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Abstract: Distributions with bounded support show considerable sparsity over those with
unbounded support, despite the fact that there are a number of real-world contexts where
observations take values from a bounded range (proportions, percentages, and fractions are typical
examples). For proportion modelling, a flexible family of two-parameter distribution functions
associated with the exponential distribution is proposed here. Mathematical and statistical properties
of the novel distribution are examined, including quantiles, mode, moments, hazard rate function,
and its characterization. The parameter estimation procedure using the maximum likelihood method
was carried out, and applications to environmental and engineering data were also considered. To
this end, various statistical tests are used, along with some other information criterion indicators to
determine how well the model fits the data. The proposed model is found to be the most efficient
plan in most cases for the datasets considered.

Keywords: Unit distribution; statistical modelling; hazard function; characterizations; estimation;
numerical results; application.
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1. Introduction

Proportional variables are often encountered in data science, where they are used as stochastic
models that describe, for instance, the number of successes divided by the number of attempts, party
votes, the proportion of money spent on a cause, or the attendance rate of public events. Therefore,
proportion analysis is necessary in various fields such as healthcare, economics, and engineering,
among many others. Usually, to model the behaviour of such random variables (RVs), distributions
defined on a unit interval are used, which are very valuable in modelling proportions and percentages.
It is conceivable to model and forecast such variables, but one must look outside the traditional model
because the data is limited to the range (0, 1). For further study, readers are referred to [1–3].

In this context, the beta model is proposed by Bayes [4], which in many fields of statistics is a
convenient and helpful model widely used for modelling percentages and proportions. However,
there are a number of scenarios where it seems not to be suitable one. Therefore, alternatively,
several distributions are developed for modelling bounded variables like proportions, indices and
rates, for instance unit distribution studied in [5], the unit Johnson distribution proposed in [6], the
four-parameter distribution introduced in [7], the distribution proposed in [8], Topp-Leone distribution
studied in [9], and unit gamma distribution introduced in [10]. More recently, many other unit interval
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distribution functions have been introduced, for instance the cumulative distribution function (CDF)
quantile distribution [11], new unit interval distribution [12], the unit-inverse Gaussian distribution
[13], the log-xgamma distribution [14], unit Gompertz, unit Lindley and unit Weibull distributions
[15–17], the log-weighted exponential distribution [18], the unit Johnson SU distribution [19], the unit
log–log distribution [20], and the new unit distribution [21]. Notice that all of these distributions are
potential candidates for describing proportions. It is worth noting that the approaches mentioned
above are mainly based on conventional strategies, namely:

i) log transformation approaches,

ii) CDF and quantile methodology,

iii) reciprocal transformation, and

iv) T-X family approach.

However, all of earlier models and others seem to be casual ways of generating unit interval
distributions. In the current study, our motivational strategies begins with recalling the epsilon function
examined in [22], which is defined as

ελ,a(x) =





(
a + x

a − x

) λa
2

, −a < x < a

0, otherwise,

(1)

where λ ∈ R \{0} and a > 0. The function y = ελ,a(x) is the solution of epsilon differential equation
of the first order:

y′ =
λ a2y

a2 − x2
,

and it satisfies the following property of the exponential limit:

lim
a→+∞

ελ,a(x) = eλx, ∀x ∈ (−a,+a).

Further, it is also related to the CDF class proposed in [7], which is based on the exponential
function. However, the unit interval variants thus proposed differ from the design of our CDF. As will
be seen, the distribution proposed here is much more flexible, and exhibits both positive and negative
skewness. Moreover, as will be seen below, the hazard rate function (HRF) of proposed model purely
yields an increasing failure rate (IFR) behaviour, or all values of λ > 0 thus belongs to decreasing mean
residual life (DMRL) class.

The rest of the manuscript is organized as follows. In the next section, the basic stochastic
properties of the proposed distribution are presented. The mode, quantiles, HRF, and characterization
of the new distribution, among other properties, are examined. Section 3 shows the procedure for
estimating the parameters of the proposed distribution using the maximum likelihood (ML) method.
Applications to a number of real-world data sets is given in Section 4, while the last section provides
some concluding remarks.

2. The Proposed Unit Exponential Distribution (UED)

Let X be a bounded RV and, without loss of generality, it is convenient that values of X belongs to
the unit interval [0, 1]. Also, suppose that the CDF of RV X is defined by the following equality:

F(x) =





1 − exp

[
α

(
1 −

(
1+x
1−x

)β
)]

, 0 ≤ x < 1;

1, x = 1;

(2)

where α, β > 0. The CDF given by Equation (2) is called the unit-exponential distribution (with the
parameters α and β), and referred to as UED(α, β). Note that the UED is related to the epsilon function
defined in Equation (1). Indeed, when taking a = 1 and β = λ/2, Equation (2) becomes:

F(x) = 1 − exp
[
α
(
1 − ε2β,1(x)

)]
,
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when 0 ≤ x < 1. By differentiating the CDF given by Equation (2), the probability density function
(PDF) of the UED, when 0 ≤ x < 1, can be easily obtained as:

f (x) =
2αβ

1 − x2

(
1 + x

1 − x

)β

F(x). (3)

Here, F(x) = 1 − F(x) is the tail of the CDF F(x). Notice that the UED has two parameters α, β > 0,
the one is like a dispersion and the other like a shape parameter. Also, this PDF structure is similar to
one of the simpler forms of the so-called proper dispersion models introduced in [7], but it does not
belong to that class.

