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Abstract: The application of deep learning in the detection of Synthetic Aperture Radar (SAR) 

targets has been primarily limited to large objects such as ships and airplanes, with much less 

popularity in detecting SAR vehicles. The complexities of SAR imaging make it difficult to 

distinguish small vehicles from the background clutter, creating a barrier to data interpretation and 

the development of Automatic Target Recognition (ATR) in SAR vehicles. The scarcity of datasets 

has inhibited progress in SAR vehicle detection in the data-driven era. To address this, we introduce 

a new synthetic dataset called Mix MSTAR, which mixes target chips and clutter backgrounds with 

original radar data at the pixel level. Mix MSTAR contains 5,392 objects of 20 fine-grained categories 

in 100 high-resolution images, predominantly 1478x1784 pixels. The dataset includes various 

landscapes such as woods, grasslands, urban buildings, lakes, and tightly arranged vehicles, each 

labeled with Oriented Bounding Box (OBB). Notably, Mix MSTAR presents fine-grained object 

detection challenges by using the Extended Operating Condition (EOC) as a basis for dividing the 

dataset. Furthermore, we evaluate 9 benchmark rotated detectors on Mix MSTAR and demonstrate 

the fidelity and effectiveness of the synthetic dataset. To the best of our knowledge, Mix MSTAR 

represents the first public multi-class SAR vehicle dataset designed for rotated object detection in 

large-scale scenes with complex background.  

Keywords: SAR vehicle detection; rotated object detection; Synthetic dataset; Mix MSTAR; deep 

learning 

 

1. Introduction 

Thanks to its unique advantages, such as all-time, all-weather, high-resolution, and long-range 

detection, SAR has been widely used in various fields, such as land analysis and target detection. 

Vehicle detection in SAR-ATR is of great significance in urban traffic, hotspot target focusing and 

other aspects.  

In recent years, with the development of artificial intelligence, deep learning-based object 

detection algorithms [1,2] have dominated the field with their powerful capabilities in automatic 

feature extraction. Deep learning is a subject with data hunger. Historical experience has shown that 

big data is an important driver for the flourishing development of deep learning technology in 

various fields. With the rapid development of aerospace and sensor technology, an increasing 

number of high-resolution remote sensing images can be obtained. In the remote sensing field, visible 

light object detection has experienced vigorous development after the release of the DOTA[3]. As the 

first publicly available SAR ship dataset, the introduction of the SSDD [4] has directly promoted the 

application of deep learning in SAR object detection and has led to the emergence of more SAR ship 

datasets [5–9], which is still one of the detection benchmark and exhibits strong vitality to this day.  

However, due to the imaging mechanism of SAR images being distinct from visible light, its 

interpretation is unintuitive for the human eye. Ground clutter and scattering caused by object corner 

points can seriously interfere with human interpretation. This leads to the fact that the detection 

objects of the current SAR datasets are mainly large targets such as ships and planes in relatively pure 
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backgrounds. In contrast, SAR datasets for vehicles are very rare. The community has long relied on 

the Moving and Stationary Target Acquisition and Recognition (MSTAR) [10] released by the Sandia 

National Laboratory in the last century. However, the vehicle images in MSTAR are also separated 

from large-scene images and appear in the form of small patches. Due to the lack of complex 

background, it is only suitable for classification tasks, and its classification accuracy has reached more 

than 99%. Up to now, in the SAR-ATR field, MSTAR has been more widely used in few-shot learning 

and semi-supervised learning [11,12]. Meanwhile, the volume of the SAR dataset owning vehicle 

images with large scenes is quite small. The reason for this is that the small area of the vehicle requires 

higher resolution for SAR-ATR than aircrafts and ships, which leads to higher data acquisition costs. 

Moreover, vehicles exist in more complex clutter backgrounds, which increases the difficulty of 

manual interpretation and reduces the accuracy of target annotation. Table 1 detailed information of 

existing public SAR vehicle datasets with large scenes. Unfortunately, in these datasets, there is no 

official localization annotation that can be obtained, so manual identification of annotations is 

required. Due to strong noise interference, the FARAD X BAND [13]and FARAD KA BAND [14] 

make it too difficult for humans to identify the position of vehicles, so the annotations cannot meet 

the accuracy requirements. The Spotlight SAR [15] has only a very small number of vehicles, and 

pairs of pictures were taken at different time periods at the same location. The Mini SAR [16] includes 

more vehicles, but it only contains 20 pictures, and it has the same problem of Spotlight SAR in 

duplicate scenes. The subsequent experiments proved that the small size of Mini SAR caused a large 

standard error of the results. These reasons make the above datasets difficult to become a reliable 

benchmark for SAR-ATR algorithms. In addition, there is the GOTCHA [17], which contains vehicles 

and large scenes, but it is a fully polarized circular SAR dataset that is significantly different from the 

commonly used single polarized linear SAR. It only contains one scene and is mainly used for the 

classification of calibrated vehicles in the SAR-ATR field. The size of GOTCHA is difficult to meet the 

requirements of object detection, so it is not included in the table here for comparison. 

Table 1. Detailed information of existing public SAR vehicle datasets with large scenes. 

Datasets Resolution (m) Image Size (pixel) Images (n) Vehicle Quantity 
Noise 

Interference 

FARAD X BAND [13] 0.1016*0.1016 
1682*3334- 

5736*4028 
30 Large √ 

FARAD KA BAND 

[14] 
0.1016*0.1016 

436*1288- 

1624*4080 
175 Large √ 

Spotlight SAR [15] 0.1000*0.1000 3000*1754 64 Small × 

Mini SAR [16] 0.1016*0.1016 
2510*1638- 

2510*3274 
20 Large × 

MSTAR 

[10] 

Clutters 0.3047*0.3047 
1472*1784- 

1478*1784 
100 0 × 

Chips 0.3047*0.3047 
128128- 

192*193 
20000 Large × 

In view of the scarcity of vehicle datasets in the SAR-ATR field, people have conducted a series 

of data generation work around MSTAR, which can be mainly divided into the following three 

methods. The first method is based on generative adversarial nets (GANs) [18]. The generating 

network transforms the input noise into generative images that can deceive discriminative networks 

by fitting the distribution of real images. In theory, GANs [19–21] can generate an infinite number of 

generative images (See Figure 1a), thereby solving the problem of scarce real samples. However, 

unlike optical images, SAR imaging is strictly based on radar scattering mechanisms, and the black 

box properties of neural networks cannot prove that the generative samples comply with SAR 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2023                   doi:10.20944/preprints202308.0837.v1

https://doi.org/10.20944/preprints202308.0837.v1


 3 

 

imaging mechanisms. Moreover, due to the limitations of real samples, it is difficult to generate large-

scene images. The second method is based on computer aided design (CAD) 3D modeling and 

electromagnetic calculation simulation [22–25]. Among them, the SAMPLE [25] dataset released by 

Lewis et al. from the same institution of MSTAR, and it has advantages in model errors, as shown in 

Figure 1b. The advantage of this method is that the imaging of synthetic samples is based on physical 

mechanisms, and the imaging under different conditions can be easily obtained by changing the 

simulation environment parameters. Compared with the original images, the simulation images can 

also remove the correlation between the targets and the background by setting random background 

noise, which prevents overfitting of the detection model. However, both of these methods have 

background limitations and it is currently difficult to simulate vehicles located in complex large-scale 

backgrounds. The third method is background transfer [26–28]. Chen et al. believe that since the 

acquisition conditions of the chip image (Chip for short) and the clutter image (Clutter for short) in 

MSTAR are similar, Chips can be embedded in Clutters to generate vehicle images with large scenes , 

as shown in Figure 1c. Like the first method, the synthetic images cannot strictly comply with SAR 

imaging mechanisms, and the current use of such methods directly paste Chips with their 

backgrounds onto Clutters, which looks quite abrupt visually and maintaining an association 

between the target and the background.  

