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Abstract: Bipolar disorder is a severe mood disorder and is one of the top 20 reasons of disability in
the world. It causes a huge burden on society. In this study, the prediction models of bipolar
disorder were constructed based on the concept of knowledge distillation. The input data consisted
of patients of bipolar disorder and matched controls, all of which were selected from the open
database MIMIC. The method of kernel density estimation (KDE) was exploited to generate
probability density functions (PDF) which identify distributions of input data. The PDF values
referred to as the soft labels were combined with the input data to construct the prediction models
of bipolar disorder using decision tree and artificial neural network respectively. According to the
evaluation results, indicators for identifying positive samples of bipolar disorder were improved.
Meanwhile, the indicators for identifying negative samples have also been advanced. In addition,
the branching attributes selected by the decision trees can be mapped back to specific disease
diagnoses, which are all associated with bipolar disorder. In conclusion, using KDE to generate the
soft label information of the input data can make knowledge distillation work and has improved
the performances of prediction models for bipolar disorder.

Keywords: bipolar disorder; knowledge distillation; kernel density estimation; Medical Information
Mart for Intensive Care (MIMIC); decision tree; artificial neural network

1. Introduction

Bipolar disorder is a severe mood disorder characterized with alternating episodes of depression
and mania [1,2]. During periods of mania, patients may exhibit unusually energetic, happy, or
irritable behavior, and have reduced sleep. During depression, patients may cry inexplicably, have a
negative attitude toward life, and have poor eye contact with others. According to statistics, 6% of
patients with bipolar disorder die by suicide, and another 30-40% suffer from self-harm. Many
patients with bipolar disorder also suffer from other mental illnesses, such as substance abuse
addiction, anxiety disorders, etc. According to academic researches, people with bipolar disorder
account for about 1% of the global population [3]. In the United States, approximately 3 percent of
the population experience bipolar symptoms at some points in their lives, with no significant gender
differences [4]. The most common age for onset of symptoms is between 20 and 25 years old. The
younger the age, the worse the prognosis [5].

The combined action of many genetic variations may lead to the development of bipolar disorder
[1], and genetic factors account for about 70-90% of the risk of bipolar disorder [6,7]. Environmental
risk factors include the history of childhood abuse and chronic stress [1]. In addition, many other
psychiatric disorders share symptoms of bipolar disorder, including attention deficit/hyperactivity
disorder, schizophrenia, substance abuse, etc. [1]. On the other hand, about one-quarter to one-third
of people with bipolar disorder experience economic, social, or professional problems [1]. According
to the survey provided by WHO, bipolar disorder is one of the top 20 reasons of disability in the
world, and causes a huge burden on society [8]. Moreover, some diseases have a higher incidence in
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patients with bipolar disorder compared to the general population, including coronary heart disease,
metabolic syndrome, migraine, obesity, and type 2 diabetes. Accordingly people with bipolar
disorder have twice the risk of death compared to the general population [1,5]. For a recent study
conducted between January 2018 and January 2020 at a hospital in Turkey, each of the 1148 patients
with bipolar disorder was interviewed to investigate the incidence of various target diseases in
his/her first- and second-degree relatives as well as himself/herself. It was found that if there is a
family history of epilepsy, the patient's symptoms of mental illness will be more pronounced.
Similarly, a family history of diabetes mellitus is strongly associated with bipolar disorder, and a
family history of thyroid disease is correlated with co-occurring anxiety disorders. Finally, there
exists a co-morbid association between bipolar disorder and cerebrovascular disease [9].

There is an intuitive way to improve the performance of machine learning. Different models can
be trained respectively using the same dataset, then their prediction outcomes will be integrated.
However, such ensemble learning may consume computational resources. Moreover, for deep neural
networks trained on images, it has been generally observed that the learned features are similar to
Gabor filters and color patches. Therefore, the concept of transfer learning is proposed. In the
applications of computer vision, the technique of transfer learning is constantly used in problems
such as object detection and target segmentation. A common practice for transfer learning is to train
a basic convolutional neural network using the input dataset firstly. Then its convolutional layers,
the earlier layers of the network architecture, and/or the connection weights, are duplicated in the
target network [10,11]. Similar to the concept of transfer learning, the idea of “knowledge distillation”
is proposed and its effectiveness has been verified in various studies. For the practice of knowledge
distillation, firstly a sophisticated model or multiple models will be trained using any learning
algorithm, such as the deep neural network. Outcomes produced by this group of “teacher models”
can be thought of as conditional distributions for the input data, and may be referred to as “soft
labels”. These data distributions can be used as the learning targets for the “student model”, which
will be trained using simpler learning architectures [12,13]. The evaluation results have shown that
the student model with a simpler architecture can achieve prediction performances close to those
produced by complex learning architectures. On the other hand, the soft labels can be used as the
reference information and to train the student model together with the original input data. This
process may also be seen as the student model "distilling" the "knowledge" provided by the group of
teacher models [14].