2.1. Properties of the Model

In practice, it is required that the proposed UED, whose PDF is defined by Equation (3), presents
flexibility to describe the data adequately. In this regard, it exhibits negatively and positively skewed
for all values of α > 0 and β > 0. The flexibility property of the UED can be visualized as in Figure 1,
where are shown the various cases of the appropriate PDF, in dependence of the parameters values α
and β > 0. These plots show the different skewness possibilities and the existence of modes of the
UED that can be used to fit some real-world datasets.
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α ❂ 0.0021, β ❂ 25.0028

α ❂ 0.0018, β❂ 25.0023

α ❂ 0.0015, β ❂ 25.0018

α ❂ 0.0012, β ❂ 25.0013

α ❂ 0.0009, β ❂ 25.0009

α ❂ 0.0006, β ❂ 25.0004
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Figure 1. Plots of the PDFs of the UED by varying parameters.

2.1.1. Quantile

As a first property, the quantile function of the UED is quite manageable. By inverting the CDF
F(x), given by Equation (2), the quantile function is determined as:

Q(y) = F−1(y) =
(1 − ln(1 − y)/α)1/β − 1

(1 − ln(1 − y)/α)1/β + 1
, y ∈ (0, 1).

Thanks to this function, the median of the UED is given by

Me = Q(1/2) =
(1 + ln 2/α)1/β − 1

(1 + ln 2/α)1/β + 1
.
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Using Q(y), we are able to define various measures of skewness and kurtosis, as well as important
actuarial measures( see, e.g., [23] and [2]).

2.1.2. Mode

Note that Figure 1 shows that the PDF of the proposed model can have (at most one) mode. To
identify this property, we should prove the following result, which collects these findings and their
implications.

Proposition 1. The PDF f (x), given by Equation (3), has a unique mode if and only if 0 < α < 1. Otherwise,
the UED does not have any mods.

Proof. Mode of the PDF f (x) is a solution of the equation f ′(x) = 0, which after certain calculations
and simplification becomes:

x + β − αβ

(
1 + x

1 − x

)β

= 0. (4)

If denote by ψ(x) the left-hand side of Equation (4), it is easily obtained:

lim
x→1−

ψ(x) < 0 and lim
x→0+

ψ(x) = β(1 − α).

Obviously, inequalities 0 < α < 1 and β > 0 gives β(1 − α) > 0. Then, Equation (4) has real solutions,
which guarantee that f (x) has at least one mode. Next, the function ψ(x) defined above has derivative:

ψ′(x) = 1 − 2αβ2

1 − x2

(
1 + x

1 − x

)β

.

Note that ψ′(x) is strictly decreasing because:

ψ′′(x) = −4αβ2(x + β)

(1 − x2)2

(
1 + x

1 − x

)β

< 0.

This fact then implies that the previously detected mode is unique.

2.1.3. Behaviour of the PDF at x → 0+ and x → 1−

Behaviour of the PDF f (x) at the ends of unit interval, that is when x → 0+ and x → 1−, indicate
how f (x) converges or not in these limits. In terms of data modelling, these facts would reflect
empirical limits on the extremes that data show. At the limit x → 0+, according to Equations (2) and
(3), it is easily obtained:

lim
x→0+

f (x) = 2αβ.

On the other hand, to analyzing the limit of f (x) at x → 1−, we observe the function ln f (x), which
can be written as

ln f (x) = ln(2αβ) + (β − 1) ln(1 + x)− (β + 1) ln(1 − x) + α

(
1 −

(
1 + x

1 − x

)β
)

=
1

(1 − x)β

(
(1 − x)β (ln(2αβ) + (β − 1) ln(1 + x)− (β + 1) ln(1 − x) + α)

−α (1 + x)β
)

.

Hence, we get:

lim
x→1−

(1 − x)β ln f (x) = −α 2β,

which implies that in a data representation, data would decay at exponential rates when x → 1−.
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2.1.4. Moments

Let X be a RV with the CDF given by Equation (2). Then, the rth moment of X, using partial
integration, can be expressed as follows:

E(Xr) =
∫ 1

0
xrdF(x) =

∫ 0

1
xrd(1 − F(x)) = r

∫ 1

0
xr−1(1 − F(x))dx

= r exp(α)
∫ 1

0
xr−1 exp

[
−α

(
1 + x

1 − x

)β
]

dx.

This integral can be determined numerically with the use of any software. The following result
proposes a series expansion of E(Xr) that can be used for numerical approximation.

