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Abstract: The application of deep learning in the detection of Synthetic Aperture Radar (SAR)
targets has been primarily limited to large objects such as ships and airplanes, with much less
popularity in detecting SAR vehicles. The complexities of SAR imaging make it difficult to
distinguish small vehicles from the background clutter, creating a barrier to data interpretation and
the development of Automatic Target Recognition (ATR) in SAR vehicles. The scarcity of datasets
has inhibited progress in SAR vehicle detection in the data-driven era. To address this, we introduce
a new synthetic dataset called Mix MSTAR, which mixes target chips and clutter backgrounds with
original radar data at the pixel level. Mix MSTAR contains 5,392 objects of 20 fine-grained categories
in 100 high-resolution images, predominantly 1478x1784 pixels. The dataset includes various
landscapes such as woods, grasslands, urban buildings, lakes, and tightly arranged vehicles, each
labeled with Oriented Bounding Box (OBB). Notably, Mix MSTAR presents fine-grained object
detection challenges by using the Extended Operating Condition (EOC) as a basis for dividing the
dataset. Furthermore, we evaluate 9 benchmark rotated detectors on Mix MSTAR and demonstrate
the fidelity and effectiveness of the synthetic dataset. To the best of our knowledge, Mix MSTAR
represents the first public multi-class SAR vehicle dataset designed for rotated object detection in
large-scale scenes with complex background.

Keywords: SAR vehicle detection; rotated object detection; Synthetic dataset; Mix MSTAR; deep
learning

1. Introduction

Thanks to its unique advantages, such as all-time, all-weather, high-resolution, and long-range
detection, SAR has been widely used in various fields, such as land analysis and target detection.
Vehicle detection in SAR-ATR is of great significance in urban traffic, hotspot target focusing and
other aspects.

In recent years, with the development of artificial intelligence, deep learning-based object
detection algorithms [1,2] have dominated the field with their powerful capabilities in automatic
feature extraction. Deep learning is a subject with data hunger. Historical experience has shown that
big data is an important driver for the flourishing development of deep learning technology in
various fields. With the rapid development of aerospace and sensor technology, an increasing
number of high-resolution remote sensing images can be obtained. In the remote sensing field, visible
light object detection has experienced vigorous development after the release of the DOTA[3]. As the
first publicly available SAR ship dataset, the introduction of the SSDD [4] has directly promoted the
application of deep learning in SAR object detection and has led to the emergence of more SAR ship
datasets [5-9], which is still one of the detection benchmark and exhibits strong vitality to this day.

However, due to the imaging mechanism of SAR images being distinct from visible light, its
interpretation is unintuitive for the human eye. Ground clutter and scattering caused by object corner
points can seriously interfere with human interpretation. This leads to the fact that the detection
objects of the current SAR datasets are mainly large targets such as ships and planes in relatively pure
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backgrounds. In contrast, SAR datasets for vehicles are very rare. The community has long relied on
the Moving and Stationary Target Acquisition and Recognition (MSTAR) [10] released by the Sandia
National Laboratory in the last century. However, the vehicle images in MSTAR are also separated
from large-scene images and appear in the form of small patches. Due to the lack of complex
background, it is only suitable for classification tasks, and its classification accuracy has reached more
than 99%. Up to now, in the SAR-ATR field, MSTAR has been more widely used in few-shot learning
and semi-supervised learning [11,12]. Meanwhile, the volume of the SAR dataset owning vehicle
images with large scenes is quite small. The reason for this is that the small area of the vehicle requires
higher resolution for SAR-ATR than aircrafts and ships, which leads to higher data acquisition costs.
Moreover, vehicles exist in more complex clutter backgrounds, which increases the difficulty of
manual interpretation and reduces the accuracy of target annotation. Table 1 detailed information of
existing public SAR vehicle datasets with large scenes. Unfortunately, in these datasets, there is no
official localization annotation that can be obtained, so manual identification of annotations is
required. Due to strong noise interference, the FARAD X BAND [13]and FARAD KA BAND [14]
make it too difficult for humans to identify the position of vehicles, so the annotations cannot meet
the accuracy requirements. The Spotlight SAR [15] has only a very small number of vehicles, and
pairs of pictures were taken at different time periods at the same location. The Mini SAR [16] includes
more vehicles, but it only contains 20 pictures, and it has the same problem of Spotlight SAR in
duplicate scenes. The subsequent experiments proved that the small size of Mini SAR caused a large
standard error of the results. These reasons make the above datasets difficult to become a reliable
benchmark for SAR-ATR algorithms. In addition, there is the GOTCHA [17], which contains vehicles
and large scenes, but it is a fully polarized circular SAR dataset that is significantly different from the
commonly used single polarized linear SAR. It only contains one scene and is mainly used for the
classification of calibrated vehicles in the SAR-ATR field. The size of GOTCHA is difficult to meet the
requirements of object detection, so it is not included in the table here for comparison.

Table 1. Detailed information of existing public SAR vehicle datasets with large scenes.

. . . . . Noise
Datasets Resolution (m) Image Size (pixel) Images (n) Vehicle Quantity Interference
1682*3334-
FARAD X BAND [13] 0.1016*0.1016 30 Large v
5736*4028
FARAD KA BAND 436*1288-
0.1016%*0.1016 175 Large v
[14] 1624*4080
Spotlight SAR [15]  0.1000*0.1000 3000%1754 64 Small x
2510%1638-
Mini SAR [16] 0.1016*0.1016 20 Large x
2510%3274
1472*1784-
Clutters 0.3047*0.3047 100 0 X
MSTAR 1478*1784
[10] 128128-
Chips 0.3047*0.3047 20000 Large x
192*193

In view of the scarcity of vehicle datasets in the SAR-ATR field, people have conducted a series
of data generation work around MSTAR, which can be mainly divided into the following three
methods. The first method is based on generative adversarial nets (GANSs) [18]. The generating
network transforms the input noise into generative images that can deceive discriminative networks
by fitting the distribution of real images. In theory, GANs [19-21] can generate an infinite number of
generative images (See Figure 1a), thereby solving the problem of scarce real samples. However,
unlike optical images, SAR imaging is strictly based on radar scattering mechanisms, and the black
box properties of neural networks cannot prove that the generative samples comply with SAR


https://doi.org/10.20944/preprints202308.0837.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2023 d0i:10.20944/preprints202308.0837.v1

imaging mechanisms. Moreover, due to the limitations of real samples, it is difficult to generate large-
scene images. The second method is based on computer aided design (CAD) 3D modeling and
electromagnetic calculation simulation [22-25]. Among them, the SAMPLE [25] dataset released by
Lewis et al. from the same institution of MSTAR, and it has advantages in model errors, as shown in
Figure 1b. The advantage of this method is that the imaging of synthetic samples is based on physical
mechanisms, and the imaging under different conditions can be easily obtained by changing the
simulation environment parameters. Compared with the original images, the simulation images can
also remove the correlation between the targets and the background by setting random background
noise, which prevents overfitting of the detection model. However, both of these methods have
background limitations and it is currently difficult to simulate vehicles located in complex large-scale
backgrounds. The third method is background transfer [26-28]. Chen et al. believe that since the
acquisition conditions of the chip image (Chip for short) and the clutter image (Clutter for short) in
MSTAR are similar, Chips can be embedded in Clutters to generate vehicle images with large scenes,
as shown in Figure 1c. Like the first method, the synthetic images cannot strictly comply with SAR
imaging mechanisms, and the current use of such methods directly paste Chips with their
backgrounds onto Clutters, which looks quite abrupt visually and maintaining an association
between the target and the background.

