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Abstract: Due to the advantages of low latency, low power consumption and high flexibility of 
FPGA-based acceleration technology, it has been more and more widely studied and applied in the 
field of computer vision in recent years. An FPGA-based feature extraction and tracking accelerator 
for real-time visual odometry (VO) and visual simultaneous localization and mapping (V-SLAM) is 
proposed, which can realize the complete acceleration processing capability of the image front-end 
and directly output the feature point ID and coordinates to the backend. The accelerator consists of 
image preprocessing, pyramid processing, optical flow processing, and feature extraction and 
tracking modules. For the first time, it implements a hardware solution that combines features from 
accelerated segment test (FAST) corners with Gunnar Farneback (GF) dense optical flow, to achieve 
better feature tracking performance and provide more flexible technical route selection. In order to 
solve the scale invariance and rotation invariance lacking problem of FAST features, an efficient 
pyramid module with a five-layer thumbnail structure is designed and implemented. The 
accelerator is implemented on a modern Xilinx Zynq FPGA. The evaluation result shows that the 
accelerator can achieve stable tracking of features of violently shaking images, and is consistent with 
the results of MATLAB code running on PC. When operating at 100MHz, the accelerator can process 
108 frames per second for 720P images and 48 frames per second for 1080P images. Compared to 
PC CPUs that consume seconds of time, the processing latency is greatly reduced to the order of 
milliseconds, making GF dense optical flow an efficient and practical technical solution on the edge 
side. 

Keywords: VIO; V-SLAM; FPGA; histogram equalization; FAST; pyramid processing 
 

1. Introduction 

With VO and V-SLAM technology, the carrier can achieve location, navigation, and mapping in 
the environment of GNSS signal occlusion and rejection. This makes VO and V-SLAM the core and 
key technologies in applications such as autonomous driving, robotics, unmanned aerial vehicles 
(UAV), and virtual reality (VR) (Floreano et al., 2015; Scaramuzza et al., 2011; Davison et al., 2002; 
Durrant-Whyte and Bailey, 2006). Compared with other autonomous positioning methods such as 
LiDAR (Light Detection and Ranging) and inertial measurement unit (IMU), the main challenge of 
visual-based solutions comes from computing power. Due to the need for fast, stable and reliable 
processing of high frame rate and high-resolution image stream data, VO and V-SLAM systems 
typically require high-performance computing platforms, which greatly increases equipment costs 
and limits the further large-scale application of the technology. 

The above problems can be effectively solved by using chips or processors specially designed 
for complex tasks such as image processing, so to achieve the purpose of hardware acceleration (Xu 
et al., 2021; Gour et al., 2014; Chaikalis et al., 2008; Badu et al., 2022). At present, GPU and FPGA are 
two representative hardware acceleration technology routes, and both are widely used in the field of 
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image processing. In contrast to CPUs and GPUs based on the von Neumann architecture, the 
function of each logic unit of an FPGA is determined when reprogrammed without instructions or 
shared memory for communication (Ákos et al., 2021). Therefore, for streaming computing tasks, 
FPGA has inherent advantages in latency and higher energy efficiency. In addition, FPGA is very 
flexible in use, which can change hardware algorithms and chip functions, to facilitate algorithm and 
function verification. Therefore, it can serve as both a product and a prototype platform for chip 
design. Due to the above advantages, FPGA has been increasingly widely used in the field of VO and 
V-SLAM technology in recent years. 

A synchronized VIO system with FPGA preprocessing was proposed, which can provide 
acceleration capability for Harris of FAST corners (Nikolic et al., 2014). The system achieves 
acceleration capabilities of up to 20 FPS for video streams from two cameras, but does not support 
acceleration of optical flow calculations. Fang et al. (2017) designed a FPGA-based ORB feature 
extraction for real-time visual SLAM and implemented and evaluated on an Altera Stratix V FPGA, 
achieving a throughput of 67 FPS. The design is proven to be a good balance between performance 
and energy consumption. A VIO on chip system for micro UAV was developed on a Xilinx Kintex-7 
XC7K355T FPGA, and supports both the VIO front-end and back-end (Zhang et al., 2017). The front-
end operates at a clock frequency of 23 MHz to reach 20 FPS, the back-end operates at a clock 
frequency of 100 MHz to reach 5 FPS, and the design requires 32 to 86% of the available resources on 
the FPGA. Tang et al. (2018) uses a Xilinx FPGA SoC (Zynq UltraScale XCZU9EG) to implement a 
visual inertial SLAM based on ORB features, and have optimized the IO interface, the memory 
hierarchy, as well as the hardware accelerator. Navion is a real-time VIO accelerator for nano drones 
(Suleiman et al., 2018). The entire VIO system is the first fully integrated on a chip which is fabricated 
in 65 nm CMOS, and can process 752×480 stereo images from EuRoC dataset in real-time at 20 FPS 
(Burri et al., 2016). However, because it is specifically designed for micro-drone applications, Navion 
compromises on many fronts. For example, it can only support 480P images, and reduces character 
length and limits the number of feature points to compress memory. In addition, many of its 
hardware parameters are determined based on the simulation analysis of the EuRoC data set, which 
also limits the flexibility and university of its application to a certain extent. 