Proposition 2. The rth moment of X can be expanded as:

E(Xr) =
2rα1/β exp(α)

β

r−1

∑
k=0

+∞

∑
ℓ=0

(
r − 1

k

)(−(r + 1)

ℓ

)
(−1)kα(k+ℓ+1)/βΓ

(
− k + ℓ+ 1

β
, α

)
,

where Γ(a, x) denotes the upper incomplete gamma function, i.e., Γ(a, x) =
∫ +∞

x ta−1 exp(−t)dt.

Proof. By applying the change of variable y = (1 + x)
/
(1 − x), we have:

E(Xr) = 2r exp(α)
∫ +∞

1

(y − 1)r−1

(y + 1)r+1
exp(−αyβ)dy. (5)

Then, using the ‘generalized version’ of the binomial formula two times in a row, since y > 1, we get:

(y − 1)r−1

(y + 1)r+1
= y−2 (1 − 1/y)r−1

(1 + 1/y)r+1

= y−2

[
r−1

∑
k=0

(
r − 1

k

)
(−1)ky−k

] [
+∞

∑
ℓ=0

(−(r + 1)

ℓ

)
y−ℓ

]

=
r−1

∑
k=0

+∞

∑
ℓ=0

(
r − 1

k

)(−(r + 1)

ℓ

)
(−1)ky−(k+ℓ+2). (6)

Also, by the change of variable z = αyβ, it is obtained:

∫ +∞

1
y−(k+ℓ+2) exp(−αyβ)dy =

α(k+ℓ+1)/β

β

∫ +∞

α
z−(k+ℓ+1)/β−1 exp(−z)dz

=
α(k+ℓ+1)/β

β
Γ

(
− k + ℓ+ 1

β
, α

)
. (7)

Therefore, by substituting Equations (6) and (7) in Equation (5), as well as by inverting the sign of the
integral and the sum, the desired result is obtained.

2.1.5. Failure (Hazard) Rate Function

The HRF of the UED is given by:

h(x) =
f (x)

F(x)
=

2αβ

1 − x2

(
1 + x

1 − x

)β

. (8)

When x → 0+, the limit of h(x) is 2αβ > 0, and when x → 1−, the limit is +∞. Thus, this function is
strictly increasing, as it can be seen in Figure 2, meaning that when x increases the frequency with
which an engineered system or component fails also increases.
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Figure 2. Plots of the HRFs of the UED by varying parameters.

2.2. Characterizations

To interpret the HRF realistically we shall try to characterize Equation (3) by hazard and mean
residual life functions. Characterization in general terms implies that under certain conditions a family
of distributions is the only one possessing a designated property. Researchers can identify the actual
probability distribution with the help of characterization, for detailed study readers are referred to
Ahsanullah et al. [24,25] and Hamedani [26]. In this regard, we characterize the proposed model by
the HRF and truncated moments, and characterizing conditions are defined as follows.

Proposition 3. The RV X : Ω −→ (0,+∞) has continuous PDF f (x) if and only if the HRF h(x) satisfies
the following equation:

f ′(x)

f (x)
=

h′(x)

h(x)
− h(x). (9)

Proof. According to definition of the HRF, given by the first equality in Equation (8), it follows:

h′(x)

h(x)
=

f ′(x)F(x) + f 2(x)

F
2
(x)

· F(x)

f (x)
=

f ′(x)

f (x)
+ h(x).

Thus, the statement of proposition immediately follows.

Proposition 4. The RV X : Ω −→ (0,+∞) has UED(α, β) if and only if the HRF h(x), defined by Equation
(8), satisfies the following equation:

h′(x)

(h(x))2
=

x + β

αβ

(
1 − x

1 + x

)β

. (10)

Proof. Necessity: Assume that X ∼ UED(α, β), with the PDF f (x), defined by Equation (3). Then,
logarithm of this PDF, at the same way as in Subsection 2.1.3, can be expressed as:

ln( f (x)) = ln(2αβ) + (β − 1) ln(1 + x)− (β + 1) ln(1 − x) + α

(
1 −

(
1 + x

1 − x

)β
)

.

Differentiating both sides of this equality with respect to x, we get:

f ′(x)

f (x)
=

β − 1

1 + x
+

β + 1

1 − x
− 2αβ

(1 − x)2

(
1 + x

1 − x

)β−1

=
2

1 − x2

(
x + β − αβ

(
1 + x

1 − x

)β
)

. (11)

Thus, according to Equations (8) and (9), it follows:

h′(x)

h(x)
=

f ′(x)

f (x)
+ h(x) =

2(x + β)

1 − x2
,

which after certain simplification yields Equation (10).
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Sufficiency: Suppose that Equation (10) holds. After integration, it can be rewritten as follows:

∫
h′(x)

(h(x))2
dx =

∫
x + β

αβ

(
1 − x

1 + x

)β

dx,

that is

− 1

h(x)
=

x2 − 1

2αβ

(
1 − x

1 + x

)β

.