(b)

Figure 1. Three data generation methods around MSTAR. (a) Some sample pictures from [20] based

on GANSs; (b) Some sample pictures from [25] based on CAD 3D modeling and electromagnetic
calculation simulation; (c) A sample picture from [26] based on background transferring.

To generate large-scale SAR images with complex backgrounds, we constructed the Mix MSTAR
using improved a background transfer method. Unlike the previous works, we overcame the abrupt
visual appearance of synthetic images and demonstrated the fidelity and effectiveness of synthetic
data. Our key contributions are as follows:

*  We improved the method of background transfer and generated realistic synthetic data by
linearly fusing vehicle masks in Chips and Clutters, resulting in the fusion of 20 types of vehicles
(5,392 in total) into 100 large background images. The dataset adopts rotation bounding box
annotation and includes one Standard Operating Condition (SOC) and two EOCs partitioning
strategies, making it a challenging and diverse dataset.

* Based on the Mix MSTAR, we evaluated 9 benchmark models for general remote sensing object
detection and analyzed their strengths and weaknesses for SAR-ATR.

* To address potential artificial traces and data variance in synthetic images, we designed two
experiments to demonstrate the fidelity and effectiveness of Mix MSTAR in SAR image features,
demonstrating that Mix MSTAR can serve as a benchmark dataset for evaluating deep learning-
based SAR-ATR algorithms.

The remaining article is composed of 4 sections. Section 2 presents detailed methodology
employed to construct the synthetic dataset, as well as extensive analysis of the dataset itself. In
Section 3, we introduce and evaluate nine rotate object detectors using the synthetic dataset as the
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benchmark. Sequently, a comprehensive analysis of the results is conducted. Section 4 focuses
specifically on the analysis and validation of two vital problems related the dataset, namely, artificial
traces and data variance. Moreover, we provide an outlook on potential future of the synthetic dataset.
Section 5 concludes our work.

2. Materials and Methods

2.1. Preliminary Feasibility Assessment

We first evaluated the feasibility of merging Clutters and Chips. Since the sensor's depression
was 15° when collecting Clutters, we chose Chips with the same depression as the target images. As
shown in Table 2, both Clutters and Chips use the same STARLOS sensor based on airborne platform,
and maintain consistency in terms of radar center frequency, bandwidth, polarization and depression.
Although the radar mode is in different, the final imaging resolution and pixel spacing are the same.
Therefore, we assume that if the working parameters of Clutters are used for imaging vehicles, the
visual effect will be approximately the same as that on Chips. So, it is feasible to transfer the vehicles
in Chips to the Clutters’ backgrounds, and the final effect is in line with the human observation
mechanism. Of course, we must acknowledge that due to the differences in the operating modes, the
two have significant differences in the radar raw data (especially phase). This means that synthetic
data generated by background transfer cannot strictly conform to the scattering mechanism of the
radar. However, what we pursue is the consistency between synthetic data and real data in terms of
8-bit image features, which is crucial for current deep learning models based on image feature
extraction in the computer vision field.

Table 2. Basic radar parameter of Chips and Clutters in MSTAR.

Collection Parameters Chips Clutters
Center Frequency 9.60 GHz 9.60 GHz
Bandwidth 0.591 GHz 0.591 GHz
Polarization HH HH
Depression 15° 15°
Resolution(m) 0.3047*0.3047 0.3047*0.3047
Pixel Spacing(m) 0.202148*0.203125 0.202148%0.203125
Platform airborne airborne
Radar Mode spot light strip map
Data type float32 uintl6

Unlike previous attempts that involve crude background transfers, Mix MSTAR aims to be a
visually realistic synthetic dataset. To achieve this goal, we conducted extensive research into domain
transfer and imaging algorithms to harmoniously blend two different radar data and developed a
paradigm for creating synthetic datasets, as shown in Figure 2. Next, we will describe in detail the
process of constructing the dataset.
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Figure 2. The pipeline of construct the synthetic dataset.

2.2. Mask Extraction

In order to make vehicles fit seamlessly into the Clutters” backgrounds, we used labelme [29] to
mask the outlines of the vehicles on Chips. Since the shadow in radar blind area is also the important
feature of SAR targets, the shadow of the vehicle was included in the mask. We also labeled the OBBs
of the vehicle on Chips to be used as the label for the final synthetic dataset. The four points of the
OBBs are labeled in a clockwise direction and the first point is on the left side of the vehicle's front. It
is worth noting that according to the principle of electromagnetic wave scattering, there will always
be a part of the vehicle in the shadow area in any angle, with a weak reflected signal, but not
completely absent. This ambiguity can cause interference in manual annotation. Therefore, to unify
the standard, the strategy followed for annotating the OBBs is based on the human visual perception.
We only label the salient areas that can attract the attention of the human rather than including the
entire actual occupation of the vehicle based on prior knowledge according to the object resolution
and vehicle size, as shown in Figure 3b. This conforms to the annotation rules of computer vision and
ensures that the model trained on this dataset focuses on features that are in line with human
perception.

(a) (b)

Figure 3. Vehicle segmentation label, containing a mask of the vehicle and its shadow and a rotated
bounding box of its visually salient part. (a) The label of the vehicle when the boundary is relatively
clear; (b) The label of the vehicle when the boundary is blurred.

2.3. Data Harmonization

In fact, after extracting the masks of the vehicles in Chips, we can already embed the mask in
Clutters as the foreground. However, prior to this step, it is necessary to harmonize the two kinds of
data for the visual harmony of the synthetic image. In the field of image composition, image
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harmonization aims to adjust the foreground to make it compatible with the background in the
composite image [30]. In visible light image harmonization, traditional methods [31-33] or deep
learning-based methods [30,34-36] can already perfectly combine the foreground and background
visually. However, in the strict imaging mechanism of SAR, pixel brightness corresponds to the
intensity of radar echoes, which requires synthetic images to not only look visually harmonious but
also conform to the physical mechanism. Therefore, we propose a domain transfer method that uses
the same ground objects as prior information to harmonize the synthetic images, conforming to the
SAR imaging mechanism as much as possible. Notably, in the following two steps, we apply data
harmonization on the raw radar data with high bit depth to obtain more accurate results.