The kernel density estimation (KDE), which is a nonparametric estimation approach in statistics,
has been widely exploited to identify distributions in various types of datasets. A kernel density
estimator generates an approximate probability density function (PDF) by computing the linear
combination of the weighted kernel functions placed at the locations of all data instances in the vector
space. Accordingly, variations in the vector space with different PDF values can be identified as
distributions of data instances [15-17]. In this article, we will report how the KDE method performed
with a real medical dataset and how it has been exploited to identify distributions hidden in the data.
Moreover based on the concept of knowledge distillation, the PDF values produced by the KDE
method were then transferred as the soft labels to construct the prediction models of bipolar disorder
using learning methods of decision tree and artificial neural network respectively. According to the
evaluation results, using the data distribution information generated by KDE has improved the true
positive rates and positive predictive values, meanwhile the indicators for identifying negative
samples were also advanced. In addition, the branching attributes selected by the decision trees have
been mapped back to specific disease diagnoses, which are all associated with bipolar disorder. To
the best of our knowledge, this study is the first attempt to apply KDE to knowledge distillation for
supervised machine learning.
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2. Materials and Methods

2.1. The input data

In the early 2000s, the "Laboratory for Computational Physiology" of the Massachusetts Institute
of Technology (MIT) began to implement the project "Integrating Signals, Models and Reasoning in
Critical Care". The main goal of this project is to build a large dataset for researches based on intensive
care, the result of which is the database "Medical Information Mart for Intensive Care, (MIMIC)". The
contents of this database come from Beth Israel Deaconess Medical Center (BIDMC). MIMIC is a
publicly shared medical database. It contains de-identified information from electronic medical records
for thousands of adult patients admitted to medical/surgical intensive care units and emergency wards.
The development of this database is approved by the ethical review boards of BIDMC and MIT,
respectively. MIMIC has been used extensively by academic researchers around the world, helping to
promote advances in clinical informatics, epidemiology, and machine learning [18].

In the database tables of MIMIC, all the information of the same patient are concatenated with the
field value of “subject_id”. In this case-control study, the case group included patients with bipolar
disorder and/or related symptoms. The following diagnostic codes were used when selecting case
samples from the table “diagnoses_icd”. Their ICD-9 versions are 296.40~296.45, 296.50~296.56,
296.60~296.62, 295, 298; ICD-10 versions are F20, F29, F31. Then 10,000 people were randomly selected
from these patients of bipolar disorder to form the case group. The date of the firstly diagnosed bipolar
disorder for each case patient, i.e. the field value of “admittime”, was regarded as the index date. Finally
for each case patient, the subject_id was used to retrieve all his/her diagnosis records in the database.

On the other hand, the control sample did not have diagnoses of bipolar disorder and any
associated symptoms in the database. They were matched with the case patients in age and gender, i.e.
the field values of “gender” and “anchor_age” from the table “patients”. In addition, in the month of
the index date for a case patient, the corresponding control sample must have any diagnosis record,
which represents similar health status. Based on the aforementioned matching conditions, this study
selected the control samples at a ratio of 1 vs. 1 and 1 vs. 3, respectively. Finally for each control sample,
the subject_id was used to retrieve all his/her diagnosis records in the database to form the input data.

2.2. Kernel density estimation

Kernel density estimation (KDE) is the application of kernel smoothing for probability density
estimation, i.e.,, a non-parametric method to estimate the probability density function of a random
variable based on kernels as weights [15,16]. KDE answers a fundamental data smoothing problem
where distributions about the population are made [17]. For the basic definition of KDE, let (x1, x2, ...,
x1) be independent and identically distributed samples drawn from a specific distribution with an
unknown density f at any given point x. Its kernel density estimator can be defined using Formula (1).

