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Article 

Innovation and Drivers of Productivity: A Global 
Analysis of Selected Critical Minerals 

Shabbir Ahmad 

The University of Queensland and Australia; s.ahmad@uq.edu.au . 

Abstract: Innovation and technology are important tools of minerals sector efficiency and productivity 

improvement. The uptake of technologies has proven important levelrs to improve the productivity of mining 

sector. This paper provides a comprehensive analysis of mine-level productivity by using a global data of 

copper, gold, and platinum from 1991-2020. Various drivers of proioductivity have been analysed to draw 

policy insights. Empirical findings reveal significant disparities in technical efficiency and productivity across 

mines and regions. A further decomposition of TFP into its different components suggest that the adoption of 

innovative practices and investment in technology adoption could improve the overall productivity of these 

commodities. The findings also suggest that an appropriate input mix and optimal scale of production could 

boost platinum mining productivity. Regional disparities in productivity in different commodities (e.g., South 

Africa vs. Zimbabwe) give policymakers with insights into how to support production scale and productivity 

through appropriate input mixtures. 

Keywords: mining innovation; technology; efficiency & productivity; scale & scope economies; 

DEA 

 

Introduction 

The mining industry's productivity has been steadily falling over the last few decades (Anna & 

Brian, 2016; Chen et al., 2004; Lala et al., 2016). These fluctuations in commodity efficiency and 

productivity have presented challenges to global demand and supply balances. Mining exporting 

countries, in particular, are vulnerable to delayed growth due to low productivity (Duan, 2022; 

Weldegiorgis et al., 2023; Yasmin et al., 2022). The significant growth in resource demand caused by 

global industrialisation and urbanisation has put great pressure on mining companies to boost 

productivity. Industry leaders have primarily focused on partial measures of productivity (e.g., 

labour productivity) as performance indicators, which do not fully reflect the factors underpinning 

total factor productivity (Fernandez, 2021; Garcia et al., 2001). Unlocking productivity potentials and 

researching alternatives for reversing falling trends are critical for a country's economic success. The 

recent reduction in mining production has piqued the interest of policymakers and corporate 

executives.   

Innovation in mining has been a key agenda for both mining businesses and policy makers. In 

recent years, the mining industry has focused on innovation to increase productivity through a 

number of productivity-enhancing initiatives and technologies, such as mine automation (Anna & 

Brian, 2016; Gruenhagen & Parker, 2020; Humphreys, 2020).  While automated mining operations 

are characterised by increased safety, operating cost reduction, and environmental consequences, 

these systems also come at a high cost. The mining industry is attempting to increase productivity by 

implementing a number of technologies. The development of cutting-edge procedures and 

technologies to increase output necessitates a substantial financial expenditure (C. Lovell & J. Lovell, 

2013). The advancements in technology (through the automation of processes) is increasing the 

productivity either maintaining a same workforce, or directly reducing the number of employees 

required (Sánchez & Hartlieb, 2020).  Conversely, the fall in ore quality across commodities as a 

result of the exploitation of high-quality resources is negating productivity increases and increasing 

the cost of extraction and capital investment. Furthermore, the utilisation of input mixtures and 
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expansion in production scale have an impact on productivity patterns. The extent to which these 

diverse elements influence production is still unknown. It is critical to determine how all of these 

different elements explain the mining sector's productivity. 

Understanding the causes of productivity decline is difficult. Several factors influence mining 

industry productivity and efficiency, including management approaches, effective resource 

allocation, scale economies, and, most importantly, technical innovation (Ahmad, 2020). Embracing 

new technologies and optimal management practices also influence the efficiency and productivity 

of the mining industry significantly (Ahmad et al., 2023). Automation and robotics advancements in 

technology, for instance, contribute to decreased carbon emissions and increased mining industry 

productivity (Humphreys, 2020). The development of technologies and their use in the mining 

industry have enhanced mineral recovery while lowering production costs and energy use (Sánchez 

& Hartlieb, 2020).  

his study examines total factor productivity in the mining sector and its many factors using a 

large mine-level panel data set comprising copper, gold, and platinum. We study numerous factors 

that explain the differences in efficiency and productivity between mines and areas. The breakdown 

of TFP into its constituent parts provides useful policy insights into how to improve mining sector 

performance. 