2.3.1. Domain Transfer

Since Chips and Clutters are two different types of data, their distribution and threshold values
are different, so it is necessary to unify them reasonably based on their relationship before merging.
Since the background is the main body in the synthetic images, we choose to transfer mask from
domain Chips to domain Clutters. Based on the satellite map and information in the source files, we
noticed that the background of Chips is a dry grassland, and Clutters also contain a large amount of
grassland. Both were collected in Huntsville City, less than 26km apart, and in the autumn season, so
it can be assumed that the vegetation in the grassland of the two places is similar. To validate this
assumption, we annotated grassland of 9 Clutters and conducted data analysis with the grassland in
7 kinds of Chips, collection dates of which were close to Clutters, as the region of interest (Rol). As
shown in Table 3, it can be seen that the coefficient of variation calculated based on formula (1) for
both data is around 0.6, indicating similar data dispersal levels.

Cy=— (1)

Table 3. Analysis of grassland data from Chips and Clutters in the same period.

Grassland Collection Date Mean Std Cv(std/mean) CSIM
BMP2 SN9563 0.049305962  0.030280159  0.614127740  0.99826
BMP2 SN9566 0.046989963  0.028360445  0.603542612  0.99966
BMP2 SN C21 1995.09.01 0.046560729  0.02830699  0.607958479  0.99958
BTR70 SN C71 - 0.046856523  0.028143257  0.600626235  0.99970

T72 SN132 1995.09.02 0.045960505  0.028047173  0.610245101  0.99935

T72 SN812 0.04546104  0.027559057  0.606212638  0.99911

T72 SNS7 0041791245  0.025319219  0.605849838  0.99260

Clutters 1995.09.05 63.2881255 37.850263 0.598062633 1

! The CSIM of Clutters equal to 1 means compare themself.

Based on the above analysis, and given the similar data distribution of both data after being
dimensionless, we linearly mapped the data of Chips to the data space of Clutters. According to
formula (2), we multiplied the data of Chips by the ratio coefficient K (K=1371.8) of the mean value
of the grassland in both Rols, and then rounded it. Following the pipeline shown in Figure 4a, we
calculated the histograms of the grassland in transformed Chips and Clutter, and calculated their
cosine similarity (CSIM) according to formula (3). From Figure 4b, it can be seen that the data
distribution of the two data is very similar. In Table 3, the CSIM values for the two grasslands are all
above 0.99. Therefore, K can be used as the mapping coefficient from domain Chips to domain
Clutters, and the whole data of Chips can be harmonized via multiplying it by K.
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Figure 4. (a) The pipeline of extracting grass and calculating the cosine similarity; (b) The histogram
of the grass in Chips and Clutters.

2.3.2. Brightness Uniformity

Schumacher et al. pointed out that the background and the targets of Chips are highly relevant
[37,38]. Geng et al. conducted experiments and indicated that the SAR-ATR model recognizes
vehicles by treating brightness of the background as an important feature [39]. For instance, the
background of BRDM2 is brighter than other types of vehicles, which causes the neural network to
learn from the training data that "the brighter ones are more likely to be BRDM2" [39]. Thus, the SAR-
ATR model cheats by recognizing the associated background to classify the vehicles. We discovered
that this phenomenon is due to the nonlinear mapping of the official imaging algorithm, as seen in
the left column of Table 4. ScaleAdj in the 11th step of the original algorithm is determined by the
value of the most and least appearing pixels in each image, and we found that the mean of ScaleAd;
in BRDM2 is higher than that of other vehicles. Additionally, the non-uniform ScaleAdj results in
different gray level transformations for each category of vehicles, and even for each image.
Furthermore, for Clutters, the original algorithm produces very dark images. The reason for this lies
in the high dynamic range of Clutters radar data with most data in low values, and the maximum-
minimum value stretching in the 3th step results in most data being assigned low gray values.

Therefore, we believe that applying a uniform brightness transformation on the imaging
algorithm is an effective way to avoid the aforementioned two problems, as shown in the right
column of Table 4. The improved imaging algorithm maps the radar amplitude values linearly to the
image gray values by setting a threshold and a linear transformation. Too high a threshold pools the
low-value signals, while too low a threshold causes the loss of information of high-value signals.
Therefore, to preserve most of the image details while minimizing the loss of high-value signals, we
set the threshold to 511, as 99.8% of the radar amplitudes in Clutters are less than this threshold and
95.5% for the mask of the vehicle in Chips. This approach linearly images the low-value signals and
preserves most of the image details without significant loss of high-value signals.

Table 4. Original imaging algorithm and improved imaging algorithm.

Original imaging algorithm Improved imaging algorithm
Input: Amplitude in MSTAR Data a>0, enhance=T Input: Amplitude in MSTAR Data a>0,
orF Threshold thresh
Output: uint8 image img Output: uint8 image img

1: fmin<min(a), fmax<—max(a) 1: for pixel €a do
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2: frange~fmax-fmin, fscale<-255/frange 2: if pixel>thresh then
3: a<(a-fmin)/fscale 3: pixel—thresh
4: img—uint8(a) 4: scale<255/thresh
5: if enhance then 5: img<-uint8(a/scale)
6: hist8 <hist(img) 6: Return img
7: maxPixel CountBin—index[max(hist8)]
8: minPixelCountBin<index|[min(hist8)]
9: if minPixelCountBin>maxPixelCountBin then
10: thresh<-minPixelCountBin-
maxPixelCountBin
11: scaleAdj<255/thresh
12: img<img~*scaleAdj
13:  else
14: img<img*3

15:  img<uint8(img)
16: Return img

2.4. Embedded Synthesis

Based on OpenCV, our laboratory developed an interactive software that can embed vehicle
masks of the specific category or specified azimuth angles at designated positions in the Clutters
background conveniently. We follow the basic logic of radar scattering to select the embedding
positions. First, we prevent the overlap of vehicle masks through logical settings at the code level.
Second, we avoid placing vehicles above tall objects (such as trees or buildings) or their shadow areas.
To achieve a seamless transition between the mask and the background at the edges, a 5*5 Gaussian
operator is applied for smoothing filtering on the inner and outer circles of the mask edges. To
investigate the impact of background objects and corner reflectors on SAR-ATR, we mark the
recognition difficulty of vehicles near objects with strong reflection echoes, such as trees or buildings,
as 1. Additionally, we embed corner reflector with a 15° depression in Clutters and set the recognition
difficulty of vehicles near them to 2. For other vehicle positions, the recognition difficulty is set as
default to 0. As shown in Equation 4, the final label format follows the DOTA format [3], with each
Gound Truth including the position of the four vertices of the rectangle, category, and difficulty. The
position of the vertices of each rectangle is obtained from the rotated bounding box (shown in Figure
3) after coordinate transformation.