In this contribution, an FPGA hardware acceleration solution for VO and V-SLAM application 
is proposed and implemented on a Xilinx Zynq FPGA (UltraScale+ MPSoC ZU15EG). The proposed 
accelerator consists of image preprocessing module, pyramid processing module, optical flow 
processing module and feature extraction and tracking module, which realizes the complete 
acceleration processing function of the image front-end and directly outputs the feature point ID and 
coordinates to the backend. Compared with other FPGA-based VO or V-SLAM acceleration 
solutions, the proposed accelerator adopts the contrast limited adaptive histogram equalization 
(CLAHE) algorithm with excellent performance to better improve the image preprocessing quality. 
For the first time, we have implemented a solution that combines FAST features with GF dense optical 
flow. Compared with the commonly used sparse optical flow, dense optical flow calculates the 
displacement of all pixels in the image and performs registration, resulting in better optical flow 
tracking performance. The implementation of edge-based acceleration for dense optical flow also 
provides a more flexible technical route for the backend – it can use FAST features and their 
corresponding optical flow for pose estimation, or directly use dense optical flow for estimation 
(known as the dense direct method). It also facilitates the creation of dense/semi-dense maps. In 
addition, to solve the scale invariance and rotation invariance lacking problem of FAST features, we 
designed and implemented a pyramid module with a five-layer thumbnail structure, and optimized 
its pipeline and memory read and write operations. 

The test benchmark system was built, which can compare the processing the processing results 
of the same image stream data on the FPGA side and on PC side. The test results show that the 
accelerator can achieve stable tracking of features of violently shaking images, and is consistent with 
the processing results of the MATLAB code on the PC side, which proves the effectiveness and 
correctness of the proposed real-time V-SLAM accelerator. In terms of hardware consumption, the 
proposed hardware system consumes 36% of the LUTs, 52% of the BRAM and 19% of the DSP of the 
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Zynq FPGA (UltraScale+ MPSoC ZU15EG). In terms of throughout, when the accelerator operates at 
a frequency of 100MHz, it can process 108 frames per second for 720P resolution images, and 48 
frames per second for 1080P resolution images. The accelerator can operate at a maximum of 
200MHz, further doubling the processing power. In terms of processing latency, for 720P resolution 
images, the accelerator takes about 10ms per frame to calculate (operating at 100MHz). Compared to 
PC CPUs that consume seconds of time, the processing latency is greatly reduced, making GF dense 
optical flow an efficient and practical technical solution on the edge side.  

The remainder of the contribution is structured as follows. Section 2 introduces the acceleration 
scheme of the contribution, including the overall design, and the GF dense optical flow tracking and 
FAST feature extraction methods. Section 3 presents the hardware architecture, which mainly 
consists of image preprocessing, pyramid processing, optical flow processing, and feature extraction 
and tracking modules. Finally, in Section 4, the proposed accelerator is implemented, and the 
evaluation based on the test benchmark system is carried out and presented. 

2. Acceleration Scheme 

The overview of the proposed FPGA-based accelerator is firstly presented in this section, 
including its basic functionality and composition. On this basis, a brief introduction and review were 
conducted on the GF dense optical flow tracking and FAST feature method. 

2.1. Overall design 

The overview of the FPGA-based accelerator is shown in Figure 1. It can realize the hardware 
acceleration functions of image preprocessing, FAST key point extraction, pyramid optical flow 
calculation and feature tracking, and directly output the ID and coordinate data of features to the 
back-end (that is, the FPGA PS side). 