_ 1\
@ = — > K= x5 ) M
i=1

In Formula (1), K(x-x;; h) is the kernel function, whose outcomes are non-negative values. There
exists a range of kernel functions being used, such as cosine, linear, normal, etc. [15,16]. The positive
variable # is called the bandwidth, which is a smoothing parameter and exhibits a strong influence
on the resulting estimation. In this study, the class of “KernelDensity” from the scikit-learn package
was used to perform the KDE analyses. After verification, the exponential kernel (i.e. K(x; h) =
exp(— %)) was chosen to estimating distributions of input data for subsequent computations of
knowledge distillation. The smoothing parameter & was set to 0.2, which is the default value given
by the scikit-learn package.

2.3. Embedding vector

In the application of machine learning, the content of category data needs to be converted into a
special format before subsequent analyses can be performed. In addition to transforming them into
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numerical information, these representations should correctly retain the characteristic attributes of
the original data contents. The idea of embedding vector will present a categorical data item (such as
a word in a text) in the form of a multi-dimensional vector. Each element of the vector is a real
number, and the contents of the vector can reveal the properties of the original data items [19]. The
embedding vector can be generated by the parameter optimization mechanism using a specific neural
network architecture [20,21]. As for the loss function required in the learning process, its basic
concepts are defined as Formula (2).
i+m
P(Wi—ps ooy Wim1, Wiy ooy Wigm [Wi) = 1_[ P(wjlwy) )
j#i&j=i-m

Formula (2) represents the conditional probability of correctly judging the context (i.e. m words
before and after wi, which constitute contents in the sliding window as wi-u, ...... , Wil, Wi, ...... , Witm)
with the word vector wi as the input premise. The probability value can be increased as much as
possible through the parameter optimization mechanism. Then sum up the conditional probability
values of all the words in the full text (e.g. a total of N words), and the logarithm function is used to
simplify the computation process. The expected loss function is shown in Formula (3).

1 N-m i+m
JO =-G—5 ). Y. log(Pwlwd) @)
i=m+1 j#i&j=i-m

When implementing the program suite of this loss function, the data structure of the Huffman
tree can be used to improve the computational performance.

The "word2vec" proposed by Google in 2013 is currently the mainstream embedding vector
algorithm [20,21]. The algorithm combines two learning mechanisms: skip-gram and CBOW
(continuous bag of words). In the calculation of skip-gram, the word vector w: is used as the input
premise, and the predictions of m word vectors before and after wi, which constitute contents in the
sliding window as wim, ...... , Wi, Wi+, ...... , Wism, are respectively produced. On the other hand, in the
computation of CBOW, the 2m word vectors within the sliding window, i.e. wim, ...... , Wi, Wirl, ...... ,
wism, are used as the input premises, and the prediction of the word vector wi is outputted.

2.4. Machine learning algorithms

The decision tree is a hierarchical model that uses a tree-like structure. In this model, each
internal node represents a test on an attribute, and each branch represents the outcome of the test. At
the bottom of the structure, each leaf node represents a class label, which is the decision taken after
analyzing all of the attribute features [22]. The path from the root note to a leaf represents a specific
decision rule, and the conditions along the path form a conjunction of “if-then” clauses [23]. The
decision tree is a white-box model because the decision rules produced are easy to understand and
interpret. The node branching function used can have an impact on improving the accuracy of the
decision tree. Among various types of node branching functions, the Gini impurity is constantly used
and was chosen in this study. According to the relative frequencies of class labels in the dataset, the
Gini impurity measures how often a data item will be incorrectly labeled if it was labeled randomly
and independently. For a dataset of items with | class labels and relative frequencies p;, i € {1, 2, ...,
J}, the probability of correctly recognizing the class label of a data item, assuming it is class i, is pi. On
the contrary, the probability of misclassifying that item is },.;pr = (I —p;). Therefore, the
computation formula of Gini impurity Ic(p) is defined as follows.

J

] ] ]
Ic(p) =Z(pi-2pk) =Zpi-(1—pi) =Zpi—Zp? =1-

k=+i i=1

J
p? 4)
i=1

l
Ie(p) reaches the minimum value zero when all data items in the node fall into a single class label.