(X1, 1 X5, Y5 :X5,Y 5. XY, Category,difficult) (4)

2.5. Analysis of the Dataset

To create a challenging dataset, we combined one SOC and two EOC division strategies. As
shown in Table 5, the first EOC strategy uses BMP2sn-9563 as the train set and BMP2sn-9566 and
BMP2sn-c21 as the test set. The second EOC strategy uses a 7:3 fine-grained partitioning of T72's 11
subtypes. The rest of the 8 vehicle categories are partitioned based on a 7:3 SOC strategy. Similarly,
as described in Section 2.4, corner reflectors are embedded in a 7:3 ratio but are not used as detection
objects. For the Clutters partition, we selected 34 out of 100 images that can be stitched together as
the test set, and the remaining 66 images serve as the train set. After the partitioning of the dataset,
we fused Chips and Clutters according to the method described in Figure 2, resulting in 100 images.
To simulate a realistic remote sensing application scenario, we stitched together the geographically
contiguous images in the test set into 4 large images.

Table 5. The division of Mix MSTAR.

Class Train Test Total
251 192 82 274
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BMP2 195 392 587
BRDM2 192 82 274
BTR60 136 59 195
BTR70 137 59 196
D7 192 82 274
T62 191 82 273
T72 A04 192 82 274
T72 A05 192 82 274
T72 A07 192 82 274
T72 A10 190 81 271
T72 A32 192 82 274
T72 A62 192 82 274
T72 A63 192 82 274
T72 A64 192 82 274
T72 SN132 137 59 196
T72 SN812 136 59 195
T72 SNS7 134 57 191
ZIL131 192 82 274
Z5U234 192 82 274
Total 3560 1832 5392

In summary, Mix MSTAR consists of 100 large images with 5392 vehicles of 20 fine-grained
categories. The geographically contiguous test set can be stitched into four large images, as shown in
Figure 5. The arrangement of vehicles is diverse, with both tight and sparse groupings and various
scenes such as urban, highway, grassland, and forest.

(b)
Figure 5. A picture from the test set with 10346*1784 pixels (a) Densely ranked vehicles; (b) Sparsely

ranked vehicles; (c) Town scene; (d) Field scene.
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As shown in the data analysis in Figure 6, the vehicle orientations are relatively uniformly
distributed between [0-27], and the vehicle areas fluctuate due to changes in azimuth angles, with
different vehicles having different sizes. The aspect ratio of the vehicle ranges from 1 to over 3.
According to the definition of object sizes in the COCO regulation [40], over 98% of the vehicles are
small objects, which requires detection algorithms to have good small object detection capabilities.
The number of vehicles in each Clutter is also uneven, ranging from 1 to over 90 vehicles, indicating
the need for detection algorithms to be more robust to the issue of uneven sample distribution.

i.y“-

il Wh

images

o llsz?'ﬂalsm sms D 75 80 85 9095

(a) (b) (0) (d)

Figure 6. Data statistics of Mix MSTAR (a) The area distribution of different categories of vehicles; (b)
Histogram of number of annotated instances per image; (c¢) The number of vehicles in different
azimuths; (d) The length - width distribution and aspect ratio distribution of vehicles.

3. Results

After constructing Mix MSTAR, in order to further evaluate the dataset, in this section nine
benchmark models are selected to evaluate the performance of mainstream rotated object detection
algorithms on Mix MSTAR.

3.1. Models Selected

In the field of deep learning, the types of detectors can be roughly divided into single-stage,
refinement stage, two-stage, and anchor-free algorithms.

The single-stage algorithm directly predicts the class and bounding box coordinates for objects
from the feature maps. It tends to be computationally more efficient albeit at the potential cost of less
precise localization.

The refinement stage algorithm is typically a supplementary step incorporated within an object
detection process to enhance the precision of detected bounding box coordinates proposed initially.
It refines the spatial dimensions of bounding boxes via a series of regressors learning to make small
iterative corrections towards the ground truth box, thereby improving the performance of object
localization.

The two-stage algorithm operates on the principle of segregation between object localization and
its classification. First, it generates region proposals through its region proposal network (RPN) stage
based on the input images. Then, these proposals are run through the second stage where the actual
object detection takes place, discerning the object class and refining the bounding boxes. Due to this
two-step process, these algorithms tend to be more accurate but slower.

Unlike traditional algorithms which leverage anchor boxes as prior knowledge for object
detection, anchor-free algorithms operate by directly predicting the object’s bounding box without
relying on predetermined anchor boxes. They circumvent drawbacks such as choosing the optimal
scale, ratio, and number of anchor boxes for different datasets and tasks. Furthermore, they simplify
the pipeline of object detection models and have been successful in certain contexts on both efficiency
and accuracy fronts.

To make the evaluation results more convincing, the nine algorithms cover the four kinds of
algorithms mentioned above.

3.1.1.RotatedRetinanet.
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Figure 7. The architecture of Rotated Retinanet

Retinanet [41] argues that the core reason why single-stage detectors underperform compared
to two-stage models is due to the extreme foreground and background imbalance during training.
To address this, the Focal Loss was proposed, which adds two weights to the binary cross-entropy
loss to balance the importance of positive and negative samples and reduce the emphasis on easy
samples so that the focus of training is on hard negatives. Retinanet is the first single-stage model
with accuracy surpassing that of two-stage models. Based on it, Rotated Retinanet predicts an
additional angle in the regression branch (x, y, w, h) without other modifications.

3.1.2. S2A-Net
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Figure 8. The architecture of S?A-Net

S?A-Net [42] is a refinement stage model that proposes the Feature Alignment Module (FAM)
on the basis of improving deformable convolution (DCN) [43]. In the refinement stage, the horizontal
anchor is refined to a rotated anchor by the Anchor Refinement Network (ARN), which is a learnable
offset field module that is directly supervised by box annotations. Next, the feature map within the
anchor is aligned and then convolved with the Alignment Convolution. This method eliminates the
low-quality, heuristically defined anchors and addresses the uncorrelated problem between anchor
boxes and axis-aligned features they cause.

3.1.3. R*Det

Figure 9. The architecture of R3Det

R3Det [44] is a refinement stage model that proposes the Feature Refinement Module (FRM) for
reconstructing the feature map according to the refined bounding box. Each point in the
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reconstructed feature map is obtained by adding five feature vectors consisting of five points (four
corner points and the center point in the refined bounding box) after interpolation. FRM can alleviate
the feature misalignment problems that exist in refined single-stage detectors and can be added
multiple times for better performance. Additionally, an approximate SkewloU loss is proposed,
which can better reflect the real loss of SkewloU while maintaining differentiability.