Input:
Original Image

FAST Feature Extraction

Image Preprocessing

Pyramid Optical Flow

Output:
Feature Data

Accelerator

 
Figure 1. Overview of the acceleration function. 

Unlike the commonly used method of combining feature points and sparse optical flow, this 
contribution adopts a dense optical flow scheme. Compared to the sparse optical flow, the dense 
optical flow calculates the displacement of all pixels in the image and forming a dense optical flow 
field (Lucas & Kanade, 1981; Barron et al., 1994; Berthold & Brian, 1981). However, its disadvantages 
are obvious. Since the displacement of all pixels needs to be calculated (typically several million 
pixels), the calculation amount of the dense optical flow is significantly greater than the sparse optical 
flow, so it cannot be calculated in real-time on CPU. Compared to CPU, FPGA directly accesses data 
stream captured by the camera via AXI (Advanced eXtensible Interface) Bus and calculate the optical 
flow in a streaming way, making it more efficient and faster. 

The FPGA acceleration solution based on the mixing of dense optical flow and FAST features 
can bring us at least the following benefits: 

• The dense optical flow field can be used for pixel-level image registration, so the optical flow 
tracking accuracy is significantly better than that of the sparse optical flow. 
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• The backend can still use FAST features and their corresponding sparse optical flow for pose 
estimation or can directly use the dense optical flow for estimation, making it more flexible to 
use. 

• The dense optical flow facilitates the construction of a complete map. 

2.2. GF dense optical flow tracking 

Optical flow refers to the displacement of target pixels in adjacent frame images caused by 
camera motion. Generally, sparse optical flow processing is faster and more suitable for low-end 
computing platforms (Engel et al., 2018). Compared to sparse optical flow, dense optical flow does 
not only select image features for calculation but calculates the displacement of all pixels in the image, 
and performs registration based on the optical flow field, so the effect is better than sparse optical 
flow. 

This work uses the GF dense optical flow to obtain better visual front-end performance, which 
is also a currently supported optical flow method in OpenCV (Farnebäck, 2003; Xilinx, 2015). With 
the support of FPGA architecture and resources, GF optical flow can run at a high frame rate in real-
time, overcoming the limitation of computational power. In this way, it can be used independently 
for direct SLAM, as well as in conjunction with feature points – just like sparse optical flow, making 
it a solution with strong engineering practicality. 

The principle of GF optical flow is to approximate some neighborhood of each pixel with a 
polynomial expansion. In this process, each pixel in the neighborhood no longer has the same 
influence on the central pixel, but instead uses a two-dimensional Gaussian distribution in a 
polynomial function to assign different weights to different pixels. Consider a quadratic polynomial, 
giving us the local signal model, expressed in a local coordinate system,                            𝑓ሺ𝐱ሻ~𝐱்𝐀𝐱 + 𝐛்𝐱 + 𝑐 ൫1.൯ 

where A is a symmetric matrix, b a vector and c a scalar. The coefficients are estimated from a 
weighted least squares fit to the pixels in the neighborhood, and the weight value is related to the 
pixel position in the neighborhood. 

The result of polynomial expansion is that each neighborhood is approximated by a polynomial. 
For an image frame 𝑓ଵ, consider the exact quadratic polynomial                                                                             𝑓ଵሺ𝐱ሻ = 𝐱்𝐀ଵ𝐱 + 𝐛ଵ் 𝐱 + 𝑐ଵ                                                                ൫2.൯ 
and construct a new image frame 𝑓ଶ by a global displacement d,                      𝑓ଶሺ𝐱ሻ = 𝑓ଶሺ𝐱 − 𝐝ሻ = ሺ𝐱 − 𝐝ሻ்𝐀ଵሺ𝐱 − 𝐝ሻ + 𝐛ଵ் ሺ𝐱 − 𝐝ሻ + 𝑐ଵ                       = 𝐱்𝐀ଵ𝐱 + ሺ𝐛ଵ − 2𝐀ଵ𝐝ሻ்𝐱 + 𝐝்𝐀ଵ𝐝 − 𝐛ଵ் 𝐝 + 𝑐ଵ ൫3.൯= 𝐱்𝐀ଶ𝐱 + 𝐛ଶ்𝐱 + 𝑐ଶ.  

