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Abstract: This paper presents ConF, a novel deep learning model designed for accurate and efficient prediction 
of non-coding RNA families. NcRNAs are essential functional RNA molecules involved in various cellular 
processes, including replication, transcription, and gene expression. Identifying ncRNA families is crucial for 
comprehensive RNA research, as ncRNAs within the same family often exhibit similar functionalities. 
Traditional experimental methods for identifying ncRNA families are time-consuming and labor-intensive. 
Computational approaches relying on annotated secondary structure data face limitations in handling complex 
structures like pseudoknots and have restricted applicability, resulting in suboptimal prediction performance. 
To overcome these challenges, ConF integrates mainstream techniques such as residual networks with dilated 
convolutions and cross multi-head attention mechanisms. By employing a combination of dual-layer 
convolutional networks and BiLSTM, ConF effectively captures intricate features embedded within RNA 
sequences. This feature extraction process leads to significantly improved prediction accuracy compared to 
existing methods. Experimental evaluations conducted on a ten-fold publicly available dataset demonstrate 
the superiority of ConF in terms of accuracy, sensitivity, and other performance metrics. Overall, ConF 
represents a promising solution for accurate and efficient ncRNA family prediction, addressing the limitations 
of traditional experimental and computational methods. 

Keywords: non-coding RNA; deep learning; gene expression  
 

1. Introduction 

RNA is a biopolymer composed of four nucleotides: adenine (A), uracil (U), gua-nine (G), and 
cytosine (C) [1]. Functionally, RNA can be categorized into coding RNA and non-coding RNA 
(ncRNA). While ncRNAs are derived from ncRNA genes, they do not encode proteins [2]. 
Nevertheless, they play significant roles in various cellular processes [3] and diseases [4] through 
mechanisms such as replication, transcription, and gene expression [5][6]. Extensive transcriptomics 
and bioinformatics studies have identified thousands of ncRNAs in humans, classified based on their 
functionality and length. Examples of ncRNA categories include microRNA, ribosomal RNA (rRNA), 
ri-bozymes, small nuclear RNA (snRNA) including small nucleolar RNA (snoRNA), transfer RNA 
(tRNA), Intron_RNA, internal ribosome entry site (IRES), Leader, and riboswitch. These ncRNAs 
exert crucial functions in organisms. For instance, snRNA processes heteronuclear RNA within the 
cell nucleus, regulates transcription factors, and maintains telomeres [7]. Ribozymes, serving as RNA 
enzymes in organs, facilitate the connection of amino acids during protein synthesis. tRNA acts as a 
physical bridge between messenger RNA (mRNA) and amino acid sequences [8]. Intron_RNA, tran-
scribed from intron genes, engages in extensive internal interactions post-RNA tran-scription and 
aids in the proper ordering of exons [9][10]. IRES facilitates the binding of the ribosome to mRNA, 
initiating protein translation and synthesis [11]. The Leader represents the upstream portion of the 
start codon in mRNA and assumes an im-portant role in regulating mRNA transcription [12]. 
Riboswitches are regulatory seg-ments within mRNA that can adopt specific conformations to 
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modulate mRNA tran-scription processes [13]. Consequently, ncRNAs hold a critical position in 
organisms and represent indispensable constituents in intricate biological activities. 

Most notably, the majority of RNA in higher organisms is non-coding RNA (ncRNA) that lacks 
protein-coding capacity [14]. While ncRNA was once considered to be a byproduct of RNA 
polymerase transcription without any biological function [15], an increasing body of research has 
demonstrated that ncRNA participates in a wide range of intracellular biological processes and plays 
a critical regulatory role in organ-ismal growth, development, and apoptosis [16][17]. Furthermore, 
ncRNA has been found to be closely associated with a variety of complex human diseases [18][19]. 
As such, research into the complex and important functions of ncRNA has become a cru-cial 
component in unraveling the mysteries of life [20]. Regrettably, the instability and diversity of ncRNA 
present significant challenges to the study of its function. However, studies have indicated that 
ncRNAs from the same family exhibit similar functions [21], suggesting that identifying their families 
can provide preliminary insights into the function of ncRNAs and guide further experimental 
validation of their functions. 

