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Abstract: Influenced by historical background, regional economic development, and the frequent 

occurrence of armed conflict, the human–earth relationship in the Central and Southern Peninsula, 

which is located in a "fragmented zone", is characteristic of the region. The Indochina Peninsula has 

now become an area of interest for the study of spatial changes in production–living–ecological 

spaces (PLES). Taking the Indochina Peninsula as the study area, this paper explores the evolution 

of the spatio-temporal patterns of PLES and its driving mechanism in the Central and Southern 

Peninsula, from 2010 to 2020, based on the grid scale. Methods such as the land-use transition 

matrix, land-use dynamics index, and Geographically and Temporally Weighted Regression 

(GTWR) were used in our model. Our results show that, from 2010 to 2020, ecological space 

dominated the PLES pattern on the Indochina Peninsula but its area gradually decreased, 

accompanied by a sharp increase in the areas of productive and living spaces. The area of PLES 

interconversion on the Indochina Peninsula in 2010–2020 was 212818.70 km2, and it is characterized 

by the conversion of ecological space into productive space, as well as the interconversion of 

woodland ecological and grassland ecological spaces. In addition, the intertransfer of production 

and ecological spaces was distributed in a network-like manner throughout the Indochina 

Peninsula, while the transfer of living space was distributed in a point-like manner. The migration 

path of the center of gravity of PLES on the Indochina Peninsula demonstrates a significant 

directional difference. The PLES’s pattern evolution was affected by the degree of multiple factors, 

with a significant spatial and temporal heterogeneity. The positive and negative feedback effects of 

the factors were distributed in different areas and in different transfer directions. 

Keywords: the Indochina Peninsula; the production-living-ecological spaces; GTWR 

 

1. Introduction 

Since the 1990s, there have been several mechanisms for geopolitical and economic co-operation 

across the Indochina Peninsula; such co-operation exists between countries as a top-level strategy 

and influences land-use changes on the Indochina Peninsula in different forms and dimensions, and 

to different degrees [1]. As the trend in regional political and economic integration intensifies and 

international attention to the Indochina Peninsula continues to grow, transregional economic 

cooperation and projects such as "alternative planting" and the construction of border roads have had 

a profound impact on land use and land cover in the area [2-4]. Due to its special location and 
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economic development mode, the Indochina Peninsula is now an active zone of land-use change [2]. 

Strengthening the study of land-use change across the Indochina Peninsula is of great significance 

for the improvement of its sustainable development, and for the ecological and environmental 

benefits of the region. 

The most important feature of regional land-use change is the mutual transformation between 

land-use types and their dominant functions, i.e., the mutual transfer between three land-use function 

types, namely, production space, living space, and ecological space [5-7]. PLES is a comprehensive 

territorial spatial division, which is based on the multifunctional perspective of land use [8,9]. 

Production space refers to the land used for human survival and livelihood, and is an important 

aspect of the development of PLES; living space refers to the land used for human social habitation, 

which is the core of PLES; and ecological space refers to the natural environment on which human 

beings depend for their survival, and which is the prerequisite and direction of the development of 

PLES [10,11]. As a result of the evolution of the territorial system of human–land relations [12], 

exploring PLES driving mechanisms can effectively explain the relationship between human 

activities and the evolution of PLES patterns [13]. Currently, the driving mechanism behind PLES 

pattern evolution is studied using multiple linear regression [14] and principal component analysis 

[15], but these methods only focus on the mathematical logic among factors: they cannot explain the 

geographic logic of the factors or the real spatial characteristics of the regression parameters; nor can 

they respond to the spatial heterogeneity between the dependent variables and their influencing 

factors in geographic phenomena [16]. Some scholars extended ordinary linear regression by using 

Geodetector [17,18], Geographically Weighted Regression (GWR) [19,20], and Multiscale Geographic 

Weighted Regression (MGWR) [21]; these explain the local spatial relationships and spatial 

heterogeneity of variables well [22]. However, the influencing factors involved in PLES pattern 

evolution are both spatially and temporally non-stationary; because of this, the traditional regression 

and constant coefficient spatial econometric models cannot satisfy the research need to identify the 

direction and strength of the drivers of PLES pattern evolution under different spatial and temporal 

distributions. The Geographically and Temporally Weighted Regression (GTWR) model proposed 

by Huang et al. [23] can effectively deal with the problem of spatio-temporal heterogeneity and has 

been widely used in the study of spatio-temporal heterogeneity of socio-economic and environmental 

pollution drivers [24,25]. In this paper, based on the grid scale, the GTWR model is applied to the 

evolution of the PLES pattern and the analysis of the driving factors throughout the Indochina 

Peninsula, taking into account the spatial and temporal non-stationarity of the factors. It proposes a 

new research idea, which will provide the basic data and reference for sustainable development 

planning across the Indochina Peninsula, and also the basis for subsequent research on land-use 

change throughout the Indochina Peninsula. In addition, it provides a reference for subsequent 

research on the driving mechanisms, ecological assessment, and simulation prediction of land-use 

change in the area. 

2. Materials and Methods 

2.1. Site description 

Due to factors such as historical background, regional economic cooperation, and frequent 

armed conflicts, human–land relations across the Indochina Peninsula are typified by regional 

characteristics. The overall region is known as a fragmented zone in the world [26,27]. In this paper, 

Myanmar, Vietnam, Laos, Thailand, and Cambodia, all located on the Indochina Peninsula, were 

selected as the study area (Figure 1). As a relatively independent geographic unit, the Indochina 

Peninsula has an important geopolitical and economic strategic value, and is an important arena for 

competition and power games among extra-regional powers [28,29]. The implementation of many 

international economic cooperation and resource development projects, especially the "Golden Four 

Corners" program and "Alternative Cultivation" policy shared by China, Myanmar, Thailand, and 

the Lao People's Democratic Republic, brought about significant change in the land use/cover status 

of the region [30,31]. Together, the special characteristics of land-use patterns [32-34], tropical rain 
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forests in Southeast Asia, and widely distributed alternative plantation crop areas [35] make the 

Indochina Peninsula an area of great interest to many international organizations studying LUCC 

and the ecological environment. 

 

Figure 1. Schematic of the study area. 

2.2. Data source 

Data were gathered from the GlobeLand30 land cover/land use dataset 

(http://www.globallandcover.com/) and the SEDAC population density dataset 

(https://sedac.ciesin.columbia.edu/) for 2010 and 2020. The data were pre-processed and reclassified 

to obtain the 2010 and 2020 PLES data for the Indochina Peninsula (Table 1). 

Table 1. Classification system of PLES. 

Primary 

category 
Secondary category Data source 

The 

production 

space 

1—Agricultural production space; GlobeLand30: cropland 

2—Industrial production space; 

GlobeLand30: artificial surface 

(excluding the range of living 

space defined by SEDAC) 

The living 

space 

3—Urban living space; 
SEDAC: the population density 

is greater than 1500/km2 

4—Rural living space; 
SEDAC: the population density 

is 300–1500 /km2 

The 

ecological 

space 

5—Forest ecological space; GlobeLand30: forest, bush 

6—Grassland ecological space; GlobeLand30: grass 
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7—Water ecological space; 

GlobeLand30: wetlands, water, 

glaciers and permanent snow 

cover 

 8—Other ecological spaces GlobeLand30: tundra, bare land 

In this paper, road networks, water systems, population densities, night lighting, precipitation, 

Normalized Difference Vegetation Index (NDVI), and armed conflict events were selected as the 

influencing factors for the evolution of the PLES patterns in the Indochina Peninsula region from four 

aspects: human location, socio-economics, natural environment, and geopolitics. Road networks 

affect land use in a unique way. On the one hand, road construction promotes the development of 

construction land; on the other hand, it takes up a large amount of forest and grassland, resulting in 

the reduction of forest and grassland areas. At the same time, slope greening and ecological 

protection undertaken in the process of road construction were shown to increase the area of shrubs 

and bushes [36]. In addition, proximity to a river system affects the distribution of productive space: 

the closer the river, the more productive the space [37]. Population density is another factor directly 

influencing the spatial distribution of land use/cover in the study area, with more densely populated 

areas having higher levels of living-space development. Furthermore, the Nighttime Lighting Index 

reflects the level of regional economic development and compensates for the lack of GDP data. 

