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Abstract: To estimate the degree of quantum entanglement, it is important to understand the statistical

behavior of functions of spectrum of density matrices such as von Neumann entropy, quantum purity,

and entanglement capacity. These entanglement metrics over different generic state ensembles have

been studied intensively in the literature. As an alternative metric, in this work we study sum of

square root spectrum of density matrices, which is relevant to negativity and fidelity in quantum

information processing. In particular, we derive the exact mean and variance of sum of square root

spectrum over the Bures-Hall generic state ensemble extending known results obtained recently over

the Hilbert-Schmidt ensemble.

Keywords: quantum entanglement; negativity; fidelity; Bures-Hall ensemble; random matrix theory

1. Introduction and Main Results

1.1. Square Root Spectrum and Applications

The sum of square root of spectrum of density matrices is defined as

Λ =
m

∑
i=1

λ
1
2
i , (1)

where m is the dimension of the density matrix and the set {λi}m
i=1 is its spectrum. The random

variable (1) is closely related to the negativity (2) and fidelity (3) as discussed below.

Negativity is introduced in [1] as a computable measure of entanglement. For a pure state

ρ = |ψ〉 〈ψ| with |ψ〉 = ∑
m
j=1

√

λj |jj〉 and ∑
m
j=1 λj = 1, the negativity is defined as

N (ρ) =
||ρTA ||1 − 1

2
=

∑j 6=k

√

λjλk

2
=

(

∑
m
j=1

√

λj

)2

− 1

2
=

Λ2 − 1

2
, (2)

where || · ||1 is the trace norm (also known as the Schatten 1-norm) and ρTA refers to the partial

transpose of ρ. Moreover, it has a uniqueness property that suppose E(ρ) is a weak entanglement

monotone that is a symmetric function of negative eigenvalues of ρTA , then E(ρ) is a nondecreasing

function of N (ρ), and E(ρ) = c log(1 + 2N (ρ)) for some constant c ≥ 0 in the case that it is additive,

see [2].

Fidelity [3] refers to a measure of the similarity or overlap between two quantum states. It

quantifies how closely one quantum state resembles another. It is defined as:

F (σ, ρ) =

(

tr

√√
σρ

√
σ

)2

. (3)
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In this work, we only consider the case that σ = 1
m Im, which is the maximum mixed state, and ρ is the

the density matrix corresponding to Bures-Hall ensemble. In this case, we have

F (σ, ρ) =
1

m
Λ2. (4)

The case of Hilbert-Schmidt is computed in [4].

1.2. Description of Bures-Hall Ensemble

The Bures-Hall ensemble is described as follows [5,6]. Consider a composite(bipartite) system

that consists of two subsystems A and B of Hilbert space(complex vector space) with dimensions m

and n, respectively. The Hilbert space HA+B = HA ⊗HB. A random pure state of the composite

system HA+B is defined as a linear combination of the random coefficients zi,j and the complete basis
∣

∣iA
〉

and
∣

∣jB
〉

of HA and HB [5],

|ψ〉 =
m

∑
i=1

n

∑
j=1

zi,j

∣

∣

∣
iA
〉

⊗
∣

∣

∣
jB
〉

, (5)

where each zi,j follows the standard Gaussian distribution. We now consider a superposition of the

state (5),

|ϕ〉 = |ψ〉+ (U ⊗ Im) |ψ〉 , (6)

where U is an m × m unitary random matrix with the measure proportional to det(Im + U)2α+1 [7].

The corresponding density matrix of the pure state (6) is

ρ = |ϕ〉 〈ϕ| , (7)

which has the natural probability constraint

tr(ρ) = 1. (8)

Without loss of generality, we assume that m ≤ n. The reduced density matrix ρA of the smaller

subsystem A is computed by partial tracing (purification) of the full density matrix (7) over the other

subsystem B (environment) as

ρA = trBρ. (9)

The resulting density of the eigenvalues of ρA (λi ∈ [0, 1], i = 1, ..., m) is the (generalized) complex

Bures-Hall measure [7–10],

f (˘) =
1

C
δ

(

1 −
m

∑
i=1

λi

)