Currently, there are two main categories of methods for identifying ncRNAs: ex-perimental-
based methods and computational-based methods. Each method has its principles, advantages, and 
disadvantages, which are discussed below. 

1.1. Tranditional Experiment-based approach 

The first experimental-based method involves using chemical or enzyme reagents for ncRNA 
sequencing, where classification and identification are based on the size of ncRNAs [22]. This method 
is relatively simple and independent of ncRNA structure, as it does not require reverse transcription 
of cDNA. However, it relies on gel electrophoresis, which requires a sufficient abundance of the target 
ncRNA for visible bands to form on the gel. Hence, it is less effective for ncRNAs with low abundance. 
The second method involves generating cDNA libraries through reverse transcription to identify 
ncRNAs. This method allows for the creation of specific cDNA libraries tailored to identify particular 
functional categories of ncRNAs. However, the efficiency of reverse transcription can be affected by 
the structure and modifications of ncRNAs, leading to incomplete reverse transcription and the 
inability to identify all ncRNAs from specific families in the library. Base loss during reverse 
transcription can also impact identification performance. Microarray analysis is the third method 
used to identify ncRNAs by probing their binding. This approach enables the rapid and simultaneous 
identification of multiple types of ncRNAs, even at lower concentrations. It has become a widely used 
method in transcription detection in research. However, the preparation of sample ncRNAs and 
microarrays with probes can be challenging. The fourth method involves using the SELEX technique 
[23], where ncRNAs are identified by forming ribonucleoprotein particles with specific proteins. This 
technique can generate ncRNAs from all genes in an organism, regardless of their abundance in the 
cell. However, it involves complex and time-consuming procedures. 

These experimental-based methods share common disadvantages, including complexity, high 
costs, and limitations in meeting the demands of high-throughput ncRNA identification. 

1.2. Machine learning-based approach 

Owing to the industry's pressing need for efficient and expeditious ncRNA recognition, 
computational methods have come to the fore. These computational approaches primarily 
encompass two principal categories. The first method is based on sequence alignment. Infernal is a 
typical method based on sequence alignment [24]. It first uses secondary structure data to annotate 
the consistency of ncRNA sequences within the same family. Then, it builds covariance models (CM) 
based on Stochastic Context-Free Grammars (SCFGs) using the annotated sequence data. Finally, 
these covariance models are utilized to accurately identify ncRNA families. The second method is 
based on structural features, primarily leveraging the conservation principle of secondary structures 
in the same ncRNA family for identification. This type of method starts by using RNA secondary 
structure prediction tools such as mfold [25] and Ipknot [26] to predict the secondary structure. Then, 
algorithms are designed to learn the structural features for ncRNA identification. GraPPLE [27], 
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RNAcon [28], nRC [29], and ncRFP [30] are representative methods in this field. Among them, 
GraPPLE utilizes global graph features of ncRNA secondary structures and designs an SVM method. 
RNAcon extracts 20 types of secondary structure graph features and employs a random forest 
method. nRC uses the Moss method [31] and one-hot encoding of ncRNA structural features, 
followed by a deep learning model based on convolutional neural networks. ncRFP simplifies the 
process by automatically extracting features from ncRNA sequences for predicting ncRNA families. 
Although these models can predict ncRNAs, there is still room for improvement in terms of accuracy 
and other metrics. 