Precipitation impacts ecological space spatial distribution, while NDVI directly reflects the changes 

in forest land, grassland, cultivated land, and other land types. Finally, geopolitics is also an easily 

overlooked influence for the Indochina Peninsula, where the location and frequency of armed conflict 

events have a dramatic effect on land-type change [38]. The data sources for each influencing factor 

are shown in Table 2. 

Table 2. Driving factors and data sources. 

Datatypes 
param

eter 
factor Introduction to data Data source 

Humanistic 

location 

X1 Distance to 

railway 

Indicates the distance 

from the centre of each 

pixel to the nearest 

railway line 

https://www.openstreet

map.org 

https://www.naturaleart

hdata.com/ 

X2 Distance to 

road 

Indicates the distance 

from the centre of each 

pixel to the nearest road 

Socioeconomic Data and 

Applications Center | 

SEDAC (columbia.edu) 

 

https://www.openstreet

map.org 

X3 Distance to 

river 

Indicates the distance 

from the centre of each 

pixel to the nearest river 

https://www.openstreet

map.org 

social 

economy 

X4 Night Lights Indicates the nighttime 

light value within each 

pixel 

VIIRS Nighttime Light 

(mines.edu) 

geodata.cn 

X5 population 

density 

denotes the value of 

population density 

within each pixel 

https://sedac.ciesin.colu

mbia.edu/ 

natural 

environme

nt 

X6 precipitation Indicates the value of 

rainfall within each pixel 

Climatic Research Unit - 

Groups and Centres 

(uea.ac.uk) 

X7 Normalized 

Difference 

Indicates the NDVI 

value within each pixel 

https://ladsweb.modaps.

eosdis.nasa.gov/ 
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Vegetation 

Index(NDVI) 

geopolitics X8 Armed 

conflict 

events 

Indicates the number of 

deaths from armed 

conflict in each pixel. 

ACLED | Bringing 

Clarity to Crisis 

(acleddata.com) 

2.3. Data preprocessing 

OSM data require geometric repairing, cropping, merging, fusing, etc., and Euclidean distances 

must be calculated. Armed conflict events require data cleansing and interpolation. Compared to 

other interpolation methods, IDW is a precision interpolation and ensures that the predicted value at 

the sampling point is completely consistent with its real value. In this study, IDW was used to 

spatialize fatalities in armed conflicts. All factor data were standardized, with a uniform scale, and 

projected to the "Krasovsky_1940_Albers" coordinate system with a resolution of 250 m. The 

resolution of the PLES data was 30 m, which facilitated subsequent processing. 

To verify whether initially selected influencing factors can be used for modeling the regression 

model, a covariance line analysis of the influence factors is required [39,40]. In this paper, the variance 

inflation factor (VIF), eigenvalue, etc., were selected to determine whether there was covariance 

among the influencing factors. When the VIF is greater than 10, it indicates that there is covariance 

among various factors; this must be eliminated to render the next modeling more feasible [41]. As 

shown in Table 3, the VIF values of the influencing factors are less than 10, so there is no 

multicollinearity; accordingly, they can be used for modeling the regression model. 

Table 3. collinearity diagnostics. 

VIF X1 X2 X3 X4 X5 X6 X7 X8 

2010 1.125 1.068 1.069 1.283 1.326 1.061 1.104 1.035 

2020 1.14 1.121 1.068 1.065 1.088 1.072 1.077 1.04 

2010-2020 1.131 1.077 1.063 1.166 1.196 1.06 1.085 1.038 

After pre-processing the driver data, a 15 km × 15 km fishing network was generated based on 

the ArcGIS platform; 8,539 sampling points were yielded in the five-country region of the Indochina 

Peninsula. Factors were resampled uniformly up to 15 km, and factor attribute values were extracted 

based on the sampling points. The area and percentage of the PLES within the unit grid were counted 

to obtain information on the evolution of the PLES (dependent variable) and the data on the driving 

factors (independent variables). The driving mechanisms behind PLES pattern evolution in the five 

countries of the Indochina Peninsula were analyzed using the GTWR model. 

2.4. Research Methods 

2.4.1. Transfer matrix of PLES 

The land-use transition matrix was used to analyze the evolution of PLES patterns. The essence 

of the transfer matrix is to use the transfer probability of a Markov chain and the steady state equation 

to analyze the dynamic characteristics and development trends of land-use change [42], with the 

following expression: 

𝑆௜௝ = ൥𝑆ଵଵ  … 𝑆ଵ௡…𝑆௡ଵ  … 𝑆௡௡൩ (1)

Where 𝑆௜௝ is the number of transfers from spatial type i to spatial type j in the study area and 𝑆௡௡ is the PLES type area. 
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2.4.2. Land-use dynamics index 

Land-use dynamics refers to the quantitative change in land-use types in a certain period of time, 

mainly reflecting the intensity of land-use change and regional differences in the rate of change, and 

characterizing the impact of human activities on regional land use, so as to better guide regional land 

use [43]. It is mainly divided into single land-use dynamics and comprehensive land-use dynamics : 

single land-use dynamics is used to describe the change in a certain land-use type in the region within 

a certain time frame, while comprehensive land-use dynamics describes the overall rate of land-use 

change in the entire region [44]. 𝐾 = 𝑈௔ − 𝑈௕𝑈௔ × 1𝑇 × 100% (2)

Where K is the single dynamic index of a land-use type in the study period, 𝑈௔ is the area of a 

land-use type at the beginning of the study,  𝑈௕ is the area of the land-use type at the end of the study, 

and T is the time interval. 𝐿௖ = ቈ∑ ∆𝐿௎೔షೕ௡௜ୀଵ2 ∑ 𝐿௎೔ேூୀଵ ቉ × 1𝑇 × 100% (3)

Where, 𝐿௖ is the comprehensive land-use dynamics index in the study area, 𝐿௎೔ is the area of 

land-use type in the previous period, ∆𝐿௎೔షೕ is the absolute value of the area of land of category i 

converted to land-use type j in the study time period, and T is the time interval. 

2.4.3. Standard deviation ellipse model 

Using the center of gravity, the long and short axes, and the azimuthal angle of the standard 

deviation ellipse, can portray the overall distribution characteristics, the degree of agglomeration, 

and the center of agglomeration of each type of territorial spatial area. The smaller the area of the 

ellipse and the standard distance between the x and y axes, the higher the degree of agglomeration, 

and vice versa [45]. In this study, analysis of the standard deviation ellipse of production space, living 

space, and ecological space was conducted to explore the distribution range and directional trend of 

each space, and further analyze the evolution characteristics. 𝑋 = 1𝑁 ∑௜ୀଵ௡  𝑥௜ (4)

𝑌 = 1𝑁 ∑௜ୀଵ௡  𝑦௜ (5)

tan 𝜃 = (∑௜ୀଵ௡  𝑥̂௜ଶ − ∑௜ୀଵ௡  𝑦̂௜ଶ) + ඥ(∑௜ୀଵ௡  𝑥̂௜ଶ − ∑௜ୀଵ௡  𝑦̂௜ଶ)ଶ + 4(∑௜ୀଵ௡  𝑥̂௜ଶ𝑦̂௜)ଶ2∑௜ୀଵ௡  𝑥పˆ 𝑦̂௜  (6)

Where X and Y denote the coordinates of the center of gravity position of the spatial unit of the 

land-use type, 𝑥௜ and 𝑦௜ denote the value of the coordinates of the spatial unit, 𝜃 denotes the angle 

of the ellipse, 𝑥పˆ  and 𝑦̂௜ denote the deviation from the center coordinates to the center of gravity 

coordinates of each spatial unit, respectively. The main parameters of a standard deviation ellipse are 

the position of the center point, the long axis, the short axis, and the angle of rotation. 