∏
1≤i<j≤m

(λi − λj)
2

λi + λj

m

∏
i=1

λα
i , (10)

where the parameter α takes half-integer values,

α = n − m − 1

2
, (11)

and the constant C is

C =
2−m(m+2α)πm/2

Γ(m(m + 2α + 1)/2)

m

∏
i=1

Γ(i + 1)Γ(i + 2α + 1)

i + α + 1
2

. (12)
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For convenience, we need to define the random variable below:

Λ =
m

∑
i=1

λ
1
2
i , Λ ∈ [1,

√
m]. (13)

Then, the negativity and fidelity are defined, respectively, as

N =
1

2

(

Λ2 − 1
)

,

F = F (σ, ρ) =
1

m
Λ2.

(14)

1.3. Main Results

Proposition 1.1 The exact mean of the random variable Λ defined in (13) valid for any subsystem

dimensions m ≤ n under the Bures-Hall ensemble (10) is obtained as

E f [Λ] =
Γ(d)

Γ(d + 1
2 )π

m−1

∑
k=0

Γ(k + 2α + m + 2)Γ(m − k − 1
2 )Γ(k +

3
2 )

Γ(k + 2α + m + 5
2 )Γ(m − k)Γ(k + 1)

× Γ(k + 2α + 5
2 )Γ(k + α + 5

2 )

Γ(k + 2α + 2)Γ(k + α + 2)

(

1 +
k + α + 1

k + α + 3
2

)

,

(15)

where d is

d =
1

2
m(m + 2α + 1). (16)

The proof of Proposition 1.1 is given in Sec. 2.2.

Proposition 1.2 The exact second moment of Λ in (13) valid for any subsystem dimensions m ≤ n

under the Bures-Hall ensemble (10) is obtained as

E f [Λ
2] = − 1

2d

m−1

∑
k=0

(

(−1)k+mΓ(k + 2α + m + 2)Γ(k + 2)

Γ(k + 2α + 2)Γ(k + 2α + 2 − α)Γ(m − k)k!
+

(−1)k+mΓ(k + 1 + 2α + 2)Γ(k + 1 + 2α + 2 − α)

Γ(k + 1 + 2α + m + 2)Γ(k + 1 − m + 1)

)

+

1

4π2d

m−1

∑
k=0

m−1

∑
j=0

lk,0lj,0

lk, 1
2
lj, 1

2

(

4

(

2 +
1

2(j + α + 1)

)(

2 +
1

2(k + α + 1)

)

− 2
1

k − j − 1
2

1

j − k − 1
2

(

1 +
j + α + 3

2

j + α + 1

k + α + 3
2

k + α + 1

)

+ 4
3
2 + j + α

(2 + j + k + 2α)(3 + j + k + 2α)(1 + α + j)

)

,

(17)

where we denote

lk,β =
Γ(m + 2α + k + 2 + β)

Γ(k + 1 + β)Γ(k + α + 1 + β)Γ(k + 2α + 2 + β)Γ(m − k − β)
. (18)

Therefore, the mean of negativity and fidelity, valid for any subsystem dimensions m ≤ n, are obtained,

respectively, as

E f [N ] =
1

2

(

E f [Λ
2]− 1

)

,

E f [F ] =
1

m
E f [Λ

2],

(19)
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where the expectation E f [.] is taken over the Bures-Hall ensemble (10). The exact variance of the first

moment Λ under the Bures-Hall ensemble is given by

V f [Λ] = E f [Λ
2]−E

2
f [Λ]. (20)

The proof of these results is given in Sec. 2.3.

Now we can understand the distribution of the Λ with the expressions of the mean (15) and

variance (20). For convenience, we standardize Λ as

X =
Λ −E f [Λ]
√

V f [Λ]
, (21)

which make the random variable X be supported in X ∈ (−∞, ∞) with zero mean and unit variance.

We obtain the simulation with comparison to Gaussian distribution by Matlab.

As we can see from the Figures 1 and 2, while the distribution of von Neumann entropy which

is conjectured to be the same as Gaussian distribution [11,12], the distribution of Λ is also similar to

Gaussian distribution.