In addition, the Transformer model has gained widespread recognition as a highly influential 
deep learning algorithm [32]. It has attracted significant attention in the field of natural language 
processing in recent years. The introduction of the Transformer model has addressed the limitations 
of conventional Seq2Seq models and has demonstrated remarkable performance in various tasks 
such as machine translation, text summarization, and dialogue generation. By introducing multi-
head self-attention mechanisms, the Transformer model allows for parallelized training, enabling 
efficient processing of input sequences and capturing the sequential relationships among words, thus 
improving overall accuracy. This has resulted in rapid expansion of Transformer-based algorithms 
across diverse domains including computer vision and bioinformatics. For instance, in computer 
vision, the Visual Transformer (VIT) algorithm has successfully applied the Transformer model to 
achieve state-of-the-art performance in image classification tasks [33], thereby showcasing the 
exceptional robustness of the Transformer model. In the field of bioinformatics, the AlphaFold [34] 
model, a deep learning-based protein structure prediction model, has leveraged various neural 
network structures, including the Transformer, to deliver outstanding results. Furthermore, 
Transformer-based algorithms have also demonstrated promising outcomes in tasks such as RNA 
secondary structure prediction and drug molecule screening and design, showcasing their efficacy in 
these domains. 

This study specifically investigates the potential of utilizing the Transformer model for 
extracting RNA sequence features within the domains of bioinformatics and drug molecule design. 
Augmenting the performance of our model in this study entails capitalizing on the inherent 
capabilities of the attention mechanism and feature compression within the framework of the 
Transformer model. This study presents a novel deep learning-based approach for classifying non-
coding RNA families. The proposed method utilizes a k-mer technique to represent features, thereby 
enhancing the accuracy of RNA sequence recognition. The RNA sequences are then fed into CNN 
(convolutional neural network) and BiLSTM (bidirectional long short-term memory) models, 
enabling the extraction of structural and sequential feature relationships within the sequences. To 
focus on important information and adjust the weights of key details, an MLP module with an 
integrated attention mechanism is employed to map the features onto a new feature space. The core 
component of the model consists of a residual network model that incorporates multi-scale CNN 
modules and attention mechanism-based feature alignment. The multi-scale CNN modules are 
capable of capturing structural features from diverse scales, thereby providing the model with a more 
comprehensive understanding of RNA structural characteristics. Additionally, by utilizing the 
attention mechanism as a residual module, the model can retain shallow features while capturing 
module variances. The performance of the proposed model is evaluated using ten publicly available 
datasets. Experimental results demonstrate its significant advantages over alternative algorithms, 
underscoring its potential in the accurate prediction of non-coding RNA families. 

2. Materials and Methods 

In order to investigate the practical performance of the model proposed in this study, publicly 
available datasets comprising 13 distinct ncRNAs were employed as experimental materials. The 
experimental results were comprehensively compared with those of benchmark algorithms, 
revealing Drawing upon the unique characteristics of RNA sequences, this study proposes a novel 
multi-scale residual network model for the prediction of non-coding RNA families. The model 
incorporates Bidirectional Long Short-Term Memory (BiLSTM), attention mechanisms, and dilated 
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convolutions to capture the inherent complexities of RNA data.To address potential errors in the 
RNA dataset, a 2-mer approach is employed. Additionally, a feature representation method utilizing 
word embeddings with an embedding dimension of 16 and a length of 224 is adopted. The BiLSTM 
and convolutional neural network (CNN) modules are then applied to extract initial features from 
both the RNA sequence and structure, effectively augmenting the input dimensionality of the model. 
These extracted features are concatenated to form a sequence of dimensions 224 ∗ 128. To facilitate 
the learning of intricate and abstract representations, non-linear feature mapping and transformation 
are achieved through fully connected layers. 

Attention mechanisms are employed to compute the disparities between preceding features and 
those generated by the multi-layer perceptron (MLP), enabling the model to capture abstract 
information while preserving the original features. Block1, a CNN module encompassing multiple 
scales, is designed to encompass a convolutional module with a scale of 16, as well as two dilated 
convolution modules featuring convolution window sizes of 10 and 18, respectively. The integration 
of attention mechanisms allows for the computation of differences between shallow and deep 
networks, with the outcomes being added to the shallow network to mitigate overfitting risks 
associated with excessive network depth.Downsampling is achieved through positional data 
reshaping, enhancing the thickness of feature representations while maintaining the integrity of the 
original features. Consequently, the length of the sequence is halved, with the embedding dimension 
doubled. Block2 inherits the same parameters as Block1 but possesses twice the number of filters. It 
further extracts global information from the RNA and leverages attention mechanisms to calculate 
disparities. Ultimately, prediction is performed through fully connected layers and the softmax 
activation function. 