From the above equation, we obtain the HRF h(x) as in Equation (8). Further, replacing this function
in Equation (9) and after integration, we obtain:

∫
f ′(x)

f (x)
dx = 2

∫ [
x + β

1 − x2
− αβ

1 − x2

(
1 + x

1 − x

)β
]

dx + C1

= (β − 1) ln(1 + x)− (β + 1) ln(1 − x)− α

(
1 + x

1 − x

)β

+ C1,

that is

f (x) =

exp

[
C1 − α

(
x+1
1−x

)β
]

1 − x2

(
1 + x

1 − x

)β

.

Another integration implies that:

F(x) =
∫

f (x)dx + C2 = −
exp

[
C1 − α

(
x+1
1−x

)β
]

2αβ
+ C2,

whereby from the conditions F(0) = 0 and F(1) = 1, the constants C1 = α + ln(2αβ) and C2 = 1 are
obtained. Thus, the function F(x) is indeed the CDF from UED(α, β), which completes the proof.

The following theorem was used in [27], as well as [24,25], in order to characterize different
univariate continuous distributions.

Theorem 1. Let (Ω; F; P) be a given probability space and let H = [a, b] be an interval for some a < b, where
a = −∞ and b = +∞ might as well be allowed. Also, let X : Ω → H be a continuous RV with CDF F(x), and
g(x), t(x) be two real functions defined on H and such that:

E
[
g(X)

∣∣X ≥ x
]
= ξ(x)E

[
t(X)

∣∣X ≥ x
]

, x ∈ H

is defined with some real function ξ(x). Assume that g(x), t(x) ∈ C1(H), ξ(x) ∈ C2(H) and F(x) is a
twice continuously differentiable and strictly monotone function on the set H. Finally, assume that equation
t(x)ξ(x) = g(x) has no real solution in the interior of H. Then, F(x) is uniquely determined by the functions
g(x), t(x) and ξ(x), as follows:

F(x) = C
∫ x

0

∣∣∣∣
ξ ′(u)

ξ(u)t(u)− g(u)

∣∣∣∣ e−s(u)du, (12)

where the function s(x) is a solution of the differential equation:

s′(x) =
ξ ′(x)t(x)

ξ(x)t(x)− g(x)
,

and C is a constant such that
∫
H

dF(x) = 1.

Now, we discuss the characterization of the UED based on Theorem 1 and some simple
relationship between two functions and the RV X ∼ UED(α, β).
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Proposition 5. Let X : Ω → [0, 1) be a continuous RV and

t(x) = 3 exp

[
2α

(
1 −

(
1 + x

1 − x

)β
)]

, x ∈ [0; 1)

g(x) = 2 exp

[
α

(
1 −

(
1 + x

1 − x

)β
)]

, x ∈ [0; 1) .

The RV X has a PDF defined by Equation (3) if and only if there exists the function ξ(x), defined as in Theorem
1, that satisfies the differential equation:

ξ ′(x)

ξ(x)t(x)− g(x)
=

2αβ

1 − x2

(
1 + x

1 − x

)β

exp

[
−2α

(
1 −

(
1 + x

1 − x

)β
)]

, 0 ≤ x < 1. (13)

Proof. Necessity: For the RV X ∼ UED(α, β), with the CDF and PDF given by Equations (2) and (3),
respectively, after certain computation, we obtain:

(1 − F(x))E
[
t(X)

∣∣X ≥ x
]
= 3 eαr(x;β)

∫ 1

x

2αβ

1 − u2

(
1 + u

1 − u

)β

e3αr(u;β)du

= exp

[
4 α

(
1 −

(
1 + x

1 − x

)β
)]

,

(1 − F(x))E
[
g(X)

∣∣X ≥ x
]
= 2 eαr(x;β)

∫ 1

x

2αβ

1 − u2

(
1 + u

1 − u

)β

e2αr(u;β)du

= exp

[
3 α

(
1 −

(
1 + x

1 − x

)β
)]

,

where 0 < x < 1 and r(x) := 1 −
(

1+x
1−x

)β
. This implies:

ξ(x) :=
E (g(x)|X ≥ x)

E (t(x)|X ≥ x)
= exp

[
−α

(
1 −

(
1 + x

1 − x

)β
)]

, 0 < x < 1, (14)

that is:

ξ(x)t(x)− g(x) = 3 eαr(x;β) − 2 eαr(x;β) = exp

[
α

(
1 −

(
1 + x

1 − x

)β
)]

> 0, 0 < x < 1.

Hence, the differential Equation (13) clearly holds.

Sufficiency: If the function ξ(x) satisfies the differential Equation (13), then it follows:

s′(x) =
ξ ′(x)t(x)

ξ(x)t(x)− g(x)
=

6αβ

1 − x2

(
1 + x

1 − x

)β

, 0 < x < 1,

so one can take:

s(x) = −3α

(
1 −

(
1 + x

1 − x

)β
)

.

Using Equation (12), it is easy to obtain that RV X has a PDF given by Equation (3).