The following is how the paper is structured: Section 2 presents a review of the literature on TFP 

measurement and the components of its change. There is also a brief assessment of existing studies 

on mining sector productivity and their limitations. Section 3 goes into detail on the TFP measuring 

methods and data that were used in the analysis. Section 4 discusses the results and discussion of 

TFP and its associated measures of efficiency change. Finally, Section 5 concludes with closing 

remarks and potential policy initiatives to increase mineral productivity.    

Literature review 

The idea of productivity and its decomposition into its components such as technical efficiency 

and allocative efficiency was first introduced by Farrell (1957) in his seminal work. Farrell pointed 

out that a producer is always concerned to expand the output level of the firm without using more 

resources. Excessive use of inputs for a given level of output or the production of less output from a 

given level of inputs results in technical inefficiency while inappropriate use of the mix of inputs 

leads to allocative inefficiency. After Farrell’s work, other measures were developed including scale 
efficiency (Färe et al., 1994; Nishimizu & Page, 1982). Technical efficiency is usually measured using 

either an input or an output-oriented approach. Input-oriented technical efficiency is defined as the 

ability of a firm to minimize its input use to produce a given level of output (or holding output mixes 

fixed in case of multiple-outputs) while output-oriented technical efficiency  is defined as 

maximization of output with a given level of inputs (or holding input mixes fixed in case of multiple-

inputs).  

Researchers have attempted to understand the causes of declining productivity trends and have 

examined the various variables that account for variations in mining performance. However, most of 

the existing literature has focused on partial productivity (such as labour) or aggregate level 

productivity using residual approach (C. A. K. Lovell & J. E. Lovell, 2013; Mahadevan & Asafu-

Adjaye, 2005; Parida & Madheswaran, 2021; Syed et al., 2015). However, most of these studies either 

use partial productivity or aggregate or residual approaches to derive the TFP estimates for the 

mining sector.  Partial productivity (e.g., labour) measures provide the useful insights about the 

firms performance, however, they can be limited in scope to provide an overall picture of the firm. 

On the other hand, the total factor productivity and its associated measures of efficiency change can 

provide a comprehensive picture and identify the area of improvement 

A vast literature covers the use of this approach by researchers to analyse components of TFP 

change in almost every field of economics and business. Researchers have made extensive use of DEA 

methods to compute the components of technical change and technical, allocative and scale 

efficiency. Both input and output-oriented approaches have been adopted to measure technical and 

allocative inefficiencies (Charnes et al., 1978; Schmidt & Knox Lovell, 1979). Applications range from 
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agriculture (Ahmad et al., 2021; BRAVO-URETA & PINHEIRO, 1997; Kalirajan, 1990) to 

manufacturing (Ahmad & Burki, 2016; Chen et al., 2004) to the services sector (Burki & Ahmad, 2010; 

Drake et al., 2006; Fukuyama & Weber, 2002). However, there are other important drivers of TFP 

including scale and scope economies, and technical change, which needs to investigated to draw 

comprehensive policy insights (Ahmad, 2020). For instance, it would be interesting to know whether 

the uptake of technology is driving the productivity or scale and scope economies (as a result of 

appropriate output and input mixes)  are important levers of TFP in the mining sector. 

Over the past few decades, policy discussions have centered on the efficiency and productivity 

of the mining industry. Many studies (Humphreys, 2020; Isaiah et al., 2021; Shao et al., 2016) 

concentrate on the theoretical and empirical foundations of efficiency and productivity and relate it 

to various factors including innovation and technical change, adoption of technologies, scale and 

scope economies, investment lags, capacity utilisation, and input quality. However, most studies 

(have examined the total productivity of the mining sector using aggregate data (Grifell-Tatjé & 

Lovell, 2014; Mahadevan & Asafu-Adjaye, 2005; Syed et al., 2015; Topp, 2008). For instance, Topp et 

al.(2008) use data from the Australian mining industry to estimate productivity and find a downward 

trend in mining total factor productivity (TFP) between 2001-2002 and 2006-2007, concluding that the 

depletion of resources and capital adjustment have contributed to the drop in TFP. The analytical 

approach proposed by Grifell-Tatje and Lovell (2014), on the other hand, divides changes in 

productivity into variations in capacity utilisation and price recovery. They point out that an analysis 

of Chile's mining industry productivity by (Ilboudo, 2014) using the Solow residual approach 

suggests that R&D spending and technology appear to be important productivity drivers. 