2.1. dataset 

The data used in this study was obtained from the Rfam database [35]. Rfam is a comprehensive 
collection of RNA families, providing a valuable resource for the analysis of non-coding RNA 
(ncRNA) sequences. The database contains 13 distinct types of ncRNAs, encompassing microRNAs, 
5S_rRNA, 5.8S_rRNA, ribozymes, CD-box, HACA-box, scaRNA, tRNA, Intron_gpI, Intron_gpII, 
IRES, leader, and riboswitch. 

The dataset employed in this study consists of 6320 non-redundant ncRNA sequences. Among 
these, the IRES family comprises 320 sequences, while the remaining families each contain 500 
sequences. To train the model effectively, a ten-fold cross-validation methodology was employed 
during the model training phase. This approach involves splitting the data for each ncRNA family 
into two subsets: a training set and a test set.For each fold of the cross-validation, 5688 RNA data 
points were allocated as the training set, while the remaining data points were designated as the test 
set. By repeating this process ten times, ten sets of training and test data were generated, allowing for 
robust evaluation and validation of the model's performance. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2023                   doi:10.20944/preprints202308.0615.v1

https://doi.org/10.20944/preprints202308.0615.v1


 5 

 

Figure 1. The distribution of ncRNA sequence lengths. The length of RNA refers to the number of 
nucleotides (AUCG) present in the RNA sequence. 

2.2. RNA Representation Method 

Better feature representation contributes to more accurate differentiation of RNA families, 
thereby improving the predictive performance of the model. In this study, we utilized a feature 
representation method based on k-mer and embedding. Firstly, we selected the k-mer method to 
process RNA sequences, using 2-mers for RNA feature representation. Subsequently, we applied 
word embedding techniques to convert the RNA sequences into vector representations based on their 
frequency, facilitating the processing and training of the network model. The advantages of using k-
mer method in RNA and DNA research include: 

1. Dimensionality reduction: RNA sequences are often very long, and analyzing the raw sequence 
data may result in a high-dimensional feature space, leading to the curse of dimensionality. 
Representing RNA sequences as k-mer sequences significantly reduces the dimensionality of the 
feature space, thus reducing computational complexity and improving processing efficiency. 

2. Capturing contextual information: Word embedding maps discrete symbol sequences (such as 
k-mer) into a continuous vector space, where symbols with similar contexts have similar 
embedding representations. By converting k-mer sequences into word embedding vectors, we 
can capture contextual information in RNA sequences, including the associations between 
nucleotides. This is important for many machine learning and deep learning algorithms, as they 
can utilize these embedding vectors to infer the functional and structural information of RNA 
sequences. 

2.3. Neural Network Architecture 

2.3.1. Convolutional neural network In ConF 

Convolutional neural networks (CNNs) apply convolutional operations to RNA data using 
convolutional kernels and employ activation functions to introduce non-linear computations, thus 
increasing their expressive capacity. The resulting feature maps are then produced as inputs for the 
subsequent layers. CNNs commonly comprise multiple layers of convolutional layers, where the 
lower layers mainly extract low-level features from the input data, while the higher layers combine 
these low-level features to extract higher-level abstract features. The operation of a convolutional 
kernel in the 𝑖-th layer can be represented by the following equation: 𝑥௝௟ = 𝑓 ቀ∑௜∈ெೕ𝑥௜௟ିଵ𝑤௜௝௟ + 𝑏௝௟ቁ (1) 

The notation used is as follows: 𝑥௝௟ represents the convolutional kernel at position (𝑖, 𝑗)in layer 
l, 𝑥௜௟ିଵ represents the feature map of the (𝑖 − 1)th layer, 𝑏௝௟ represents the bias, and f denotes the 
activation function. The Convolutional kernel, typically smaller than the input data, performs 
convolutional calculations on a subset of nodes within the input data known as the "receptive field." 
This strategy enables the effective extraction of local features from the input data, leading to 
improved accuracy. Moreover, the convolutional kernel can slide across all positions of the input 
data, with shared weights during each convolutional operation. This weight sharing mechanism 
reduces the number of parameters in the network, enhancing the scalability of the network model. 