According to the previous proposition, one immediately obtains:

Corollary 1. Let X : Ω → [0,+∞) be a continuous RV and functions t(x), g(x) are given as in Proposition
5. Then, X ∼ UED(α, β), with the PDF as in Equation (3), if and only if the function ξ(x) has the form as in
Equation (14).
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3. Estimation Procedure

Let us assume that x1, . . . , xn are observed values of the sample of size n, taken from the
UED(α, β). We propose the maximum likelihood method for estimating the couple of parameters
(α, β). This means that the estimates of those parameters as the ones that maximize the likelihood
function:

L
(
α, β|x1, . . . , xn

)
=

n

∏
i=1

f (xi).

As is known, this solution also corresponds to the one that maximizes the log-likelihood function, i.e.,

l = l
(
α, β|x1, . . . , xn

)
=

n

∑
i=1

ln f (xi).

By differentiating function l with respect to each parameter, the estimators of α and β can be
obtained by solving the coupled equations:

∂l

∂α
=

n

α
+

n

∑
i=1

(
1 −

(
1 + xi

1 − xi

)β
)

= 0

∂l

∂β
=

n

β
+

n

∑
i=1

ln

(
1 + xi

1 − xi

)
− α

n

∑
i=1

(
1 + xi

1 − xi

)β

ln

(
1 + xi

1 − xi

)
= 0.

From the first equation, we obtain:

α =

[
1

n

n

∑
i=1

(
1 + xi

1 − xi

)β

− 1

]−1

,

and by replacing this output in the second coupled equation, we get:

n

β
+

n

∑
i=1

ln

(
1 + xi

1 − xi

)
+

∑
n
i=1

(
1+xi
1−xi

)β
ln
(

1+xi
1−xi

)

1 − 1
n ∑

n
i=1

(
1+xi
1−xi

)β
= 0.

Obviously, the last equation has only β as an unknown parameter. Now, by denoting zi = (1 +
xi)/(1 − xi) > 1, i = 1, . . . , n, and

L(β) =
n

β
+

n

∑
i=1

ln zi +
∑

n
i=1 z

β
i ln zi

1 − 1
n ∑

n
i=1 z

β
i

,

by applying the L’Hopital’s rule, one obtains:

lim
β→0+

L(β) =
n

∑
i=1

ln zi + n lim
β→0+

∑
n
i=1

(
1 − z

β
i + βz

β
i ln zi

)

β ∑
n
i=1

(
1 − z

β
i

)

=
n

∑
i=1

ln zi + n lim
β→0+

∑
n
i=1

(
−z

β
i ln zi + ln zi

)

∑
n
i=1

(
1 − z

β
i − βz

β
i ln zi

)

=
n

∑
i=1

ln zi + n lim
β→0+

∑
n
i=1

(
−z

β
i ln2 zi

)

∑
n
i=1

(
−z

β
i ln zi − ln zi

)

=
n

∑
i=1

ln zi +
n

2
· ∑

n
i=1 ln2 zi

∑
n
i=1 ln zi

> 0.
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On the other hand, assuming that z1 > max{z2, . . . , zn}, it follows:

lim
β→+∞

L(β) =
n

∑
i=1

ln zi + lim
β→+∞

ln z1 + ∑
n
i=2

(
zi
z1

)β
ln zi

z
−β
1 − 1

n − 1
n ∑

n
i=2

(
zi
z1

)β

=
n

∑
i=1

ln zi − n ln z1 < 0.

Hence, equation L(β) = 0 has at least one solution, and it can be solved numerically, for instance,
by using Newton-Raphson algorithm. This task may be performed using the function ’uniroot’

available in statistical programming software "R". Once β is estimated, this output can be used for
estimating α.

For computing interval estimators for θ = (α, β)′ and testing hypotheses on these parameters, we
get the observed matrix information:

I(θ) = −




∂2l(θ)

∂α2

∂2l(θ)

∂α∂β

∂2l(θ)

∂β∂α

∂2l(θ)

∂β2




,

where

∂2l(θ)

∂α2
= − n

α2

∂2l(θ)

∂α∂β
=

∂2l(θ)

∂β∂α
= −

n

∑
i=1

(
1 + xi

1 − xi

)β

ln

(
1 + xi

1 − xi

)

∂2l(θ)

∂β2
= − n

β2
− α

n

∑
i=1

(
1 + xi

1 − xi

)β

ln2

(
1 + xi

1 − xi

)
.

Note that I(θ̂) is a consistent estimator of the expected Fisher information matrix E[JI(θ)] (see, e.g.,

[28]). Under some suitable conditions, the approximation to a normal distribution θ̂ ≈ N (θ, I(θ̂)−1)
holds, and more general

a′
θ̂ ≈ N (a′

θ, a′ I(θ̂)−1a),

for any vector a = (a1, a2)
′. Choosing a = (1, 1)′, we get the 100 × (1 − δ) % confidence interval:

θi ± zδ/2

√
(I(θ̂)−1)ii,

where 0 < δ < 1 and zδ/2 is the 1 − δ/2 quantile of the standard normal distribution.

