment obtained from the proposed model between 2018–2050 for 

sensitivity analysis of Scenario 1, with a 70.69% CO2 reduction. 

5. Discussions 

Here we discuss the environmental and economic performance of each carbon reducing 

technology under the prescribed scenarios, along with policy implications. 

5.1. Environmental Analysis 

Environmentally speaking, as was discussed in the results section, each scenario reduces CO2 by 

between 55 and 67% of total CO2 emissions in Japan, as shown in Figure 13.  
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Figure 13. CO2 emission reduction by technology between 2018 and 2050 in each scenario. 

For all scenarios, CCS contribution to carbon emission reductions is restricted to a maximum 

deployment level of 303.3 million tons by 2050, with deployment regimes and timelines varied 

according to scenario settings.  

In scenario 1 and scenario 2, where the physical limits of CCS are filled in a linear fashion over 

time, we observe an increasing ‘wedge-shaped’ contribution from CCS to overall emission 

reductions, of approximately 36.3% in scenario 1 and 41.3% in scenario 2, respectively. The difference 

in contribution from CCS toward overall emission reductions can be explained by an increased role 

for solar power in scenario 2, due to power mix resilience requirements, which both reduces wind 

power’s contribution and the overall level of CO2 reducing capability. Scenario 1 offsets the most CO2 

among all scenarios, however the CO2 emission reducing technology diversity may be described as 

relatively poor, with wind having the largest role to play. 

Scenario 3 rapidly deploys CCS to the year 2032, at which point new CCS deployment is ceased 

and wind begins to play a role. Solar is introduced beginning in the year 2037, finally contributing 

approximately 19.1% to CO2 emission offsets by 2050, compared to 36.5% for wind, and the majority 

share of 44.3% for CCS. By introducing the resilience requirement in addition to scenario 3 

assumptions in scenario 4, the maximum capacity of CCS is installed in the first year of simulation, 

with no additional deployments thereafter. Wind and solar are deployed throughout the simulated 

timeline, and as a result contribute approximately 21.3% and 36.9% to CO2 offsets by 2050 compared 

to a 41.8% contribution from CCS. 

Only in scenario 1, which enables the greatest CO2 reduction impact is CCS not the majority 

source of CO2 offsets. On the other hand, where CCS provides the highest portion of CO2 offsets, in 

scenario 3, the lowest level of CO2 reduction impact is realized. 

5.2. Economic Analysis 

In terms of economic outcomes, Figure 14 describes the investment costs, electricity generation 

and carbon tax revenues along with cumulative profitability (i.e., payback periods) considering 

technology deployment regimes for each scenario.  
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Figure 14. Investment costs and revenues per technology between 2018 and 2050 in each scenario. 

Scenario 1, which reduces the highest amount of CO2 overall becomes profitable in the year 2040, 

representative of a 22-year payback period on the solar, wind and CCS investments. Wind power is 

responsible for the majority of revenues, yielded from electricity generation and carbon offsets (which 

are then sold as carbon credits at the prescribed carbon price). Cumulative profitability of scenario 1 

peaks in the year 2050 at 41.6 trillion yen, which will continue to grow as long as investment in 

renewables is sustained into the future.  

Scenario 2, by introducing resilience and therefore a large share of solar, sees revenues reduced 

for wind and increased for solar. Overall, the effect on investment payback period is negligible 

compared to scenario 1, with profitability also achieved in the year 2040. Although not as effective in 

reducing CO2 as scenario 1, scenario 2 is more profitable by the year 2050, yielding a cumulative 49.3 

trillion yen from electricity and carbon offset revenues. Deploying the lower cost technology of solar 

power ubiquitously yields financial benefits at the cost of some positive environmental impacts.  

Scenario 3 defers the deployment of renewables to the year 2032 in preference for an exclusively 

CCS-based CO2 offset regime. This has a stagnating effect on both investment and revenue streams, 

meaning that break-even is not achieved by 2050, although is likely to be achieved shortly thereafter. 

Alternatively, scenario 4, which locks in maximal CCS in the first year and deploys renewables 

consistently thereafter achieves profitability in the year 2042, and a final cumulative profit by the year 

2050 of 34.8 trillion yen. 

In terms of revenue generation, and appeal to investors, wind and solar power have an 

advantage over CCS, in that the benefits yielded are compounded over time, whereas CCS offsets 

CO2 only once, when it is initially stored. On the other hand, considering the environmental efficacy 

of each technology, CCS has the advantage of massive storage capacity and consistently contributes 

a large portion of CO2 offsets in each scenario. 
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5.3. Policy Implications 

Japan, like other developed nations, faces the challenge of achieving carbon neutrality by the 

year 2050. In terms of the energy sector, Japan has significant solar and wind resources which can be 

tapped to contribute to its decarbonization, along with a moderate level of suitable CCS sites. The 

emergence of carbon pricing or a carbon tax, along with the continuation of the feed in tariff policy 

for large-scale renewables are likely to stimulate carbon offsetting mechanisms differently over time. 