2.3.2. Cross multi-head self-attention in ConF 

The primary function of the Cross Multi-Head Attention mechanism is to facilitate cross-
interaction between two distinct feature sets, enabling each feature to consider information from the 
other feature set. This mechanism aims to enhance the capture of interactions and correlations 
between the features. In this paper, the Cross Multi-Head Attention mechanism is employed to 
handle comparisons between different blocks, with each input possessing its unique feature 
representation.  
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Specifically, the Cross Attention mechanism enables interaction between features at various 
levels. At each level, the attention mechanism calculates the similarity between the two feature sets 
and subsequently computes a weighted sum of elements in each set based on the similarity weights. 
This process allows each element within each feature set to incorporate information from all elements 
in the other feature set, resulting in a more effective capture of their associations and interactions.  

The Multi-Head Attention mechanism (MHA) receives three vectors as inputs: the query vector, 
the key vector, and the value vector. Given a query vector, MHA calculates weighted sums of the key 
vectors, with the weights determined by the similarity between the query and key vectors. The 
resulting weighted sum is then multiplied by the value vector to generate the output. Common 
similarity calculation methods include dot product or bilinear calculations. The multi-head 
mechanism of MHA significantly enhances the expressive capacity of the model and enables it to 
learn more diverse and complex features. The formula for Multi-Head Attention is as follows: 𝑄௜ = 𝑄𝑊௜ொ, 𝐾௜ = 𝐾𝑊௜௄ , 𝑉௜ = 𝑉𝑊௜௏, 𝑖 = 1, . . . , ℎ (2)

ℎ𝑒𝑎𝑑௜ = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄௜ , 𝐾௜ , 𝑉௜), 𝑖 = 1, . . . , ℎ (3)

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑ଵ, . . . , ℎ𝑒𝑎𝑑௛)𝑊ை (4)

Where Q, K, V represent the query matrix, key matrix and value matrix respectively,  𝑊௜ொ, 𝑊௜௄, 𝑊௜௏ represent the weight matrices of the query matrix, key matrix and value matrix 
respectively, W୓  represents the output weight matrix, h represents the number of heads, head୧ 
represents the output of the i-th head, and Concat represents the concatenation operation. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2023                   doi:10.20944/preprints202308.0615.v1

https://doi.org/10.20944/preprints202308.0615.v1


 7 

 

 

Figure 2. Flowchart of the ConF algorithm: (A) Overall architecture of the algorithm; (B) Internal 
structures of Block 1 and Block 2; (C) Parameters used in each module of the algorithm along with 
their explanations. 

2.3.3. BiLSTM in ConF 

Long Short-Term Memory (LSTM) has proven to be an effective model for handling long-range 
dependencies in sequential data. RNA sequences, being context-sensitive data, exhibit a strong 
correlation between the profile information of each target base and its surrounding context. In this 
study, LSTM is selected as the fundamental network for extracting target bases and their contextual 
features and subsequently encoding them. The operation of LSTM begins from one end of the 
sequence data and progresses to the other end. However, a unidirectional LSTM can only capture 
information from a single side of the target base. To overcome this limitation and capture contextual 
information from both sides, this study adopts Bidirectional LSTM (Bi-LSTM) to extract and learn the 
features of target bases and their corresponding sequence patterns. 

Bi-LSTM is designed to extract and learn features from the input data, facilitating the creation of 
a model that encodes each base along with its contextual information in a consistent format. Bi-LSTM 
is composed of two LSTM networks: a forward LSTM network with 16 hidden nodes that records the 
contextual features of the target base's left side, progressing from left to right, and a backward LSTM 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2023                   doi:10.20944/preprints202308.0615.v1

https://doi.org/10.20944/preprints202308.0615.v1


 8 

 

network with 16 hidden nodes that records the contextual features of the target base's right side, 
progressing from right to left. Following the processing stage, the outputs of the two LSTMs are 
concatenated. The final output of the BiLSTM model can only be obtained when all time steps have 
been computed. At each base position, Bi-LSTM generates two hidden states. By combining these two 
hidden states at the target base, the encoded data (1x32) representing the target base and its 
contextual features is derived and subsequently outputted. 