Figure 1. Simulated distribution of Λ when m = 4, n = 6.

Figure 2. Simulated distribution of Λ when m = 16, n = 24.
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2. Computing Moments of Sum of Square Root Statistics

2.1. Ensemble Conversion

We calculate the random variables under the original ensemble by covering it to unconstrained

ensemble. The unconstrained ensemble of the Bures-Hall measure is

h(x) =
1

C′ ∏
1≤i<j≤m

(xi − xj)
2

xi + xj

m

∏
i=1

xα
i e−xi (22)

where xi ∈ [0, ∞), i=1,...,m, and the constant C’ depends on the constant (12) as

C′ = CΓ(d) (23)

with d denoting

d =
1

2
m(m + 2α + 1) (24)

The density of trace

θ =
m

∑
i=1

xi, θ ∈ [0, ∞) (25)

is obtained as

g(θ) =
∫

x
h(x)δ

(

θ −
m

∑
i=1

xi

)

m

∏
i=1

dxi

=
C

C′ e
θθd−1

∫

λ
f (λ)dλi

=
1

Γ(d)
e−θθd−1,

(26)

where we have applied the change of variables

xi = θλi, (27)

implies that h(x) is factored as [13]

h(x)
m

∏
i=1

dxi = f (λ)g(θ)dθ
m

∏
i=1

dλi (28)

which shows θ is independent of each λi.

By multiplying an appropriate constant (26),

1 =
∫ ∞

0

1

Γ(d + 1)
e−θθd dθ, (29)

denote that

Λ =
m

∑
i=1

λ
1
2
i

X =
m

∑
i=1

x
1
2
i ,

(30)
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we have

E f [Λ] =
∫ ∞

0

e−θθd− 1
2

Γ(d + 1
2 )

dθ

∫ ∞

0
Λ f (λ)

m

∏
i=1

dλi =
∫ ∞

0

∫ ∞

0

X

θ
1
2

e−θθd− 1
2

Γ(d + 1
2 )

f (λ)dθ
m

∏
i=1

dλi

=
Γ(d)

Γ(d + 1
2 )

∫ ∞

0

e−θθd−1

Γ(d)
dθ

∫ ∞

0
X f (λ)

m

∏
i=1

dλi

=
Γ(d)

Γ(d + 1
2 )

∫ ∞

0
Xh(x)

m

∏
i=1

dxi

=
Γ(d)

Γ(d + 1
2 )

Eh[X].

(31)

The variance is defined as

V f [Λ] = E f

[

(

Λ −E f [Λ]
)2
]

= E f [Λ
2]−E

2
f [Λ]. (32)

We have

E f [Λ
2] =

∫ ∞

0
Λ2 f (λ)

m

∏
i=1

dλi =
∫ ∞

0

∫ ∞

0
X2 1

θ
f (λ)dθ

m

∏
i=1

dλi

.

(33)

Similarly, by multiplying a proper constant (29), we obtain

E f [Λ
2] =

Γ(d)

Γ(d + 1)
Eh[X

2]. (34)

Applying (31) and (34), we have

V f [Λ] =
1

d
Eh[X

2]−
(

Γ(d)

Γ(d + 1
2 )

)2

E
2
h[X]. (35)

2.2. Calculation of the Mean of Λ

Following the formulas for Eh[TP] [14, Eq. (26) to (48)], with the same notation, letting

I
(β)
q =

m−1

∑
k=0

(−1)kΓ(k + 2α + m + 2)Γ(m − k − β)

Γ(k + 2α + 2)Γ(k + 2α + 2 − q)Γ(m − k)k!

Γ(k + β + 2α + 2)Γ(k + β + 2α + 2 − q)

Γ(k + β + 2α + m + 2)Γ(−k − β)
, (36)

letting β = 1
2 instead of β = 2, we obtain

Eh[X] = −1

2

∫ ∞

0
x

1
2

∫ ∞

1
Gα(x) + Gα+1(x)dt dx = −1

2

∫ ∞

1

∫ ∞

0
x

1
2
(

Gα(x) + Gα+1(x)
)

dx dt

= −1

2

∫ ∞

1
t−

3
2 (I

β
α + I

β
α+1)dt

= −
m−1

∑
k=0

(−1)kΓ(k + 2α + m + 2)Γ(m − k − 1
2 )

Γ(k + 2α + 2)Γ(k + α + 2)Γ(m − k)k!