Other studies used either mine level or aggregate data to investigate the efficiency and 

productivity of specific commodities (Ahmad et al., 2023; de Solminihac et al., 2018; Isaiah et al., 2021). 

de Solminihac et al. (2018), use the Solow residual approach to compute the total factor productivity 

(TFP) of the Chilean copper sector and conclude the rising input costs and declining ore quality 

reduce the worker productivity. Oliveira et al. (2017)  a limited data of 25 gold mining companies 

and note a marginal improvement in environmental efficiency.  Hernán et al. (2018) use traditional 

Solow method to explain copper productivity in Chilean mining sector and note that a 42% decline 

in labour productivity during 1999 to 2010. Ahmad et al., (2023) use global gold mine level data for 

the year 2019 to estimate carbon adjusted efficiency and technology gap among different production 

environments and technologies such as open pit and underground. They note significant disparities 

in efficiency (ranging from 18 % to 100%) across mines attributed to technology gap.  

Most of the available research on the mining industry's productivity and efficiency is either 

constrained to TFP aggregate level analyses or uses sparse firm/mine level data. To pinpoint 

numerous performance-enhancing factors, a thorough investigation of the mining sector's 

productivity is required. It would be crucial to determine whether more resources should be devoted 

to R&D to increase productivity or innovation and technology adoption. This report attempts to offer 

a thorough understanding of TFP and its significant drivers in the mining industry.  

Methods and data  

Productivity is often implicitly measured as the ratio of an aggregate output to an aggregate 

input (Jorgenson & Griliches, 1967). Aggregation of inputs and outputs must be performed using 

aggregators (Ahmad, 2020; O'Donnell, 2012). Identification of appropriate aggregator functions is 

important for the construction of various indexes. Both linear and non-linear aggregators can be used 

to construct TFP indexes. Linear aggregators have been widely used in cost minimization or revenue 

maximization estimations. The optimization measures used in the economic literature typically focus 

on linear aggregators to estimate the components of TFP, for example to minimize costs or to 

maximize revenues/profits. However, the use of non-linear aggregators is uncommon in the 

productivity literature.  

Decomposition of total factor productivity (TFP) into its different components allows policy 

makers and researchers to identify the sources of growth of firms or industry. Identification of TFP 

change as a measure of technical change originates in Robert Solow’s seminal paper 1957, where he 
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estimated aggregate production function to relate output indexes with input indexes and interpreted 

growth in in outputs associated other than inputs as a result of technical change. Solow (1957) argued 

that technical change and the capital-to-labour ratio were the only sources of growth in output per 

head.  His measure of technical change is now known as the Solow residual and is used as a measure 

of TFP growth. However, this interpretation has several limitations as pointed out by Carlaw and 

Lipsey (2003). They classify different TFP interpretations associating to mainly three components i) 

technical change, ii) the TFP viewed as free lunches based on Jorgensen and Griliches (1967), and iii) 

TFP as a measure of ignorance.  

Productivity is defined as the ratio of an aggregate output to an aggregate input as 

 
it

it

it

Q
TFP

X
=  (1) 

where 
it

Q  is an aggregate output and 
it

X  is an aggregate input. 

TFP of a firm between periods t and s can be defined as  
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These indexes satisfy the axioms and tests including monotonicity, linear homogeneity, 

proportionality, commensurability, and identity.  

3.1. Measures of Efficiency  

According to O'Donnell (2008, p.12, 13), input and output oriented technical efficiency can be 

expressed in terms of aggregate inputs and aggregate outputs. Figure 1 explains the TFP, and 

efficiency principles employed in this paper using an aggregate quantity framework. It shows a two-

dimensional aggregate quantity space to map the district's output and input aggregates across time. 

According to Eq. (1)'s definition, the TFP of a district operating at point A corresponds to the slope 

of the ray OA, and the TFP of a district operating at the frontier point E corresponds to the ray OE. 

Components of the TFP change are identified by ratios of the slopes of several points. The ratios of 

slopes at these places, which represent these measures, are used to write paths.   

 

Figure 1. Decomposition of TFP Efficiency. 
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First, the input-oriented technical efficiency (ITE), which is based on the slope (OA/OB) of the 

equation 3, measures the least amount of aggregate input that may be used to create a certain level 

of aggregate output. An increase in ITE entails closing the productivity gap by approaching the 

production frontier. 

 =
Slope

Input-oriented technical efficiency (ITE):
Slope 

it

it

OA X

OB X
     

 (3) 

Second, the input-oriented scale efficiency (ISE) is another commonly used measure (Eq. 4) 

calculating efficiency related to economies/diseconomies of scale, identified by slope (OB/OD).  