2.4.4. GTWR model 

GTWR is a regression analysis method that incorporates temporal and spatial information on 

the basis of Ordinary Linear Regression (OLR) to study spatio-temporal heterogeneity; it is capable 

of reflecting the change patterns in the spatio-temporal non-stationarity of the regression coefficients 

[23]. The formula is: 𝑦௜ = 𝛽଴(𝑢௜ , 𝑣௜ , 𝑡௜) + ∑ 𝛽௞௞ (𝑢௜ , 𝑣௜ , 𝑡௜)𝑋௜௞ + 𝜀௜  (7)
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where (𝑢௜ , 𝑣௜) denotes the latitude and longitude coordinates of the ith sample point, 𝑡௜ denotes 

the time of observation, 𝑦௜ denotes the value of the dependent variable for the ith sample point, and 𝑋௜௞  denotes the kth explanatory variable for the ith sample point. 𝜀௜  is the model error term, 

β0(ui,vi,ti) denotes the regression constant for the ith sample point, and 𝛽௞(𝑢௜ , 𝑣௜ , 𝑡௜) denotes the 

regression coefficient of the kth explanatory variable for the ith sample point. This is expressed as 

follows: 𝛽̂(𝑢௜ , 𝑣௜ , 𝑡௜) = [𝑋்𝑊(𝑢௜ , 𝑣௜ , 𝑡௜)𝑋]ିଵ𝑋்𝑊(𝑢௜ , 𝑣௜ , 𝑡௜)𝑌 (8)

Where 𝑊(𝑢௜ , 𝑣௜ , 𝑡௜)  denotes the weight of spatio-temporal location i. The GTWR model 

determines the weight of the influence of the values of other sample points on the regression sample 

points by constructing a spatio-temporal weight matrix. 

The process of constructing a weight matrix based on spatio-temporal distance is shown below. 

First, the spatial distance between the sample points is calculated by applying the Euclidean distance 

formula.  

Since the different units of measurement for temporal and spatial distances are prone to affect 

the results, the temporal and spatial distances are calculated as follows: 

（𝑑ௌ்）ଶ = 𝜆(𝑑ௌ)ଶ + 𝜇(𝑑்)ଶ (9)

The weight function is usually chosen as either a Gaussian or a bi-square function; these can be 

transformed into a weight function after substitution, and the weight matrix is calculated as follows: 𝑊ij = 𝑒𝑥𝑝{ − [(𝑢௜ − 𝑢௝)ଶ + (𝑣௜ − 𝑣௝)ଶ] + 𝜏(𝑡௜ − 𝑡௝)ଶ(ℎ௦)ଶ } (10)

Where 𝜏 = 𝜇/𝜆,𝜇,𝜆 are the weights used to balance the different effects, 𝑑௜௝ௌ்is the spatio-temporal 

distance between the sample points, and h is a non-negative parameter called the spatio-temporal 

bandwidth. 

3. Results 

3.1. Analysis of the dynamics of spatio-temporal patterns in PLES 

Ecological space dominates the PLES of the Indochina Peninsula. In the 10-year period from 2010 

to 2020, the areas of production and living spaces increased dramatically, while the area of ecological 

space decreased correspondingly; the trend in change is consistent with the characteristics of the 

regional resources and economic development (Figure 2). From the point of view of changes in the 

area of each type of space, with population growth and economic development, both urban and rural 

living spaces expanded, with additional areas of 3,460 and 2,029 km2 in the 10-year period, 

respectively. The Indochina Peninsula is relatively backward in terms of economy and industry, but 

has developed its agriculture. Traditional means of farming such as slash-and-burn and straw 

burning have, therefore, been reduced. In contrast, the expansion of economic forests, commercial 

logging, and the expansion of rubber forests, such as artificial plantations and rubber forests have 

increased. These activities, together with regional economic cooperation, have contributed to the 

rapid expansion of agricultural and industrial production space, while the ecological spaces of 

woodland and grassland have decreased at different levels, with woodland decreasing by 26,549 km2 

and grassland decreasing by 3,624 km2, making woodland ecological space the land-use type with 

the greatest change in area on the Indochina Peninsula. 

There are spatial differences in the rate of change of PLES in the Indochina Peninsula region 

(Table 4). From 2010 to 2020, the integrated land-use dynamics of the Indochina Peninsula was 0.16%, 

and those of Myanmar, Vietnam, Laos, Cambodia, and Thailand were 0.07%, 0.3%, 0.14%, 0.71%, and 

0.13%, respectively. Cambodia had the fastest rate of change in the spatial pattern of PLES, Laos the 

next fastest, and Myanmar the slowest. The rate of spatial pattern change was influenced by regional 

economic development. The Indochina Peninsula experienced a rapid expansion in industrial 

production space with a motivation of 9.84%, followed by urban living space with a motivation of 
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3.44%. Rural living space was relatively stable in area, having a low growth rate with a motivation of 

0.18%. Forest land, grassland, and other ecological spaces had a motivation of -0.24%, -0.36%, and -

0.42%, respectively, with other ecological spaces decreasing at the fastest rate. 

From 2010 to 2020, the industrial production space of the Lao PDR was expected to  change at 

the highest rate of 63.19%, following the Lao Government's active promotion of the strategy for 

"resources for capital". Thailand's other ecological spaces were expected to undergo drastic changes, 

with a 422.08% change in dynamics; this was mainly influenced by Thailand's national development 

strategy driven by commercial logging, urban development, and the acquisition of international 

benefits [46]. 

 

Figure 2. Land-use dynamics index for PLES on the Indochina Peninsula. 

Table 4. Land-use dynamics index for PLES in the five countries on the Indochina Peninsula. 

id category Laos Cambodia Myanmar Thailand 
Viet 

Nam 

the 

Indochina 

Peninsula 

1 

Agricultural 

production 

space 

0.80% 1.97% -0.14% 0.01% 0.47% 0.25% 

2 

Industrial 

production 

space 

63.19% 7.56% 5.50% 13.69% 10.85% 9.84% 

3 
Urban living 

space 
2.53% 6.63% -0.42% 7.45% 2.12% 3.44% 

4 
Rural living 

space 
3.14% 1.12% 1.64% -1.59% 0.42% 0.18% 

5 

Forest 

ecological 

space 

-0.18% -1.23% -0.05% 0.00% -0.55% -0.24% 

6 

Grassland 

ecological 

space 

0.10% -0.70% -0.02% -1.05% -0.58% -0.36% 

7 

Water 

ecological 

space 

1.96% 0.42% 0.37% -0.51% 1.57% 0.34% 

8 

Other 

ecological 

spaces 

1.40%  -2.62% 422.08% 8.21% -0.42% 
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3.2. Analysis of the evolutionary process of PLES spatio-temporal 

3.2.1. Quantitative analysis of land-use type shifts in PLES 

From 2010 to 2020, the Indochina Peninsula had an area of 212,818.70 km2 of interconversion of 

PLES utilization, manifested in the conversion of ecological space into production space, and the 

interconversion of woodland and grassland ecological spaces (Figure 3). The transfer in of industrial 

production space came predominantly from agricultural production space, accounting for 49.48% of 

the industrial production land by 2020. Transfer out was mainly converted to agricultural production 

space, accounting for 76.11% of the total transfer out of industrial production. The change in 

woodland ecological space was predominantly attributed to grassland ecological and agricultural 

production spaces; by 2020, the transfer in accounted for 3.62% and 1.87% of the area of woodland 

ecological space, respectively. The area of forest ecological space converted to grassland ecological 

and agricultural production spaces was 39,470 km2 and 41,370 Km2, respectively, accounting for 

43.69% and 45.79% of the total transfer out of forest land. The water ecological space was 

predominantly converted to agricultural production space, accounting for 54.21% of the transfer out 

of water ecological space. 