In the LSTM formula, 𝑓௧  represents the output of the forget gate, which determines which 
information should be forgotten from the cell state. 𝑖௧  represents the output of the input gate, which 
determines which new information should be stored in the cell state. ot represents the output of the 
output gate, which determines which information in the cell state should be output. The formula for 
LSTM calculation is as follows: 𝑓௧ = 𝜎(𝑊௙ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௙) (5)𝑖௧ = 𝜎(𝑊௜ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௜) (6)𝐶ሚ௧ = 𝑡𝑎𝑛ℎ (𝑊஼ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏஼) (7)𝐶௧ = 𝑓௧ ∗ 𝐶௧ିଵ + 𝑖௧ ∗ 𝐶ሚ௧ (8)𝑜௧ = 𝜎(𝑊௢ ⋅ [ℎ௧ିଵ, 𝑥௧] + 𝑏௢) (9)ℎ௧ = 𝑜௧ ∗ 𝑡𝑎𝑛ℎ (𝐶௧) (10)

Here, 𝑓௧ is the forget gate, i୲ is the input gate, 𝐶ሚ௧ is the new candidate value, C୲ is the cell 
state, o୲ is the output gate, and h୲ is the hidden state. σ is the sigmoid function and tanh is the 
hyperbolic tangent function. 𝑊௙, 𝑊௜ , 𝑊௖, 𝑊௢, 𝑏௙, 𝑏௜ , 𝑏௖ and  𝑏௢ are all learnable parameters. 

2.3.4. Residual Structure in ConF 

In this study, a residual structure was introduced into the proposed model to extract features 
from the output data learned in the first part and classify them. The incorporation of residual 
connections allows information to selectively bypass certain layers in the neural network, facilitating 
the flow of information. The residual structure makes this choice more direct and easier for the 
network to learn. ResNet, a specialized type of convolutional neural network, employs residual 
blocks as fundamental units. By utilizing shortcut connections between the input and output layers 
of the residual block, it combines the input data with the mapped data to generate the output data, 
ensuring that each residual block in the network incorporates the original input information. This not 
only improves the model's trainability but also effectively mitigates the degradation issue that can 
arise with deeper network architectures. Typically, ResNet comprises a specific number of residual 
blocks, where the input data is denoted as x, the mapping of the residual block is represented as F(x), and the output is obtained by the sum of the mapping and the input, i.e., 𝐻(𝑥) = 𝐹(𝑥) + 𝑥. In 
ResNet, when adding a new residual block as the network becomes saturated, the mapping function 𝐹(𝑥) can be set to zero, which research has demonstrated to facilitate the implementation of an 
identity mapping compared to regular convolutional networks. 

Capitalizing on the favorable performance and ease of training afforded by residual 
architectures, this study introduces an innovative paradigm of residual blocks. The blocks of the 
model incorporate multiple convolutional windows of varying sizes, allowing for the extraction of a 
broader range of structural features compared to conventional residual network modules. 
Additionally, the residual component employs a cross multi-head attention mechanism, which, as 
opposed to the traditional element-wise addition, enables the model to capture feature disparities 
across different modules more effectively, thereby enhancing the extraction of intrinsic features in 
RNA. 
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3. Results and discussion 

In order to investigate the practical performance of the model proposed in this study, publicly 
available datasets comprising 13 distinct ncRNAs were employed as experimental materials. The 
experimental results were comprehensively compared with those of benchmark algorithms, 
revealing substantial advantages. This chapter provides a visual demonstration of the comprehensive 
outstanding performance of the proposed algorithm, emphasizing its commendable predictive 
capabilities across multiple evaluation metrics. 

