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Abstract: This study reports the development of a numerical method to simulate two-phase flows
of Newtonian fluids that are incompressible, immiscible, and isothermal. The interface in the
simulation was located and reconstructed using the geometric volume of fluid (VOF) method. The
implementation of the Piecewise-Linear Interface Calculation (PLIC) scheme of the VOF method was
performed to solve the three-dimensional (3D) interface transport during the dynamics of two-phase
flows. In this method, the interface is approximated by a line segment in each interfacial cell. The
balance of forces at the interface was accounted for using the continuum interfacial force (CSF)
model. To solve the Navier-Stokes equations, meshless finite difference schemes from the HiG-Flow
computational fluid dynamics software were employed. The 3D PLIC-VOF HiG-Flow algorithm was
used to simulate several benchmark two-phase flows for the purpose of validating the numerical
implementation. First, the performance of the PLIC implementation was evaluated by conducting
two standard advection numerical tests: the 3D shearing flow test and the 3D deforming field test.
Good agreement is obtained for the 3D interface shape using both the 3D PLIC-VOF HiG-Flow
algorithm and those found on the scientific literature. In addition, the absolute error of the volume
tracking advection calculation obtained by our 3D PLIC-VOF HiG-Flow algorithm was found to be
smaller than the one found in the scientific literature for both the 3D shearing and 3D deforming
flow tests. Lastly, the 3D bubble rising problem was simulated for different fluid densities and
viscosity’s ratios. Again, good agreement is obtained for the 3D interface shape using both the
newly implemented algorithm and the OpenFOAM, DROPS and NaSt3D software. The bubble’s
rise velocity and evolution of the bubble’s center of mass is also computed with the 3D PLIC-VOF
HiG-Flow algorithm and found to be in agreement with these software.

Keywords: two-phase flows; geometric volume of fluid method; Piecewise-Linear Interface
Calculation; HiG-Flow, numerical validation

1. Introduction

Interfacial multiphase flows play a crucial role in a wide range of industrial fields, offering
opportunities for enhanced process efficiency, product quality, and environmental sustainability.
Understanding and manipulating the dynamics of multiple immiscible fluids in contact at their
interfaces are key challenges that require accurate numerical computations. These systems exhibit
complex behaviors due to the interplay between bulk fluid coupling and surface effects, necessitating
advanced modeling and simulation techniques [1]. The ability to accurately predict and control
interfacial phenomena is of paramount importance in industrial processes such as oil and gas
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extraction [2], chemical reactions [3], pharmaceutical manufacturing [4], food processing [5], and
microfluidics [6], among others.

Interfacial multiphase flows exhibit complex and dynamic behavior, requiring sophisticated
numerical techniques for their accurate calculation and analysis. Over the years, various numerical
methods have been developed to tackle the challenges associated with capturing and tracking fluid
interfaces [7].

One widely employed approach is the front-tracking method [8,9], which explicitly tracks the
fluid interface using a moving mesh. This method accurately captures the detailed dynamics of the
interface and enables precise representation of surface effects. An example of a front-tracking method
is the Arbitrary Lagrangian-Eulerian (ALE) method [10]. These methods are very good in providing
an accurate description of the contact surface but often come with high computational costs.

Another approach is the fixed-mesh method, which represents the fluid interface implicitly
using additional fields. The Volume of Fluid (VOF) method [11], Phase-Field method [12], and
Level-Set method [13] are notable examples. These methods use a fixed mesh and provide easier
coupling formulations and smaller algebraic problems. However, they may sacrifice some accuracy
in the description of the interface compared to front-tracking methods. In the VOF method, a mass
conservation equation is solved to track the movement of the interface by computing the volume
fraction of each fluid. This method is effective in capturing large-scale interface dynamics and is widely
used in various industrial applications. The Phase-Field method introduces an additional scalar field
to represent the interface, evolving according to a diffusion equation. This approach offers a smooth
transition across the interface and is particularly useful for simulating complex interfacial phenomena
such as phase separation and morphological changes. The Level-Set method evolves a scalar function
called the level set function, which tracks the interface as it evolves in time. This method provides
accurate interface capturing and is suitable for simulating topological changes, such as merging and
breakup of droplets. Furthermore, the Immersed Boundary Method (IBM) [14] represents the interface
as a boundary immersed in a fixed grid. It uses a force-based approach to model the interaction
between the fluid and the boundary, enabling the simulation of complex geometries and multiphase
flows involving solid boundaries.