Agricultural production space and woodland ecological space are the main land types in the five 

countries of the Indochina Peninsula and, from 2010 to 2020, there were shifts in the various types of 

PLES. In Myanmar and Laos, the most drastic land transfer of three biospatial land types was the 

interconversion of woodland and grassland ecological spaces, followed by the interconversion of 

woodland ecological and agricultural production spaces. Thailand's land transfer of PLES mainly 

focused on the interconversion of woodland ecological and agricultural production spaces, being 

8,334.99 km2 and 7,700.08 km2, respectively. The interconversion of three biospatial land types in 

Cambodia and Vietnam focused on the transfer of woodland ecological to agricultural production 

spaces. The quantitative transfer mainly focused on the conversion of woodland ecological space into 

agricultural production and grassland ecological spaces, with the areas of woodland converted to 

agriculture being 11,810.08 km2 and 9,744.81 km2, respectively. The areas of land converted to 

grassland were 2,551 km2 and 7,455.21 km2, respectively. The reason for this may be that changes in 

various types of land areas from expansion to contraction, or from contraction to expansion, 

corresponded to the transformation in the stage of regional economic development [47]. With the 

construction of the regional economic corridor, the five countries of the Indochina Peninsula have 

changed from traditional agricultural methods to commercial agricultural production, and the center 

of gravity has tilted from the primary industry to the secondary and tertiary industries: this had a 

direct impact on the transformation of ecological and production spaces. 

comprehensive 

land-use dynamic 

index 

0.14% 0.71% 0.07% 0.13% 0.30% 0.16% 
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Figure 3. Amount of land-use type transfers in PLES from 2010 to 2020. (a) the Indochina Peninsula, 

(b)Thailand, (c)Myanmar, (d)Cambodia, (e)Viet Nam, (f)Laos. 

3.2.2. Analysis of the process of transferring land-use types in PLES 

The conversion of production and ecological spaces is distributed as a network throughout the 

Indochina Peninsula, and the conversion of living space is distributed as points (Figure 4). The 

conversion of forest and grassland ecological spaces is distributed in the western region of Myanmar, 

the northeastern and southern regions of Thailand, and the entire territories of Vietnam and 

Cambodia. From 2010 to 2020, the conversion of forest ecological space into agricultural production 

space was uniformly distributed across the Indochina Peninsula. The conversion of agricultural 

production space into rural living space was distributed in a point-like manner in the southern region 

of Yangon and the central region of the Sagaing region in central Myanmar, Chonburi Province in 

Thailand, Batuyi, Battambang, and Kandan provinces in Cambodia, Binh Duong, Đồng Nai, Bạc Liêu, 

and Sóc Trăng provinces in Vietnam, and the western region of Laos. The conversion of agricultural 

production space into industrial production space was distributed in Myanmar, Vietnam, central 

Thailand, and central Cambodia, but with almost none in Laos. The conversion of grassland 

ecological space into agricultural production space was concentrated throughout the eastern and 

central regions of the Indochina Peninsula, with very little distribution in the southwestern region. 

The conversion of rural living space into agricultural production space was concentrated in the 

central region of Thailand and the southeastern region of Cambodia. The conversion of the water 

ecological space and agricultural production space into each other was evenly distributed across the 

Indochina Peninsula. The exception to this was Laos, where the main food crop is rice: some 

cultivated land and forested land were converted into agricultural production space in order to 

improve agricultural production conditions. Rice is the main food crop across the Indochina 

Peninsula, and in order to improve agricultural production conditions, some areas of cultivated and 

forest land have been converted into paddies. The conversion of industrial production space into 

agricultural production space is discretely distributed across the Indochina Peninsula from northwest 

to southeast in the middle of Myanmar, Cambodia, and Thailand. 
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Figure 4. Patterns of PLES on the Indochina Peninsula from 2010 to 2020. 

The migration path of the center of gravity of PLES on the Indochina Peninsula demonstrates 

significant directional differences (Figure 5). Overall, from 2010 to 2020, the production space 

migrated to the southwest, the living space to the northeast, and the ecological space to the east. 

Compared with the living space, the production and ecological spaces experienced a more directional 

tendency, were more influenced by Myanmar, Thailand, and Cambodia, and also demonstrate a more 

significant trend in discrete distribution. During the same period, PLES migrated to the southwest, 

the center of gravity of production space moved insignificantly, the standard deviation ellipse area 

did not change much, the X-axis decreased, and the Y-axis increased, indicating that the production 

space distribution across the Indochina Peninsula was more balanced, and mainly in the northwest–

southeast direction. The living space shifted to the northeast direction, and the standard deviation 

ellipse area for living space decreased in both the X- and Y-axes, indicating that the living space had 

a tendency to shrink in all directions; this shows a tendency to shift from a discrete to an 

agglomerated distribution, this phenomenon being mainly concentrated in the regions of Thailand, 

Laos, and Vietnam. The direction and extent of the standard deviation ellipse distribution of the 

ecological space is similar to that of the production space, indicating that the trend in the living space 

is stronger in the northwest–southeast direction than in the northeast–southwest direction. The center 

of gravity of the ecological space shifted to the east, indicating that the distribution of the ecological 

space was susceptible to the influence of Laos and Vietnam in the eastern region of the Indochina 

Peninsula. 
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Figure 5. The standard deviation ellipse of PLES on the Indochina Peninsula from 2010 to 2020. (a) 

the production space, (b) the living space, (c) the ecological space. 

3.3. Analysis of PLES spatio-temporal pattern evolution drivers 

In this study, road networks, water systems, population densities, night lighting, precipitation, 

NDVI, and armed conflict events were selected as the influencing factors in the evolution of PLES 

spatio-temporal patterns in the Indochina Peninsula region from the four aspects of humanistic 

location, socio-economics, natural environment, and geopolitics. Covariance diagnostics and 

standardization were performed on the influencing factors, and the results demonstrate that all the 

factors satisfy the model construction criteria. The GTWR model was applied to regression analysis 

of the sample data to obtain the regression coefficients of each influencing factor on the evolution of 

the PLES pattern, based on the grid scale from 2010 to 2020. The model was used to analyze the degree 

of influence of each factor on the evolution of the PLES pattern at different spatial and temporal 

locations under the double effect of time and space. The GTWR model was applied to simulate the 

eight spatial types: different R2 and bandwidths were obtained, with an optimal model fit of 0.56 and 

a mean value of 0.4, the lowest fit being that of the watershed ecological space. The magnitude of the 

regression coefficients represents the degree of influence of each influencing factor on the evolution 

of the three spatial patterns (Table 6). The transfer of land-use types in the PLES of the Indochina 

Peninsula was influenced by social context and regional environment. Population density (X5) was 

the factor that most influenced the changes in pattern of the three living spaces; regions with a high 

population density were prone to expansion of production and production space, and ecological 

space was prone to being squeezed. In 2020, the factors influencing the agricultural production space 

and the ecological space of the forest land had opposing roles. Increased population density 

promoted the development of agricultural production space, while inhibiting the development of 

woodland ecological space. The armed conflict factor (X8) had a positive feedback effect on urban 

living space and inhibited the conversion of other spatial types into the promotion of agricultural 

production space, woodland, and other ecological space. This is because the political and ethnic 

conflicts in Myanmar, as well as turbulence in Thailand's political environment, and the potential for 

social instability, etc., intensified the outbreak of armed conflict events to a certain extent, affecting 

the environment of human life and production. Furthermore, in 2020, possibly because of the move 

to promote agricultural production space, it appears that agriculture was not affected by the waves 

of armed conflict. Instead, agriculture production space played a facilitating role to a certain extent. 