Γ(k + 1
2 + 2α + 2)Γ(k + 1

2 + α + 2)

Γ(k + 1
2 + 2α + m + 2)Γ(−k − 1

2 )

−
m−1

∑
k=0

(−1)kΓ(k + 2α + m + 2)Γ(m − k − 1
2 )

Γ(k + 2α + 2)Γ(k + α + 1)Γ(m − k)k!

Γ(k + 1
2 + 2α + 2)Γ(k + 1

2 + α + 1)

Γ(k + 1
2 + 2α + m + 2)Γ(−k − 1

2 )

(37)

Applying the identity of Gamma function:

Γ

(

− 1

2
− k

)

= (−1)k−1 Γ( 1
2 )Γ(

1
2 )

Γ(k + 1 + 1
2 )

, (38)
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we are able to write the result as

Eh[X] =
1

π

m−1

∑
k=0

Γ(k + 2α + m + 2)Γ(m − k − 1
2 )Γ(k +

3
2 )

Γ(k + 2α + m + 5
2 )Γ(m − k)Γ(k + 1)

Γ(k + 2α + 5
2 )Γ(k + α + 5

2 )

Γ(k + 2α + 2)Γ(k + α + 2)

×
(

1 +
k + α + 1

k + α + 3
2

)

(39)

Therefore, the mean of Λ is given by

E f [Λ] =
Γ(d)

Γ(d + 1
2 )π

m−1

∑
k=0

Γ(k + 2α + m + 2)Γ(m − k − 1
2 )Γ(k +

3
2 )

Γ(k + 2α + m + 5
2 )Γ(m − k)Γ(k + 1)

Γ(k + 2α + 5
2 )Γ(k + α + 5

2 )

Γ(k + 2α + 2)Γ(k + α + 2)

×
(

1 +
k + α + 1

k + α + 3
2

)

(40)

2.3. Calculation of the Second Moment

By (35), now it suffices to calculate Eh[X
2].

Eh[X
2] =

∫

x

(

m

∑
i=1

x
1
2
i

)2

h(x)
m

∏
i=1

dxi =
∫

x

(

m

∑
i=1

xi

)

h(x)
m

∏
i=1

dxi

+ 2
∫

x

(

∑
1≤i<j≤m

x
1
2
i x

1
2
j

)

h(x)
m

∏
i=1

dxi

= m
∫ ∞

0
xh1(x)dx + m(m − 1)

∫ ∞

0

∫ ∞

0
x

1
2 y

1
2 h2(x, y)dx dy,

(41)

where

h1(x) =
1

2m

(

K01(x, x) + K10(x, x)
)

h2(x, y) =
1

4m(m − 1)

(

(

K01(x, x) + K10(x, x)
)(

K01(y, y) + K10(y, y)
)

− 2K01(x, y)K01(y, x)

− 2K10(x, y)K10(y, x)− 2K00(x, y)K11(x, y)− 2K00(y, x)K11(y, x)

)

,

(42)

where

K00(x, y) =
∫ 1

0
t2α+1Hα(tx)Hα+1(ty)dt

K01(x, y) = x2α+1
∫ 1

0
t2α+1Hα(ty)Gα+1(tx)dt

K10(x, y) = y2α+1
∫ 1

0
t2α+1Hα+1(tx)Gα(ty)dt

K11(x, y) = (xy)2α+1
∫ 1

0
t2α+1Gα+1(tx)Gα(ty)dt − xαyα+1

x + y
,

(43)

where we denote

Hq(x) = G 1,1
2,3

(

−m−2α−1;m
0;−q,−2α−1

∣

∣

∣

∣

∣

x

)

Gq(x) = G 2,1
2,3

(

−m−2α−1;m
0,−q;−2α−1

∣

∣

∣

∣

∣

x

)

.

