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Abstract: To estimate the degree of quantum entanglement, it is important to understand the statistical
behavior of functions of spectrum of density matrices such as von Neumann entropy, quantum purity,
and entanglement capacity. These entanglement metrics over different generic state ensembles have
been studied intensively in the literature. As an alternative metric, in this work we study sum of
square root spectrum of density matrices, which is relevant to negativity and fidelity in quantum
information processing. In particular, we derive the exact mean and variance of sum of square root
spectrum over the Bures-Hall generic state ensemble extending known results obtained recently over
the Hilbert-Schmidt ensemble.

Keywords: quantum entanglement; negativity; fidelity; Bures-Hall ensemble; random matrix theory

1. Introduction and Main Results

1.1. Square Root Spectrum and Applications

The sum of square root of spectrum of density matrices is defined as

A (1)

1

M

I
—

A =

where m is the dimension of the density matrix and the set {A;}", is its spectrum. The random
variable (1) is closely related to the negativity (2) and fidelity (3) as discussed below.
Negativity is introduced in [1] as a computable measure of entanglement. For a pure state

p =) (| with [p) =Yy \//\7] |jj) and Y24 Aj = 1, the negativity is defined as

2
; . oA =1
N(p) = lloTa]lp -1 _ Lk A/ Ak _ (le ]> A2 _1

2 2 2 -T2 @)

where || - ||; is the trace norm (also known as the Schatten 1-norm) and p4 refers to the partial
transpose of p. Moreover, it has a uniqueness property that suppose E(p) is a weak entanglement
monotone that is a symmetric function of negative eigenvalues of pT4, then E(p) is a nondecreasing
function of N'(p), and E(p) = c log(1 + 2N (p)) for some constant ¢ > 0 in the case that it is additive,
see [2].

Fidelity [3] refers to a measure of the similarity or overlap between two quantum states. It
quantifies how closely one quantum state resembles another. It is defined as:

Flo,p) = (tr ﬁpﬁ)z- ®)
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In this work, we only consider the case that ¢ = %]Im, which is the maximum mixed state, and p is the
the density matrix corresponding to Bures-Hall ensemble. In this case, we have

f@m:%M. (4)

The case of Hilbert-Schmidt is computed in [4].

1.2. Description of Bures-Hall Ensemble

The Bures-Hall ensemble is described as follows [5,6]. Consider a composite(bipartite) system
that consists of two subsystems A and B of Hilbert space(complex vector space) with dimensions m
and n, respectively. The Hilbert space Ha+p = Ha ® Hp. A random pure state of the composite
system H 4, p is defined as a linear combination of the random coefficients z; ; and the complete basis
|i4) and |B) of H 4 and Hp [5],

W:ii%

i=1j=1

"y ® i), ©)

where each z; ; follows the standard Gaussian distribution. We now consider a superposition of the
state (5),

l9) =) + (U L) [), (6)

where U is an m x m unitary random matrix with the measure proportional to det(L,, + U)2**1 [7].
The corresponding density matrix of the pure state (6) is

p=l¢) (o], 7)

which has the natural probability constraint

tr(p) = 1. ®)

Without loss of generality, we assume that m < n. The reduced density matrix p4 of the smaller
subsystem A is computed by partial tracing (purification) of the full density matrix (7) over the other
subsystem B (environment) as

pa = trpp. )

The resulting density of the eigenvalues of p4 (A; € [0,1],i = 1,...,m) is the (generalized) complex
Bures-Hall measure [7-10],

(Ai

1 m
fC)zé(l}ZAO I IIA (10)
C i=1 1<i<j<m AitA A
where the parameter « takes half-integer values,
1
——m— = 11
a=n—m-z, (11)
and the constant C is
m(m+2a) o/ m
2” HF1+1 +21x+1)' (12)

F(m(m+20c+1 /2 Z:1 1_|_‘x+2
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For convenience, we need to define the random variable below:
A=Y AL Ac[L . (13)
i=1
Then, the negativity and fidelity are defined, respectively, as
),
(14)

F=F(o,p) = %AZ.