The artificial neural network is a machine learning algorithm that imitates the human nervous
system, and its definition formula is as follows [24,25].
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Y =0(W XX +B) (5)

Because the neural network can have a plurality of input and output neurons, they will be
assembled respectively into the "input layer" and the "output layer". The matrix X represents the
input values of a set of attributes, and the matrix Y simulates the output neurons for the computation
results. The weight matrix W simulates the axons, which connect the input/output neurons and are
responsible for transmitting messages. In the application problem, this represents the respective
influences of different attribute characteristics. The matrix B of bias values simulates synapses and
represents the degree to which the output neurons are activated. The higher the bias values are, the
easier it is for a neuron to be activated and transmit the message. The symbol @ represents the
activation function, which accepts a weighted sum of input values and performs a special calculation.
If the resulting value is greater than the threshold, the output neuron is activated and the message is
transmitted. In addition, the "hidden layer" can be added to the network architecture, containing
nodes that mimic internal neurons. Since the hidden layer makes the network structure more
complicated, it can handle more kinds of application problems, or simulate the interaction of more
complex attribute features.

2.5. The analysis procedure

This study used the concept of knowledge distillation to construct predictive models of bipolar
disorder. After the case patients and control samples were screened from the MIMIC database, all of
their diagnosis records in the database were selected as the input data. In the MIMIC database, an
average of 20 different disease diagnoses are recorded for each sample. Using the aforementioned
word2vec algorithm, these disease diagnoses were converted into 8-dimensional embedding vectors.
Therefore, the input data of each sample would be stored in a 20x8 matrix structure. The research
team then planned two analysis procedures as follows.

Referring to Figure 1a, in the first procedure the KDE was used to estimate the probability
density function representing the distribution for the input data X. After the data X was input into
the density function, the soft label information Xpdat was produced, which represented the likelihood
values of the data distribution of the input X. Next, Xpar was used as the input attributes of the training
dataset, and the set Y contained the class labels as the learning targets. In this study, supervised
learning methods such as decision tree and artificial neural network were used respectively to
construct the predictive models for bipolar disorder.

Referring to Figure 1b, in the second analysis procedure the KDE method was still used to
convert the input data X into the soft label information Xpat. Next, both of X and Xpat were used as the
input attributes of the training dataset, and Y still was the set of class labels for learning. Finally,
decision tree and artificial neural network were used respectively to develop the predictive models
for bipolar disorder.

it () K0E |3 o @
Target @—v Output

input (X)—{  KDE  ——(Xoa)--
®_> DT/NN @
Target : — Qutpu

Figure 1. Analysis procedures of this study; (a) the 1%t procedure; (b) the 2"d procedure.
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3. Results

The datasets of this study were composed of case patients of bipolar disorder and the matched
control samples, with a ratio of 1:1 and 1:3, respectively. The distributions of these data would be
computed using KDE to produce the corresponding probability density functions as the soft label
information for subsequent knowledge distillation. When using a machine learning algorithm to
construct the prediction model for bipolar disorder, the randomly selected 80% of data samples
would be used for model training and validation, and the remaining 20% were used as the testing
set. When estimating the data distributions with KDE, we used the exponential kernel function. In
addition, we set Gini impurity as the branching function for constructing the decision tree. When
training the prediction models with artificial neural network, we chose ReLU and sigmoid
respectively as the activation functions of the network nodes. Finally, cross entropy and Adam
optimizer were set as the loss function and optimization mechanism respectively when training and
validating the prediction models with artificial neural network.

In the following paragraphs of this paper, we define a specific sequence to express the
architecture of the neural network. Assuming that the architecture contains three hidden layers, and
the number of nodes in each hidden layer is v1, v2, and v3 respectively, then we use NN(v1, v2, v3,
1) to represent architecture of this neural network. Since the learning models in this study are all
binary predictors of bipolar disorder, the last 1 in the sequence represents only one node in the output
layer. There have been three types of network architecture evaluated in this study: NN(80, 10, 1),
NN(160, 40, 1), and NN(80, 20, 10, 1). All of these architectures were tested and verified empirically.

Because the learning models in this study are all binary predictors of bipolar disorder, we adopt
the terminology from a confusion matrix: true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). The following metrics are utilized for evaluating performances of prediction
models trained by various machine learning algorithms respectively.

(TP +TN)
(TP + FN + TN + FP)

accuracy =

true positive rate (TPR) = %
TP
positive predictive value (PPV) = TP+ FP)
true negative rate (TNR) = __IN__
(TN + FP)
TN
negative predictive value (NPV) = m

For the dataset of case patients and control samples with the matching ratio of 1:1, their
respective probability density functions estimated by KDE are presented in Figure 2 in the format of
curve chart. Observing the content of Figure 2, we can find that the respective probability density
functions of case patients and control samples are quite different. In other words, they exhibit very
different data distributions in diagnostic records used as characteristic attributes.
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Figure 2. The respective probability density functions estimated by KDE of case patients and control
samples with the matching ratio of 1:1.