Continued advancements in numerical methods hold the potential for further enhancing our
understanding and control of interfacial multiphase flows. Specifically, the modeling and simulation
of three-dimensional (3D) interfacial multiphase flows is a critical area of research that has garnered
significant attention in recent years [1,15,16]. The geometric complexity and dynamic nature of the fluid
interfaces demand advanced modeling techniques that can accurately resolve and track the evolving
interfaces in three-dimensional space. Researchers are continuously exploring new approaches to
improve conservation of mass, capture fluid interfaces, and compute interfacial surface tension. Liovic
et al. [15] developed a volume tracking method for accurate calculations of interfaces in 3D geometries.
The interface geometries are approximated as piecewise planar and fully multidimensional fluxes
are used in a single unsplit step to advect cell volumes. The definition of these fluxes is based on
backward-trajectory remapping, ensuring reliable and precise tracking of the interfaces. To assess the
performance of the 3D volume tracking scheme, Liovic et al. [15] conducted 3D shearing flow and
deformation field tests. Adelsberger et al. [16] conducted 3D simulations of incompressible two-phase
flow to investigate the behavior of rising droplets. Three different flow solvers, namely DROPS [17],
NaSt3D [18] and OpenFOAM [19] were utilized, each employing distinct numerical techniques. DROPS
employed a finite element spatial discretization, an implicit theta scheme for time discretization, and a
level set method for interface capturing. NaSt3D utilized a finite difference spatial discretization, a
second-order Adams-Bashforth scheme for time discretization, and a level set method for interface
capturing. Lastly, OpenFOAM employed a finite volume spatial discretization, an implicit Euler
scheme for time discretization, and a VOF method for interface capturing. Metivet et al. [1] presented
a numerical framework for simulating multiphase flows using the level-set method. The discretization
of the fluid equations is done using a finite element method. For the spatial discretization the method
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can use finite elements of high order. This choice ensures accuracy and stability in representing the
spatial domain. As for the time discretization, the implicit Backward Differentiation Formulae (BDF)
of arbitrary order is used. This approach allows for precise time stepping and facilitates the accurate
simulation of dynamic phenomena in interfacial multiphase flows. This ongoing research aims to
enhance the fidelity and predictive capabilities of computational models, enabling more accurate
simulations of 3D interfacial multiphase flows, which generally suffer from volume conservation,
interface sharpness, boundedness, and shape preservation.

In this study, we present a geometric formulation of the VOF method, known as PLIC (piecewise
linear interface construction), specifically designed for simulating 3D interfacial multiphase flows. The
PLIC-VOF method is implemented within the HiG-Flow (hierarchical grid) framework, a recently
developed Computational Fluid Dynamics (CFD) software. HiG-Flow utilizes finite differences on
hierarchical grids and enables the simulation of a wide range of flow types, including Newtonian,
Generalized-Newtonian, and viscoelastic flows in any dimension. The modular design of the software
allows for easy implementation of new techniques and methods, making it flexible and adaptable to
evolving research needs. Furthermore, HiG-Flow incorporates numerical stabilization techniques to
ensure accurate and stable simulations, even in the presence of complex flow phenomena, such as 3D
multiphase flows. The user-friendly interface allows researchers to choose specific simulation features,
such as the dimension, modules to be used, and numerical techniques, providing a customizable and
efficient simulation environment.

The paper is organised as follows: in Section 2 we present the governing equations that describe
interfacial multiphase flows. Subsequently, Section 3 describes the numerical method used to discretize
the governing equations using the PLIC-VOF method. In Section 4, we focus on the validation
of the numerical algorithm through two 3D advection tests: the shearing flow and deformation
field problems. Furthermore, the validation of the PLIC-VOF method is also conducted using a 3D
multiphase benchmark problem involving the rising of a bubble. The paper ends with the conclusion
in Section 5.