1.3. Main Results

Proposition 1.1 The exact mean of the random variable A defined in (13) valid for any subsystem
dimensions m < n under the Bures-Hall ensemble (10) is obtained as

A] = r(d) "ill"(k—i—Za—i—m—i—Z)F(m—k—%)I’(k—i—%)
TN T T+ D B T+ 2a+m+ 3)0(m—k)T(k+1)

5 5 (15)
Xl"(k+21x—|—2)1"(k+zx+2)< k+zx+1>
T(k+20+2)T(k+a+2) k+a+3)
where d is .
d= Em(m+21x+1). (16)

The proof of Proposition 1.1 is given in Sec. 2.2.
Proposition 1.2 The exact second moment of A in (13) valid for any subsystem dimensions m < n
under the Bures-Hall ensemble (10) is obtained as

1 mil (=) (k420 4+ m +2)T'(k +2)
=5 \T(k+2a+2)T'(k+2a+2—a)l'(m—k)k!
(=D)F"T(k+1+2a+2)T(k+1+2a+2—a)
F(k+1+2a+m+2)L(k+1—m+1)

a8 5t (s (0 o)

— —— 42+ = || 2+ = 17
4772‘11;)];) lk,%lj’% 2(j+a+1) 2(k+a+1) (17)
jte+3k+a+3
jra+lk+a+1

Stjta )
Q+j+k+20)B+j+k+2a)(14+a+7]) )’

+4

where we denote

Lo L(m+2x+k+2+p)
T T+ 1+ B (k+a+1+B)T(k+2a+2+p)T(m—k—p)

(18)

Therefore, the mean of negativity and fidelity, valid for any subsystem dimensions m < #, are obtained,
respectively, as
1 2
EfN] = 5 (Ef[A%] = 1),
L (19)
Ef[F] = Ef[A7],
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where the expectation E[.] is taken over the Bures-Hall ensemble (10). The exact variance of the first
moment A under the Bures-Hall ensemble is given by

V[A] = Ef[A?] - E3[A]. (20)

The proof of these results is given in Sec. 2.3.
Now we can understand the distribution of the A with the expressions of the mean (15) and
variance (20). For convenience, we standardize A as

x = ATEAN

, (21)
Ve[A]
which make the random variable X be supported in X € (—co, c0) with zero mean and unit variance.
We obtain the simulation with comparison to Gaussian distribution by Matlab.
As we can see from the Figures 1 and 2, while the distribution of von Neumann entropy which
is conjectured to be the same as Gaussian distribution [11,12], the distribution of A is also similar to
Gaussian distribution.

m=4,n=6
— — — Simulation
05 — Gaussian approx.
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Figure 1. Simulated distribution of A whenm =4, n = 6.
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Figure 2. Simulated distribution of A when m = 16, n = 24.
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2. Computing Moments of Sum of Square Root Statistics

2.1. Ensemble Conversion

We calculate the random variables under the original ensemble by covering it to unconstrained
ensemble. The unconstrained ensemble of the Bures-Hall measure is

hix)== TI

1<i<j<m

(x; — x;)*

x¥e i 22
xi—i—x]- 1 ! (22)

i=

where x; € [0,0), i=1,..., m, and the constant C" depends on the constant (12) as

C' =Cr(d) (23)
with d denoting
d= %m(m+21x+1) (24)
The density of trace
m
=) x, 6€l00) (25)

is obtained as

C opi
= E,e@ed ! /A F(A)dA, (26)
— T opd-1

@

where we have applied the change of variables
x; = 6A;, 27)

implies that h(x) is factored as [13]

n() ] Tdx; = F()g(@)do] ] da, e8)
i=1

i=1

which shows 0 is independent of each A;.
By multiplying an appropriate constant (26),

Y R S Sy
1_/0 e o (29)

denote that

>
I

s
om

(30)