4. Model Compatibility and Its Application to the Real-World Data

Here, the possibility of applying the UED model in terms of modelling empirical distributions of
some real-world processes is discussed in more detail. To that end, by using several typical statistical
indicators, the quality of fitting with the UED was additionally checked. The obtained results were
also compared with the results of fitting using some of the previously known unit interval probability
distributions, which additionally checked the possibility of applying the UED.

4.1. Measures of Goodness-of-Fit

In order to test the null hypothesis H0 : Fn(x) = F0(x), where Fn(x) is the empirical CDF and
F0(x) is the CDF of some specified (theoretical) distribution, usually some well-known statistical tests
are used. In order to test the hypothesis that some real-world data are taken from the UED, that is from
some other stochastic distribution, the following statistical tests are used here:
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• Kolmogorov Smirnov (KS) test, whose test-statistics is defined as:

KS = max
1≤i≤k

{
i

k
− zi, zi −

i − 1

k

}
,

where k denotes the number of classes and zi are the values of the theoretical CDF.
• Anderson–Darling (AD∗

0)-test usually attaches more mass to the distributions tails, and its
test-statistics is:

A∗
0 =

(
2.25

k2
+

0.75

k
+ 1

){
−k − 1

k

k

∑
i=1

(2i − 1) ln(zi(1 − zk−i+1))

}
.

• Cramér–von Mises (CVM∗
0)-test is derived version of the KS test, with test-statistics: defined as

W∗
0 =

K

∑
i=1

(
zi −

2i − 1

2k

)2

+
1

12k
.

Additionally, in order to check the quality of fitting certain real-world data using the UED, that is,
some other distribution, the following indicators were used:

• Akaike information criterion (AIC), defined as

AIC = 2m − 2ℓ(Θ̂),

where m denote the number of parameters.
• Corrected Akaike information criterion (AICc), expressed as

AICc = AIC +
2m(m + 1)

n − m − 1
.

• Bayesian information criterion (BIC), which is defined as

BIC = m ln(n)− 2ℓ(Θ̂).

• Hannan-Quinn information criterion (HQIC) expressed as

HQIC = −2ℓ(Θ̂) + 2m ln(ln(m)).

• Consistent Akaike information criterion (CAIC) given as

CAIC = −2ℓ(Θ̂) + m(ln(n) + 1).

• Vuong test is also used for model selection purposes.

For comprehensive details about these measures readers are referred to Akaike [29], Hussain et al. [30],
Murthy et al. [31], and Vuong [32], respectively.

4.2. Comparative Models

We also compare the proposed UED model with well known unit interval models, defined by the
following PDFs:

• the beta distribution (BD) [4]:

f BD
α (x) =

1

B(α, β)
xβ−1(1 − x)α−1, α, β > 0, 0 < x < 1,

• the Johnson SB distribution (JSBD) [6]:

f JSBD
α,β (x) =

β exp
[
− 1

2 (α + β ln( x
1−x ))

2 − βx
]

√
2πx(1 − x)

, α, β > 0, 0 < x < 1,
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• the Kumaraswamy distribution (KwD) [8]:

f KwD
α,β (x) = α βxα−1(1 − xα)β−1, α, β > 0, 0 < x < 1,

• the unit Gompertz distribution (UGmD) [15]:

f UGmD
α,β (x) = αβx−α−1e−β(x−α−1), α, β > 0, 0 < x < 1.

In order to compare the fitting results, we consider four different real-world datasets, classified into
two sections: i) environmental and ii) engineering. The results obtained from the statistical analysis of
these datasets are discussed below.

4.3. Environmental Datasets

Datasets I and II. The first two datasets are reported by Maiti [33], and they represent the
following measured values:

- Soil moisture (Dataset I): 0.0179, 0.0798, 0.0959, 0.0444, 0.0938, 0.0443, 0.0917, 0.0882, 0.0439,
0.049, 0.0774, 0.0171, 0.0305, 0.0757, 0.0468,
- Permanent wilting points-PWP (Dataset II): 0.0821, 0.0561, 0.0202, 0.051, 0.0041, 0.0226, 0.0556,
0.0829, 0.0062, 0.0695, 0.0557, 0.0243, 0.0083, 0.0532, 0.0118.

In this regard, we have compiled both descriptive and theoretical (UED) statistics, listed in Tables-1
and -2, respectively. Note that descriptive statistics of all data sets includes sample size (SS), mean,
median, standard deviations (SD), skewness (SK) and kurtosis (KU).

In addition, the total test time (TTT) plot, introduced in [34], is portrayed in Figure 3 for both
datasets. Notice that, in particular, the TTT plot indicates the empirical HRF, portraying an IFR. Tables
1 and 2 also reveal that the theoretical UED statistics as well as the observed descriptive statistics
show remarkable closeness to each other and it appears that both sets of data can be simulated by
the proposed model. Furthermore, it is evident from Figure 4 that both data sets do not contain any
outliers.

Table 1. Descriptive statistics for Datasets I and II.

Dataset SS Mean Median SD SK KU

I 15 0.0598 0.0490 0.0277 -0.1083 1.6247
II 15 0.0402 0.0510 0.0277 0.1083 1.6247

Table 2. Theoretical statistics from the UED.