Equating the coefficients in the quadratic polynomials yields               𝐀ଶ = 𝐀ଵ, ൫4.൯                      𝐛ଶ = 𝐛ଵ − 2𝐀ଵ𝐝, ൫5.൯                             𝑐ଶ = 𝐝்𝐀ଵ𝐝 − 𝐛ଵ் 𝐝 + 𝑐ଵ. ൫6.൯ 

From Equations (4) to (6) we can obtain the displacement d,                       𝐝 = − 12 𝐀ଵିଵሺ𝐛ଶ − 𝐛ଵሻ. ൫7.൯ 

Finally, like LK sparse optical flow, we further combine the multi-layer pyramid to solve the 
problems of GF optical flow tracking dynamics and local minimum convergence. 

2.3. FAST feature extraction 
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In addition to GF dense optical flow, the FPGA-based accelerator also performs FAST feature 
extraction. Compared to other corner detection algorithms, FAST only needs to compare the size of 
pixel brightness, which is very convenient. Its calculation process is as follows (Rosten et al., 2006): 

1. Select a pixel point p in the image and denote its brightness as 𝐼௣. 
2. Set a threshold T for 𝐼௣. 
3. With pixel point p as the center, select 16 pixel points on a circle with a radius of 3. 
4. If the brightness of N consecutive points on the selected circle is greater than 𝐼௣ + 𝑇 or less than 𝐼௣ − 𝑇, then the pixel point p can be considered as a feature point. 
5. Repeat the steps above to perform the same operation for each pixel. 

Finally, after the above steps are completed, non-maximal suppression is generally used to 
preserve corners that respond to the maximum value within a certain area to avoid the problem of 
excessively concentrated corners. Together with the GF optical flow, the reserved corners are output 
and written to the DDR of PS side for back-end solving. 

3  Hardware Architecture 

Figure 2 illustrates the proposed FPGA-based feature extraction and tracking accelerator for 
real-time for real-time visual SLAM system. It mainly consists of image preprocessing, pyramid 
processing, optical flow processing, and feature extraction and tracking modules. In this section, we 
introduce each of these modules one by one. 

Original Image
MIPI

CLAHE

Blur

Image Preprocessing

zoom out
PL DDR

Pyramid processing

GF flow

Feature Extraction

Feature Saving

Feature Tracking

Feature Merging Feature Sending

Feature extraction and tracking

Specialized Processing Unit  (SPU)

Task Assignment Unit (TAU)

Optical flow processing

PS

PS DDR

interrupt

features

Blur image

CLAHE image

intermediate results

 

Figure 2. Hardware architecture of the FPGA-based accelerator for real-time visual SLAM. 

3.1. Image preprocessing module 

Through the MIPI interface, the FPGA accelerator receives and stores the raw image stream data 
and performs preprocessing. First, histogram equalization (HE) is performed to extend the dynamic 
range of the image grayscale values to increase the image contrast. The module adopts the CLAHE 
algorithm with excellent performance to better solve the problem of noise amplification during image 
equalization. 

Unlike traditional HE and AHE methods, the slope of CLAHE associated with the gray-level 
assignment scheme is limited, which can be accomplished by allowing only a maximum number of 
pixels in each of the bins associated with local histogram (Gauch, 1992; Zuiderveld, 1994). The specific 
implementation steps are as follows: 

1. The image is divided into 16 contextual regions of size 4×4, and its discrete PDF () can be 
calculated as following:                         𝑝௥ሺ𝑟௞ሻ = 𝑛௞𝑀𝑁 , 𝑘 = 0,1,2, ⋯ , 𝐿 − 1 ሺ8ሻ 

where MN is the product of the number of rows M and columns N of image pixels, representing 
the total number of pixels in the image. 𝑛௞ is the number of pixels with a gray-level of 𝑟௞. L is 
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the maximum number of gray-levels in the image; corresponding to an 8-bit image, the value of 
L is 256. 
On this basis, the gray-level mapping function 𝑠௞ in the contextual regions can be obtained as 
following: 

                              𝑠௞ = 𝑇ሺ𝑟௞ሻ = ሺ𝐿 − 1ሻ ෍ 𝑝௥൫𝑟௝൯௞
௝ୀ଴ = ሺ𝐿 − 1ሻ𝑀𝑁 ෍ 𝑛௝௞

௝ୀ଴ , 𝑘 = 0,1,2, ⋯ , 𝐿 − 1 ሺ9ሻ 

where 𝑛௝ is the number of pixels with a gray-level of 𝑟௝ in the contextual region. Through the 
transformation of Equation (9), pixels with a gray-level of 𝑟௞ in the contextual region can be 
mapped to corresponding pixels with a gray-level of 𝑠௞. 