3.1.4. ROI Transformer

RRol Learner

Classification

10 channels

Rol Transformer 8l
490 channels Regression

Figure 10. The architecture of ROI Transformert

ROI Transformer [45] is a two-stage model that adds a learnable module from horizontal Rol
(HRoI) to rotated Rol (RRol). It generates HRol based on a small number of horizontal anchors and
proposes RRol via the offset of the rotated ground truth relative to HRol. This operation eliminates
the need to preset a large number of rotated anchors with different angles for directly generating
RRol. In the next step, the proposed Rotated Position Sensitive Rol Align extracts rotation-invariant
features from the feature map and RRol to enhance subsequent classification and regression. This
study also examines the advantages of retaining appropriate context in RRol for enhancing the
detector's performance.

3.1.5. Oriented RCNN

Oriented RPN

T{\/I

7
///(r__\'.n.lh Aa,Ap)

Oriented R-CNN Head  classification regression

Rotated RolAlign ¢ [ ,} Iﬁr:] +
Uy

Feature map

Figure 11. The architecture of Oriented RCNN

Oriented RCNN [46] is built upon the Faster RCNN [2] and proposes an efficient oriented RPN
network. The oriented RPN uses a novel six-parameter Mid-point Offset Representation to represent
the offsets of the rotated ground truth relative to the horizontal anchor box and generate a
quadrilateral proposal. Compared with RRPN[47], it avoids the huge amount of calculation caused
by presetting a large number of rotating anchor boxes. Compared to ROI Transformer, it converts
horizontal anchor boxes into oriented proposals in a single step, greatly reducing the parameter
amount of the RPN network. Efficient and high-quality oriented proposals network make Oriented
RCNN both high-accuracy and high-speed.
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3.1.6. Gliding Vertex
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Figure 12. The architecture of Gliding Vertex

Gliding Vertex [48] introduces a robust OBB representation that addresses the limitations of
predicting vertices and angles. Specifically, on the regression branch of RCNN, four extra length ratio
parameters are used to slide the corresponding vertex on each side of the horizontal bounding box.
This approach avoids the problem of order confusion when directly predicting the position of the
four vertices and mitigates the high sensitivity issue caused by predicting the angle. Additionally,
with the idea of divide and conquer, an area ratio parameter r is used to predict the obliquity of the
bounding box. This parameter can guide the regression in Horizontal Bounding Box method or OBB
method, resolving the confusion issue of nearly-horizontal objects.
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Figure 13. The architecture of ReDet

ReDet [49] argues that the regular CNNs are not equivariant to the rotation, and that rotated
data augmentation or RRol Align can only approximate rotation invariance. To address this issue,
ReDet uses e2cnn theory [50] to design a new rotational equivariant backbone called ReResNet, which
is based on ResNet [1]. The new backbone features a higher degree of rotation weight sharing,
allowing it to extract rotation-equivariant features. Additionally, the paper proposes Rotation-
Invariant Rol Align which performs warping on the spatial dimension and then circularly switches
channels to interpolate and align on the orientation dimension to produce completely rotation-
invariant features.

3.1.8. Rotated FCOS
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Figure 14. The architecture of Rotated FCOS

FCOS [51] is an anchor-free, one-stage detector that employs a full convolution structural design.
Unlike traditional detectors, FCOS eliminates the need for presetting anchors, thereby avoiding
complex anchor operations, sensitive and heuristic hyperparameter settings, and the large number
of parameters and calculations associated with anchors. FCOS employs the four distances (}, r, t, b)
between the feature point and the four sides of the bounding box as the prediction format. The
distance between the center point and the feature point is used to measure the bounding box's center-
ness, which is then multiplied by the classification score to obtain the final confidence. The multi-
level prediction based on FPN [52] alleviates the influence of overlapping ambiguous samples.
Rotated FCOS is a re-implementation of FCOS in rotated object detection that adds an additional
angle branch parallel to the regression branch.

3.1.9. Oriented RepPoints
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Figure 15. The architecture of Oriented RepPoints

Based on RepPoints [53], Oriented RepPoints [54] summarizes three ways of converting a point
set to an OBB, making it suitable for detecting aerial objects. Inherited from RepPoints, Oriented
RepPoints combines DCN [43] with anchor-free key-point detection, enabling model to extract non-
axis aligned features from an aerial perspective. To constrain the spatial distribution of point sets, the
proposed spatially constrained loss constrains the vulnerable outliers within their instance owner,,
and uses GIOU [55] to quantify localization loss. Additionally, the proposed Adaptive Points
Assessment and Assignment adopts four metrics to evaluate the quality of learning point sets, and
use them to determine positive samples.

3.2. Evaluation Metrics

In rotated object detection, the ground truth of the object’s position and the bounding box
predicted by the model are oriented bounding boxes. Similar to generic target detection, rotated
target detection uses Intersection over Union (IoU) to measure the quality of the predicted bounding
box:

~ area(OBB_, NOBB,)

IoU =
P area(OBB_, WOBB,,)

©)
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In the classification stage, based on the combination of the prediction bounding box and the
ground truth, four results are produced: True Positives (TP), True Negatives (TN), False Negatives
(FN), and False Positives (FP). Precision and recall are formulated as follows:

recision= 6
P P+FP (©)
TP
recall= ()
TP+FN

Based on precision and recall, AP is defined as the area under the precision-recall (P-R) curve,
while Mean Average Precision (mAP) is defined as the mean of AP values across all classes:

AP=[p(r) dr 8)
mAP-13" AP ©
Cia

F1 score is the harmonic mean of precision and recall, which is defined as:

Fl= 2 #precision *recall

precision+recall (10)

3.3. Environment and Details

All experiment were implemented in Ubuntu 20.04.4 with Python3.8.10, Pytorch1.11.0, Cudal1.3.
The CPU is Intel 19 11900k @3.5GHz with 32GB RAM, and the GPU is Nvidia GeForce RTX 3090
(24GB) with driver version 470.103.01.

All models involved in this article are implemented through the MMRotate [56] framework. For
fair comparison, the backbone network of each detector is ResNet50 [1] pretrained on ImageNet [57]
by default, and the neck is FPN [52]. Each image in train set was cropped into 4 pieces of 1024*1024,
and the four large-scene images in test set were split into a series of 1024*1024 patches with a stride
of 824. To display the performance of each detector on Mix MSTAR as fairly as possible, we simply
follow these settings without additional embellishments: data augmentation used random flip with
a probability of 0.25 on horizontal, vertical or diagonal axes. Each model was trained for 180 epochs
with 2 images per batch. The optimizer was SGD with an initial learning rate of 0.005, momentum of
0.9, and weight decay of le-4. L2 norm was adopted for gradient clipping, with the maximum
gradient set to 35. The learning rate was decayed by a factor of 10 at the 160th and 220th epochs.
Linear preheating was used for the first 500 iterations, with the initial preheating learning rate set to
1/3 of the initial learning rate. Additionally, the IoU threshold in the experiments was set to 0.5 and
the confidence threshold was set to 0.3. The mAP and its standard error of all models in this article
were obtained by training the network with three different random seeds. The final result is obtained
by mapping the prediction of each small picture to the big picture and applying NMS. More details
can be found in our log files.