 =
Slope /

Input-oriented scale efficiency (ISE):
Slope /

it it

it it

OB Q X

OD Q X
     

 (4) 

   

Third, the input-oriented mix efficiency (IME) is another component of efficiency (Eq. 5) 

measuring expected change in productivity when there are no restrictions on input and output mix, 

also termed as economies/diseconomies of scope, given by slope (OB/OU).1  

 =
ˆSlope

Input-oriented mix efficiency (IME):
Slope 

it

it

OB X

OU X
      

 (5) 

                

Fourth, residual input-oriented scale efficiency (RISE) in Eq. (6) measuring the slope (OU/OE) 

takes the ratio at technically efficient and mix-efficient points with maximum TFP and thus is a scale 

effect. It is termed as residual because on the restricted frontier, all points are mix efficient, but they 

have different input and output mixes. In other words, this is essentially a measure of scale efficiency, 

which may contain a residual mix effect – or potential TFP change by relaxing restrictions on input-

output mix. 

 =
* *

ˆSlope /
Residual input-oriented scale efficiency (RISE):

Slope /

it it

it it

OU Q X

OE Q X
   

 (6) 

         3.2. TFP and its decomposition 

 

TFP efficiency (TFPE) is a useful overall measure of district performance in Eq. (7). It is measured 

by the ratio of observed TFP to the maximum feasible TFP (TFP*) given the existing technology, equal 

to slope (OA/OE). The TFP efficiency is  

      = =
* * *

it it it

it

it it it

TFP Q X
TFPE

TFP Q X
        

 (7) 

These definitions provide for the following meaningful decomposition.  

 = =  

=   = 

*

slope 0A slope 0B slope 0U
TFP efficiency (TFPE)

slope 0B slope 0D slope 0E

                         

it

it

it

it it it it it

TFP

TFP

ITE ISE RME ITE ISME

  (8) 

When a mine transitions from a technically efficient point on the mix-restricted frontier to a point 

of maximum production on the unconstrained frontier, ISME measures the increase in TFP 

(O'Donnell, 2012a). Simply expressed, ISME, also known as scale-mix efficiency, quantifies the 

productivity gap caused by scale-mix inefficiencies.  

 
1 Ahmad (2020) have also proposed mix efficiency measurement in a parametric framework. 
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3.3. Data and variables  

We use mine level data for each mineral that has been obtained from S&P Global Market 

Intelligence’s reports on cost database. These data are standardised based on calendar year-end. All 

production units are converted into a common scale extracted from financial and technical reports of 

each company. The missing values where information is unavailable are extrapolated using industry 

benchmarks and average values (such as productivity and energy consumption rates). All data was 

in US dollars denomination and derived in terms of unit costs. For further details refer to S&P Market 

Intelligence Metals & Mining Database. Table 1 presents the descriptive statistics of output and input 

variables for all three commodities used in the TFP analysis.  

Table 1. Descriptive of output and input quantities. 

Variables   Copper Gold Platinum 

Ly log(output) 14.81 5.38 3.71 
  (2.13) (2.24) (1.94) 

Llab log(labour) 21.89 9.81 9.89 
  (1.56) (1.43) (1.44) 

Lfuel log(fuel) 21.42 9.20 9.26 
  (1.58) (1.43) (1.38) 

Lcap log(capital) 21.21 9.26 9.34 
  (1.86) (1.67) (1.66) 

Lore log(ore) 22.81 22.11 22.34 
  (1.81) (1.60) (1.59) 

N   6706 8895 8247 
Note:  standard deviation is parentheses. 

Figure 2 panel (a-c) show the input cost trends from 1991 to 2020. As can be noted there has been 

an upward trend in labour, energy, and capital costs since Year 2002. Copper mining is a capital-

intensive sector, and because of many causes, including diminishing ore grades and investments in 

technology, the capital costs have risen over time.  Similarly, rising energy costs are affecting the 

sector’s efficiency and productivity.   Panel a of Figure 2 shows that in the year 2020 the energy cost 
of copper production was recorded above 4 cents per pound. Similar trend can be observed in gold 

and platinum sectors (as depicted in Panel b & c).   
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Figure 2. Input costs growth of selected commodities. 

Empirical results and discussion 

The data envelopment analysis (DEA) programme was used with DPIN3.0 software to compute 

the TFP and its associated components as indicated in Equation (2-8) and the graph. By addressing 

the linear programming issue outlined in O'Donnell (2012), DEA computes the efficiency and other 

components of TFP. We use the variables return to scale to calculate the input-oriented technical 

efficiency of each mine i in period t. To compute the efficiency estimates, we employ the primal input-

oriented technique. 