As was demonstrated by our scenario analysis, each technology has its own merits, ranging from 

a low cost or low barriers to deployment (i.e., solar), superior energy generation efficiency (i.e., wind), 

and superior carbon offsetting capacity in the investigated time frame (i.e., CCS). These merits will 

likely influence investors as to the timing and deployment regime engaged for this combination of 

key technologies. In terms of return on investment, our investigations also identified that waiting to 

deploy technologies, or using single technologies exclusively does not yield the best return on 

investment, and a combination of deployment of all available technologies while considering energy 

system resilience yields the best returns overall (scenario 2). 

As has been the case to date, it is likely that feed in tariffs will gradually reduce over time, 

converging to between 8.5 and 11.5 yen per kilowatt hour ([36]; depending on region) after the initial 

feed in tariff contract period concludes (20 years for large scale solar and wind; [33]). On the other 

hand, as has been seen in other countries, carbon prices are likely to increase over time, as the need 

to achieve carbon neutrality becomes more urgent [37,38]. Our sensitivity analysis identifies an 

increased opportunity to reduce CO2 via solar, wind and CCS if the carbon price increases as 

anticipated. 

These changes to policy and economic stimuli are also likely to influence investment timelines. 

In terms of the cost of carbon reducing technologies, we anticipate that learning curves for renewables 

will continue to drive down prices, and this is likely to be the case for CCS too, but it may be too early 

to judge based on the limited success in commercialization to date. There is also an opportunity for 

the emergence of new technologies including direct air capture (DAC) that may play a similar or 

complementary role to CCS in the future [39]. A prudent approach may be to prioritize renewables 

in the short to mid-term, in anticipation of maturing and cheaper CCS approaches in the mid to long-

term of decarbonization of the energy sector. 

Finally, while wind and solar can be deployed in most prefectures of Japan, solar almost 

ubiquitously and wind along coastlines and in mountainous areas [28], CCS in our modeling is only 

considered for 14 prefectures (and their adjacent oceans; although additional prefectures such as 

Fukuoka and Ishikawa may have some potential) which have considerable storage capacities, as 

shown in Figure 15.  

 

Figure 15. Location of Japanese prefectures with physical CCS storage sites and with high income. 
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All of the CCS capable prefectures are located in northern or western Japan, and none of them 

are recognized as ‘high prefectural income’ prefectures, with Hokkaido having the ninth highest 

prefectural income in Japan [40]. CCS provides the opportunity for a source of new income to 

prefectures which are not rich in traditional economic activity or have lower population densities. 

This may represent a way to reinvigorate prefectures which traditionally engaged in fossil fuel 

extraction activities (i.e., Hokkaido, Yamagata, Nagasaki, etc.), leading to new job opportunities and 

rural development. As shown through simulation results of all four scenarios in Section 4, Fukushima 

contributes the most and a substantially higher portion of CCS storage compared to other prefectures 

having physical CCS storage sites in our model. Thus, it can be a great opportunity for Fukushima to 

rebound its social and economic perspectives while being able to contribute to the whole national 

carbon emission reduction target. 

6. Conclusions 

This study proposes a linear programming model approach to assess the potential contributions 

toward carbon reduction of multiple technologies across a broad, diverse geographic area, to assess 

their economic and environmental merits. Taking into account various constraints reflecting the 

economically feasible deployment limits of renewable energy and CCS capacity as well as 

technological learning curves, carbon tax regimes and investment costs, the proposed approach is 

able to identify the maximum CO2 offset achievable by 2050. Most importantly, this research 

contributes toward answering the critical question of where, when and how much of each technology 

is required to contribute to carbon neutrality goals, a critical issue around the globe by the year 2050.  

Utilizing detailed data for the 47 prefectures of Japan as a case study, four scenarios were 

investigated including maximal deployment of technologies according to cost merits, and separately 

considering energy system resilience and various CCS deployment regimes. Although there are 

tradeoffs between scenarios in terms of the total CO2 amount offset from the energy sector, and in 

terms of return of investment, the large potential contribution of CCS is recognized across scenarios. 

Further, the contributions of solar and wind for CO2 offset capability and economic merit are also 

clarified, where solar is preferred in terms of a lower investment cost, and wind is recognized for its 

superior emission offset capability.  

The findings of this research lead to important policy implications including the necessity for 

the continuation of the feed-in-tariff for large-scale renewables and the need for a carbon tax which 

increases over time as the need to reduce carbon emissions becomes more urgent. Also, in the case of 

Japan, the prefectures which benefit economically from having CCS storage capability are not those 

with high prefectural incomes. This finding identifies CCS as both an opportunity to contribute to 

reducing overall CO2 emissions in Japan and also for creating jobs and aiding in the reinvigoration 

of rural areas both economically and in terms of associated social benefits. Although Japan is utilized 

as a case study nation in this study, the results can be applied to other nations, particularly those who 

share the geographic and limited fossil fuel resource challenges, and the need to diversify energy 

related environmental and economic returns. 

This research has some limitations, including the fact that it only considers the energy sector, 

and does not contribute to the decarbonization of more difficult sectors such as industry and some 

industrial processes which should be incorporated into future studies. 
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