Next, we have tried to test whether the data distribution information estimated by KDE is
helpful for constructing the learning model. For our first analysis procedure (Figure 1a), the soft label
information Xpdt, which represented the likelihood values of the data distribution of the input X, were
used as the attributes for training and validating the prediction models. The evaluation results for
the testing set are shown in Table 1a.

For our second analysis procedure (Figure 1b), both of X and Xpat were used as the input
attributes for training and validating the prediction models. The evaluation results for the testing set
are shown in Table 1b.

Finally, in order to verify the effectiveness of the soft label information Xpdt, only the data X were
used as the attributes for training and validating the prediction models. The evaluation results for
the testing set are shown in Table 1c.

Table 1. For cases and controls with the matching ratio of 1:1, the evaluation results of the testing set
on prediction models of bipolar disorder trained using various learning algorithms. (a) Only use the
soft label information Xpat as the input attributes; (b) use both of X and Xpat as the input attributes; (c)
only use X as the input attributes.

@)

The algorithm TP FP TN FN Accuracy PPV NPV TPR TNR
Decision tree 1371 561 1445 623 0.704 0.710 0.699 0.688 0.720
NN(80, 10, 1) 1597 500 1468 306 0.792 0.762 0.828 0.839 0.746

NN(160, 40, 1) 1551 549 1447 349 0.770 0.739 0.806 0.816 0.725

NN(80,20,10,1) 1566 509 1489 358 0.779 0.755 0.806 0.814 0.745
(b)

The algorithm TP FP TN FN Accuracy PPV NPV TPR TNR
Decision tree 1579 425 1581 415 0.790 0.788 0.792 0.792 0.788
NN(80, 10, 1) 1602 482 1554 315 0.798 0.769 0.831 0.836 0.763

NN(160, 40, 1) 1620 389 1633 372 0.810 0.806 0.814 0.813 0.808

NN(80,20,10,1) 1584 432 1563 401 0.791 0.786 0.796 0.798 0.783
(©)

The algorithm TP FP TN FN Accuracy PPV NPV TPR TNR
Decision tree 1563 425 1581 431 0.786 0.786 0.786 0.784 0.788
NN(80, 10, 1) 1549 483 1484 432 0.768 0.762 0.775 0.782 0.754

NN(160, 40, 1) 1612 444 1533 332 0.802 0.784 0.822 0.829 0.775

NN(80, 20,10, 1) 1505 526 1449 464 0.749 0.741 0.757 0.764 0.734

Comparing the results shown in Table 1a,c, only using the soft label information Xpat as the input
attributes does not always improve the performances of the predictive models. However, when both
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of X and Xpdt are used for training and validating the prediction models (Table 1b), not only the TPR
and PPV are improved, but also the TNR and NPV become better.

In order to confirm that the data distributions generated by KDE can play a role in knowledge
distillation, we repeated 10 times to randomly select case patients and matched control samples to
form the dataset. Each time we used KDE to generate the soft label data Xpat, and then the Xpar were
utilized to train a decision tree. Finally we examined the decision rules accompanying the tree
structure and counted the features in Xpar most frequently chosen as branching attributes. According
to the descending order of the chosen frequency, the disease diagnoses corresponding to these
branching attributes are listed below.

For decision rules leading to the positive label of bipolar disorder, the most frequent branching
attributes include: hypertension; depressive disorder; anxiety disorder; suicidal ideations; type II
diabetes mellitus; hyperlipidemia; esophageal reflux; chest pain; nicotine dependence; asthma;
hypercholesterolemia; hypothyroidism; alcohol abuse.

For decision rules leading to the negative label of bipolar disorder, the most frequent branching
attributes include: hypertension; hyperlipidemia; type II diabetes mellitus; chest pain; alcohol abuse;
esophageal  reflux;  atrial fibrillation; = hypercholesterolemia;  depressive  disorder;
atherosclerosis/coronary heart disease; abdominal pain; urinary tract infection; hypothyroidism;
nicotine dependence; headache; syncope and collapse.