4.1. Technical Efficiency  

Figure 3 depicts the technological efficiency distribution for copper, gold, and platinum. There 

are significant differences in efficiency across mines and areas for all three commodities. Estimates of 

copper mine-level technical efficiency reveal that mines are 40 percent efficient in transforming inputs 

into outputs on average. In other words, enterprises may create the same amount of output while 

using only half of their inputs. The considerable variance in technical efficiency across copper mines 

can be attributable to a number of factors, including ore quality, technologies, and mining practices. 

A further examination of mine level efficiency reveals that mines in Portugal and Saudi Arabia have 

the highest technical efficiency on average, whereas considerable mine-level dispersion is observed 

in Australia, Canada, and Laos.  Again, these disparities could be attributed to ore quality and 

technology differences adopted by different firms.  

Estimates of gold efficiency are provided in Figure 3 subgraph 2. Again, the distribution of 

efficiency appears to be more negatively skewed, since a huge number of mines demonstrate a low 

level of technical efficiency.  A thorough examination of mine and country level data on 

technological efficiency finds significant variation at both the mine and regional levels. It has been 

observed that more efficient mines are located in African regions, which may be due to ore quality.  
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However, a wide range of efficiency was discovered in Ecuadorean, Bolivian, and Canadian mines. 

These findings are analogous to those of Ahmad et al. (2023), who discovered significant 

technological gaps between mines and locations. Mines in the United States, Russia, and other 

locations, for example, have lower technical efficiency, which could be attributed to lower ore grade 

as well as differing operating environments and technologies.  

Platinum efficiency estimates show a similar scenario, albeit with a somewhat higher average 

technical efficiency. Platinum's average efficiency remains at 0.50, ranging from very low to high 

efficient mines. For example, the most efficient platinum mining are located in the United States 

(0.91), followed by South Africa (0.87). Australian mines are likewise less technologically efficient. 

Similarly, Canadian mines stay clear from the border. Global data also shows that the most prolific 

mines are located in South Africa, which may be due to the ore quality, which makes those mines 

more efficient and productive. Because of price instability, the aluminium industry has been under 

tremendous pressure to pursue cost-cutting and productivity-boosting strategies. This can be 

accomplished by increasing output or reducing the quantity of resources consumed in order to boost 

productivity. 

 

Figure 3. Distribution of technical efficiency of selected commodities. 

Figure 4 (a-c) depicts a correlation analysis between productive capacity and technical efficiency 

to further explain the probable efficiency differentials among different platinum mines located in 

different localities. At the national level, there is a substantial link between production scale and 

efficiency. For example, copper mines in Australia exhibit a significant association with scale 

operations, and technical efficiency means that greater mine operations may be the result of creative 

technology adoption. Analysing mines in Canada, Chile, and South Africa yields similar results. On 

the other hand, it appears that these ties are weak in Chinese and US mining operations. The 

relationship between copper mine size and cost has been examined by many researchers (Crowson, 

2003; Bozorgebrahimi et al. 2005; Christensen and Green; Yatchew 1997). However, there are mixed 

findings whether there exist strong scale economies or not. 
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The link between gold efficiency and production scales is depicted in Figure 4, panel b. Gold 

mining, like copper mining, has a positive relationship between productive capacity and efficiency. 

In Australia, Canada, and Chile, there is a definite correlation between efficiency and mining 

operation scale. This link is less pronounced in China, South Africa, and the United States. There 

could be a variety of causes for this pattern, such as diseconomies of scale, which demands more 

investigation into other productivity drivers. Mining operations' efficiency can also be influenced by 

the different operating environments, such as open pit and underground operations (Kulshreshtha 

& Parikh, 2002). For instance, Ahmad et al. (2023) find that open pit mines appear to be more efficient 

perhaps due to operations scales that help increase the mine level productivity.  

Panel c of Figure 4 depicts the link between platinum mine output and efficiency.  The findings 

show that the scale of production is positively connected to efficiency.  Mining efficiency appears to 

have no favorable link with scale operations. As the graph shows, the majority of Canadian mines 

are somewhat inefficient. Similarly, small mines in Zimbabwe have lower technical efficiency, 

correlating with scale effects. In South Africa, there is a definite positive relationship between mine 

production scale and efficiency. South Africa produces about 80% of the world's platinum, hence the 

country's economy has a considerable impact on supply.   
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Figure 4. Relationship between technical efficiency and production scale. 