The distance to the road network (X1, X2) factor was positively related to the ecological space of the 

woodland, which may be due to the increase in green environments such as street trees, shrubs, and 

grasses on both verges on the sides of the road. Border road construction improves accessibility, but 

road planning and construction also encroach on productive living space to some extent. The distance 

from the water system factor (X3) and precipitation (X6) were positively proportional to the ecological 

space of forest land, and inversely proportional to other spatial types. The Indochina Peninsula is rich 
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in precipitation, has a dense water network, is rich in forest resources, and tropical rainforest occupies 

a wide range of areas; however, this inhibits the expansion of production space. Night lighting (X4) 

was proportional to the relationship between industrial production space and human life space, 

reflecting the regional economic level: the higher the level of economic development, the more 

frequent the human activities, and the closer to the urban built-up area. NDVI (X7) reflects the 

vegetation cover, which was positively proportional to the ecological space of the forest land and 

grassland; an increase in the vegetation cover indicates the expansion of the ecological space of the 

forest land and grassland. 

Table 6. GTWR model estimation result. 

year category X1 X2 X3 X4 X5 X6 X7 X8 

2010 

Agricultural production 

space 
-0.264 -0.169 0.011 -3.810 4.692 -0.250 -0.478 -0.286 

Industrial production space -0.021 -0.034 -0.010 0.038 0.617 -0.002 -0.018 -0.063 

Urban living space -0.127 -0.119 -0.092 -1.857 6.327 -0.079 -0.038 1.049 

Rural living space -0.001 -0.043 -0.012 0.626 1.574 -0.023 -0.007 -0.075 

Forest ecological space 0.384 0.314 0.158 3.360 -13.91 0.344 0.551 -0.203 

Grassland ecological space 0.045 -0.012 -0.033 -0.710 0.056 -0.033 0.019 -0.280 

Water ecological space -0.002 0.060 -0.028 0.539 -0.142 0.000 -0.044 -0.121 

Other ecological spaces 0.000 0.002 -0.003 0.016 0.043 -0.002 -0.002 -0.005 

2020 

Agricultural production 

space 
-0.301 -0.551 -0.013 -6.364 5.143 -0.191 -0.448 1.449 

Industrial production space -0.024 -0.081 -0.008 0.346 0.623 -0.003 -0.021 -0.044 

Urban living space -0.106 -0.291 -0.061 2.112 6.758 0.041 -0.038 -2.406 

Rural living space -0.001 -0.059 -0.007 1.461 1.575 -0.021 -0.009 -0.151 

Forest ecological space 0.409 0.726 0.126 4.707 -16.17 0.161 0.561 0.653 

Grassland ecological space 0.056 -0.002 -0.023 -1.960 0.604 -0.006 0.012 -0.095 

Water ecological space -0.009 0.112 -0.021 -0.546 0.269 -0.003 -0.043 -0.152 

Other ecological spaces 0.000 0.001 -0.001 0.010 0.045 -0.001 -0.002 0.001 

The evolution of the spatial pattern of agricultural production was affected by factors with 

significant spatial and temporal heterogeneity (Figure 6). The influence of each factor on the spatial 

quantitative changes in agricultural production created both positive and negative spatial 

distributions. Factor X3 was mainly positively related to the spatial relationship of agricultural 

production on the Indochina Peninsula, but negatively related to the spatial relationship of 

agricultural production in southern Myanmar, northwestern Thailand, and northern Laos; the 

positive feedback expanded northward over time. In 2020, factor X2 showed a large area of negative 

feedback; in 2010, however, there had been positive feedback in the cities of northern and southern 

Vietnam. By 2020, positive feedback was only evident in the cities of northern Vietnam. In 2010, factor 

X1 had an inverse effect on the spatial quantity change in agricultural production; in that year, it was 

distributed in the south of Laos and the center of Vietnam; by 2020, it had spread southward to the 

central and southern cities of Laos and Vietnam. For factor X5, there was little change in the 

distribution areas of the positive and negative effects; the negative feedback areas were distributed 

in the south of Myanmar, Cambodia, and Thailand, as well as in Vietnam. Factor X6 demonstrated a 

negative feedback area distributed in the center of Thailand, Myanmar, Vietnam, Laos, and the 

northern region of Cambodia. The positive feedback area grew from 2010 to 2020, and was focused 

on the central region of the Indochina Peninsula. Factor X8 changes show a decreasing trend in the 

negative feedback areas, with decreasing areas concentrated in Vietnam and southern Thailand; the 

negative feedback area in central and northern Myanmar remains almost unchanged. The negative 

feedback area for the nighttime lighting factor decreased, with the area in northern Myanmar and 

Laos decreasing, and the negative feedback area in Cambodia moving to the south. The negative 

feedback area for factor X7 was larger in size, and the positive feedback area was concentrated in 
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northern Myanmar, the distribution area of negative feedback gradually decreasing in the period 

from 2010 to 2020. 

 

Figure 6. Spatio-temporal distribution of the effects of factors on agricultural production space. (a-p) 

represents the influence degree of different factors on the evolution of different land use space in 

different periods. 

Factor X1 was mainly positively related to the forest ecological space; the negative feedback 

areas for this factor decreased with time, the decreased areas being concentrated in the northern 

region of Thailand and on the border of Myanmar (Figure 7). Factor X3 was mainly positively related 

to the ecological space of the forest land; the negative feedback areas for factor X3 were concentrated 

in the central region of Myanmar and the eastern region of Thailand, and decreased to the northeast 

with the change over time. Factor X2 experienced a decrease in negative feedback areas with the 

change over time. In 2020, the negative feedback areas for factor X2 were mainly in Cambodia's 

Battambang Province and Siem Reap Province, and Thailand’s Surat Thani. The factor X5 positive 

feedback areas shifted from the provinces of Kandal and Takeo in Cambodia to Bangkok in Thailand. 

The negative feedback areas related to factor X6 spread out in all directions, and the positive feedback 

areas were concentrated on the Indochina Peninsula, rather than the center. Positive feedback areas 

for factor X8 were to the west of the Indochina Peninsula, while negative feedback areas were to the 

east. The negative feedback areas for this factor spread from the southeast to the northwest, being 

concentrated in the southern region of Myanmar. Factor X4 positive feedback areas were larger, and 

negative feedback areas expanded northwards. Positive feedback areas for factor X7 expanded 

northwards, and negative feedback areas were concentrated in the southern region of Laos. Factor 

X8 positive feedback areas spread northwards, while negative feedback areas were concentrated in 

the southern region of Laos. Positive feedback areas for factor X9 spread northwards. The negative 

feedback regions were concentrated in Phôngsali, Laos and the southern region of Burma. 
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Figure 7. Spatio-temporal distribution of the effects of factors on forest ecological space. (a-p) 

represents the influence degree of different factors on the evolution of different land use space in 

different periods. 