2. For each sampled pixel in the image, find the points A, B, C and D from the center of the four 
relevant contextual regions adjacent to this pixel, with gray-level mappings 𝑔஺ሺ𝑠௞ሻ, 𝑔஻ሺ𝑠௞ሻ, 𝑔஼ሺ𝑠௞ሻ and 𝑔஽ሺ𝑠௞ሻ, respectively, as shown in Figure 3. Assuming that the original pixel intensity 
at the sample point X is 𝑠௑, its new gray value is calculated by bilinear interpolation of the gray-
level mappings that were calculated for each of the surrounding contextual regions:                             𝑠௑ᇱ = ሺ1 − ∆𝑦ሻ൫ሺ1 − ∆𝑥ሻ𝑔஺ሺ𝑠௞ሻ + ∆𝑥𝑔஻ሺ𝑠௞ሻ൯ + ∆𝑦൫ሺ1 − ∆𝑥ሻ𝑔஼ሺ𝑠௞ሻ + ∆𝑥𝑔஽ሺ𝑠௞ሻ൯ሺ10ሻ 
where ∆𝑥 and ∆𝑦 are normalized distances with respect to the pixel point A. 

 

A B

C D

X

Δx

Δy

 

(a) 16 contextual regions and their center points (b) Bilinear interpolation using gray-levels of 
center points of contextual regions 

Figure 3. Subdivision and interpolation scheme of CLAHE 

3. Set a threshold for the maximum number of pixels in each of the bins associated with local 
histograms, and clip and reassign pixels that exceed the threshold to limit contrast enhancement 
and reduce background noise. After clipping the histogram, the pixels that were clipped are 
equally redistributed over the whole histogram to keep the total histogram count identical. In 
this contribution, the clip limit is set to 3, which means that for each bin associated with the local 
histogram, the maximum number of pixels allowed is 3 times the average histogram contents. 

Then, the image is filter, which is called Gaussian blur processing. Gaussian blur can reduce 
image noise, reduce the level of detail, and enhance the image effect under scales, which is conducive 
to the down sampling of subsequent pyramid image. A Gaussian convolution kernel with a size of 
7×7 and a standard deviation of σ=5 is used to perform sliding window filtering on the image. Since 
FPGA is not good at floating-point arithmetic, it needs to be fixed-pointed. First, the decimal portion 
of the Gaussian filter parameters is determined to be 12 bits. Then, enlarge the filter parameters 
212=4096 times by displacement and left shift them 12 bits to retain the integer parts. 

3.2. Pyramid processing module 

The pyramid processing module receives images from the preprocessing module, zooms out the 
images four times with a sampling ratio of 2:1, resulting in a total of 5 layers of pyramid thumbnails, 
including the original resolution image. Afterwards, the pyramid thumbnails are synchronously 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2023                   doi:10.20944/preprints202308.0643.v1

https://doi.org/10.20944/preprints202308.0643.v1


 7 

 

output and written to the programmable logic (PL) side double date rate (DDR) synchronous 
dynamic random access memory (SDRAM) through the AXI interface, as shown in Figure 4. 

Blur Image
Memory Write 

Module

zoom out

AXI

PL DDR

Thumbnails

Optical flows

AXI Read

AXI Write

Write Completion Notification

Figure 4. Architecture of the pyramid processing module. 

In the PL side DDR, four consecutive frames of images (including the pyramid thumbnails) and 
their optical flow data are needed. This is because the FPGA receives the k st image and performs 
pyramid reduction, and calculates the optical flow after receiving the k+1 st image, and the optical 
flow calculation is carried out layer by layer along the pyramid image from top to bottom, so the 
processing time required is.                         ቆ1 + ൬14൰ + ൬ 116൰ + ൬ 164൰ + ൬ 1256൰ቇ ≈ 1.27 FPS. ሺ11ሻ 

It can be seen from Equation (11) that the optical flow calculation from the k+1 st image continues 
until the k+2 st image. Similarly, the pyramid optical flow processing of the image received from 
frame k+1 will end at frame k+3. The memory and time usage during the entire pyramid optical flow 
processing are detailed in Table 1. It is worth nothing that unlike original images and their pyramid 
thumbnails, the portion of memory responsible for storing optical flow data only refreshes and stores 
the optical flow of the previous layer of thumbnails, thereby saving memory size. 