>
I
R 3

Il
—
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we have
E([A] =/°° e ot de/ AFVTT dA :/oo/ooxe_eguf(/\)deﬁd)v
U R R R A
I'(d) ) e—99d 1 m
de [ X dA;
aep b T ) vl o
I'(d)
(d+73) b [T
I'(d)
@y
The variance is defined as
2
Vi[A] = B[ (A= Ef[A)) "] = Ef[A%] - E}[A]. (32)
We have
=] m o oo 1 m
2 _ 2 o 21 )
E/[A2] _/O Af()\)g ar, /0 /0 X gf(A)deg A, )
Similarly, by multiplying a proper constant (29), we obtain
I'(d
Ef[A’] = & ( d(+) 1)Eh[X2]. (34)
Applying (31) and (34), we have
1 r(d) \*
WlA = ZE X - (s ) EfiX) @)
2

2.2. Calculation of the Mean of A

Following the formulas for E;,[Tp] [14, Eq. (26) to (48)], with the same notation, letting

1(5)_mi1 (~D*T(k+2a+m+2)I(m—k—p) T(k+p+2a+2)T(k+p+2x+2—q) 36)
T B T(k+2a0+2)T(k+2a+2—q)T(m—k)k!  T(k+p+20+m+2)T(=k—p) ~

letting § = % instead of B = 2, we obtain

/ x2/ Ga(x) + Gayq(x dtdx——f/ / x? (Ga(x) + Gyy1(x)) dx dt

2/ R P ) dr
Mol (—1*T (k420 +m+2)T(m —k— L) T(k+ 3 + 20 +2)T(k+ 1 +a +2) (37)
T(k+20+2)T(k+a+2)T(m —k)k! T(k+1+2a+m+2)I(—k—1)
Mol (1T (k420 +m+2)T(m —k— ) T(k+ 1 +20+2)T(k+ 3 +a+1)

T(k+2a+2)0(k+a+1)T(m—k)k! T(k+1+2x+m+2)T(—k— 1)

Applying the identity of Gamma function:

r( _ 1 _ k> _ (_1)k71 r(%)r(%) (38)
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we are able to write the result as
li k+21x+m+2)1”(m—k—%)F(k—k%)T(k+2¢x+%)l’(k+a+g)
= T(k+2a+m+3)T(m—kT(k+1) Tlk+2a+2)T(k+a+2) (39)
( k+a+1>
X 1+73
k+06+§
Therefore, the mean of A is given by
E/[A] = I'(d) ’"ill"(k+2a+m+2)l"(m—k—%)T(k—i—%)F(k+2a+%)l’(k+a+g)
TN T Td+ D & Tl+2a+m+3)(m—k)(k+1) T(k+20x+2)T(k+a+2) )

y <1+k+zx+§)
k+0€+§

2.3. Calculation of the Second Moment

By (35), now it suffices to calculate [, [X?].

m 1 2 m m m
Eh[Xz]:/ (fo) h(x)dei:/ (in> h(x) [T dx;
x \j=1 i=1 ¥ \i=1 i=1
+2/<

> 1—[ ds, (41)
1<i<j<m

:m/ xhl(x)dx—l—m(m—l)/ / x%y%hz(x,y)dxdy,
0 o Jo

1
xZx
Z

'\‘ Nl

where

hy(x) = 1 (K01(x x) + Kqo(x, x))

ha(x,y) = 4,”(7;_1) <(K01(x, x) + Kio(x, x)) (Kot (v, y) + K1o(v,y)) — 2Koa (x,y)Kor (v, %)~ (42)
— 2Kq0(x, y)Kio(y, x) — 2Koo (¥, y)K11(x, y) — 2Koo (v, x) K11 (v, x)> ,
where

1
Koo(x,y) = [ 54 Ha(t0) Ho (1) dt

1
Koa(x,y) = x50 [P H (1) Gy (1)

1 (43)
Kio(x,y) = y2*+1 /0 25 H, L (2) Gy (fy) dt
_ 20+1 U oowst x“]/'Hl
Kin(xy) = ()**1 [ PG ()Galty) at =
where we denote
Hy(x) = G5 (5;"1;,2“2;”’11 )
(44)