3.1. Evaluation metrics 

In order to assess the overall performance of each method across various aspects, this study 
utilizes accuracy, sensitivity, precision, and F1-score as the evaluation metrics for comparing 
algorithm performance. The specific calculation methods for accuracy, sensitivity, precision, and F1-
score are described below. In this context, TP, TN, FP, and FN represent the counts of true positive, 
true negative, false positive, and false negative, respectively, for the different methods evaluated 
using the 10-fold cross-validation test set. 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 (11)

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (12)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 (13)

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 𝑇𝑃2 ∗ 𝑇𝑃 + 𝐹𝑁 + 𝑇𝑃 (14)

3.2. Comprehensive performance evaluation 

The datasets utilized in this study encompassed 13 distinct ncRNA families and served as the 
basis for comparing the performance of the conF model with three benchmark models: RNAcon, nRC, 
and ncRFP. Comparative analysis of the experimental results reveals that the proposed conF model 
outperforms the three benchmark algorithms in terms of accuracy, sensitivity, precision, and F1-
score.Taking a vertical perspective, accuracy and F1-score offer a comprehensive assessment of the 
model's performance. Regarding accuracy, the conF model demonstrates superiority of 0.5831, 
0.2608, and 0.1596 over the other three models, respectively. In terms of F1-score, the conF model 
exhibits a superiority of 0.6051, 0.2678, and 0.1673 over the other three models, respectively. These 
findings indicate that the conF model significantly surpasses the benchmark algorithms in accuracy 
and F1-score, underscoring its overall superior performance. Notably, the conF model also exhibits 
noticeable advantages in sensitivity and precision compared to other algorithms, suggesting its 
capability to detect a greater number of ncRNA families and accurately filter out irrelevant RNA 
sequences, thereby enhancing prediction precision. 

Taking a horizontal perspective, the conF model attains the highest performance in terms of 
accuracy and precision, reaching an exceptionally high value of 0.9568. Additionally, it achieves the 
best performance in terms of F1-score and sensitivity, surpassing the benchmark algorithms with 
values of 0.9556 and 0.9553, respectively. 
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Table 1. Performance comparison of each method. 

Model Accuracy Sensitivity Precision F1-score 

ConF 0.9568 0.9553 0.9568 0.9556 

RNAcon 0.3737 0.3732 0.4497 0.3505 
nRC 0.6960 0.6889 0.6878 0.6878 

ncRFP 0.7972 0.7878 0.7904 0.7883 
The best value in each column is bolded. 

3.3. Performance comparison of diferent families 

In order to assess the overall performance of each method across various aspects, this study 
utilizes accuracy, sensitivity, precision, and F1-score as the evaluation metrics for comparing 
algorithm performance. The specific calculation methods for accuracy, sensitivity, precision, and F1-
score are described below. In this context, TP, TN, FP, and FN represent the counts of true positive, 
true negative, false positive, and false negative, respectively, for the different methods evaluated 
using the 10-fold cross-validation test set. 

 

Figure 3. This is a performance comparison among different families. The blue curve, pale green 
curve, green curve, and yellow curve represent the performance of RNAcon, nRC, ncRFP, and ConF, 
respectively. 

 

Figure 4. This is a performance comparison among different families. The blue curve, pale green 
curve, green curve, and yellow curve represent the performance of RNAcon, nRC, ncRFP, and ConF, 
respectively. 
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Figure 5. This is a performance comparison among different families. The blue curve, pale green 
curve, green curve, and yellow curve represent the performance of RNAcon, nRC, ncRFP, and ConF, 
respectively. 

3.4. Performance Testing Based on Different Embedding Methods 

The selection of RNA representation plays a crucial role in preserving its inherent features, 
consequently impacting the performance of RNA category prediction models. Experimental findings 
reveal that varying the lengths of k-mer methods results in diverse outcomes. In our study, we 
employed the single, 2-mer, and 3-mer sequence segmentation methods for testing purposes. Overall, 
the model exhibited the highest mean accuracy when k=2, surpassing the accuracy by 0.265% for k=1 
and 0.314% for k=3. 