Table 1. Memory and time usage of the pyramid processing module 

 
Sequences 

i-1 i i+1 i+2 i+3 

Memory 

content 

The k-1 st 
image and its 

pyramid 
thumbnails 

The k-1 st 
image and its 

pyramid 
thumbnails 

The k-1 st 
image and its 

pyramid 
thumbnails 

The optical 
flow between 
the k-2 st and 
k-1 st images 

 

 

The k st 
image and its 

pyramid 
thumbnails 

The k st 
image and its 

pyramid 
thumbnails 

The k st 
image and its 

pyramid 
thumbnails 

The optical 
flow between 
the k-1 st and 

k st images 

  

The k+1 st 
image and its 

pyramid 
thumbnails 

The k+1 st 
image and its 

pyramid 
thumbnails 

The k+1 st 
image and its 

pyramid 
thumbnails 

   

The k+2 st 
image and its 

pyramid 
thumbnails 

The k+2 st 
image and its 

pyramid 
thumbnails 

    

The k+3 st 
image and its 

pyramid 
thumbnails 

Processing 

tasks 

Receive the 
k-1 st image 

Calculate the 
pyramid 

Obtain the 
pyramid 

Obtain the 
pyramid 

Obtain the 
pyramid 
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and perform 
pyramid 

down; 

optical flow 
of the k-1 st 

image; 
Receive the k 
st image and 

perform 
pyramid 

down; 

optical flow 
of the k-1 st 

image; 
Calculate the 

pyramid 
optical flow 

of the k st 
image; 

Receive the 
k+1 st image 
and perform 

pyramid 
down; 

optical flow 
of the k st 

image; 
Calculate the 

pyramid 
optical flow 
of the k+1 st 

image; 
Receive the 
k+2 st image 
and perform 

pyramid 
down; 

Calculate the 
optical flow 
between the 

k-1 st and k st 
images; 

optical flow 
of the k+1 st 

image; 
Calculate the 

pyramid 
optical flow 
of the k+2 st 

image; 
Receive the 
k+3 st image 
and perform 

pyramid 
down 

Calculate 
the; optical 

flow between 
the k st and 

k+1 st 
images. 

3.3. Optical flow processing module 

As can be seen from the last row in Table 1, there are at most two optical flow calculation threads 
simultaneously in each frame. For this reason, two specialized processing units (SPU) are designed 
and used in the optical flow processing module. In addition, the module includes a task assignment 
unit (TAU) and a gating unit (GU) for optical flow outputs, as shown in Figure 5. 

Specialized Processing Unit 1 (SPU 1)

Specialized Processing Unit 2 (SPU 2)

Task 
Assignment 

Unit
(TAU)

flow 1

flow 2

Gating 
Unit
(GU)

GF flow

 

Figure 5. Composition of the optical flow processing module 

The TAU is responsible for obtaining the status of the two SPUs and finding out which one is 
idle. Once the external notification signal is received (see Figure 4), the TAU sends a start signal with 
the group address serial number to the idle SPU. 

The detailed structure of CU is shown in Figure 6. The finite state machine (FSM) calculates all 
addresses based on the group address serial number, and then sequentially starts state processing for 
the 5-layer pyramid thumbnail. The state processing of each layer includes sending memory read 
commands and waiting for the optical flow calculation to complete. After the state processing of a 
layer is completed, the FSM switches to the next layer state. 

Finite State 
Machine (FSM)

Memory Read 
Module

flow_upper
Zoom Module

GF Calculation 
Module

zoom in

Memory Write 
Module

prev/curr image GF flow AXI Write

AXI Read

GF flow

Specialized Processing Unit (SPU)

 
Figure 6. Detailed structure of SPU 
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The memory read module simultaneously reads three channels of data from the PL side DDR: 
the previous frame image, the current frame image, and the previous layer of optical flow data. The 
zoom module receives the previous layer of optical flow data and zooms in it two times to output. 
The zoom in operation adopts bilinear interpolation method, which executes the horizontal direction 
first, and then the vertical direction. The GF calculation module receives the previous and current 
frame images, as well as optical data from the zoom module, for GF dense optical flow calculation. 
The GF optical flow is written into the PL side DDR through the memory write module for the optical 
flow calculation of the next frame image, and is also directly output to the feature extraction and 
tracking module. 