4.2. Changes in Productivity and its drivers 

TFP has been further analysed using global mine-level panel data from three commodities: 

copper, gold, and aluminium. The emphasis is on illustrating measures of efficiency change that 

explain the primary drivers of p TFP. Figure 5 depicts the trend in TFP change for a selection of 

commodities.  

TFP trends show ups and downs across the timeframe, according to the results. For example, 

since 2013, there has been an upward trend in gold TFP change. Copper productivity, on the other 

hand, has been falling since 2014. Copper mining productivity may be declining indefinitely due to 

rising production costs. Platinum TFP, on the other hand, shows mixed patterns. Productivity 

increased until 2016, after which it continuously dropped.     

 

Figure 5. TFP change in copper, gold, and platinum (2011-2020). 

A further decomposition of productivity is depicted in Figure 6 (a-c). TFP was divided into two 

parts: technical efficiency changes and scale mix efficiency change. While technical efficiency refers 
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composition of their output and input mixtures. Significant losses in scale-mix efficiency in 

Australia's mining sector, for example, have been linked to increases in people and capital utilisation 

over the last ten years.  Because of these advances in input utilisation, sectoral trade terms have also 

improved. The appropriate course of action for the government will be determined by whether rises 

in company profits are more or less significant than increases in productivity (C. J. O'Donnell, 2012).   

Figure 6 (a) describes the changes in copper TFP and associated measures of change including 

technical efficiency and input scale mix efficiency change. While the change in input scale mix 

efficiency has been steady after 2016, there has been a continuous decline in TFP, which seems to be 

largely driven by technical efficiency. Panel b of Figure 6 depicts the gold TFP and its associated 

components. It is noted that gold TFP has been on increase since 2013 with a slight dip in 2019. Scale 

and scope economies seem to contribute to TFP whereas technical efficiency has been on decline. 

Platinum TFP and its associated components are presented in Panel c of Figure 6. Results show that 

a change TFP is mainly explained through changes in technical efficiency whereas scale mix efficiency 

shows a slight decline over the time.   

 

 

 

 

Figure 6. Decomposition of TFP into technical, scale, and mix efficiency. 
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Figure 2011. to 2020 utilising global mine level panel data of selected commodities (i.e., copper, 

gold, and platinum). We used rigorous methodologies to evaluate TFP and its associated components 

for persons, miners, and organisations in various places. TFP and its components, such as technical 

efficiency and input scale mix efficiency, were computed using a non-parametric approach. We use 

DPIN3.0 software to calculate exhaustive TFP measurements for commodity level individual miners 

using the DEA technique. The main advantage of DEA is that it takes no functional form for the 

unknown technology. Furthermore, under this approach, i) no specific assumptions for the error term 

are required, ii) multiple input multiple output technologies can be estimated without any statistical 

issues (such as endogeneity), and iii) its implementation is simple, requiring readily available 

computer software. 

Empirical results show significant disparities in technical efficiency among mines across 

different commodities and regions. These differentials in efficiency may be the result of variation in 

technology adoption and ore quality of commodities under the analysis. A further analysis of 

decomposition of TFP into its different components identify the areas of improvement that could 

help increase TFP. For instance, copper and platinum sector TFP is mainly driven technical efficiency 

suggesting that the adoption of innovative practices and investment in technology adoption could 

improve the overall productivity of these commodities. On the other hand, gold sector TFP is largely 

explained by input scale mix efficiency indicate that appropriate input mix and optimum scale of 

production could improve the overall productivity of platinum mining. The findings also suggest 

that better capacity utilization of mines and production scale could help improve the mining sector 

productivity of selected commodities.  

This is the first study to our knowledge that provides a detailed examination of commodity level 

productivity and its primary drivers across three commodities. The findings imply that different 

operating circumstances and technical heterogeneity have an effect on mining productivity. New 

manufacturing techniques and technological advancements may assist the mining sector to enhance 

output. Furthermore, differences in regional productivity and its determinants (e.g., South Africa vs. 

Zimbabwe) provide policymakers with insights on how to support scale and scope economies 

through optimal input mixes.  

The current study did not look into the technological gaps that could be impeding productivity 

across mines and regions. Future studies could investigate the technology gap within the mining 

sector and across regions. Furthermore, assessing environmental productivity trajectories could yield 

substantial policy consequences, particularly after controlling for greenhouse gas emissions, which 

is still on the study agenda for the future.  
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