For the dataset of case patients and control samples with the matching ratio of 1:3, their
respective probability density functions estimated by KDE are presented in Figure 3 in the format of
curve chart. Again it can be found that case patients and control samples exhibit very different data
distributions in diagnostic records.

case
control

1.5 2.0 2.5

Figure 3. The respective probability density functions estimated by KDE of case patients and control
samples with the matching ratio of 1:3.

For this dataset, the evaluation results of the testing set on prediction models of bipolar disorder
trained using various learning algorithms are presented in Table 2. Comparing the results shown in
Table 2a,c, the prediction models using the soft label information Xpar as the input attributes
constantly perform worse than models trained using the input data X. However, when comparing
the results shown in Table 2b,c, using both of X and Xpat as the input attributes for training the
prediction models improves all evaluation metrics.
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Table 2. For cases and controls with the matching ratio of 1:3, the evaluation results of the testing set
on prediction models of bipolar disorder trained using various learning algorithms. (a) Only use the
soft label information Xpdt as the input attributes; (b) use both of X and Xpdt as the input attributes; (c)
only use X as the input attributes.

@

The algorithm TP FP TN FN Accuracy PPV NPV TPR TNR
Decision tree 979 1050 4945 1023 0.741 0.483 0.829 0.489 0.825
NN(80, 10, 1) 1363 991 5013 633 0.797 0.579 0.888 0.683 0.835

NN(160, 40, 1) 1307 909 5094 690 0.800 0.590 0.881 0.654 0.849

NN(80,20,10,1) 1434 1041 4914 611 0.794 0.579 0.889 0.701 0.825
(b)

The algorithm TP FP TN FN Accuracy PPV NPV TPR TNR
Decision tree 1315 710 5285 690 0.825 0.649 0.885 0.656 0.882
NN(80, 10, 1) 1560 394 5588 458 0.894 0.798 0.924 0.773 0.934
NN(160, 40, 1) 1265 591 5410 734 0.834 0.682 0.881 0.633 0.902

NN(80,20,10,1) 1278 717 5325 680 0.825 0.641 0.887 0.653 0.881
()

The algorithm TP FP TN FN Accuracy PPV NPV TPR TNR
Decision tree 1276 752 5243 729 0.815 0.629 0.878 0.636 0.875
NN(80, 10, 1) 1196 739 5238 827 0.804 0.618 0.864 0.591 0.876
NN(160, 40, 1) 1184 725 5260 831 0.806 0.620 0.864 0.588 0.879

NN(80, 20,10,1) 1179 788 5215 818 0.799 0.599 0.864 0.590 0.869

Finally for the dataset of cases and controls with the matching ratio of 1:3, the decision tree
analysis mentioned above has been executed again. Similarly we examined the decision rules
accompanying the tree structures produced, and counted the features in Xpat most frequently chosen
as branching attributes. According to the descending order of the chosen frequency, the disease
diagnoses corresponding to these branching attributes are listed below.

For decision rules leading to the positive label of bipolar disorder, the most frequent branching
attributes include: hypertension; depressive disorder; anxiety disorder; suicidal ideations; type II
diabetes mellitus; esophageal reflux; hyperlipidemia; nicotine dependence; hypercholesterolemia;
asthma; chest pain; hypothyroidism; atherosclerosis/coronary heart disease.

For decision rules leading to the negative label of bipolar disorder, the most frequent branching
attributes include: hypertension; hyperlipidemia; type II diabetes mellitus; esophageal reflux; chest
pain; depressive disorder; alcohol abuse; hypercholesterolemia; atherosclerosis/coronary heart
disease; atrial fibrillation; nicotine dependence; hypothyroidism; chest pain; headache; urinary tract
infection; abdominal pain; syncope and collapse.