Factor X1 led to a large change in the positive feedback area for industrial production space; this 

mainly occurred in Thailand, with a decrease in the distribution in the northwest and a concentration 

in the east (Figure A1). The change resulting from X2 was a decrease in the positive feedback areas 

in the central region of Vietnam and the western region of Thailand. The changes in the distribution 

of the X3 factor were a shift in the positive feedback area from the periphery to the middle of the 

Indochina Peninsula and a decrease in the northern region of the positive feedback area in Vietnam. 

The change resulting from factor X4 was the 2020 conversion of negative feedback to positive 

feedback in northern Myanmar, northern Thailand, and southern Yunnan. The changes in factor X5 

were the shrinkage of positive feedback in Myanmar and Thailand to the northeast, and the 

expansion of positive feedback in Cambodia to the west. The change resulting from factor X6 was the 

expansion of positive feedback to the south. The changes created by factor X7 were the shrinkage of 

positive feedback in northern Myanmar, the expansion of positive feedback to the north in Thailand, 

and the addition of positive feedback in southern Vietnam. The change created by factor X8 

demonstrates that the positive feedback areas spread from the center to the east and west. 

In Myanmar and Cambodia, the influence of X1 on the negative feedback of grassland ecological 

space changed greatly. Distribution in Myanmar changed from the central region to the western and 

eastern regions, while the negative feedback area in the eastern region of Cambodia decreased (Figure 

A2). The change brought by the X2 factor was that the negative feedback region spread from the 

central region to the surrounding region. By 2020, the spatial change created by X3 was that a new 

positive feedback area was added in the southern region of Laos, while the change wrought by X4 

was that the negative feedback region expanded to the eastern region of the country. In 2020, positive 

feedback areas on grassland ecological space for factor X5 were mainly concentrated in northeast 
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Myanmar and Laos, and positive feedback areas appeared in northern Cambodia. The change 

resulting from factor X6 was that positive feedback areas developed from discrete to clustered in 

Cambodia and Laos, while the change created by X7 was that positive feedback areas spread from 

the perimeter to the center. By 2020, the change brought by X8 was positive feedback areas appearing 

in southern Myanmar and northern Vietnam. 

In terms of rural living space, positive feedback areas for factor X1 all increased on the Indochina 

Peninsula (Figure A3). The change resulting from factor X2 was that positive feedback areas in 

Thailand expanded to the northeast, while the change created by factor X3 was that positive feedback 

areas expanded to the northwest. For factor X4, the change was that positive feedback areas expanded 

to the northeast. The factor X5 change was that negative feedback areas in Thailand expanded in a 

fan shape to the northeast; for factor X6, negative feedback areas in northern Vietnam converted to 

positive feedback areas. For factor X7, the change was that positive feedback areas in northern 

Thailand converted to negative feedback areas. For factor X8, the change was that negative feedback 

areas in northern Vietnam changed to positive feedback areas in northern Thailand. The change was 

that the negative feedback region in northern Vietnam converted to a positive feedback region, while, 

in northern Thailand, it was the positive feedback region that changed to a negative feedback region. 

The X7 change was that the positive feedback region in Myanmar expanded to the south, while the 

positive feedback region in Thailand decreased to the south. The X8 change was larger, with the 

positive feedback regions in Myanmar and Laos shifting to the northeast, and the positive feedback 

region in Vietnam disappearing. 

 In 2010, positive feedback for X1 on urban living space was distributed in Thailand, northern 

Vietnam, and central Laos, and by 2020, also in Cambodia (Figure A4). Factor X2 still resulted in 

negative feedback, although negative feedback in Myanmar and Cambodia had weakened. The 

change resulting from X3 was that the negative feedback areas in northern Thailand and central Laos 

converted to positive feedback, and the change created by X4 was that the negative feedback areas in 

northern Laos and Cambodia also converted to positive feedback. Factor X5 did not create significant 

change, with all areas still showing positive feedback. Factor X6 caused change as the positive 

feedback areas in Thailand decreased to the northeast. The positive feedback areas in the southern 

cities of Vietnam expanded to the northeast. The change caused by factor X7 was that the positive 

feedback area in Vietnam spread from the center to the north and south, while that caused by factor 

X8 was that the positive feedback area spread to the center. 

In terms of the watershed ecological space, the X1 positive feedback influence expanded from 

the northeast to the southwest (Figure A5). The changes related to the X2 factor were that the negative 

feedback area in Myanmar spread to the east, while the positive feedback area in Thailand expanded 

to the west. For X3, the positive feedback area expanded to the east. The change associated with factor 

X4 was that the positive feedback area in Myanmar transformed from dispersed in the surroundings 

to clustered in the center, while the change in Cambodia and Myanmar was the opposite. For factor 

X5, the change was that the positive feedback area spread to the southwest. One X6 factor change 

was that the negative feedback areas in Myanmar and Laos spread to the north. The other X6 factor 

change for these countries was that the positive feedback regions in Myanmar and Laos also 

expanded to the north.  For factor X7, the change was that the positive feedback area narrowed 

downward to the north. The X8 factor negative feedback region spread to the southwest of Myanmar 

and Thailand. 

Regarding other ecological space, the X1 impact was on the expansion of the positive feedback 

area in Thailand in 2020 (Figure A6). The changes associated with X3 were the spread of the positive 

feedback area in Myanmar to the north, and the expansion of the positive feedback area in Vietnam 

to the south. The changes brought by X4 were the conversion of positive feedback to negative 

feedback in the south of Vietnam, and the change from the negative feedback area to a positive 

feedback area in the north; the positive feedback area in Myanmar spread to the south. For X5, the 

positive feedback area in Cambodia disappeared, and the positive feedback areas in Myanmar were 

concentrated in the center. The X6 positive feedback area spread to the southwest, with the X6 

positive feedback region spreading to the south. The X7 positive feedback region spread to the 
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southwest. The X8 positive feedback region expanded from the north of Myanmar and the south of 

Laos to the south, while the negative feedback region in Thailand converted to a positive feedback 

region. 

4. Discussion 

This study focused on the evolution of spatial and temporal patterns of PLES on the Indochina 

Peninsula from 2010 to 2020. It explored the developmental changes in human–land relations, 

analyzed the driving mechanisms of PLES changes, considered the spatial and temporal non-

stationarity of the driving factors, and portrayed the spatial and temporal distributions of, and 

changes in, the drivers. It, therefore, provides reference information for the land-use function of the 

Indochina Peninsula and provides new perspectives for the study of driving mechanisms and 

changes. The conclusions are as follows: 

1. In 2010–2020, the Indochina Peninsula PLES pattern was dominated by ecological space. The 

areas of production and living spaces increased dramatically, and the area of ecological space 

decreased accordingly. The trends in change are in line with the characteristics of regional 

resources and economic development. There are spatial differences in the rate of change in PLES 

patterns across the Indochina Peninsula. Cambodia has the fastest rate of change in PLES 

pattern, followed by Laos; Myanmar has the slowest. 

2. In 2010–2020, the Indochina Peninsula had an area of 212,818.70 km2 of interconversion of PLES 

utilization types; this was manifested in the conversion of ecological space to production space, 

and the interconversion of woodland ecological space and grassland ecological space. The 

interconversion of production space and ecological space was distributed in a net-like manner 

throughout the Indochina Peninsula, and the transfer of living space was distributed in a point-

like manner. 

3. The migration path of the center of gravity of PLES on the Indochina Peninsula demonstrates 

significant directional differences. In 2010–2020, production space migrated to the southwest, 

living space shifted to the northeast, ecological space shifted to the east, and the distribution of 

ecological space was clearly affected by Laos and Vietnam in the east of the Indochina Peninsula. 

Living space tended to shrink in all directions, showing a trend from discrete to agglomerated 

distribution, mainly concentrated in Thailand, Laos, and Vietnam. 