For the two optical flow output pipelines SPU 1 and SPU 2, only one will be valid at the same 
time. Therefore, the GU distinguishes the output line through the valid signal and outputs the GF 
optical flow calculation result. 

3.4. Feature extraction and tracking module 

The feature extraction and tracking module is responsible for extracting and recording FAST 
features, and calculating their coordinates in the new image according to the optical flow results. 
Moreover, writes the reorganized feature point array into the PS side DDR and sends interrupt signal 
to the PS side after completion. 

The composition of the feature extraction and tracking module is shown in Figure 7, including 
of feature extraction, feature saving, feature tracking, feature merging, and feature sending 
submodules. First, the module receives the CLAHE processed image and performs FAST feature 
extraction. Secondly, the feature saving submodule receives the FAST feature data of stream type 
through the AXI interface, and reads each item of the stream data by line buffer. If a value other than 
0 is read in the line buffer, it indicates that the corresponding point in the image is a valid feature, 
and the image coordinates of the feature are saved in the array pointer “prevList”, as shown in Figure 
8. Due to the need for ping-pong read-write operations, “prevList” needs to be neutralized in BRAM 
by two copies, defined as “prevList 1” and “prevList 2”, respectively. 

CLAHE Image Feature Extraction Feature Saving prevList

flist

Feature Tracking

Feature Merging

Feature Sending

GF Flow

interrupt
PS

DDR
features

 
Figure 7. Architecture of the feature extraction and tracking module 

Fast Stream

(i, j)
prevList

(x0, y0) (x1, y1) (x2, y2) ...

 

Figure 8. Coordinate storage of features 

The feature tracking submodule receives the stream type GF optical flow data through the AXI 
interface and converts it into mat format. Defines an array pointer “flist” to store the abbreviated 
coordinates of FAST features updated by optical flow tracking. Similarly, due to the need for ping-
pong read-write operations, “flist” needs to be neutralized by 2 copies, defined as “flist 1” and “flist 
2”, respectively. As shown in Figure 9, the left array pointer “flist 1” stores the coordinates 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 August 2023                   doi:10.20944/preprints202308.0643.v1

https://doi.org/10.20944/preprints202308.0643.v1


 10 

 

corresponding to features of the previous frame of the image; In the middle is the full-frame optical 
flow data currently being output pixel by pixel, which is read by line buffer. Since the position of 
features in the previous frame of the image is known, the specific positions of features in the optical 
flow can be determined in advance. 

flist 1
(di, dj) Flow Stream

(i, j)

flist 2
(ti, tj)

Feature coordinate query Feature flow track

prevList
(x0, y0) (x1, y1) (x2, y2) ...

Feature coordinate update 
Figure 9. Optical flow tracking and coordinate updating of features 

When the full-frame optical flow data is output to these positions, the feature merging 
submodules reads the feature coordinates from “prevList”, uses the optical flow to track features, 
obtains the position of features in the next image, and stores the updated feature coordinates in the 
array pointer “flist 2” on the right. Finally, the feature sending submodule sends the feature ID and 
coordinate data from “flist 2” to the DDR, and generates an interrupt signal after completion. 

4. Evaluation and Discussion 

The proposed accelerator is implemented on a Xilinx Zynq FPGA in this section. Further, in 
order to verify the feasibility and performance of the proposed solution, a test benchmark system is 
built and the evaluation work is carried out. 

4.1. Test benchmark system 

The proposed feature extraction and tracking accelerator is implemented on a modern Xilinx 
Zynq FPGA (UltraScale+ MPSoC ZU15EG), a device that combines abundant hardware resources on 
a single chip. Hardware programmability allows a direct, lowest-level interface to the CMOS sensor, 
enabling a convenient and reliable image acquisition process. Moreover, to verify the feasibility and 
performance of the accelerator, a test benchmark system is built. It consists of the FPGA accelerator, 
as well as a PC. Compared with the official version, the FPGA accelerator in the test benchmark 
system has been slightly modified in terms of command reception and memory storage to enable 
comparison and verification with the PC. 