(44)

The kernal functions above((39) and (42) to (44)) are obtained in [15,16] , which were successfully used

in calculating the mean and variance of von Neumann entropy under Bures-Hall ensemble [11].
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So we can calculate five integrals separately to get the result:

I1 =
∫ ∞

0
x(K01(x, x) + K10(x, x))dx

IA =
∫ ∞

0
x

1
2 (K01(x, x) + K10(x, x))dx

IB =
∫ ∞

0

∫ ∞

0
x

1
2 y

1
2 K01(x, y)K01(y, x)dx dy

IC =
∫ ∞

0

∫ ∞

0
x

1
2 y

1
2 K10(x, y)K10(y, x)dx dy

ID =
∫ ∞

0

∫ ∞

0
x

1
2 y

1
2 K00(x, y)K11(x, y)dx dy

(45)

2.3.1. Calculation of I1 and IA

The evaluation of I1 and IA could also be obtained by the formula for IA [11, Eq. (52) to (55)] with

β = 1 and β = 1
2 respectively. Denoting

Aq(t) =
∫ ∞

0
xβ(tx)2α+1H2α+1−q(tx)Gq(tx)dx

Aq(t) = t−β−1 Aq,

(46)

where

Aq =
m−1

∑
k=0

(−1)k+mΓ(k + 2α + m + 2)Γ(k + β + 1)

Γ(k + 2α + 2)Γ(k + 2α + 2 − q)Γ(m − k)k!

Γ(k + β + 2α + 2)Γ(k + β + 2α + 2 − q)

Γ(k + β + 2α + m + 2)Γ(k + β − m + 1)
. (47)

Notice that when β = 0, Aq = 0, so we get another expression of K01 and K11:

K01(x, y) = −x2α+1
∫ ∞

0
t2α+1Hα(tx)Gα+1(ty)dt

K10(x, y) = −y2α+1
∫ ∞

1
t2α+1Gα(tx)Hα+1(ty)dt

(48)

By changing the order of integrals, I1 and IA can be calculated as

I1 = −
∫ ∞

0

∫ ∞

1
x1(tx)2α+1

(

Hα(tx)Gα+1(tx) + Gα(tx)Hα+1(tx)
)

dt dx

= −
∫ ∞

1
t−1−1(Aα + Aα+1)dt = −(Aα + Aα+1)|β=1

IA = −
∫ ∞

0

∫ ∞

1
x

1
2 (tx)2α+1

(

Hα(tx)Gα+1(tx) + Gα(tx)Hα+1(tx)
)

dt dx

= −
∫ ∞

1
t−

1
2−1(Aα + Aα+1)dt = −2(Aα + Aα+1)|β= 1

2

(49)

2.3.2. Calculation of IB and IC

Calculation of IB and IC follows almost the same procedure. It starts from the fact that the

kernels (43) as well as finite sum representation [14,17] of the Meijer G-functions G1,1
2,3 . Directly evaluate

the integrals over t by the identity [18]

∫ 1

0
xa−1G m,n

p,q

(

a1,...,an ;an+1,...,ap

b1,...,bm ;bm+1,...,bq

∣

∣

∣

∣

∣

ηx

)

dx = G m,n+1
p+1,q+1

(

1−a,a1,...,an ;an+1,...,ap

b1,...,bm ;bm+1,...,bq ,−a

∣

∣

∣

∣

∣

η

)

. (50)
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This leads IB and IC to

IB =
m−1

∑
j,k=0

f j,k fk,j

IC =
m−1

∑
j,k=0

gj,kgk,j

(51)

where we denote

f j,k =
(−1)jΓ(m + 2α + j + 2)

Γ(j + 1)Γ(α + j + 1)Γ(2α + j + 2)Γ(m − j)

∫ ∞

0
x

1
2 G 2,2

3,4

(

j−k,j−m;m+2α+j+1
2α+j+1,α+j;j,j−k−1

∣

∣

∣

∣

∣

x

)

dx (52)

gj,k =
(−1)jΓ(m + 2α + j + 2)

Γ(j + 1)Γ(α + j + 2)Γ(2α + j + 2)Γ(m − j)