   
(a) (b) (c) 

Figure 1. Three data generation methods around MSTAR. (a) Some sample pictures from [20] based 

on GANs; (b) Some sample pictures from [25] based on CAD 3D modeling and electromagnetic 

calculation simulation; (c) A sample picture from [26] based on background transferring. 

To generate large-scale SAR images with complex backgrounds, we constructed the Mix MSTAR 

using improved a background transfer method. Unlike the previous works, we overcame the abrupt 

visual appearance of synthetic images and demonstrated the fidelity and effectiveness of synthetic 

data. Our key contributions are as follows: 

· We improved the method of background transfer and generated realistic synthetic data by 

linearly fusing vehicle masks in Chips and Clutters, resulting in the fusion of 20 types of vehicles 

(5,392 in total) into 100 large background images. The dataset adopts rotation bounding box 

annotation and includes one Standard Operating Condition (SOC) and two EOCs partitioning 

strategies, making it a challenging and diverse dataset.  

· Based on the Mix MSTAR, we evaluated 9 benchmark models for general remote sensing object 

detection and analyzed their strengths and weaknesses for SAR-ATR.  

· To address potential artificial traces and data variance in synthetic images, we designed two 

experiments to demonstrate the fidelity and effectiveness of Mix MSTAR in SAR image features, 

demonstrating that Mix MSTAR can serve as a benchmark dataset for evaluating deep learning-

based SAR-ATR algorithms.  

The remaining article is composed of 4 sections. Section 2 presents detailed methodology 

employed to construct the synthetic dataset, as well as extensive analysis of the dataset itself. In 

Section 3, we introduce and evaluate nine rotate object detectors using the synthetic dataset as the 
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benchmark. Sequently, a comprehensive analysis of the results is conducted. Section 4 focuses 

specifically on the analysis and validation of two vital problems related the dataset, namely, artificial 

traces and data variance. Moreover, we provide an outlook on potential future of the synthetic dataset. 

Section 5 concludes our work. 

2. Materials and Methods 

2.1. Preliminary Feasibility Assessment 

We first evaluated the feasibility of merging Clutters and Chips. Since the sensor's depression 

was 15° when collecting Clutters, we chose Chips with the same depression as the target images. As 

shown in Table 2, both Clutters and Chips use the same STARLOS sensor based on airborne platform, 

and maintain consistency in terms of radar center frequency, bandwidth, polarization and depression. 

Although the radar mode is in different, the final imaging resolution and pixel spacing are the same. 

Therefore, we assume that if the working parameters of Clutters are used for imaging vehicles, the 

visual effect will be approximately the same as that on Chips. So, it is feasible to transfer the vehicles 

in Chips to the Clutters’ backgrounds, and the final effect is in line with the human observation 

mechanism. Of course, we must acknowledge that due to the differences in the operating modes, the 

two have significant differences in the radar raw data (especially phase). This means that synthetic 

data generated by background transfer cannot strictly conform to the scattering mechanism of the 

radar. However, what we pursue is the consistency between synthetic data and real data in terms of 

8-bit image features, which is crucial for current deep learning models based on image feature 

extraction in the computer vision field.  

Table 2. Basic radar parameter of Chips and Clutters in MSTAR. 

Collection Parameters Chips Clutters 

Center Frequency 9.60 GHz 9.60 GHz 

Bandwidth 0.591 GHz 0.591 GHz 

Polarization HH HH 

Depression 15° 15° 

Resolution(m) 0.3047*0.3047 0.3047*0.3047 

Pixel Spacing(m) 0.202148*0.203125 0.202148*0.203125 

Platform airborne airborne 

Radar Mode spot light strip map 

Data type float32 uint16 

Unlike previous attempts that involve crude background transfers, Mix MSTAR aims to be a 

visually realistic synthetic dataset. To achieve this goal, we conducted extensive research into domain 

transfer and imaging algorithms to harmoniously blend two different radar data and developed a 

paradigm for creating synthetic datasets, as shown in Figure 2. Next, we will describe in detail the 

process of constructing the dataset.  
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Figure 2. The pipeline of construct the synthetic dataset. 

2.2. Mask Extraction 

In order to make vehicles fit seamlessly into the Clutters’ backgrounds, we used labelme [29] to 

mask the outlines of the vehicles on Chips. Since the shadow in radar blind area is also the important 

feature of SAR targets, the shadow of the vehicle was included in the mask. We also labeled the OBBs 

of the vehicle on Chips to be used as the label for the final synthetic dataset. The four points of the 

OBBs are labeled in a clockwise direction and the first point is on the left side of the vehicle's front. It 

is worth noting that according to the principle of electromagnetic wave scattering, there will always 

be a part of the vehicle in the shadow area in any angle, with a weak reflected signal, but not 

completely absent. This ambiguity can cause interference in manual annotation. Therefore, to unify 

the standard, the strategy followed for annotating the OBBs is based on the human visual perception. 

We only label the salient areas that can attract the attention of the human rather than including the 

entire actual occupation of the vehicle based on prior knowledge according to the object resolution 

and vehicle size, as shown in Figure 3b. This conforms to the annotation rules of computer vision and 

ensures that the model trained on this dataset focuses on features that are in line with human 

perception.  

  

(a) (b) 

Figure 3. Vehicle segmentation label, containing a mask of the vehicle and its shadow and a rotated 

bounding box of its visually salient part. (a) The label of the vehicle when the boundary is relatively 

clear; (b) The label of the vehicle when the boundary is blurred. 

2.3. Data Harmonization 

In fact, after extracting the masks of the vehicles in Chips, we can already embed the mask in 

Clutters as the foreground. However, prior to this step, it is necessary to harmonize the two kinds of 

data for the visual harmony of the synthetic image. In the field of image composition, image 
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harmonization aims to adjust the foreground to make it compatible with the background in the 

composite image [30]. In visible light image harmonization, traditional methods [31–33] or deep 

learning-based methods [30,34–36] can already perfectly combine the foreground and background 

visually. However, in the strict imaging mechanism of SAR, pixel brightness corresponds to the 

intensity of radar echoes, which requires synthetic images to not only look visually harmonious but 

also conform to the physical mechanism. Therefore, we propose a domain transfer method that uses 

the same ground objects as prior information to harmonize the synthetic images, conforming to the 

SAR imaging mechanism as much as possible. Notably, in the following two steps, we apply data 

harmonization on the raw radar data with high bit depth to obtain more accurate results. 