_ 21 —m—2a—1;m
Gy(x) = G5 < 0,—q;—2x—1

The kernal functions above((39) and (42) to (44)) are obtained in [15,16] , which were successfully used
in calculating the mean and variance of von Neumann entropy under Bures-Hall ensemble [11].
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So we can calculate five integrals separately to get the result:
L = / x(Kox (x, x) + Ko (x, x)) dx
Iy =[x (Ko (x,2) + Kio(x, 1)) dx
1k
x2y2Kop (x, ) Kor (y, x) dx dy (45)

Nb—'
N

||
\\\\o

y2Kyo(x,y)Kqo(y, x) dx dy

x2y 3 Koo(x, y)Ku1 (x,y) dx dy

~r
e
e

2.3.1. Calculation of I1 and 14

The evaluation of I; and I4 could also be obtained by the formula for I4 [11, Eq. (52) to (55)] with
=1and B = 1 respectively. Denotin
7 Tesp Y g

Agt) = /0 B ()2 g g (£3) Gy (£x) dx

(46)
Ag(t) =tF4A,,
where
a4 nel (—)MMT (k20 +m4+2)T(k+B+1) T(k+p+2a+2)T(k+B+2a+2—q) @)
17 = T(k+20+2)T(k+2a+2—q)T(m—k)k T(k+p+2a+m+2)T(k+B—m+1)
Notice that when g = 0, A; = 0, so we get another expression of Ko; and Kj:
Kor(,y) = =+ [ 25 H (1) Gy (ty)
oo (48)
Kio(,y) = =1 [ 16, (tx) o (ty)
1
By changing the order of integrals, I; and I4 can be calculated as
L = / / (t2)2 T (Hy (t2) Gp1 (tx) + G (tx) Hyyq (tx) ) dt dx
— 7/ F1 (Ag + Agg) dE = —(Ag + Agan) g
o oo (49)
Iy=— / / 3 (40)24Y (Hy () Gy 1 (%) + Ga (1) Hap (1)) dt dx

/ A (Ag o+ Agan) dE = —2(Au+ Agn)lpy

2.3.2. Calculation of Ig and I¢

Calculation of Iz and I¢ follows almost the same procedure. It starts from the fact that the
kernels (43) as well as finite sum representation [14,17] of the Meijer G-functions G;; Directly evaluate
the integrals over t by the identity [18]

n) . (50)

1
a—1~mu | WrAnilnsl
/0 X Gy (b ity

mn+1 1-a,a1,..,an;8,41,--/2p
’7") =Gy, q+1< R
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This leads Iz and I¢ to
m—1
Is= ). firfej
=0 51)
m—1 (
Ic= ) 8jkSkj
jk=0
where we denote
o (—1)1'1"(m + 2« +j+2) / 1 29[ j—kj—mm+2a+j+1
Sk = TG DT+ DTt + 20 (m— ) o O34 2ty | ¥ J 6D
o (=1)IT(m +2a+j+2) /°° 1 00 jokj—mmt2ati+l
8ik = T DT (] + 2T a4+ 2Tm =) Jo © O3 | ansjirahjvrjor-1| ¥ | dx - (59)
As
— m
/oo xsfle'” 111/ an ZnJrl h nx dx — Ui ) (b +S) 1_[] 1F(1—a] —S) (54)
0 P L0 IT;_ n+11“(a] +8)IT]_, 4 T(1 = b —5)
we get ‘
e (-1)/T(m+20+j+2)T(j+2a+1+3)
TG+ 1) (@ +j+ DT (2a + j+2)T(m — j) 5)
PG+a+3)l(1—j+k=3)(1—j+m=3))
T(m+20+j+3)T(=1 = )T —j+k)
‘ jta+3
Sk =Sk 6)
Applying the identity of Gamma function (38), f; x can be rewritten as
C T(m42a4j+2T((+3)T(m—j—3)  T(+2a+3)T(+a+3) &)
TG+ DTG +a+ DI +2a+2)T(m—j)T(m+20+j+3)(k—j—H)n
Define that _
Lo [(m+4204j+2+x) (58)
TG4+ 1+x0)T(j+a+1+x)(G+20+2+x)T(m—j—x)’
we get
11 1
fix= (59)

ml. 1k—j—%'

2.3.3. Calculation of Ip

To calculate Ip, we use another form of the correlation kernels [18]