3.4. Result Analysis on Mix MSTAR

The evaluation results for nine models on Mix MSTAR are shown in Tables 6 while the class-
wise AP results are shown in Table 7. It is important to note that in Tables 6, Precision, Recall and F1-
score are calculated based on the statistics of all categories of TP, FP and FN.

Table 6. Performance Evaluation of models on Mix MSTAR.

FLOP
Category Model Params(M) (g)s FPS mAP Precision Recall F1-score
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One-stage Rotated Retinanet  36.74 21818 292 61.03x0.75 3098 89.36  46.01

Refine- $2A-Net 38.85 198.12 263  72.41+0.10 3157 9574 47.48
stage R3Det 37.52 23519 261 70.87+0.31 2228 97.11 36.24
ROI Transformer  55.39 22532 253  75.17+0.24 4690 9327  62.42
Oriented RCNN  41.37 21144 265 73724045 3824 9356 54.29
Two-stage
ReDet 31.7 5448 184 70.27+0.75 4583 89.99  60.73
Gliding Vertex ~ 41.37 211.31 285 71.81+0.19  44.17 91.78 59.64
Rotated FCOS 32.16 207.16  29.7 7227+127 2752 9647  42.82
Anchor-

free QOriented
36.83 19435 268 75.37+0.80 34.73 9525  50.90

RepPoints

Combining the results and the previous analysis of the model and the dataset, we can draw the
following conclusions:

1. Interms of the mAP metric, Oriented RepPoints achieved the best accuracy, which we attribute
to its unique proposal approach based on sampling points. This approach successfully combines
the deformation convolution and non-axis aligned feature extraction together. Additionally,
being a two-stage model, its feature extraction is more accurate. Compared to other refined
models, it has more sampling points, up to 9, which makes the extracted features more
comprehensive. However, the heavy use of deformation convolution has made its training speed
slow. The two-stage model performs better than the single-stage network due to the initial
screening of the RPN network. However, the performance of Gliding Vertex is average, which
may be due to its failure to use directed proposals in the first stage, resulting in inaccurate feature
extraction. ReDet has poor performance, possibly because the rotation-invariant network used
in ReDet is not suitable for SAR images with a low depression. Mix MSTAR are simulated at a
depression of 15°, and the shadow area is quite large, leading to significant imaging differences
for the same object under different azimuth angles. For example, rotating a vehicle image at an
angle of 0 by a degrees would produce an image that is significantly different from the image
of the same vehicle captured at (0+a) degrees, which may cause ReResNet to extract incorrect
rotation-invariant features. Compared to single-stage models, refined-stage models demonstrate
a significant performance improvement, suggesting that refined-stage models are more accurate
in extracting non-axis aligned features of rotated objects, which can reduce the gap between
refined-stage models and two-stage models. While the performance of R*Det is slightly inferior,
it is similar to ReDet, and its reason may lie in the sampling points in its refined stage, which are
fixed at the four corners and the center point. In low-pitch-angle SAR images, one vertex far
from the radar sensor is necessarily shaded, which means that the feature extraction of the
sampling point interferes with the overall feature expression. S2A-Net uses deformation
convolution, with the position of the sampling point being learnable. Although there is still a
probability of collecting data from the shaded vertexes, there are nine sampling points, which
dilutes the influence of features from the shaded vertexes.

2. Interms of speed, Rotated FCOS performs the best, benefiting from its anchor-free design and
full convolution structure. Its parameters and computation are both lower than those of Rotated
Retinanet. In contrast, other models use deformation convolution or non-conventional feature
alignment convolution or non-full convolution structures, making network speed relatively
slow. Due to its special rotation-equivariant convolution, ReDet has the slowest inference speed,
even though its parameter and computation is the lowest. In terms of parameter quantities, the
two anchor-free models and the single-stage model have fewer parameters than other models.
The RPN of ROI Transformer requires two stages to extract the rotation ROL so it has the most
parameters. In terms of computation, due to its multi-head design, the detection head of the
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single-stage model is too cumbersome, making its computation not significantly lower than that
of the two-stage model. However, Mix MSTAR is a small target data set, with most of its ground
truth width being below 32. After five times downsampling, its localization information has been
lost. Better balance may be obtained by optimizing the regression subnetwork of layers with
downsample sizes greater than 32.

3. Interms of precision and recall metrics, all networks tend to maintain high recall. As using inter-
class NMS limits the Recall integration range of mAP, like the DOTA, inter-class NMS is
disabled. But this resulted in lower accuracy. Among them, ROI Transformer achieved a balance
between accuracy and recall and obtained the highest F1 score.

Table 7. AP50 of each category on Mix MSTAR.

Class Ro.tated S?A- R*Det ROI Oriented ReDet Gliding Rotated Orienfed Mean
Retinanet  Net Transformer RCNN Vertex FCOS RepPoints

251 8795  98.02 9516  99.48 9752 9548  95.38 97.22 98.16 96.0
BMP2 88.15  90.69 90.62  90.82 90.73  90.67  90.65 90.66 90.80 90.4
BRDM2  90.86  99.65 98.83  99.62 99.03  98.14  98.39 99.72 99.22 98.2
BTR60 71.86 8852 88.07  88.02 85.67  88.84 86.18 86.55 86.54 85.6
BTR70 89.03  98.06 9536  97.57 97.68 9253  97.02 96.67 95.06 95.4

D7 89.76  90.75 93.38  98.02 9570 9342 9551 95.52 96.21 94.3

T62 7846  88.66 9120  90.29 9239 8653  89.70 89.99 90.20 88.6
T72 A04 3743  56.71 5023 5597 5542 5044  50.01 50.46 53.40 51.1
T72 A05  31.09 4071 43.10  46.17 4827 4456 4593 42.09 50.04 435
T72 A07 2950 4028 40.13  37.13 3822 3340 3849 33.61 44.37 37.2
T72 A10 2799  39.82 3600  40.71 3681 3404 3444 40.67 47.57 37.6
T72 A32 6924  79.96 83.05  82.57 80.77 7748  77.02 74.56 78.65 78.1
T72 A62  41.06 4949 5005  54.32 4731 4197 4571 53.77 54.00 48.6
T72 A63 3810  51.07 4645  53.63 5006 4379  49.27 49.44 53.05 483
T72 A64 3551 5828 57.54  67.37 66.65 5795  63.38 58.47 66.14 59.0