2. Governing Equations

This study examines the characteristics of an unsteady, laminar, isothermal and incompressible
two-phase flow. The flow consists of two immiscible fluid phases, with no mass transfer occurring
across their interface. The governing equations for this flow are the mass conservation equation
(Equation (1)),

V-u=0, (1)

and the linear momentum balance equation (Equation (2)),

P Bltl +u(V- u>] = =Vp+ V- {u [Vu+ (V)| } +pg+ oxnd, @

where u = (u,v,w) is the velocity field of the flow, p is the density, p the pressure, u the absolute
viscosity, g the gravitational field, ¢ the interfacial tension coefficient, ¥ and n the curvature and the
normal vector to the interface, respectively, and J is a function that takes a value of one at the interface
and zero elsewhere in the domain. Equation (2) can be written in dimensionless form as:

Jdu B 1 T g 1
o [at +u(V~u)} =-Vp+ R—eV- {y [Vu+ (Vu) ]}+p§+ B—oicné, 3)
where the non-dimensional parameters Re = (p1¢'/?L32)/u; and Bo = (p1gL?)/o represent,

respectively, the Reynolds number, which describes the ratio between inertial and viscous forces,
and the Bond number (also known as the E6tvos number), which describes the ratio between
gravitational force and surface tension. The parameters g, p1, L and pq represent the magnitude
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of the gravitational field, the characteristic density, the characteristic length scale and the characteristic
viscosity, respectively.

In the VOF method, assuming the flow is incompressible, the advection of the volume fraction is
modeled by the following transport equation:

g—l—v-(uf):O. 4)
ot

The method used to model the evolution of the interface plays a fundamental role in the accuracy of
the VOF method. In the HiG-Flow software, a geometric formulation was taken to solve the transport
equation (Equation (4)), where the fluid-fluid interface is reconstructed at each time step using the
PLIC-VOF method. In this sense, an advection algorithm with a fractional step (split) was implemented.
This technique simplifies the method and prevents the transportation of the same fluid portion twice,
as happens in single-step (unsplit) methods [20].

3. Numerical Procedure

3.1. HiG-Tree and HiG-Flow software

The HiG-Tree software is responsible for the data structure, domains, approximations and
interpolations, solvers of linear and non-linear systems, used in numerical simulations in the HiG-Flow
software.

The HiG-Tree data structure is a hierarchical Cartesian mesh representation which can be
constituted of elements with varying sizes. This structure is based on the recursive spatial subdivisions
(refinements) of its elements, enabling their representation in an m-tree (see Figure 1). In the
HiG-Tree data structure, arbitrary mesh refinement processes can be applied at any level of the
tree, generating an unstructured mesh. Classic examples of this type of mesh are the data structures
Quadtree (two-dimensional) and Octree (three-dimensional). Although the illustration in Figure 1 is
in two dimensions, the framework is designed to be generic and can be extended to any number of

dimensions.
3] 4 5] 911 13
810
7 12
2 6

Figure 1. HiG-Tree data structure.

In the module responsible for domain and subdomain partitioning, the generated domains are
composed of blocks that can be complex to simulate problems in channels with intricate geometries.
Each block is discretized using the HiG-Tree structure, which enables appropriate spatial refinement
for the simulated problems. These domains are partitioned using the Zoltan-Trilinos library [36,37],
which ensures a good load distribution among processes during execution. This module also allows
for the storage and enumeration of properties represented in the cells and facets of the mesh.

The module for approximations and interpolations handles the estimation of properties within
cells and facets. It allows for the selection of the polynomial approximation order utilized by the
moving least squares (MLS) method, as described by Sousa et al. [32]. In terms of meshes composed of
elements with different levels of refinement, numerical methods based on approximations of finite
differences in Cartesian uniform meshes become limited, since they will require spatial interpolations
in unknown points of the stencil, as illustrated in Figure 2. The accuracy of this type of method
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heavily depends on the geometric characteristics of the mesh. The MLS method avoids this geometric
dependence, using a cloud of neighboring points to the unknown to apply the interpolation.