Dataset SS Mean Median SD SK KU

I 15 0.0606 0.0621 0.0254 -0.2107 2.3825
II 15 0.0406 0.0384 0.0247 0.2942 2.3050

Table 3(a) portrays that the model proposed by the UED is the best strategy for analyzing the
observed Dataset I, in relation to all other distributions of unit intervals. Namely, although the
p-value of the KS statistics for KwD is the highest, the other non-parametric tests, CVM∗

0 and AD∗
0 ,

indicate that for the UED is obtained a minimum tested values. Also, based on the estimated values of
Vuong statistics, given in Table 5, the KwD and UED has an indecisive status. Thus, the UED is the
best strategy, which is also confirmed by Figure 5. Similarly, Table 3(b) portrays that the proposed
UED model is also one of the best strategy for the analysis Dataset II, from all aspects.Namely, the
test statistics, including KS, CVM∗

0 and AD∗
0 , have the lowest values compared to all the selected,

previously known interval models. In addition, the Vuong statistic, which compares models based on
the likelihood ratio phenomenon, openly supports the UED. Finally, Figure 5 also confirms our claim
that the UED is the best strategy. Moreover, Tables-4(a) and -4(b) yield least values of information
criterion values for the UED comparing to the competing models.
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Figure 3. TTT plots of Datasets I and II.

Figure 4. Box-plots for datasets I and II.

Table 3. (a): ML estimates and goodness-of-fit statistics for Dataset I, (b): MLEs and goodness-of-fit

statistics for Dataset II.

(a)

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-value

UED 18.4218 0.0773 0.6239 0.1026 0.2079 0.5361

BD 3.8233 60.2492 0.6858 0.1041 0.2099 0.5232

KwD 719.3842 2.4408 0.6887 0.1109 0.2003 0.5844

JSBD 4.9859 1.7279 0.7751 0.1117 0.2128 0.5056

UGoMD 1.6525 0.0048 1.0587 0.1613 0.2353 0.3769

(b)

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-value

UED 11.8676 0.4607 0.6239 0.1096 0.1960 0.6118

BD 1.5370 36.8071 0.6869 0.1199 0.2481 0.3142

KwD 78.9162 1.4011 0.7074 0.1224 0.2409 0.3487

JSBD 3.5837 1.0177 0.8112 0.1364 0.2619 0.2549

UGoMD 0.9497 0.0219 0.9011 0.1499 0.2386 0.3603
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Figure 5. Datasets I and II (given by histograms) fitted via unit interval distributions (given by lines).

Table 4. (a): Estimates of the maximum log-likelihood and information criteria for Dataset I, (b):

Estimates of the maximum log-likelihood and information criteria for Dataset II.

(a)

Distribution −l AIC AICC BIC HQIC CAIC

UED 33.8617 -63.7233 -62.7233 -62.3072 -63.7384 -60.3072

BD 32.8026 -61.6052 -60.6052 -60.1891 -61.6203 -58.1891

KwD 33.3796 -62.7592 -61.7592 -61.3431 -62.7743 -59.3431

JSBD 32.0631 -60.1262 -59.1262 -58.7101 -60.1413 -56.7101

UGoMD 29.6463 -55.2925 -54.2925 -53.8764 -55.3076 -51.8764

(b)

Distribution −l AIC AICC BIC HQIC CAIC

UED 35.2604 -66.5208 -65.5208 -65.1047 -66.5359 -63.1047

BD 34.1097 -64.2194 -63.2194 -62.8033 -64.2345 -60.8033

KwD 34.3392 -64.6784 -63.6784 -63.2623 -64.6935 -61.2623

JSBD 33.0448 -62.0896 -61.0896 -60.6735 -62.1047 -58.6735

UGoMD 31.1648 -58.3296 -57.3296 -56.9135 -58.3447 -54.9135

Table 5. Vuong test statistics for Datasets I and II.

Models Dataset I Suitability Dataset II Suitability

UED-BD 1.4601 UED 2.5935 UED
UED-KwD 0.9738 Indecisive 3.4585 UED
UED-JSBD 1.5427 UED 1.6793 UED

UED-UGoMD 2.2142 UED 1.5955 UED

4.4. Engineering Datasets

Datasets III and IV. The third and fourth datasets have been firstly introduced and studied in
[35] for Burr measurements on the iron sheets. For the third dataset of 50 observations on Burr (in the
unit of millimetres), the hole diameter is 12 mm and the sheet thickness is 3.15 mm. For the fourth
dataset of 50 observations, hole diameter and sheet thickness are 9 mm and 2 mm, respectively. Hole
diameter readings are taken on jobs with respect to one hole, selected and fixed as per a predetermined
orientation. These two datasets refer to two different machines being compared, and one can see
[35] on the technical details of measuring the data sets. Note that both data sets were also analyzed
in [36,37], [38], and [19]. The descriptive statistics of these datasets, as well as the corresponding
theoretical statistics for the UED, are presented in the following Tables 6 and 7, respectively. The TTT
plot and box-plots of the observed data are given in Figures 6 and 7, respectively. It can be observed
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that Dataset-III & -IV are positively skewed and platykurtic in nature, which is confirmed by Tables 6
and 7. In addition, from Figure 7 is evident that the empirical and theoretical aspects of these datasets,
in terms of the absence of outliers, are in close agreement and indicate that the proposed model can be
used effectively. Such findings are also consolidated within Table 8(a) and 8(b), which show that the
UED exhibits minimal values in the almost all cases of goodness-of-fit statistics, which ensure that the
UED is one of the best strategy.