4. Discussion

In the evaluation results of this study, the predictive performances of the models trained only
with soft label information Xpdr are not always better than those of the models trained with only input
data X (Table 1a,c)). Moreover, we can also observe trade-offs between PPV and TPR values when
increasing the sample size of matched controls, i.e. from 1:1 to 1:3. In other words, comparing the
prediction results of the models trained with Xpdar and X respectively on the testing set, we have found
that the increase in PPV values is accompanied by the decrease in TRP values, or vice versa (Table
2a,c)). In addition, increasing the sample size the matched controls means that the input data of the
negative class increases, so the evaluation indicators NPV and TNR of the prediction models to
identify negative testing samples will be improved (Tables 1 and 2). Regardless of the matching ratio
of case patients and control samples, we can observe that as long as the soft label information Xpar are
combined with the input data X to train the prediction models, the evaluation indicators PPV and
TPR for identifying positive testing samples will be improved. At the same time, the indicators NPV
and TNR for identifying negative samples have also been advanced (Tables 1 and 2). To sum up, this
study used KDE algorithm to generate the soft label information Xpar which can make knowledge
distillation work and may improve the predictive performances of the trained models.
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In order for knowledge distillation to improve the prediction performance of the trained model,
the soft label information must provide accurate distribution conditions of the input data. Referring
to the research work of G. Hinton et al, they argued that adding a "temperature" variable to the
formula that normalizes the predicted outputs can smoothening the probability distributions for the
class labels. Moreover, the research team proposed to use the probability distribution values
produced by the sophisticated deep learning model as the soft label. Input these reference
information together when training a shallow neural network model can achieve prediction
accuracies close to those of sophisticated deep learning models. They concluded that the
“knowledge” of a deep learning model can be transferred to a shallow “distilled” learning model
[14]. In addition, the parameter optimization of artificial neural network can adopt the concept of
conditional probability. Under the premises of input data and current parameter settings, the
predicted conditional probability distributions can approximate the true distributions of class labels.
A typical solution for this problem is the Monte Carlo approximation. However, this method needs
to construct multiple sets of prediction models and store multiple sets of parameter settings.
Consequently more computing resources are required. In view of this, the research work of A.
Korattikara Balan et al proposed an improvement. Firstly, sample data are selected to construct
multiple models of different neural networks. These network models form the "teacher group” for
ensemble learning. The group of teachers produce sets of outcomes, which were presented as the
conditional probability distributions. These probability distributions were used as the learning
targets for the "student" neural network. The parameters of the student network model are optimized
through the training process. Therefore, the final outcomes of the student network, which are also
presented as probability distributions, can be thought of as approximating the conditional
probabilities provided by the teacher group. The approach proposed by this work also amounts to
the student network “distilling” the knowledge provided by network models of the teacher group
[12]. On the other hand, essentially KDE is a non-parametric method of estimating distributions of
data samples. It is known that KDE has been applied in estimating the conditional probability
distributions of input data when using a naive Bayes classifier [17,26]. Referring to the contents of the
aforementioned literatures, this study was inspired to combine KDE for knowledge distillation to
construct prediction models for bipolar disorder.

When KDE is used for data analysis, it often focuses on the setting of bandwidth. This parameter
has a great influence on the accurate estimation of data distributions. If the set value of bandwidth is
too small, the under-smoothed distribution will contain many spurious data artifacts. On the
contrary, if the value of bandwidth is set too large, the over-smoothed distribution will obscure much
of the underlying structures. There has been numerous studies discussing the criteria to set this
parameter [15,16,27]. A novel KDE method developed by our research team has been exploited to
identify interesting patterns hidden in the dataset. The main features of this method include
minimizing the bias part of the mean square error, and elevating the bandwidths of the kernel
functions to alleviate the effects of variance. It has been verified that our novel KDE can estimate the
distributions of input data more accurately than many traditional KDE methods [28-31]. Therefore,
one of our future works will use this novel KDE for knowledge distillation to construct more accurate
predictive models.

In order to further verify effectiveness of the soft label information Xyt generated by KDE, we
examined the decision rules of the tree structures constructed with Xpa. Regardless of the matching
ratio of case patients and control samples, we have found that identical disease diagnoses are selected
as the branching attributes from the analysis results. The contents contained in Xpdt are not categorical
disease descriptions, but likelihood values of the probability density functions generated by KDE.
Therefore, the features selected as branching attributes in the decision rules must be mapped back to
the categorical disease descriptions. Since identical disease diagnoses are always selected as the
branching attributes, Xpat do provide correct distribution information of the input data. On the other
hand, through survey of reference literatures, we have found various associations between bipolar
disorder and these disease diagnoses selected by the decision trees. It is known that 6% of patients
with bipolar disorder die by suicide, and another 30-40% suffer from self-harm [1]. Many patients
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with bipolar disorder also suffer from other mental illnesses, such as anxiety disorders,
schizophrenia, substance abuse, etc. Furthermore, one typical symptom of the depressive phase of
bipolar disorder is fatigue [1]. Moreover, some diseases have a higher incidence in patients with
bipolar disorder compared to the general population, including metabolic syndrome, migraine,
obesity, and type II diabetes [5]. In addition, compared to the general population, patients with
bipolar disorder have twice the risk of dying from coronary heart disease [1]. Meanwhile,
hypertension, hyperlipidemia, hypercholesterolemia, chest pain, etc., are typical risk factors and
symptoms of coronary heart disease.