2.3.1. Domain Transfer 

Since Chips and Clutters are two different types of data, their distribution and threshold values 

are different, so it is necessary to unify them reasonably based on their relationship before merging. 

Since the background is the main body in the synthetic images, we choose to transfer mask from 

domain Chips to domain Clutters. Based on the satellite map and information in the source files, we 

noticed that the background of Chips is a dry grassland, and Clutters also contain a large amount of 

grassland. Both were collected in Huntsville City, less than 26km apart, and in the autumn season, so 

it can be assumed that the vegetation in the grassland of the two places is similar. To validate this 

assumption, we annotated grassland of 9 Clutters and conducted data analysis with the grassland in 

7 kinds of Chips, collection dates of which were close to Clutters, as the region of interest (RoI). As 

shown in Table 3, it can be seen that the coefficient of variation calculated based on formula (1) for 

both data is around 0.6, indicating similar data dispersal levels.  

V

σ
C =

μ

 

(1) 

Table 3. Analysis of grassland data from Chips and Clutters in the same period. 

Grassland Collection Date Mean Std CV(std/mean) CSIM 

BMP2 SN9563 

1995.09.01 

- 

1995.09.02 

0.049305962 0.030280159 0.614127740 0.99826 

BMP2 SN9566 0.046989963 0.028360445 0.603542612 0.99966 

BMP2 SN C21 0.046560729 0.02830699 0.607958479 0.99958 

BTR70 SN C71 0.046856523 0.028143257 0.600626235 0.99970 

T72 SN132 0.045960505 0.028047173 0.610245101 0.99935 

T72 SN812 0.04546104 0.027559057 0.606212638 0.99911 

T72 SNS7 0.041791245 0.025319219 0.605849838 0.99260 

Clutters 1995.09.05 63.2881255 37.850263 0.598062633 11 

1 The CSIM of Clutters equal to 1 means compare themself. 

Based on the above analysis, and given the similar data distribution of both data after being 

dimensionless, we linearly mapped the data of Chips to the data space of Clutters. According to 

formula (2), we multiplied the data of Chips by the ratio coefficient K (K=1371.8) of the mean value 

of the grassland in both RoIs, and then rounded it. Following the pipeline shown in Figure 4a, we 

calculated the histograms of the grassland in transformed Chips and Clutter, and calculated their 

cosine similarity (CSIM) according to formula (3). From Figure 4b, it can be seen that the data 

distribution of the two data is very similar. In Table 3, the CSIM values for the two grasslands are all 

above 0.99. Therefore, K can be used as the mapping coefficient from domain Chips to domain 

Clutters, and the whole data of Chips can be harmonized via multiplying it by K.  
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Mean(Clutter)
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1
Mean(Chip)

c  
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CSIM=cos θ =

a b
（ ）

 

(3) 

 

  
(a) (b) 

Figure 4. (a) The pipeline of extracting grass and calculating the cosine similarity; (b) The histogram 

of the grass in Chips and Clutters. 

2.3.2. Brightness Uniformity 

Schumacher et al. pointed out that the background and the targets of Chips are highly relevant 

[37,38]. Geng et al. conducted experiments and indicated that the SAR-ATR model recognizes 

vehicles by treating brightness of the background as an important feature [39]. For instance, the 

background of BRDM2 is brighter than other types of vehicles, which causes the neural network to 

learn from the training data that "the brighter ones are more likely to be BRDM2" [39]. Thus, the SAR-

ATR model cheats by recognizing the associated background to classify the vehicles. We discovered 

that this phenomenon is due to the nonlinear mapping of the official imaging algorithm, as seen in 

the left column of Table 4. ScaleAdj in the 11th step of the original algorithm is determined by the 

value of the most and least appearing pixels in each image, and we found that the mean of ScaleAdj 

in BRDM2 is higher than that of other vehicles. Additionally, the non-uniform ScaleAdj results in 

different gray level transformations for each category of vehicles, and even for each image. 

Furthermore, for Clutters, the original algorithm produces very dark images. The reason for this lies 

in the high dynamic range of Clutters radar data with most data in low values, and the maximum-

minimum value stretching in the 3th step results in most data being assigned low gray values.  

Therefore, we believe that applying a uniform brightness transformation on the imaging 

algorithm is an effective way to avoid the aforementioned two problems, as shown in the right 

column of Table 4. The improved imaging algorithm maps the radar amplitude values linearly to the 

image gray values by setting a threshold and a linear transformation. Too high a threshold pools the 

low-value signals, while too low a threshold causes the loss of information of high-value signals. 

Therefore, to preserve most of the image details while minimizing the loss of high-value signals, we 

set the threshold to 511, as 99.8% of the radar amplitudes in Clutters are less than this threshold and 

95.5% for the mask of the vehicle in Chips. This approach linearly images the low-value signals and 

preserves most of the image details without significant loss of high-value signals.  

Table 4. Original imaging algorithm and improved imaging algorithm. 

Original imaging algorithm Improved imaging algorithm 

Input: Amplitude in MSTAR Data a>0, enhance=T 

or F 

Input: Amplitude in MSTAR Data a>0, 

Threshold thresh 

Output: uint8 image img Output: uint8 image img 

1: fmin←min(a), fmax←max(a) 1: for pixel∈a do  
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2: frange←fmax-fmin, fscale←255/frange 2:    if pixel>thresh then 

3: a←(a-fmin)/fscale 3:       pixel←thresh 

4: img←uint8(a) 4: scale←255/thresh 

5: if enhance then 5: img←uint8(a/scale) 

6:    hist8←hist(img) 6: Return img 

7:    maxPixelCountBin←index[max(hist8)]  

8:    minPixelCountBin←index[min(hist8)]  

9:    if minPixelCountBin>maxPixelCountBin then  

10:      thresh←minPixelCountBin-

maxPixelCountBin 
 

11:      scaleAdj←255/thresh  

12:      img←img*scaleAdj  

13:   else  

14:      img←img*3  

15:   img←uint8(img)  

16: Return img  

2.4. Embedded Synthesis 

Based on OpenCV, our laboratory developed an interactive software that can embed vehicle 

masks of the specific category or specified azimuth angles at designated positions in the Clutters 

background conveniently. We follow the basic logic of radar scattering to select the embedding 

positions. First, we prevent the overlap of vehicle masks through logical settings at the code level. 

Second, we avoid placing vehicles above tall objects (such as trees or buildings) or their shadow areas. 

To achieve a seamless transition between the mask and the background at the edges, a 5*5 Gaussian 

operator is applied for smoothing filtering on the inner and outer circles of the mask edges. To 

investigate the impact of background objects and corner reflectors on SAR-ATR, we mark the 

recognition difficulty of vehicles near objects with strong reflection echoes, such as trees or buildings, 

as 1. Additionally, we embed corner reflector with a 15° depression in Clutters and set the recognition 

difficulty of vehicles near them to 2. For other vehicle positions, the recognition difficulty is set as 

default to 0. As shown in Equation 4, the final label format follows the DOTA format [3], with each 

Gound Truth including the position of the four vertices of the rectangle, category, and difficulty. The 

position of the vertices of each rectangle is obtained from the rotated bounding box (shown in Figure 

3) after coordinate transformation. 
 