Table 6. Descriptive statistics for Datasets III and IV.

Dataset SS Mean Median SD SK KU

III 50 0.1632 0.1600 0.0810 0.0723 2.2166
IV 50 0.1520 0.1600 0.0785 0.0061 2.3012

Table 7. Theoretical statistics from the UED.

dataset SS Mean Median SD SK. KU.
III 50 0.1633 0.1641 0.0809 0.0259 2.2511
IV 50 0.1519 0.1521 0.0777 0.0262 2.2521
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Figure 6. TTT plots of Datasets III and IV.

Figure 7. Box-plots for Datasets III and IV.
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Table 8. (a): MLEs and goodness-of-fit statistics for Dataset III, (b): MLEs and goodness-of-fit statistics

for Dataset IV

(a)

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-value

UED 4.7879 0.1756 0.3274 0.0419 0.1242 0.9881

BD 2.6824 13.8640 0.1538 0.9120 0.1414 0.5555

KwD 1.0746 0.0925 12.2879 2.3943 0.7222 0.0000

JSBD 2.3767 1.3175 0.2495 1.4647 0.1740 0.0968

UGoMD 0.0924 1.0747 0.5213 3.0810 0.2046 0.0304

(b)

Distribution β̂ α̂ CVM∗
0 AD∗

0 KS p-value

UED 4.8518 0.1996 0.3224 0.0339 0.1239 0.9928

BD 2.4003 13.5218 0.2871 1.5649 0.1981 0.7340

KwD 1.9606 31.3769 0.2093 1.2683 0.1691 0.8825

JSBD 2.3682 1.2374 0.4145 2.2458 0.2285 0.5579

UGoMD 0.0916 1.0250 0.6091 3.4278 0.2312 0.5426

However, likelihood aspects and information criterion values also favour the proposed UED
model, which can be visualized in Tables 9(a) and 9(b), respectively. Furthermore, the shape of our
proposed model, as shown in Figure 8, matches the data in a better way compared to the other
competing models. Finally, Vuong statistics as depicted in Table-10 also show the capability of the
proposed model.

Table 9. (a): Estimates of the maximum log-likelihood and information criteria for Dataset III, (b):

Estimates of the maximum log-likelihood and information criteria for Dataset IV.

(a)

Distribution −l AIC AICC BIC HQIC CAIC

UED -57.0712 -110.142 -109.887 -106.318 -108.686 -104.318

BD -54.6066 -105.213 -104.958 -101.389 -103.757 -99.3892

KwD -56.0686 -108.137 -107.882 -104.313 -106.681 -102.313

JSBD - 51.3231 -98.6462 -98.3909 -94.8222 -97.19 -92.8222

UGoMD -40.672 -77.344 -77.0887 -73.52 -75.8878 -71.52

(b)

Distribution −l AIC AICC BIC HQIC CAIC

UED -59.3536 -114.707 -114.452 -110.883 -113.251 -108.883

BD -55.9312 -107.862 -107.607 -104.038 -106.406 -102.038

KwD -57.5214 -111.043 -110.788 -107.219 -109.587 -105.219

JSBD - 52.305 -100.61 -100.355 -96.786 -99.1538 -94.786

UGoMD -42.6099 -81.2198 -80.9645 -77.3957 -79.7636 -75.3957
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Figure 8. Datasets III and IV (given by histograms) fitted via unit interval distributions (given by lines).

Table 10. Vuong test statistics for Datasets III and IV.

Models Dataset III Suitability Dataset IV Suitability

UED-BD 0.4137 Indecisive 3.5339 UED
UED-KwD -2.3203 KwD 3.9633 UED
UED-JSBD 2.1336 UED 3.4202 UED

UED-UGoMD 4.9679 UED 4.0306 UED

5. Concluding Remarks

We introduced a two-parameter bounded model, which is called as the unit exponential
distribution (UED), which is appropriate for modeling skewed and IFR data. Some of its mathematical
properties are studied, including moments, quantiles, and other distributional behaviour. A
characterization of the UED via HRF is made, which provided the identification requirements of
the distribution and thus provided a reliable prediction compared to the well-known unit domain
models. The model parameters are estimated by the MLE method. We also provide a guide line to
choose the best model by using various goodness-of-fit statistics. Applications of the newly defined
distribution exhibits that the proposed models have better modeling abilities than competitive models.
For this purpose we have used four datasets in two different disciplines, namely environmental and
engineering, and it is found that the proposed strategy, is the best one on unit interval domain.
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