 

Figure 3. Performance Comparison of different Encoding Methods. The three boxplots in the figure 
represent the accuracy distributions of three feature representation methods in a 10-fold cross-
validation. The blue box, orange box, and gray box respectively represent the accuracies obtained 
using the independent segmentation, 2-mer, and 3-mer methods for RNA sequence representation. 

3.5. Correlation Analysis 

The correlation matrix in Figure 3 illustrates the relationships between F1-scores of 13 ncRNA 
types predicted by the conF algorithm. Each cell in the matrix represents the correlation coefficient 
between the predicted F1-score of an ncRNA and its corresponding ncRNA category. Higher values 
closer to 1 indicate a stronger positive correlation, while values closer to -1 suggest a stronger negative 
correlation. 
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For example, the correlation coefficient of 0.54 between 5S_rRNA and tRNA indicates a positive 
correlation, implying that these two RNA categories exhibit similar features that allow the model to 
make positively correlated predictions. Conversely, the correlation coefficient of -0.34 between 
5S_rRNA and ribozyme suggests a weak correlation, indicating that the model struggles to extract 
relevant features distinguishing these two ncRNA categories. 

Moreover, there are variations in the correlation of F1-score prediction values across different 
ncRNA categories. Comparing 5S_rRNA with Intron_gpI shows a relatively low correlation, whereas 
the correlation between 5S_rRNA and tRNA is high. This discrepancy suggests that the correlation 
between the same ncRNA type and different ncRNA types likely varies, possibly due to the model's 
bias in feature extraction and the inherent differences in ncRNA characteristics. These correlation 
coefficients could potentially be used to study feature similarity and functional similarity between 
RNA categories. 

 

Figure 4. Based on the ConF algorithm, a correlation matrix of precision for each RNA family in a 10-
fold test. Each cell in the matrix represents the correlation of classification precision between two RNA 
families. The correlation ranges from 1 to -0.6, where cells closer to magenta indicate stronger 
correlation, while cells closer to navy blue indicate weaker correlation. 

3.6. Relationship between Iterations and Performance 

Based on the given data, we conducted an analysis on the relationship between the number of 
iterations and accuracy. It is evident that as the number of iterations increases, the accuracy initially 
exhibits a rising trend followed by a subsequent decline. During the initial iterations, there is a rapid 
growth in accuracy, surpassing 90% by the 28th iteration. Subsequently, the rate of accuracy 
improvement slows down, accompanied by a deceleration in loss reduction, while still maintaining 
an overall upward trend. However, beyond a certain number of iterations, a slight decrease in 
accuracy is observed, although the overall trend remains positive, indicating a continued increase in 
accuracy. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2023                   doi:10.20944/preprints202308.0615.v1

https://doi.org/10.20944/preprints202308.0615.v1


 13 

 

 

Figure 5. The average accuracy and loss of each epoch in 10-fold. 

4. Conclusions 

ncRNA family identification has emerged as a prominent and challenging problem in RNA 
research in recent years. It plays a crucial role in unraveling the intricate functions of RNA and 
contributing to advancements in the life sciences. Although traditional biological experiments yield 
relatively accurate results, they are constrained by high costs, lengthy experimental cycles, and an 
inability to handle large-scale data predictions. These inherent limitations necessitate the 
development of computationally efficient methods to address this issue. In this study, we propose a 
deep learning-based approach, named the ConF model, for predicting the classification of non-coding 
RNA families. The ConF model aims to overcome the performance and applicability limitations 
observed in existing algorithms. By employing attention mechanisms, convolutional methods, and 
other techniques, the ConF model effectively extracts informative features from ncRNA sequences, 
thereby enhancing prediction accuracy. Furthermore, the ConF model solely relies on sequence data, 
enabling its broad applicability in scenarios with minimal data requirements. Experimental results 
demonstrate substantial performance improvements compared to several state-of-the-art 
approaches. Consequently, the ConF algorithm presents a promising solution for predicting RBP 
binding sites, offering potential support for functional studies and medical research related to non-
coding RNA.  

Supplementary Materials: The dataset used in this study is publicly available at 
https://github.com/FROZEN160/RNA-Family." 
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