1 1 2 2 3 3 4 4
(x ,y ,x ,y ,x ,y ,x ,y ,category,difficult)  (4) 

2.5. Analysis of the Dataset 

To create a challenging dataset, we combined one SOC and two EOC division strategies. As 

shown in Table 5, the first EOC strategy uses BMP2sn-9563 as the train set and BMP2sn-9566 and 

BMP2sn-c21 as the test set. The second EOC strategy uses a 7:3 fine-grained partitioning of T72's 11 

subtypes. The rest of the 8 vehicle categories are partitioned based on a 7:3 SOC strategy. Similarly, 

as described in Section 2.4, corner reflectors are embedded in a 7:3 ratio but are not used as detection 

objects. For the Clutters partition, we selected 34 out of 100 images that can be stitched together as 

the test set, and the remaining 66 images serve as the train set. After the partitioning of the dataset, 

we fused Chips and Clutters according to the method described in Figure 2, resulting in 100 images. 

To simulate a realistic remote sensing application scenario, we stitched together the geographically 

contiguous images in the test set into 4 large images.  

Table 5. The division of Mix MSTAR. 

Class Train Test Total 

2S1 192 82 274 
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BMP2 195 392 587 

BRDM2 192 82 274 

BTR60 136 59 195 

BTR70 137 59 196 

D7 192 82 274 

T62 191 82 273 

T72 A04 192 82 274 

T72 A05 192 82 274 

T72 A07 192 82 274 

T72 A10 190 81 271 

T72 A32 192 82 274 

T72 A62 192 82 274 

T72 A63 192 82 274 

T72 A64 192 82 274 

T72 SN132 137 59 196 

T72 SN812 136 59 195 

T72 SNS7 134 57 191 

ZIL131 192 82 274 

ZSU234 192 82 274 

Total 3560 1832 5392 

 

In summary, Mix MSTAR consists of 100 large images with 5392 vehicles of 20 fine-grained 

categories. The geographically contiguous test set can be stitched into four large images, as shown in 

Figure 5. The arrangement of vehicles is diverse, with both tight and sparse groupings and various 

scenes such as urban, highway, grassland, and forest.  

(a) 

(b) (c) (d) (e) 

Figure 5. A picture from the test set with 10346*1784 pixels (a) Densely ranked vehicles; (b) Sparsely 

ranked vehicles; (c) Town scene; (d) Field scene. 
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As shown in the data analysis in Figure 6, the vehicle orientations are relatively uniformly 

distributed between [0-2π], and the vehicle areas fluctuate due to changes in azimuth angles, with 

different vehicles having different sizes. The aspect ratio of the vehicle ranges from 1 to over 3. 

According to the definition of object sizes in the COCO regulation [40], over 98% of the vehicles are 

small objects, which requires detection algorithms to have good small object detection capabilities. 

The number of vehicles in each Clutter is also uneven, ranging from 1 to over 90 vehicles, indicating 

the need for detection algorithms to be more robust to the issue of uneven sample distribution.  

    

(a) (b) (c) (d) 

Figure 6. Data statistics of Mix MSTAR (a) The area distribution of different categories of vehicles; (b) 

Histogram of number of annotated instances per image; (c) The number of vehicles in different 

azimuths; (d) The length - width distribution and aspect ratio distribution of vehicles. 

3. Results 

After constructing Mix MSTAR, in order to further evaluate the dataset, in this section nine 

benchmark models are selected to evaluate the performance of mainstream rotated object detection 

algorithms on Mix MSTAR. 
 

3.1. Models Selected 

In the field of deep learning, the types of detectors can be roughly divided into single-stage, 

refinement stage, two-stage, and anchor-free algorithms.  

The single-stage algorithm directly predicts the class and bounding box coordinates for objects 

from the feature maps. It tends to be computationally more efficient albeit at the potential cost of less 

precise localization.  

The refinement stage algorithm is typically a supplementary step incorporated within an object 

detection process to enhance the precision of detected bounding box coordinates proposed initially. 

It refines the spatial dimensions of bounding boxes via a series of regressors learning to make small 

iterative corrections towards the ground truth box, thereby improving the performance of object 

localization.  

The two-stage algorithm operates on the principle of segregation between object localization and 

its classification. First, it generates region proposals through its region proposal network (RPN) stage 

based on the input images. Then, these proposals are run through the second stage where the actual 

object detection takes place, discerning the object class and refining the bounding boxes. Due to this 

two-step process, these algorithms tend to be more accurate but slower.  

Unlike traditional algorithms which leverage anchor boxes as prior knowledge for object 

detection, anchor-free algorithms operate by directly predicting the object’s bounding box without 

relying on predetermined anchor boxes. They circumvent drawbacks such as choosing the optimal 

scale, ratio, and number of anchor boxes for different datasets and tasks. Furthermore, they simplify 

the pipeline of object detection models and have been successful in certain contexts on both efficiency 

and accuracy fronts. 

To make the evaluation results more convincing, the nine algorithms cover the four kinds of 

algorithms mentioned above. 

3.1.1.RotatedRetinanet.  
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Figure 7. The architecture of Rotated Retinanet 

Retinanet [41] argues that the core reason why single-stage detectors underperform compared 

to two-stage models is due to the extreme foreground and background imbalance during training. 

To address this, the Focal Loss was proposed, which adds two weights to the binary cross-entropy 

loss to balance the importance of positive and negative samples and reduce the emphasis on easy 

samples so that the focus of training is on hard negatives. Retinanet is the first single-stage model 

with accuracy surpassing that of two-stage models. Based on it, Rotated Retinanet predicts an 

additional angle in the regression branch (x, y, w, h) without other modifications.  

3.1.2. S2A-Net 

 

Figure 8. The architecture of S2A-Net 

S2A-Net [42] is a refinement stage model that proposes the Feature Alignment Module (FAM) 

on the basis of improving deformable convolution (DCN) [43]. In the refinement stage, the horizontal 

anchor is refined to a rotated anchor by the Anchor Refinement Network (ARN), which is a learnable 

offset field module that is directly supervised by box annotations. Next, the feature map within the 

anchor is aligned and then convolved with the Alignment Convolution. This method eliminates the 

low-quality, heuristically defined anchors and addresses the uncorrelated problem between anchor 

boxes and axis-aligned features they cause.  

3.1.3. R3Det 

 

Figure 9. The architecture of R3Det 

R3Det [44] is a refinement stage model that proposes the Feature Refinement Module (FRM) for 

reconstructing the feature map according to the refined bounding box. Each point in the 
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reconstructed feature map is obtained by adding five feature vectors consisting of five points (four 

corner points and the center point in the refined bounding box) after interpolation. FRM can alleviate 

the feature misalignment problems that exist in refined single-stage detectors and can be added 

multiple times for better performance. Additionally, an approximate SkewIoU loss is proposed, 

which can better reflect the real loss of SkewIoU while maintaining differentiability.  