The overall workflow of the test benchmark system is shown in Figure 10. It mainly includes the 
following operations: 

1. FPGA side: Receiver the MIPI image, perform the GF optical flow calculation and the FAST 
feature extraction and tracking processing. 

2. FPGA side: Store the FAST feature tracking result and original image data in the PS side DDR, 
and transfer them to an SD card. 

3. PC side: Read the raw image data from the SD card, and obtain intermediate results on image 
preprocessing and FAST feature extraction through high-level synthesis (HLS) simulation 
(Xilinx, 2014). 

4. PC side: Input the intermediate results to the MATLAB-based optical flow calculation and 
feature tracking program, to obtain the FAST feature tracking results of MATLAB. 

5. Compare feature tracking results from FPGA and MATLAB for verification and analysis. 
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Figure 10. Workflow of the test benchmark system. 

4.2. Evaluation results 

The proposed accelerator is implemented on a Xilinx Zynq FPGA (UltraScale+ MPSoC ZU15EG). 
The camera was shaken vigorously to continuously acquire images, and the test benchmark system 
was used to analyze and evaluate the processing results of the accelerator. The operation results show 
that the accelerator can stably track features of severely shaking images, and the processing results 
are consistent with those of MATLAB on the PC end. Figure 11 presents the dense optical flow 
calculation and FAST feature tracking results for one of these frames. In can be seen that the FPGA 
accelerator is the same as the processing results of the MATLAB benchmark, which proves the 
effectiveness and correctness of the proposed real-time V-SLAM accelerator. 

 
Figure 11. FAST feature tracking results based on dense optical flow. The processing results of the 
FPGA accelerator and the MATLAB benchmark completely coincide. 

The proposed accelerator consumes 123300 LUTs (look up table), 386.5 M bytes of BRAMs, 68 M 
bytes of URAMs and 686 DSPs. The specific hardware consumption and occupation are detailed in 
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Table 2. For 720P resolution images (1280×720), it can process 100/(1280×720)=108 frames of images 
per second; for 1080P resolution images (1920×1080), it can process 100/(1920×10800)=48 frames of 
images per second. The accelerator can operate up to more than 200MHz, further doubling the 
processing power. 

We compared the proposed hardware with the PC-based AMD multi-core CPU. Both are based 
on 1280×720 resolution image for dense optical flow calculation and FAST feature extraction and 
tracking, for the proposed hardware (operating at 100MHz), each frame takes (1280×720)/100 
MHz≈10 ms; for MATLAB code running on the Ryzen R7 6800H clocked at 3.5 GHz, each frame takes 
about 17 s. 

Table 2. Hardware consumption of the proposed FPGA accelerator 

Resource Available Utilization Utilization % 

LUT (look up table) 341280 123300 36% 
FF (flip flop) 682560 147172 22% 

BRAM 744 386.5 52% 
URAM 112 68 61% 

DSP 3528 686 19% 
IO 328 82 25% 

BUFG 404 15 4% 
MMCM 4 1 25% 

PLL 8 3 38% 

5. Conclusion 

An FPGA-based feature extraction and tracking accelerator for real-time VIO and Visual SLAM 
application is presented, which can realize the complete acceleration processing function of the image 
front-end and directly output the feature point ID and coordinates to the backend. The accelerator 
performs CLAHE and Gaussian blur for image preprocessing. For the first time, it implements a 
solution that combines FAST features with GF dense optical flow, to achieve better feature tracking 
performance and provide more flexible technical route selection for the backend. In order to solve 
the scale invariance and rotation invariance lacking problem of FAST features, a pyramid module 
with a five-layer thumbnail structure is designed and implemented, and the pipeline and memory 
read and write operations is optimized. 

The proposed accelerator is implemented on a Xilinx Zynq FPGA (UltraScale+ MPSoC ZU15EG). 
The evaluation results based on the test benchmark system shows that the accelerator can achieve 
stable tracking of features of violently shaking images, and is consistent with the processing results 
of the MATLAB code on the PC side. It consumes 36% of the LUTs, 52% of the BRAM and 19% of the 
DSP of the Zynq FPGA. When operating at 100MHz, the accelerator can process 108 frames per 
second for 720P images and 48 frames per second for 1080P images. Compared to PC CPUs that 
consume seconds of time, the processing latency is greatly reduced to the order of milliseconds, 
making GF dense optical flow an efficient and practical technical solution on the edge side. 
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