——>——._5_€ b

Figure 2. Stencil of the second-order finite difference method, where the unknowns are arranged at the
center of the cells. x¢, x;, x;, xp, and x; are approximations of values positioned at the center (c), left (I),
right (r), bottom (b), and top (t) in the 5-point stencil.

To obtain an approximation of the second derivative of variable u in the x direction at point c,
a standard second-order finite difference scheme can be used. The approximation is given by the
following expression:
?u
a2~ A
Note that the point u; on the stencil in Figure 2 does not coincide with any point on the mesh and must
be approximated by some interpolation technique on the mesh of unknowns in the neighborhood of
u¢. In the HiG-Tree software the following interpolation is used:

up =Y wiuy, ®)

kEI]

ul - 2uc + ur). (5)

where 7; = iy, k = 1,..., N; is the set of indices for the unknowns that are in the neighborhood of u,
and the weights wf( are calculated using the MLS method. The number of neighbors N; depends on
how many points are needed to maintain the order of accuracy of the global approximation.

Lastly, the module designed for solving linear and non-linear systems consists of two powerful
libraries that utilize parallel computation techniques for efficient solution. These libraries are
specifically tailored for handling both shared and distributed memory architectures, making use
of high-performance routines. These libraries are HYPRE (High Performance Preconditioners) [38]
and PETSc (Portable, Extensible Toolkit for Scientific Computation) [39]. These libraries offer significant
advantages in the development of parallel code, and their performance has been extensively optimized
and tested in various computational fluid dynamics codes.

The HiG-Flow software is a versatile tool for numerical simulation of fluid flows in various
configurations. It enables the simulation of single-phase flows of Newtonian, generalized Newtonian,
and viscoelastic fluids, as well as two-phase flows of Newtonian fluids using the volume of fluid
method (VOF) for interface representation. The software is designed with a modular structure, allowing
for easy implementation of new techniques and methods. It provides flexibility to users, who can
choose the dimensionality of the simulation, select the desired modules (e.g., monophasic, Newtonian,
generalized Newtonian, viscoelastic, biphasic), and specify numerical techniques through a data
input file. This user-friendly approach facilitates customization and adaptation to specific simulation
requirements.
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In the HiG-Flow software, the most traditional methods for temporal advancement were
implemented. The explicit methods implemented are: explicit Euler, second-order TVD (total variation
diminishing) Runge-Kutta (or modified Euler method), and third-order TVD Runge-Kutta. The implicit
methods implemented in the system are: implicit Euler, Crank-Nicholson, and second-order Backward
Differentiation Formula (BDF). To obtain the pressure and velocity fields, the incremental (second
order in time) and non-incremental (first order in time) projection methods are implemented.

3.2. Discretization procedure in HiG-Flow

To obtain the pressure fields and flow velocity through the resolution of the Navier-Stokes
Equations (1) and (3), the incremental and non-incremental projection methods proposed by
Chorin [29], in which the pressure and velocity fields are decoupled, are implemented in HiG-Flow.
As stated by Lages [30], in terms of the error arising from the pressure-velocity decoupling, it has
been observed that the non-incremental version of the method exhibits first-order accuracy in time,
whereas the incremental version achieves second-order accuracy in time. In this work, the incremental
projection method was used to solve the equations. Therefore, discretizing Equations (1) and (3) by the
explicit Euler method we obtain:

vV.utl = o, 7)

pn+1un+l_pnun N Y ny _ n+1 i . n n\T n
- = —p"(u" V") = Vp 4 v {y[Vu +(Vu)]}+F, ®)
where
F' = p"g + i(Kan)” )
g  Bo '

The superscripts n and 7 + 1 refer to the time level and At represents the time step. The elements with
superscript n 4 1 are unknowns and elements with superscript n are known.