3.1.4. ROI Transformer 

 

Figure 10. The architecture of ROI Transformert 

ROI Transformer [45] is a two-stage model that adds a learnable module from horizontal RoI 

(HRoI) to rotated RoI (RRoI). It generates HRoI based on a small number of horizontal anchors and 

proposes RRoI via the offset of the rotated ground truth relative to HRoI. This operation eliminates 

the need to preset a large number of rotated anchors with different angles for directly generating 

RRoI. In the next step, the proposed Rotated Position Sensitive RoI Align extracts rotation-invariant 

features from the feature map and RRoI to enhance subsequent classification and regression. This 

study also examines the advantages of retaining appropriate context in RRoI for enhancing the 

detector's performance.  

3.1.5. Oriented RCNN 

 

Figure 11. The architecture of Oriented RCNN 

Oriented RCNN [46] is built upon the Faster RCNN [2] and proposes an efficient oriented RPN 

network. The oriented RPN uses a novel six-parameter Mid-point Offset Representation to represent 

the offsets of the rotated ground truth relative to the horizontal anchor box and generate a 

quadrilateral proposal. Compared with RRPN[47], it avoids the huge amount of calculation caused 

by presetting a large number of rotating anchor boxes. Compared to ROI Transformer, it converts 

horizontal anchor boxes into oriented proposals in a single step, greatly reducing the parameter 

amount of the RPN network. Efficient and high-quality oriented proposals network make Oriented 

RCNN both high-accuracy and high-speed.  
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3.1.6. Gliding Vertex 

  

(a) (b) 

Figure 12. The architecture of Gliding Vertex 

Gliding Vertex [48] introduces a robust OBB representation that addresses the limitations of 

predicting vertices and angles. Specifically, on the regression branch of RCNN, four extra length ratio 

parameters are used to slide the corresponding vertex on each side of the horizontal bounding box. 

This approach avoids the problem of order confusion when directly predicting the position of the 

four vertices and mitigates the high sensitivity issue caused by predicting the angle. Additionally, 

with the idea of divide and conquer, an area ratio parameter r is used to predict the obliquity of the 

bounding box. This parameter can guide the regression in Horizontal Bounding Box method or OBB 

method, resolving the confusion issue of nearly-horizontal objects.  

3.1.7. ReDet 

 

Figure 13. The architecture of ReDet 

ReDet [49] argues that the regular CNNs are not equivariant to the rotation, and that rotated 

data augmentation or RRoI Align can only approximate rotation invariance. To address this issue, 

ReDet uses e2cnn theory [50] to design a new rotational equivariant backbone called ReResNet, which 

is based on ResNet [1]. The new backbone features a higher degree of rotation weight sharing, 

allowing it to extract rotation-equivariant features. Additionally, the paper proposes Rotation-

Invariant RoI Align which performs warping on the spatial dimension and then circularly switches 

channels to interpolate and align on the orientation dimension to produce completely rotation-

invariant features.  

3.1.8. Rotated FCOS 
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Figure 14. The architecture of Rotated FCOS 

FCOS [51] is an anchor-free, one-stage detector that employs a full convolution structural design. 

Unlike traditional detectors, FCOS eliminates the need for presetting anchors, thereby avoiding 

complex anchor operations, sensitive and heuristic hyperparameter settings, and the large number 

of parameters and calculations associated with anchors. FCOS employs the four distances (l, r, t, b) 

between the feature point and the four sides of the bounding box as the prediction format. The 

distance between the center point and the feature point is used to measure the bounding box's center-

ness, which is then multiplied by the classification score to obtain the final confidence. The multi-

level prediction based on FPN [52] alleviates the influence of overlapping ambiguous samples. 

Rotated FCOS is a re-implementation of FCOS in rotated object detection that adds an additional 

angle branch parallel to the regression branch.  

3.1.9. Oriented RepPoints 

 

Figure 15. The architecture of Oriented RepPoints 

Based on RepPoints [53], Oriented RepPoints [54] summarizes three ways of converting a point 

set to an OBB, making it suitable for detecting aerial objects. Inherited from RepPoints, Oriented 

RepPoints combines DCN [43] with anchor-free key-point detection, enabling model to extract non-

axis aligned features from an aerial perspective. To constrain the spatial distribution of point sets, the 

proposed spatially constrained loss constrains the vulnerable outliers within their instance owner,, 

and uses GIOU [55] to quantify localization loss. Additionally, the proposed Adaptive Points 

Assessment and Assignment adopts four metrics to evaluate the quality of learning point sets, and 

use them to determine positive samples.  

3.2. Evaluation Metrics 

In rotated object detection, the ground truth of the object’s position and the bounding box 
predicted by the model are oriented bounding boxes. Similar to generic target detection, rotated 

target detection uses Intersection over Union (IoU) to measure the quality of the predicted bounding 

box: 

pd gt

OBB

pd gt

area(OBB OBB )
IoU =

area(OBB OBB )




 (5) 
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In the classification stage, based on the combination of the prediction bounding box and the 

ground truth, four results are produced: True Positives (TP), True Negatives (TN), False Negatives 

(FN), and False Positives (FP). Precision and recall are formulated as follows: 

TP
precision=

TP+FP
 (6) 

TP
recall=

TP+FN
 (7) 

Based on precision and recall, AP is defined as the area under the precision-recall (P-R) curve, 

while Mean Average Precision (mAP) is defined as the mean of AP values across all classes: 

1

0

AP= p(r) dr  (8) 

c

i
i=1

1
mAP= AP

c
  (9) 

F1 score is the harmonic mean of precision and recall, which is defined as: 

2 precision recall
F1=

precision+recall

 
 (10) 

3.3. Environment and Details 

All experiment were implemented in Ubuntu 20.04.4 with Python3.8.10, Pytorch1.11.0, Cuda11.3. 

The CPU is Intel i9 11900k @3.5GHz with 32GB RAM, and the GPU is Nvidia GeForce RTX 3090 

(24GB) with driver version 470.103.01.  

All models involved in this article are implemented through the MMRotate [56] framework. For 

fair comparison, the backbone network of each detector is ResNet50 [1] pretrained on ImageNet [57] 

by default, and the neck is FPN [52]. Each image in train set was cropped into 4 pieces of 1024*1024, 

and the four large-scene images in test set were split into a series of 1024*1024 patches with a stride 

of 824. To display the performance of each detector on Mix MSTAR as fairly as possible, we simply 

follow these settings without additional embellishments: data augmentation used random flip with 

a probability of 0.25 on horizontal, vertical or diagonal axes. Each model was trained for 180 epochs 

with 2 images per batch. The optimizer was SGD with an initial learning rate of 0.005, momentum of 

0.9, and weight decay of 1e-4. L2 norm was adopted for gradient clipping, with the maximum 

gradient set to 35. The learning rate was decayed by a factor of 10 at the 160th and 220th epochs. 