T72 34.18 54.95 4571  59.85 58.16  56.80 5223 54.35 65.38 535
SN132

172 49.27 72.01 61.86  77.42 7423 6513 7134 73.33 72.14 68.5
SN812

172 43.61 59.37 56.77  66.43 6570 5743  64.56 64.43 67.62 0.7
SNS7
ZIL131 96.06  96.24 97.76  99.00 97.88  98.78  96.16 95.24 99.58 97.4
7ZSU234 9155  95.03 96.17  99.09 96.15  98.04  94.90 98.65 99.26 96.5
mAP 61.03 7241 7087  75.17 7372 7027 7181 72.27 75.37 71.4

4. From the results presented in Table 7, it is evident that the fine-grained classification result of
T72 tank is poor and has a significant impact on all detectors. Figure 16a further illustrates this
point, as the confusion matrix of Oriented RepPoints indicates a considerable number of FP
assigned to wrong subtypes of the T72 tank, which is also observed in cross-category confusion
intervals such as BTR70-BTR60, 251-T62, and T72-T62. Another notable observation is the poor
detection effect of BMP2 under EOC, as indicated in the confusion matrix. Many BMP2 subtypes
that didn’t appear in the train set are mistaken for other vehicles in testing. Figure 16b depicts
the P-R curves of all detectors.
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Figure 16. (a) Confusion matrix of Oriented RepPoints on Mix MSTAR; (b) The P-R curves of models
on Mix MSTAR.

5. Figure 17 presents the detection results of three detectors on the same picture. The results
showed that the localization of the vehicles was accurate, but the recognition accuracy was not
high, with a small number of false positives and misses. Additionally, we discovered two
unknown vehicles in the scene, which were initially hidden among the clutters and did not
belong to the Chips. One vehicle was recognized as T62 by all three models, while the other
vehicle was classified as background, possibly because its area was significantly larger than the
vehicles in the Mix MSTAR. This indicates that the model trained by Mix MSTAR has the ability
to recognize real vehicles.
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Figure 17. Some detection result of different models on Mix MSTAR. (a) Ground truth; (b) Result of
S?A-Net; (c) Result of ROI Transformer; (d) Result of Oriented RepPoints.

4. Discussion

For a synthetic dataset that aims to become a detection benchmark, both fidelity and
effectiveness are essential. However, in the production of Mix MSTAR, it is necessary to manually
extract vehicles from Chips and fuse radar data collected under different modes before generating
the final image. Thus, there are two potential problems in this process, which will affect the visual
effectiveness of the synthetic images:

e  Artificial traces: The vehicle masks manually extracted can alter the contour features of the
vehicles and leave artificial traces in the synthetic images. Even though Gaussian smoothing was
applied to reduce this effect on the vehicle edges, theoretically, these traces could still be utilized
by overfitting models to identify targets.

e  Data variance: The vehicle and background data in Mix MSTAR were collected under different
operating modes. Although we harmonized the data amplitude based on reasonable
assumptions, Chips was collected using spotlight mode, while Clutters used strip mode. The
two different scanning modes of radar can cause variances in the image style (particularly spatial
distribution) of foreground and background in the synthetic images. This could lead detection
models to find some cheating shortcuts due to the non-realistic effects of the synthetic images,
failing to extract common image features.

To address these concerns, we designed two separate experiments to demonstrate the reliability
of the synthetic dataset.

4.1. The Artificial Traces Problem

To address the potential problem of artificial traces and to prove the fidelity of the synthetic
dataset, our approach was to use a model trained on Mix MSTAR to detect intact vehicle images. We
randomly selected 25 images from the Chips and expanded them to 204x204 to maintain their original
size. These images were then stitched into a 1024x1024 large image, which was input into the ROI
Transformer trained on Mix MSTAR. As shown in Figure 18a, all these intact vehicles were accurately
localized, with a classification accuracy of 80%.

(b)

Figure 18. (a) The result of ROI Transformer on concatenated Chips; (b) Class activation map of

concatenated Chips.

However, an accuracy of 80% is not an ideal result, as the background in Chips is quite simple
and the five misidentified vehicles were all subtypes of T72. As a comparison experiment, we trained
and tested ResNet18 as a classification model on the 20 classes Chips of MSTAR, following the same
partition strategy as Mix MSTAR, and the classifier easily achieved 92.22% accuracy. However, we
found through class activation maps [58] that since each type of vehicle in MSTAR was captured at
different angles, but at the same location, the high correlation between the backgrounds in Chips
causes the classifier to focus more on the terrain than the vehicles themselves. As shown in Figure 19,
the two subtypes of T72 were identified based on their tracks and unusual vegetation, with
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recognition rates of 98.77% and 100%. However, the accuracy of the two T72 subtypes that did not
benefit from background correlation was only 73.17% and 66.67%, respectively. This phenomenon
also existed in other types of vehicles, indicating that the training results of using background-
correlated Chips are actually unreliable.

(e) (f) (8) (h)

Figure 19. (a) (c) T72 A05 Chips; (f) (g) T72 A07 Chips; (b) (d) Class activation map of T72 A05
Chips;(f) (h) Class activation map of T72 A07 Chips.

Through the detection of intact vehicles in real images, we have proven that the artificial traces
generated in the process of mask extraction did not affect the models. On the contrary, benefit from
the mask extraction and background transfer, Mix MSTAR eliminated background correlation,
allowing models trained on the high-fidelity synthetic images to focus on vehicle features, such as
shadows and bright spots, as shown in Figure 18b.

4.2. The Data Variance Problem

To address potential data variance problem and demonstrate the authentic detection capability
of models obtained from Mix MSTAR, we designed the following experiment to prove the
effectiveness of the Mix MSTAR. The real dataset, Mini SAR was used to train and evaluate models
pretrained on Mix MSTAR and those not pretrained on Mix MSTAR. For the pretrained models, we
froze the weights of first stage of the backbone, forcing the network to extract features in the same
way as it does with synthetic images. The non-pretrained models were loaded from ImageNet
weights as a regular setting. We selected nine images containing vehicles as the dataset, and seven
were used for training and two for validation. The images were divided into 1024x1024 images with
a stride of 824. Since the dataset was very small, the training process of each network was unstable.
Therefore, we extended the number of iterations to 240 epochs, recorded the mAP of the model on
the validation set after each epoch, and set the learning rate reducing 10 folds at epoch 160 and epoch
220, with all other settings consistent with those in the Mix MSTAR experiments. It is worth noting
that there is no perfect unified training setting that can fit all detectors due to their different feature
extraction capabilities and the propensity for overfitting on the small dataset. Thus, we record the
best results of the validation set during training in Table 8.