∫ ∞

0
x

1
2 G 2,2

3,4

(

j−k,j−m;m+2α+j+1
2α+j+1,α+j+1;j,j−k−1

∣

∣

∣

∣

∣

x

)

dx (53)

As
∫ ∞

0
xs−1G m,n

p,q

(

a1,...,an ;an+1,...,ap

b1,...,bm ;bm+1,...,bq

∣

∣

∣

∣

∣

ηx

)

dx =
η−s ∏

m
j=1 Γ(bj + s)∏

n
j=1 Γ(1 − aj − s)

∏
p
j=n+1 Γ(aj + s)∏

q
j=m+1 Γ(1 − bj − s)

, (54)

we get

f j,k =
(−1)jΓ(m + 2α + j + 2)Γ(j + 2α + 1 + 3

2 )

Γ(j + 1)Γ(α + j + 1)Γ(2α + j + 2)Γ(m − j)

× Γ(j + α + 3
2 )Γ(1 − j + k − 3

2 )Γ(1 − j + m − 3
2 ))

Γ(m + 2α + j + 5
2 )Γ(− 1

2 − j)Γ( 1
2 − j + k)

(55)

gj,k = f j,k
j + α + 3

2

j + α + 1
. (56)

Applying the identity of Gamma function (38), f j,k can be rewritten as

− Γ(m + 2α + j + 2)Γ(j + 3
2 )Γ(m − j − 1

2 )

Γ(j + 1)Γ(j + α + 1)Γ(j + 2α + 2)Γ(m − j)

Γ(j + 2α + 5
2 )Γ(j + α + 3

2 )

Γ(m + 2α + j + 5
2 )(k − j − 1

2 )π
. (57)

Define that

lj,x =
Γ(m + 2α + j + 2 + x)

Γ(j + 1 + x)Γ(j + α + 1 + x)Γ(j + 2α + 2 + x)Γ(m − j − x)
, (58)

we get

f j,k = − 1

π

lj,0

lj, 1
2

1

k − j − 1
2

. (59)

2.3.3. Calculation of ID

To calculate ID, we use another form of the correlation kernels [18]

K00(x, y) =
m−1

∑
k=0

2(k + α + 1)G 1,1
2,3

(

−2α−1−k;k+1
0;−α,−2α−1

∣

∣

∣

∣

∣

x

)

G 1,1
2,3

(

−2α−1−k;k+1
0;−α−1,−2α−1

∣

∣

∣

∣

∣

y

)

K11(x, y) = xαyα+1
m−1

∑
k=0

2(k + α + 1)G 2,1
2,3

(

−α−k−1;α+k+1
0,α;−α−1

∣

∣

∣

∣

∣

y

)

G 2,1
2,3

(

−α−k;α+k+2
0,α+1;−α

∣

∣

∣

∣

∣

x

)

− xαyα+1e−x−y

x + y
.

(60)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2023                   doi:10.20944/preprints202308.0841.v1

https://doi.org/10.20944/preprints202308.0841.v1


10 of 12

As the function can be factorized, we can calculate them separately

∫ ∞

0
xβxαe−x pj(x)Qk(−x)dx = (−1)j+k+1

∫ ∞

0
G 1,1

2,3

(

−2α−1−j;j+1
0;−α,−2α−1

∣

∣

∣

∣

∣

x

)

G 2,1
2,3

(

β−k;β+2α+k+2
β+α,β+2α+1;β

∣

∣

∣

∣

∣

x

)

dx

= (−1)j+k+1
∫ ∞

0

Γ(2α + 2 + j)

Γ(1 + α)Γ(2α + 2)Γ(j + 1) 2F2(2α + 2 + j,−j; 1 + α, 2α + 2; x)

G 2,1
2,3

(

β−k;β+2α+k+2
β+α,β+2α+1;β

∣

∣

∣

∣

∣

x

)

dx

=
j

∑
i=0

(−1)i+j+k+1Γ(2α + 2 + j + i)

Γ(1 + α + i)Γ(2α + 2 + i)Γ(i + 1)Γ(j − i + 1)