Linear preheating was used for the first 500 iterations, with the initial preheating learning rate set to 

1/3 of the initial learning rate. Additionally, the IoU threshold in the experiments was set to 0.5 and 

the confidence threshold was set to 0.3. The mAP and its standard error of all models in this article 

were obtained by training the network with three different random seeds. The final result is obtained 

by mapping the prediction of each small picture to the big picture and applying NMS. More details 

can be found in our log files.  

3.4. Result Analysis on Mix MSTAR 

The evaluation results for nine models on Mix MSTAR are shown in Tables 6 while the class-

wise AP results are shown in Table 7. It is important to note that in Tables 6, Precision, Recall and F1-

score are calculated based on the statistics of all categories of TP, FP and FN.  

Table 6. Performance Evaluation of models on Mix MSTAR. 

Category Model Params(M) 
FLOPs

（G） 
FPS mAP Precision Recall F1-score 
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One-stage Rotated Retinanet 36.74 218.18 29.2 61.03±0.75 30.98 89.36 46.01 

Refine-

stage 

S2A-Net 38.85 198.12 26.3 72.41±0.10 31.57 95.74 47.48 

R3Det 37.52 235.19 26.1 70.87±0.31 22.28 97.11 36.24 

Two-stage 

ROI Transformer 55.39 225.32 25.3 75.17±0.24 46.90 93.27 62.42 

Oriented RCNN 41.37 211.44 26.5 73.72±0.45 38.24 93.56 54.29 

ReDet 31.7 54.48 18.4 70.27±0.75 45.83 89.99 60.73 

Gliding Vertex 41.37 211.31 28.5 71.81±0.19 44.17 91.78 59.64 

Anchor-

free 

Rotated FCOS 32.16 207.16 29.7 72.27±1.27 27.52 96.47 42.82 

Oriented 

RepPoints 
36.83 194.35 26.8 75.37±0.80 34.73 95.25 50.90 

Combining the results and the previous analysis of the model and the dataset, we can draw the 

following conclusions: 

1. In terms of the mAP metric, Oriented RepPoints achieved the best accuracy, which we attribute 

to its unique proposal approach based on sampling points. This approach successfully combines 

the deformation convolution and non-axis aligned feature extraction together. Additionally, 

being a two-stage model, its feature extraction is more accurate. Compared to other refined 

models, it has more sampling points, up to 9, which makes the extracted features more 

comprehensive. However, the heavy use of deformation convolution has made its training speed 

slow. The two-stage model performs better than the single-stage network due to the initial 

screening of the RPN network. However, the performance of Gliding Vertex is average, which 

may be due to its failure to use directed proposals in the first stage, resulting in inaccurate feature 

extraction. ReDet has poor performance, possibly because the rotation-invariant network used 

in ReDet is not suitable for SAR images with a low depression. Mix MSTAR are simulated at a 

depression of 15°, and the shadow area is quite large, leading to significant imaging differences 

for the same object under different azimuth angles. For example, rotating a vehicle image at an 

angle of θ by α degrees would produce an image that is significantly different from the image 

of the same vehicle captured at (θ+α) degrees, which may cause ReResNet to extract incorrect 

rotation-invariant features. Compared to single-stage models, refined-stage models demonstrate 

a significant performance improvement, suggesting that refined-stage models are more accurate 

in extracting non-axis aligned features of rotated objects, which can reduce the gap between 

refined-stage models and two-stage models. While the performance of R3Det is slightly inferior, 

it is similar to ReDet, and its reason may lie in the sampling points in its refined stage, which are 

fixed at the four corners and the center point. In low-pitch-angle SAR images, one vertex far 

from the radar sensor is necessarily shaded, which means that the feature extraction of the 

sampling point interferes with the overall feature expression. S2A-Net uses deformation 

convolution, with the position of the sampling point being learnable. Although there is still a 

probability of collecting data from the shaded vertexes, there are nine sampling points, which 

dilutes the influence of features from the shaded vertexes.  

2. In terms of speed, Rotated FCOS performs the best, benefiting from its anchor-free design and 

full convolution structure. Its parameters and computation are both lower than those of Rotated 

Retinanet. In contrast, other models use deformation convolution or non-conventional feature 

alignment convolution or non-full convolution structures, making network speed relatively 

slow. Due to its special rotation-equivariant convolution, ReDet has the slowest inference speed, 

even though its parameter and computation is the lowest. In terms of parameter quantities, the 

two anchor-free models and the single-stage model have fewer parameters than other models. 

The RPN of ROI Transformer requires two stages to extract the rotation ROI, so it has the most 

parameters. In terms of computation, due to its multi-head design, the detection head of the 
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single-stage model is too cumbersome, making its computation not significantly lower than that 

of the two-stage model. However, Mix MSTAR is a small target data set, with most of its ground 

truth width being below 32. After five times downsampling, its localization information has been 

lost. Better balance may be obtained by optimizing the regression subnetwork of layers with 

downsample sizes greater than 32.  

3. In terms of precision and recall metrics, all networks tend to maintain high recall. As using inter-

class NMS limits the Recall integration range of mAP, like the DOTA, inter-class NMS is 

disabled. But this resulted in lower accuracy. Among them, ROI Transformer achieved a balance 

between accuracy and recall and obtained the highest F1 score. 

Table 7. AP50 of each category on Mix MSTAR. 

Class 
Rotated 

Retinanet  

S2A-

Net 
R3Det 

ROI 

Transformer 

Oriented 

RCNN 
ReDet 

Gliding 

Vertex 

Rotated 

FCOS 

Oriented 

RepPoints 
Mean 

2S1 87.95 98.02 95.16 99.48 97.52 95.48 95.38 97.22 98.16 96.0 

BMP2 88.15 90.69 90.62 90.82 90.73 90.67 90.65 90.66 90.80 90.4 

BRDM2 90.86 99.65 98.83 99.62 99.03 98.14 98.39 99.72 99.22 98.2 

BTR60 71.86 88.52 88.07 88.02 85.67 88.84 86.18 86.55 86.54 85.6 

BTR70 89.03 98.06 95.36 97.57 97.68 92.53 97.02 96.67 95.06 95.4 

D7 89.76 90.75 93.38 98.02 95.70 93.42 95.51 95.52 96.21 94.3 

T62 78.46 88.66 91.20 90.29 92.39 86.53 89.70 89.99 90.20 88.6 

T72 A04 37.43 56.71 50.23 55.97 55.42 50.44 50.01 50.46 53.40 51.1 

T72 A05 31.09 40.71 43.10 46.17 48.27 44.56 45.93 42.09 50.04 43.5 

T72 A07 29.50 40.28 40.13 37.13 38.22 33.40 38.49 33.61 44.37 37.2 

T72 A10 27.99 39.82 36.00 40.71 36.81 34.04 34.44 40.67 47.57 37.6 

T72 A32 69.24 79.96 83.05 82.57 80.77 77.48 77.02 74.56 78.65 78.1 

T72 A62 41.06 49.49 50.05 54.32 47.31 41.97 45.71 53.77 54.00 48.6 

T72 A63 38.10 51.07 46.45 53.63 50.06 43.79 49.27 49.44 53.05 48.3 

T72 A64 35.51 58.28 57.54 67.37 66.65 57.95 63.38 58.47 66.14 59.0 

T72 

SN132 
34.18 54.95 45.71 59.85 58.16 56.80 52.23 54.35 65.38 

53.5 

T72 

SN812 
49.27 72.01 61.86 77.42 74.23 65.13 71.34 73.33 72.14 

68.5 

T72 

SNS7 
43.61 59.37 56.77 66.43 65.70 57.43 64.56 64.43 67.62 

60.7 

ZIL131 96.06 96.24 97.76 99.00 97.88 98.78 96.16 95.24 99.58 97.4 

ZSU234 91.55 95.03 96.17 99.09 96.15 98.04 94.90 98.65 99.26 96.5 

mAP 61.03 72.41 70.87 75.17 73.72 70.27 71.81 72.27 75.37 71.4 

4. From the results presented in Table 7, it is evident that the fine-grained classification result of 

T72 tank is poor and has a significant impact on all detectors. Figure 16a further illustrates this 