In the incremental projection method, initially using p" instead of p"**!, an intermediate velocity
is calculated, u*, as follows:

¥k Mo N 1
% = (" V") = V' 4 V- {y [Vu* + (Vu*)T] } LF (10)

Subsequently, the difference between the pressure gradients p” and p"*! is calculated to correct the
intermediate velocity and, lastly, the final velocity u"*! is obtained:

pn+1un+1 - pnu*

At

=-V(p" —p") =-VaAp, (11)

or rather,
Pl = pu* — AtV Ap. (12)

To calculate the pressure, the divergent operator is applied on both sides of Equation (12) and the
incompressibility hypothesis, Equation (7), is invoked, to give the Poisson equation for pressure:

1 1 .
V- (anAp) =5V (13)

Since the phenomena treated in this work involve two-phase flows, that is, they involve two fluids
with different physical properties, it follows that p and y are not constant throughout the domain.
Thus, the resolution of the Poisson equation for the pressure and momentum equation presents greater
difficulties and requires special care. To remediate this issue, in this work, the BiCGS (BiConjugate
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Gradient Squared) iterative method [40] with Block Jacobi preconditioner [41] was used, considering
the convergence tolerance on the residual norm of 1 x 10~7.

3.3. Interface reconstruction

In the existing literature, various methods have been proposed in conjunction with the VOF
technique to handle the geometric reconstruction of the interface. These methods aim to locally
approximate the interface within each interfacial cell by utilizing the volume fraction as a fundamental
piece of information. Traditional examples of methods for the reconstruction of interfaces are
the SLIC (Simple Line Interface Calculation) [21], Hirt-Nichols-VOF (original VOF method) [22] and
PLIC (Piecewise-Linear Interface Calculation) [23]. A comparison of these methods was performed by
Rudman [24], where the PLIC method showed more consistent results. Therefore, the PLIC method
was implemented in the HiG-Flow solver to represent the interface.

In the PLIC-VOF method, assuming that the volume fraction and the normal vector are known in
each interfacial cell, the interface is approached by a plane defined as follows:

n-x=—u«, (14)

where n is the normal vector over the interface, x is the position of a point on the plane and « is
the smallest distance from the plane to the origin of the computational cell. The distance « must be
adjusted so that the volume fraction below the reconstructed plane (say, f) is equal to f, i.e.,

f(a,n,A) — f=0. (15)

Given a cell with dimension A = (Ax, Ay, Az) and the normal vector, n = (ny, ny, 1), the fluid volume
below the interface within the interfacial cell is defined as follows:
1
S S P
6’”x||”y||”2|
—R(a — |ny|Ax) - (& — |ny|Ax)3
R(w — [ny|Ay) - (a — |ny|Ay)°
R(a — |nz|Az) - (& — |n;]|Az)?
+R(w — |1y |Ax — [ny|Ay) - (& — [ny|Ax — |ny|Ay)°
(
(

VvV =

+R(a — |ny|Ax — |nz|Az) - (& — |ny|Ax — |n|Az)3

+R(a — |ny|Ay — |nz|Az) - (& — |ny|Ay — |nZ|Az)3], (16)
where
0,ifa <0,
R(a) = - 17
(@) {1,ifa>0. 17)

Equation (16) can be simplified based on the intersection of the plane with the cell, allowing to estimate
the distance from the plane to the origin of the cell and the volume of fluid below the plane. To calculate
the normal vector, the second-order accurate method described by Mehta et al. [25] was used. In this
method, the normal vector is defined as the gradient of the volume fraction (i.e., n = Vf/||Vf]|),
where the gradient is approximated using a 3 x 3 x 3 stencil around each interfacial cell.

3.4. Interface advection

Following the same strategy that Puckett et al. [26] adopted in the two-dimensional case, in
order to maintain the conservation of f, the incompressibility condition was taken into account (i.e.,
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V - u = 0), resulting in the following modification to the volume fraction transport equation (Equation

(4)):
gf:+v (uf) = fV -u, (18)
or rather,
g{ +V.(uf) = fVu, (19)
af +V.(0f) = fVa, (20)
g{ +V.(0f) = fV.. (21)

Accordingly to Rider and Kothe [33], who also presented this strategy for the two-dimensional case,
this "divergence correction" makes the local and global volume-filling constraints to be satisfied much
more closely, since the discrete velocity divergences are not necessarily zero, but rather a function of
the convergence tolerance used in obtaining the solutions of the linear system.