∫ ∞

0
xiG 2,1

2,3

(

β−k;β+2α+k+2
β+α,β+2α+1;β

∣

∣

∣

∣

∣

x

)

dx

=
j

∑
i=0

(−1)i+j+1Γ(2α + 2 + j + i)Γ(β + i + 1)

Γ(1 + α + i)Γ(2α + 2 + i)Γ(i + 1)Γ(j − i + 1)

Γ(β + α + i + 1)Γ(β + 2α + i + 2)

Γ(β + 2α + k + i + 3)Γ(β + i + 1 − k)

(61)

Similarly,

∫ ∞

0
yβyα+1e−yqj(y)Pk(−y)dy

=
j

∑
s=0

(−1)s+j+1Γ(2α + 2 + j + s)Γ(β + s + 1)

Γ(2 + α + s)Γ(2α + 2 + s)Γ(s + 1)Γ(j − s + 1)

Γ(β + α + s + 2)Γ(β + 2α + s + 2)

Γ(β + 2α + k + s + 3)Γ(β + s + 1 − k)

(62)

While
∫ ∞

0

∫ ∞

0
xβyβ pj(x)qj(y)

xαyα+1e−x−y

x + y
dx dy =

j

∑
i=0

j

∑
k=0

1

Γ(i + 1)Γ(j − i + 1)

(−1)k+iΓ(2α + 2 + j + i)

Γ(1 + α + i)Γ(2α + 2 + i)

Γ(2α + 2 + j + k)

Γ(2 + α + k)Γ(2α + 2 + k)Γ(k + 1)Γ(j − k + 1)

×Γ(β + α + i + 1)Γ(β + α + k + 2)

2β + i + k + 2α + 2

(63)

Applying equation (38), with the notation (18) above, we obtain

ID = − 1

π2

m−1

∑
i=0

m−1

∑
j=0

li,0lj,0

li, 1
2
lj, 1

2

1
2 + α + j + 1

(2 + i + j + 2α)(2 + i + j + 2α + 1)(1 + α + j)
(64)

Applying the equations (49), (51) and (64) above, we can finally obtain that

Eh[X
2] =

1

2
I1 +

1

4
IA − 1

2
(IB + IC)− ID

= −1

2

m−1

∑
k=0

(

(−1)k+mΓ(k + 2α + m + 2)Γ(k + 2)

Γ(k + 2α + 2)Γ(k + α + 2)Γ(m − k)k!

Γ(k + 2α + 3)Γ(k + α + 3)

Γ(k + 2α + m + 3)Γ(k − m + 2)

+
(−1)k+mΓ(k + 2α + m + 2)Γ(k + 2)

Γ(k + 2α + 2)Γ(k + α + 1)Γ(m − k)k!

Γ(k + 2α + 3)Γ(k + α + 2)

Γ(k + 2α + m + 3)Γ(k − m + 2)

)

+
1

4π2

m−1

∑
k=0

m−1

∑
j=0

lk,0lj,0

lk, 1
2
lj, 1

2

(

4(2 +
1

2(j + α + 1)
)(2 +

1

2(k + α + 1)
)− 2

1

k − j − 1
2

1

j − k − 1
2

×
(

1 +
j + α + 3

2

j + α + 1

k + α + 3
2

k + α + 1

)

+ 4
3
2 + j + α

(2 + j + k + 2α)(3 + j + k + 2α)(1 + α + j)

)

.

(65)
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Now we can write the following results in terms of Eh[X
2] and Eh[X]:

V f [Λ] =
1

d
Eh[X

2]−
(

Γ(d)

Γ(d + 1
2 )

)2

E
2
h[X]

E f [N ] =
1

2

(

1

d
Eh[X

2]− 1

)

E f [F ] =
1

md
Eh[X

2].

(66)

3. Conclusions

In this work, we compute the exact mean values of negativity and fidelity over the Bures-Hall

ensemble via computing the first two moments of sum of square root spectrum of density matrices. The

results are obtained by making use of known formulas of correlation functions of Bures-Hall ensemble

and the corresponding special functions. Future works include the computation of higher-order

moments of sum of square root spectrum as well as obtaining its asymptotic distributions. .
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