point, as the confusion matrix of Oriented RepPoints indicates a considerable number of FP 

assigned to wrong subtypes of the T72 tank, which is also observed in cross-category confusion 

intervals such as BTR70-BTR60, 2S1-T62, and T72-T62. Another notable observation is the poor 

detection effect of BMP2 under EOC, as indicated in the confusion matrix. Many BMP2 subtypes 

that didn’t appear in the train set are mistaken for other vehicles in testing. Figure 16b depicts 

the P-R curves of all detectors. 
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(a) (b) 

Figure 16. (a) Confusion matrix of Oriented RepPoints on Mix MSTAR; (b) The P-R curves of models 

on Mix MSTAR. 

5. Figure 17 presents the detection results of three detectors on the same picture. The results 

showed that the localization of the vehicles was accurate, but the recognition accuracy was not 

high, with a small number of false positives and misses. Additionally, we discovered two 

unknown vehicles in the scene, which were initially hidden among the clutters and did not 

belong to the Chips. One vehicle was recognized as T62 by all three models, while the other 

vehicle was classified as background, possibly because its area was significantly larger than the 

vehicles in the Mix MSTAR. This indicates that the model trained by Mix MSTAR has the ability 

to recognize real vehicles.  

  

(a) (b) 

  
(c) (d) 
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Figure 17. Some detection result of different models on Mix MSTAR. (a) Ground truth; (b) Result of 

S2A-Net; (c) Result of ROI Transformer; (d) Result of Oriented RepPoints. 

4. Discussion 

For a synthetic dataset that aims to become a detection benchmark, both fidelity and 

effectiveness are essential. However, in the production of Mix MSTAR, it is necessary to manually 

extract vehicles from Chips and fuse radar data collected under different modes before generating 

the final image. Thus, there are two potential problems in this process, which will affect the visual 

effectiveness of the synthetic images： 

• Artificial traces: The vehicle masks manually extracted can alter the contour features of the 

vehicles and leave artificial traces in the synthetic images. Even though Gaussian smoothing was 

applied to reduce this effect on the vehicle edges, theoretically, these traces could still be utilized 

by overfitting models to identify targets.  

• Data variance: The vehicle and background data in Mix MSTAR were collected under different 

operating modes. Although we harmonized the data amplitude based on reasonable 

assumptions, Chips was collected using spotlight mode, while Clutters used strip mode. The 

two different scanning modes of radar can cause variances in the image style (particularly spatial 

distribution) of foreground and background in the synthetic images. This could lead detection 

models to find some cheating shortcuts due to the non-realistic effects of the synthetic images, 

failing to extract common image features.  

To address these concerns, we designed two separate experiments to demonstrate the reliability 

of the synthetic dataset.  

4.1. The Artificial Traces Problem 

To address the potential problem of artificial traces and to prove the fidelity of the synthetic 

dataset, our approach was to use a model trained on Mix MSTAR to detect intact vehicle images. We 

randomly selected 25 images from the Chips and expanded them to 204x204 to maintain their original 

size. These images were then stitched into a 1024x1024 large image, which was input into the ROI 

Transformer trained on Mix MSTAR. As shown in Figure 18a, all these intact vehicles were accurately 

localized, with a classification accuracy of 80%.  

  
(a) (b) 

Figure 18. (a) The result of ROI Transformer on concatenated Chips; (b) Class activation map of 

concatenated Chips. 

However, an accuracy of 80% is not an ideal result, as the background in Chips is quite simple 

and the five misidentified vehicles were all subtypes of T72. As a comparison experiment, we trained 

and tested ResNet18 as a classification model on the 20 classes Chips of MSTAR, following the same 

partition strategy as Mix MSTAR, and the classifier easily achieved 92.22% accuracy. However, we 

found through class activation maps [58] that since each type of vehicle in MSTAR was captured at 

different angles, but at the same location, the high correlation between the backgrounds in Chips 

causes the classifier to focus more on the terrain than the vehicles themselves. As shown in Figure 19, 

the two subtypes of T72 were identified based on their tracks and unusual vegetation, with 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 August 2023                   doi:10.20944/preprints202308.0837.v1

https://doi.org/10.20944/preprints202308.0837.v1


 20 

 

recognition rates of 98.77% and 100%. However, the accuracy of the two T72 subtypes that did not 

benefit from background correlation was only 73.17% and 66.67%, respectively. This phenomenon 

also existed in other types of vehicles, indicating that the training results of using background-

correlated Chips are actually unreliable.  

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 19. (a) (c) T72 A05 Chips; (f) (g) T72 A07 Chips; (b) (d) Class activation map of T72 A05 

Chips;(f) (h) Class activation map of T72 A07 Chips. 

Through the detection of intact vehicles in real images, we have proven that the artificial traces 

generated in the process of mask extraction did not affect the models. On the contrary, benefit from 

the mask extraction and background transfer, Mix MSTAR eliminated background correlation, 

allowing models trained on the high-fidelity synthetic images to focus on vehicle features, such as 

shadows and bright spots, as shown in Figure 18b.  

4.2. The Data Variance Problem 

To address potential data variance problem and demonstrate the authentic detection capability 

of models obtained from Mix MSTAR, we designed the following experiment to prove the 

effectiveness of the Mix MSTAR. The real dataset, Mini SAR was used to train and evaluate models 

pretrained on Mix MSTAR and those not pretrained on Mix MSTAR. For the pretrained models, we 

froze the weights of first stage of the backbone, forcing the network to extract features in the same 

way as it does with synthetic images. The non-pretrained models were loaded from ImageNet 

weights as a regular setting. We selected nine images containing vehicles as the dataset, and seven 

were used for training and two for validation. The images were divided into 1024x1024 images with 

a stride of 824. Since the dataset was very small, the training process of each network was unstable. 

Therefore, we extended the number of iterations to 240 epochs, recorded the mAP of the model on 

the validation set after each epoch, and set the learning rate reducing 10 folds at epoch 160 and epoch 

220, with all other settings consistent with those in the Mix MSTAR experiments. It is worth noting 

that there is no perfect unified training setting that can fit all detectors due to their different feature 

extraction capabilities and the propensity for overfitting on the small dataset. Thus, we record the 

best results of the validation set during training in Table 8. 