4. The transfer of PLES functional types throughout the Indochina Peninsula was influenced by 

social context and regional environment, the degree of influence of each factor having significant 

spatial and temporal heterogeneity. The distribution areas of positive and negative feedback 

effects for each factor are different, as are the transfer directions. 

In the actual development process, due to the changes in the complexity of PLES caused by 

multiple factors, factors such as regional investment level, government policies, and soil properties 

should be considered in the future to improve the parameters and make the GTWR model fit better. 
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Appendix A 

 

Figure A1. spatio-temporal distribution of the effects of factors on industrial production space. 
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Figure A2. spatio-temporal distribution of the effects of factors on grassland ecological space. 
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Figure A3. spatio-temporal distribution of the effects of factors on rural living space. 
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Figure A4. spatio-temporal distribution of the effects of factors on urban living space. 
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Figure A5. spatio-temporal distribution of the effects of factors on water ecological space. 
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Figure A6. spatio-temporal distribution of the effects of factors on other ecological space. 

References 

1. Perz, S.G.; Qiu, Y.; Xia, Y.; Southworth, J.; Sun, J.; Marsik, M.; Rocha, K.; Passos, V.; Rojas, D.; Alarcón, G.; 

et al. Trans-Boundary Infrastructure and Land Cover Change: Highway Paving and Community-Level 

Deforestation in a Tri-National Frontier in the Amazon. Land Use Policy 2013, 34, 27–41, 

doi:10.1016/j.landusepol.2013.01.009. 

2. Li, Q.; Lu, R.; Li, G.; et al. Research progress on regional land-use change along national border and it's 

interactive relationship with frontier trade development. China Land Science, 2015,29(8):16-23, 

doi:10.13708/j. cnki.cn11-2640.2015.08.003. 

3. Feng, J.; Li, P.; Xiao, C.; et al. Border prone characteristics of agricultural expansion and intensification in 

the borders of Thailand and its neighboring countries (Cambodia, Laos and Myanmar) under the context 

of geo-economy. Journal of Geo-information Science,2021, 23(3):479-491, doi:10.12082/dqxxkx.2021.200306. 

4. Xiao, C.; Rao, D.; Liu, Y.; et al. Construction land expansion in the MohanBoten port area between China 

and Laos in the geoeconomic cooperation context. Journal of Geoinformation Science, 2019,21(10):1576- 

1585, doi:10.12082/ dqxxkx.2019.190053. 

5. Zou, L.; Liu, Y.; Yang, J.; Yang, S.; Wang, Y.; Cao zhi; Hu, X. Quantitative Identification and Spatial Analysis 

of Land Use Ecological-Production-Living Functions in Rural Areas on China’s Southeast Coast. Habitat 

International 2020, 100, 102182, doi:10.1016/j.habitatint.2020.102182. 

6. Xie, X.; Li, X.; Fan, H.; He, W. Spatial Analysis of Production-Living-Ecological Functions and Zoning 

Method under Symbiosis Theory of Henan, China. Environ Sci Pollut Res Int 2021, 28, 69093–69110, 

doi:10.1007/s11356-021-15165-x. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2023                   doi:10.20944/preprints202308.0595.v1

https://doi.org/10.20944/preprints202308.0595.v1


 24 

 

7. Liu, C.; Xu, Y.; Liu, Y.; Sun, P.; Huang, A.; Zhou, J. Research on Land Use Functions Classification and 

Evaluation System Based on System Theory. Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum 

Naturalium Universitatis Pekinensis 2018, 54, 181–188, doi:10.13209/j.0479-8023.2017.132. 

8. Du, W.; Wang, Y.; Qian, D.; Lyu, X. Process and Eco-Environment Impact of Land Use Function Transition 

under the Perspective of “Production-Living-Ecological” Spaces-Case of Haikou City, China. Int. J. 

Environ. Res. Public Health 2022, 19, 16902, doi:10.3390/ijerph192416902. 

9. Wang, J.; Sun, Q.; Zou, L. Spatial-Temporal Evolution and Driving Mechanism of Rural Production-Living-

Ecological Space in Pingtan Islands, China. Habitat Int. 2023, 137, 102833, 

doi:10.1016/j.habitatint.2023.102833. 

10. Shi, Z.; Deng, W.; Zhang, S. Spatio-Temporal Pattern Changes of Land Space in Hengduan Mountains 

during 1990–2015. J. Geogr. Sci. 2018, 28, 529–542, doi:10.1007/s11442-018-1488-7. 

11. Hongjun S.; Ge S.; Hongmei Z. Identification of production-living-ecological space at Keshan County level 

in main grain producing areas in northern Songnen Plain, China. dbkxxb 2020, 36, 264–271, 

doi:10.11975/j.issn.1002-6819.2020.19.030. 

12. Cui, X.; Xu, N.; Chen, W.; Wang, G.; Liang, J.; Pan, S.; Duan, B. Spatio-Temporal Variation and Influencing 

Factors of the Coupling Coordination Degree of Production-Living-Ecological Space in China. Int. J. 

Environ. Res. Public Health 2022, 19, 10370, doi:10.3390/ijerph191610370. 

13. Xu, N.; Chen, W.; Pan, S.; Liang, J.; Bian, J. Evolution Characteristics and Formation Mechanism of 

Production-Living-Ecological Space in China: Perspective of Main Function Zones. Int J Environ Res Public 

Health 2022, 19, 9910, doi:10.3390/ijerph19169910. 

14. Wang, Q.; Wang, H. Dynamic Simulation and Conflict Identification Analysis of Production–Living–

Ecological Space in Wuhan, Central China. Integr Envir Assess & Manag 2022, 18, 1578–1596, 

doi:10.1002/ieam.4574. 

15. Zhang, R.; Li, S.; Wei, B.; Zhou, X. Characterizing Production–Living–Ecological Space Evolution and Its 

Driving Factors: A Case Study of the Chaohu Lake Basin in China from 2000 to 2020. IJGI 2022, 11, 447, 

doi:10.3390/ijgi11080447. 

16. Wu, S.; Wang, Z.; Du, Z.; Huang, B.; Zhang, F.; Liu, R. Geographically and Temporally Neural Network 

Weighted Regression for Modeling Spatiotemporal Non-Stationary Relationships. International Journal of 

Geographical Information Science 2021, 35, 582–608, doi:10.1080/13658816.2020.1775836. 

17. Liu, C.; Xu, Y.; Lu, X.; Han, J. Trade-Offs and Driving Forces of Land Use Functions in Ecologically Fragile 

Areas of Northern Hebei Province: Spatiotemporal Analysis. Land Use Policy 2021, 104, 105387, 

doi:10.1016/j.landusepol.2021.105387. 

18. Zhu, L.; Meng, J.; Zhu, L. Applying Geodetector to Disentangle the Contributions of Natural and 

Anthropogenic Factors to NDVI Variations in the Middle Reaches of the Heihe River Basin. Ecological 

Indicators 2020, 117, 106545, doi:10.1016/j.ecolind.2020.106545. 

19. Fan, Q.; Song, X.; Shi, Y.; Gao, R. Influencing Factors of Spatial Heterogeneity of Land Surface Temperature 

in Nanjing, China. IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing 2021, 14, 8341–8349, 

doi:10.1109/JSTARS.2021.3105582. 

20. Zhao, J.; Zhao, Y. Synergy/Trade-Offs and Differential Optimization of Production, Living, and Ecological 

Functions in the Yangtze River Economic Belt, China. Ecological Indicators 2023, 147, 109925, 

doi:10.1016/j.ecolind.2023.109925. 

21. Fotheringham, A.S.; Yang, W.; Kang, W. Multiscale Geographically Weighted Regression (MGWR). Annals 

of the American Association of Geographers 2017, 107, 1247–1265, doi:10.1080/24694452.2017.1352480. 