11 —2a—1—kk+1
x) Gy (0;—a—1,—2a—1 -‘/>

21 —a—kua+k+2
y) G2,3 ( 0,0+1;—a

m—1

11 —20—1—kk+1

Koo(x,y) = 2 2(k+a+1)Gy; ( O,ia,—Za——g
k=0

m—1
K1 (x,y) = x*y* ! Y 2(k+a+ 1)(;22,'31 (Déo,lzc;lffﬁkﬂ
k=0

x) (60)

xacytx+1efx7y

xX+y
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x) dx

As the function can be factorized, we can calculate them separately

fy At = (-0 e (

x G2,l B—k;B+2a+k+2
23\ Btap+2a+1;

i *© I'2a+2+7j) o

— (_1)\jtk+1 » .
(—1) /0 T 1+u¢)r(2a+2>r<]-+1)2Fz(2a+2+], ;14,20 +2;x)

x) dx

x) dx
i (—=1)HHTQa+24j+)T(B+i+1)  T(B+a+i+D)T(B+2a+i+2)

G2,1 B—k;B+20+k+2
2,3 B+a,f+20+1;8

+O)TRa+2+ )T+ 1T —i+1 Bra,pt20+1;8

i (=) T (20 4+ 2 + j + i) /°° dg2t [ Bk r2atki2
=0 1+« ) 2,3
T +a+i)l2a+2+)I(i+ )T —i+ 1) T(B+2a+k+i+3)(B+i+1—k)

(61)
Similarly,
/0 Yy e Vg (y) P(—y) dy
i (=1)HH T2 +2+j+s)T(B+s+1) T(B+a+s+2)T(B+2u+s+2) (62)
ST2+a+s)I2a+2+s)I(s+1I(j—s+1)T(B+2a+k+s+3)[(B+s+1—k)
While
5B txyaJrl 1
/ / Y pi()a ) = x+y dxdy gkz‘ ri+1)r(G—i+1)
(—D)T(2a +2+j+1i) F(2a+2+j+k) (63)
IFl+a+i)lRa+2+i)TR+a+kTRae+2+k)I(k+1)I(j—k+1)
T(B+a+i+ )T (f+a+k+2)
2B+i+k+2u+2
Applying equation (38), with the notation (18) above, we obtain
7i”i i () i0 %+06+j+1 64
©55 Lialia QR+i+j+2a)2+i+j+2a+1)(1+a+)) (64)
Applying the equations (49), (51) and (64) above, we can finally obtain that
1 1 1
Ey[X?] = Shi+gla—5Us+1Ic)—Ip
1A (DM T (k4 20+ m 4+ 2)T(k+2)  T(k+20+3)T(k+a+3)
2 S \T(k+2a+2)T'(k+a+2)0(m—kk T'(k+2a+m+3)L(k—m+2)
(=DM (k+ 20 +m+2)T(k+2) T(k+2a+3)T(k+a+2)
I’(k+21x +2)T(k+a+ 1)I(m— kK T(k+2a+m~+3)T(k—m+2 (65)

)
—tnsl Teolio 1 1 1
—— | 4(2 . 2
"2 Z%)]Z(:] lk,;lj,g<( +2(]+“+1))( * (k+oc~|—1)> k—j—

NI—
I\)\H

j=
“ ( ]+zx+%k+zx+%) S+ita )
jra+tlk+a+1’ " “(2+j+k+2a)3+j+k+2a)(1+a+))
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Now we can write the following results in terms of E;,[X?] and E;,[X]:
1 @\’
ViIA] = <E, E4[X
/18] = A7) - (WH) e
_1 2 _ (66)
]Efw]2< B, [x?] 1)
— 2
B/[F] = LX)

3. Conclusions

In this work, we compute the exact mean values of negativity and fidelity over the Bures-Hall
ensemble via computing the first two moments of sum of square root spectrum of density matrices. The
results are obtained by making use of known formulas of correlation functions of Bures-Hall ensemble
and the corresponding special functions. Future works include the computation of higher-order
moments of sum of square root spectrum as well as obtaining its asymptotic distributions. .
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