Since bipolar disorder and asthma are leading causes of morbidity in the US, recently a cross-
sectional analysis explored the clinical characteristics of bipolar disorder and an asthma phenotype
and fitted a multivariable regression model. The evaluation results concluded that a history of asthma
is common among patients with bipolar disorder [32]. Some medical illnesses with clinical
presentations similar to symptoms of bipolar disorder, such as the similar features between migraine
headache and bipolar disorder. Some symptoms also need to be identified whether they are caused
by bipolar disorder or endocrine system diseases such as hypothyroidism or hyperthyroidism [33].
Another study conducted in Sweden has found that higher odds for bipolar disorder co-morbidity
occurred in patients with gastroesophageal reflux disease [34]. Furthermore, recently a genome-wide
pleiotropic association study using genome-wide association summary statistics concluded that the
pleiotropic genetic determinants between gastrointestinal tract diseases and bipolar disorder are
extensively distributed across the genome. The findings provide supports for the shared genetic basis
underlying the gut-brain axis [35]. Referring to the research work of Benjamin J S Al-Haddad et al, a
total of 1,791,520 Swedish children born between 1973 and 2014 were observed for up to 41 years
using linked population-based registries. The analysis results suggested that fetal exposure to any
maternal infection, such as urinary tract infection, while hospitalized increases the risks for autism
and depression, but not bipolar or psychosis, during the child's life [36]. However, ketamine is mainly
used for bipolar disorder, and it has been reported that longstanding ketamine abuse may cause
urinary tract infection [37].

It is known that cerebrovascular reactivity (CVR) represents the relax ability of cerebral blood
vessels to vasoactive substances, and is a quantitative indicator for cerebrovascular health. Results of
the analysis performed by Adam L Urback's research team have shown that adolescents with bipolar
disorder had lower CVR values in the posterior cingulate and periventricular white matter than the
mentally healthy controls. After adjusting for the effect of BMI values, further group differences in
CVR values were observed in the regions of temporal pole, supramarginal gyrus, and lingual gyrus.
In conclusion, his study reported preliminary evidence that bipolar disorder is associated with
cerebrovascular dysfunction, pointing to areas of the brain that predispose to cerebrovascular
diseases [38]. The research work of Paul ] Harrison et al. has compared the incidence of various
disorders, including Parkinson's disease, dementia, cerebrovascular disease and stroke, during a
follow-up period of at least one year after the diagnosis of bipolar disorder. Several risk factors were
taken into account as covariates in the regression analysis. The results have shown that bipolar
disorder may increase the risk of developing cerebrovascular disease and stroke, although the
physiological mechanisms leading to this phenomenon still need further investigation [39]. A recently
published study conducted by Sermin Kesebir et al. has performed a follow-up assessment of 1,148
bipolar disorder patients admitted to a hospital. Each patient was interviewed to investigate the
incidence of various target diseases in his/her first- and second-degree relatives as well as
himself/herself. It was found that a family history of diabetes mellitus was strongly associated with
bipolar disorder, and a family history of thyroid disease was correlated with co-occurring anxiety
disorders. Finally, this study also observed a co-morbid association between bipolar disorder and
cerebrovascular disease [9].

To sum up, the soft label information Xpdat generated by KDE provide correct data distributions,
so they help the decision tree algorithm to select the appropriate branching attributes to construct the
prediction models. These branching attributes can be mapped back to specific disease diagnoses,
which are all associated with bipolar disorder.
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5. Conclusions

To sum up, this study used KDE algorithm to generate soft label information of the input data,
which can make knowledge distillation work and improve performances of the prediction models
for bipolar disorder. Not only the evaluation indicators for identifying positive samples of bipolar
disorder are improved, but also the indicators for identifying negative samples become better. In
addition, the soft label information generated by KDE provide correct data distributions, so they help
the decision tree algorithm to select the appropriate branching attributes to construct the prediction
models. These branching attributes can be mapped back to specific disease diagnoses, which are all
associated with bipolar disorder. In conclusion, the KDE algorithm can provide correct information
of data distributions, and this information can be applied to knowledge distillation to improve
prediction models for bipolar disorder.
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