22. Wei, C.; Liu, C.; Gui, F. Geographically Weight Seemingly Unrelated Regression (GWSUR): A Method for 

Exploring Spatio-Temporal Heterogeneity. Applied Economics 2017, 49, 4189–4195, 

doi:10.1080/00036846.2017.1279266. 

23. Huang, B.; Wu, B.; Barry, M. Geographically and Temporally Weighted Regression for Modeling Spatio-

Temporal Variation in House Prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401, 

doi:10.1080/13658810802672469. 

24. Jiang, F.; Chen, B.; Li, P.; Jiang, J.; Zhang, Q.; Wang, J.; Deng, J. Spatio-Temporal Evolution and Influencing 

Factors of Synergizing the Reduction of Pollution and Carbon Emissions - Utilizing Multi-Source Remote 

Sensing Data and GTWR Model. Environmental Research 2023, 229, 115775, 

doi:10.1016/j.envres.2023.115775. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2023                   doi:10.20944/preprints202308.0595.v1

https://doi.org/10.20944/preprints202308.0595.v1


 25 

 

25. Qiao, M.; Huang, B. COVID-19 Spread Prediction Using Socio-Demographic and Mobility-Related Data. 

Cities 2023, 138, 104360, doi:10.1016/j.cities.2023.104360. 

26. Kelly, P.L. Escalation of Regional Conflict: Testing the Shatterbelt Concept. Political Geography Quarterly 

1986, 5, 161–180, doi:10.1016/0260-9827(86)90047-9. 

27. Wu, Z. Classical Geopolitics, Realism and the Balance of Power Theory. J. Strateg. Stud. 2018, 41, 786–823, 

doi:10.1080/01402390.2017.1379398. 

28. Chen, A.L.Q. The Belt and Road Initiative as a Variegated Agglomeration of Multi-Scalar State Spatial 

Strategies. Territ. Polit. Gov. 2023, 11, 478–501, doi:10.1080/21622671.2020.1870544. 

29. Chen, S.; Li, Y. Study on the traffic network system of international subregional cooperation of the 

connective part of the China, Laos, Burma and Thailand. Economic Geography, 2000(6): 84-87+96, 

doi:10.15957/j.cnki.jjdl.2000.06.020. 

30. Zhang, L.; Wu, Y.; Li, J.; et al. Analysis of land use and landscape pattern change in Myanmar section of 

the Golden Quadrangle Region in the border of China, Myanmar, Thailand and Laos. World Regional 

Studies, 2018,27(4):21-33, doi: 10.3969/j.issn.1004-9479.2018.04.003. 

31. Liu, X.; Feng, Z.; Jiang, L. Progress of land use and land cover change research in the "Golden Four Corners" 

region of China, Laos, Myanmar and Thailand. Progress in Geoscience, 2013, 32(2): 191-202, doi: 

10.3724/SP.J.1033.2013.00191. 

32. Yoshida, A.; Chanhda, H.; Ye, Y.-M.; Liang, Y.-R. Ecosystem Service Values and Land Use Change in the 

Opium Poppy Cultivation Region in Northern Part of Lao PDR. Acta Ecologica Sinica 2010, 30, 56–61, 

doi:10.1016/j.chnaes.2010.03.002. 

33. Thongmanivong, S.; Fujita, Y. Recent Land Use and Livelihood Transitions in Northern Laos. mred 2006, 

26, 237–244, doi:10.1659/0276-4741(2006)26[237:RLUALT]2.0.CO;2. 

34. Tian, Y.; Wu, B.; Zhang, L.; Li, Q.; Jia, K.; Wen, M. Opium Poppy Monitoring with Remote Sensing in North 

Myanmar. International Journal of Drug Policy 2011, 22, 278–284, doi:10.1016/j.drugpo.2011.02.001. 

35. Yang, X. Analysis of the "Four Corners" Economic Cooperation Program among China, Lao People's 

Democratic Republic, Myanmar and Thailand. Southeast Asian Studies, doi:10.19561/j.cnki.sas.1999.02.005. 

36. Li, H.; Guan, L.; Chen, J. Study on Remote Sensing Monitoring of Land Use Based on Road Net Buffer. In 

Proceedings of the PIAGENG 2013: Intelligent Information, Control, and Communication Technology for 

Agricultural Engineering; SPIE, March 19 2013; Vol. 8762, pp. 262–267, doi:10.1117/12.2019860. 

37. Li, Q.; Su, Y.; Feng, Z.; et al. Study on production-living-ecological space function coupling coordination in 

Fen river basin. SSWC, 2021, 19(5): 115-125, doi:10.16843/j.sswc.2021.05.014. 

38. Zheng, F.; Xiao, C.; Feng, Z. Impact of Armed Conflict on Land Use and Land Cover Changes in Global 

Border Areas. Land Degrad Dev 2023, 34, 873–884, doi:10.1002/ldr.4502. 

39. Pettit, L. Conditioning Diagnostics: Collinearity and Weak Data in Regression. Journal of the Royal 

Statistical Society: Series C (Applied Statistics) 1992, 41, 601–601, doi:10.2307/2348093. 

40. Naes, T.; Mevik, B.-H. Understanding the Collinearity Problem in Regression and Discriminant Analysis: 

COLLINEARITY PROBLEM IN REGRESSION AND DISCRIMINANT ANALYSIS. J. Chemometrics 2001, 

15, 413–426, doi:10.1002/cem.676. 

41. Ding, Y.; Zhang, J.; Liu, Y.; Lu, C.; Wang, S.; Qin J.; Ding S. Spatial distribution characteristics and 

influencing factors of soil organic carbon in Yihe River Basin based on GWR model. Acta Ecologica 

Sinica,2021,41(12): 4876-4885,doi: 10.5846/stxb202001140109. 

42. Zhang, S.; Shao, H.; Li, X.; Xian, W.; Shao, Q.; Yin, Z.; Lai, F.; Qi, J. Spatiotemporal Dynamics of Ecological 

Security Pattern of Urban Agglomerations in Yangtze River Delta Based on LUCC Simulation. Remote 

Sens. 2022, 14, 296, doi:10.3390/rs14020296. 

43. Liu, C.; Xu, R.; Xu, K.; Lin, Y.; Cao, Y. Carbon Emission Effects of Land Use in Chaobai River Region of 

Beijing–Tianjin–Hebei, China. Land 2023, 12, 1168, doi:10.3390/land12061168. 

44. Yang, L.; Liu, F. A study on the evolution of the spatial pattern of tri-generation in central Yunnan urban 

agglomeration based on LUCC. Shanghai Land Resources,2023,44(02):28-35, doi:10.3969/j.issn.2095-

1329.2023.02.005. 

45. Chen, Z.; Li, X.; Xia, X. Temporal-Spatial Pattern and Driving Factors of Cultivated Land Use Transition at 

Country Level in Shaanxi Province, China. Environ Monit Assess 2022, 194, 365, doi:10.1007/s10661-022-

10043-6. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2023                   doi:10.20944/preprints202308.0595.v1

https://doi.org/10.20944/preprints202308.0595.v1


 26 

 

46. Luo, Y.; From the GMS to the Lancang-Mekong Cooperation: competing international institutions on the 

Indochina Peninsula. Diplomatic Review (Journal of Foreign Affairs College),2018,35(06):119-156, 

doi:10.13569/j.cnki.far.2018.06.119. 

47. Mather, A.S. The Forest Transition. Area 1992, 24, 367–379, doi：10.1505/ifor.9.1.491. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 

products referred to in the content. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2023                   doi:10.20944/preprints202308.0595.v1

https://doi.org/10.20944/preprints202308.0595.v1