Table 8. Best mAP of pretrained/unpretrained models on Mini SAR validation set.

Model Unpretrained Pretrained
Rotated Retinanet 38.00+15.52 71.40£0.75
S?A-Net 65.63+1.94 69.81+0.89
R3Det 66.30+2.66 70.35+0.18

ROI Transformer 79.42+0.61 80.12+0.01
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Oriented RCNN 70.49+0.47 80.07+0.24
ReDet 79.47+0.58 79.64+0.31
Gliding Vertex 70.71+0.20 77.64+0.49
Rotated FCOS 10.82+3.94 74.93+2.60
Oriented RepPoints 72.72+2.04 79.02+0.39

Firstly, as shown in Table 8, all models obtained an improvement after being pretrained on Mix
MSTAR. Since the weights of the first layer are frozen after pretraining, this indicates that the models

effectively learn how to extract general underlying features from SAR images. Secondly, since the
validation set contains only two images, the results of non-pretrained models were very unstable, but
the standard errors of all models were significantly reduced after pretraining on Mix MSTAR.
Additionally, as shown in Figure 20, the pretrained models had very rapid loss reduction during the
training process. See Figure 21, after a few epochs, their accuracy on the validation set increased

significantly, and ultimately reached a relatively stable result. However, the loss and mAP of the non-

pretrained models were unstable.
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Figure 20. The loss of pretrained/unpretrained models during training on Mini SAR. (a) Rotated
Retinanet; (b) S?’A-Net; (c) R®Det; (d) ROI Transformer; (e) Oriented RCNN; (f) ReDet; (g) Gliding
Vertex; (h) Rotated FCOS; (i) Oriented RepPoints.
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Figure 21. The mAP of pretrained/unpretrained models during training on Mini SAR. (a) Rotated
Retinanet; (b) S?’A-Net; (¢) R°Det; (d) ROI Transformer; (e) Oriented RCNN; (f) ReDet; (g) Gliding
Vertex; (h) Rotated FCOS; (i) Oriented RepPoints.

We noticed that Rotated RetinaNet and Rotated FCOS are very sensitive to the random seed
initialization, making them prone to training failure. This may be due to the weak ability of single-
stage detectors in feature extraction, which makes it difficult for them to learn effective feature
extraction capabilities from a small quantity of data. Therefore, we conducted a comparison
experiment in which we added the Mix MSTAR train set to the Mini SAR train set to increase the data
size when training the non-pretrained models. As shown in Table 9, both single-stage models
obtained significant improvements after mixed training with the two datasets. As seen in Figure 22,
pretraining on Mix MSTAR or mixed training with Mix MSTAR both resulted in increased recall and
precision of the models, achieving more accurate bounding box regression.

Table 9. mAP of pretrained/unpretrained/mixed trained models on Mini SAR.

Trained on Mini SAR  Pretrained on Mix

Model only MSTAR Add Mix MSTAR
Rotated
. 38.00+15.52 71.40+0.75 78.62+0.42
Retinanet

Rotated FCOS 10.82+3.94 74.93+2.60 77.70+0.10
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Figure 22. Some detection result of Rotated Retinanet on Mini SAR. (a) Ground truth; (b) Rotated
Retinanet trained on Mini SAR only; (c) Rotated Retinanet pretrained on Mix MSTAR; (d) Rotated
Retinanet train on Mini SAR and Mix MSTAR.

Based on the above comparison experiments using real data, we have demonstrated the
effectiveness of Mix MSTAR, indicating that synthetic data can also help networks learn how to
extract features from real SAR images, thereby proving the effectiveness and transferability ability of
the Mix MSTAR. In addition, the experiment shows that the unstable Mini SAR is not suitable as the
benchmark dataset for algorithm comparison, especially for the single-stage model, and also verifies
that the Mix MSTAR is effective in addressing the problem of insufficient real data for SAR vehicle
detection.

4.3. Potential Application

As more and more creative work leverages synthetic data to advance human understanding
towards the real world, Mix MSTAR, as the first public SAR vehicle multi-class detection dataset, has
many potential applications. Here, we envision two potential use cases:

e SARimage generation. While mutual conversion between optical and SAR imagery is no longer
a groundbreaking achievement, current style transfer methods between visible light and SAR
are primarily used for low-resolution terrain classification [59]. Given the scarcity of high-
resolution SAR images and the abundance of high-resolution labeled visible light images, a
promising avenue is to combine the two to generate more synthetic SAR images to address the
lack of labeled SAR data and ultimately improve real SAR object detection. Although the
synthetic image obtained in this way can not be used for model evaluation, it can help the
detection model to obtain stronger positioning ability when detecting real SAR objects through
pre-training or mixed training. Figure 23 demonstrates an example of using CycleGAN [60] to
transfer vehicle images from DOTA domain to the Mix MSTAR domain.


https://doi.org/10.20944/preprints202308.0837.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 August 2023 doi:10.20944/preprints202308.0837.v1

(a) (b)

Figure 23. The style transfer of optical and SAR by using CycleGAN. (a) A optical car image with label
from DOTA domain; (b) Transferred image on Mix MSTAR domain.

e Qut-of-distribution detection. Out-of-distribution detection, or OOD detection, aims to detect
test samples that drawn from a distribution that is different from the training distribution [61].
Using the model trained by synthetic images to classify real images was regarded as a
challenging problem in SAMPLE[25]. Unlike visible light imagery, SAR imaging is heavily
influenced by sensor operating parameters, resulting in significant stylistic differences between
images captured under different condition. Our experiments found that current models’
performance on different SAR datasets is poorly generalizable. If reannotation and retraining
are required for every new dataset, the cost will increase significantly, exacerbating the scarcity
of SAR imagery and limiting the application scenarios of SAR-ATR. Therefore, it is an important
research direction to use the limited labeled datasets to detect more unlabeled data. We used the
Redet model trained on Mix MSTAR to detect real vehicles in a image from FARAD KA BAND.
Due to resolution differences, three vehicles were detected dafter applying multi-scale test
techniques as shown in Figure 24.

(a) (b)
Figure 24. Detection result of Redet on FARAD KA BAND. (a) Ground truth; (b) Result.

5. Conclusions

This research released a large-scale SAR image synthesis dataset for multi-class rotated vehicle
detection and proposed a paradigm for realistically fusing SAR data from different domains. Upon
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evaluating nine different benchmark detectors, we found that fine-grained classification makes Mix
MSTAR highly challenging, with considerable room for improving object detection performance.
Additionally, to address concerns over potential artificial traces and data variance in synthetic data,
we conducted two experiments to demonstrate the fidelity and effectiveness of Mix MSTAR. Finally,
we summarized two potential applications of Mix MSTAR and call on the community to enhanced
communication and cooperation in the SAR data sharing to alleviate the scarcity of data and promote
the development of SAR.
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