Table 8. Best mAP of pretrained/unpretrained models on Mini SAR validation set. 

Model Unpretrained Pretrained 

Rotated Retinanet  38.00±15.52  71.40±0.75  

S2A-Net 65.63±1.94  69.81±0.89  

R3Det 66.30±2.66  70.35±0.18  

ROI Transformer 79.42±0.61  80.12±0.01  
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Oriented RCNN 70.49±0.47  80.07±0.24  

ReDet 79.47±0.58  79.64±0.31  

Gliding Vertex 70.71±0.20  77.64±0.49  

Rotated FCOS 10.82±3.94  74.93±2.60  

Oriented RepPoints 72.72±2.04  79.02±0.39  

Firstly, as shown in Table 8, all models obtained an improvement after being pretrained on Mix 

MSTAR. Since the weights of the first layer are frozen after pretraining, this indicates that the models 

effectively learn how to extract general underlying features from SAR images. Secondly, since the 

validation set contains only two images, the results of non-pretrained models were very unstable, but 

the standard errors of all models were significantly reduced after pretraining on Mix MSTAR. 

Additionally, as shown in Figure 20, the pretrained models had very rapid loss reduction during the 

training process. See Figure 21, after a few epochs, their accuracy on the validation set increased 

significantly, and ultimately reached a relatively stable result. However, the loss and mAP of the non-

pretrained models were unstable.  

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 20. The loss of pretrained/unpretrained models during training on Mini SAR. (a) Rotated 

Retinanet; (b) S2A-Net; (c) R3Det; (d) ROI Transformer; (e) Oriented RCNN; (f) ReDet; (g) Gliding 

Vertex; (h) Rotated FCOS; (i) Oriented RepPoints. 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 21. The mAP of pretrained/unpretrained models during training on Mini SAR. (a) Rotated 

Retinanet; (b) S2A-Net; (c) R3Det; (d) ROI Transformer; (e) Oriented RCNN; (f) ReDet; (g) Gliding 

Vertex; (h) Rotated FCOS; (i) Oriented RepPoints. 

We noticed that Rotated RetinaNet and Rotated FCOS are very sensitive to the random seed 

initialization, making them prone to training failure. This may be due to the weak ability of single-

stage detectors in feature extraction, which makes it difficult for them to learn effective feature 

extraction capabilities from a small quantity of data. Therefore, we conducted a comparison 

experiment in which we added the Mix MSTAR train set to the Mini SAR train set to increase the data 

size when training the non-pretrained models. As shown in Table 9, both single-stage models 

obtained significant improvements after mixed training with the two datasets. As seen in Figure 22, 

pretraining on Mix MSTAR or mixed training with Mix MSTAR both resulted in increased recall and 

precision of the models, achieving more accurate bounding box regression.  

Table 9. mAP of pretrained/unpretrained/mixed trained models on Mini SAR. 

Model 
Trained on Mini SAR 

only 

Pretrained on Mix 

MSTAR 
Add Mix MSTAR 

Rotated 

Retinanet  
38.00±15.52  71.40±0.75  78.62±0.42  

Rotated FCOS 10.82±3.94  74.93±2.60  77.70±0.10  
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(a) (b) 

  
(c) (d) 

Figure 22. Some detection result of Rotated Retinanet on Mini SAR. (a) Ground truth; (b) Rotated 

Retinanet trained on Mini SAR only; (c) Rotated Retinanet pretrained on Mix MSTAR; (d) Rotated 

Retinanet train on Mini SAR and Mix MSTAR. 

Based on the above comparison experiments using real data, we have demonstrated the 

effectiveness of Mix MSTAR, indicating that synthetic data can also help networks learn how to 

extract features from real SAR images, thereby proving the effectiveness and transferability ability of 

the Mix MSTAR. In addition, the experiment shows that the unstable Mini SAR is not suitable as the 

benchmark dataset for algorithm comparison, especially for the single-stage model, and also verifies 

that the Mix MSTAR is effective in addressing the problem of insufficient real data for SAR vehicle 

detection.  

4.3. Potential Application 

As more and more creative work leverages synthetic data to advance human understanding 

towards the real world, Mix MSTAR, as the first public SAR vehicle multi-class detection dataset, has 

many potential applications. Here, we envision two potential use cases: 

• SAR image generation. While mutual conversion between optical and SAR imagery is no longer 

a groundbreaking achievement, current style transfer methods between visible light and SAR 

are primarily used for low-resolution terrain classification [59]. Given the scarcity of high-

resolution SAR images and the abundance of high-resolution labeled visible light images, a 

promising avenue is to combine the two to generate more synthetic SAR images to address the 

lack of labeled SAR data and ultimately improve real SAR object detection. Although the 

synthetic image obtained in this way can not be used for model evaluation, it can help the 

detection model to obtain stronger positioning ability when detecting real SAR objects through 

pre-training or mixed training. Figure 23 demonstrates an example of using CycleGAN [60] to 

transfer vehicle images from DOTA domain to the Mix MSTAR domain.  
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(a) (b) 

Figure 23. The style transfer of optical and SAR by using CycleGAN. (a) A optical car image with label 

from DOTA domain; (b) Transferred image on Mix MSTAR domain. 

• Out-of-distribution detection. Out-of-distribution detection, or OOD detection, aims to detect 

test samples that drawn from a distribution that is different from the training distribution [61]. 

Using the model trained by synthetic images to classify real images was regarded as a 

challenging problem in SAMPLE[25]. Unlike visible light imagery, SAR imaging is heavily 

influenced by sensor operating parameters, resulting in significant stylistic differences between 

images captured under different condition. Our experiments found that current models’ 
performance on different SAR datasets is poorly generalizable. If reannotation and retraining 

are required for every new dataset, the cost will increase significantly, exacerbating the scarcity 

of SAR imagery and limiting the application scenarios of SAR-ATR. Therefore, it is an important 

research direction to use the limited labeled datasets to detect more unlabeled data. We used the 

Redet model trained on Mix MSTAR to detect real vehicles in a image from FARAD KA BAND. 

Due to resolution differences, three vehicles were detected dafter applying multi-scale test 

techniques as shown in Figure 24. 

  
(a) (b) 

Figure 24. Detection result of Redet on FARAD KA BAND. (a) Ground truth; (b) Result. 

5. Conclusions 

This research released a large-scale SAR image synthesis dataset for multi-class rotated vehicle 

detection and proposed a paradigm for realistically fusing SAR data from different domains. Upon 
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evaluating nine different benchmark detectors, we found that fine-grained classification makes Mix 

MSTAR highly challenging, with considerable room for improving object detection performance. 

Additionally, to address concerns over potential artificial traces and data variance in synthetic data, 

we conducted two experiments to demonstrate the fidelity and effectiveness of Mix MSTAR. Finally, 

we summarized two potential applications of Mix MSTAR and call on the community to enhanced 

communication and cooperation in the SAR data sharing to alleviate the scarcity of data and promote 

the development of SAR.  
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