The calculation of the transport of the volume fraction is divided into three steps: first in the x
direction, then in the y direction, and then finally, in the z direction. Thus, three consecutive updates
are needed to carry f at each time step, i.e, f* — f* — f** — f"*1. Thus, discretizing f implicitly on
the right-hand side of Equation (19), implicitly on the right-hand side of Equation (20) and explicitly
on the right-hand side of Equation (21), leads to

n At n n
fijk+ ax <Fi71/2,]',k - Fi+1/2,j,k)

fijk = ’ @)
1— AL (yn —ul
Ax i+1/2,j,k i—1/2,j,k
* At * *
o Tkt ay (Gi,j—l/z,k - Gi,j+l/2,k) (23)
Pk = 1_&(014, ot ) '
Ay i,j+1/2k i,j—1/2k
At
n+l n n o o
f/]’ e l,],k + AZ |: l,], (wZ,],k+1/2 — wl,],k*l/z) - (Hl,],k+l/2 - HZ,],k—1/2)] 7 (24)

where fi"j . is the volume fraction in the (i, j, k)-th cell, at time " = nAt, u, v and w are the velocity
components in each coordinate direction and F, G and H denote the fluxes of f in the facets of cell
(i,], k). Suppose, without loss of generality, that the velocity ;1,5 is positive, then the flux volume,
' ik is given by:
Wlia ik Vit1/2,k Vit1/2,
Fiiyop = sl = S (25)

u?+1/2,j,k “At-Ay-Az At-Ay-Az

where V4 /2,jk is the volume of fluid that must be transported to the neighboring cell.

3.5. Surface tension force and curvature

In this work, the CSF (Continuum Surface Force) method presented by Brackbill et al. [27] was
adopted to model the interfacial tension force described in the momentum equation (Equation (3)). In
this model, the body force is defined by:

F, = oxnd. (26)

In the VOF method, Equation (26) is generally rewritten as:

Vf _
F(T ||Vf||||vf|| UKVf (27)
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To obtain the curvature x, the traditional height function method, described by Torrey et al. [28], was
used. This method takes nine heights to form a stencil 7 x 3 x 3,3 x 7 x 3 or 3 x 3 x 7 around each
interfacial cell, according to the orientation of the interface, where the construction of height functions
is defined as follows:

k+3
hij=Y_ fijbz to j=j =17,/ +1 and i=i—1,i,i'+1, (28)
k-3

for the case where the largest component of the normal vector is in the z direction. Knowing the nine

height functions, the interfacial curvature can be calculated as follows:

iy o+ hyy + B+ gy B — 2y hihy
(1+ 12 +n2)3/2 ’

x = sgn(n) (29)

where the derivatives hy, hy, hyx, hyy and hyy are calculated using centered finite difference schemes.

3.6. Time-step constraint

During the geometric advection of the interface, it is necessary to consider certain constraints to
ensure the proper functioning of the method. In HiG-Flow, in order to prevent the same fluid portion
from being transported twice, due to the use of a fractional step advection algorithm, and to ensure
that the advected fluid volume does not exceed the computational cell volume, the following condition
has been imposed:

A
At < m = At Advection- (30)
The inclusion of the interfacial tension term in the Navier-Stokes equation demands one more
restriction for the time step. According to Popinet [31], the explicit discretization of the interfacial
tension term leads to a condition of temporal stability of the form:

(o1 +p2)A3

At
< 4o

= Atg, (31)
where p; and p, represent the density of each fluid. According to the rationale provided by Popinet [31],
the limitation on the time step size is justified by the need to adequately capture the propagation of the
fastest capillary wave within the system.

Furthermore, the CFL (Courant—Friedrichs—Lewy) condition should be taken into account for the
parabolic and hyperbolic terms on Equation (8),

At < ReA2 = AtParubolicr (32)
and
A _
At < m = AtHyperboliC‘ (33)

Therefore, the time step constraint is:

At = min(AtAdvection/ Atg, At parabolics AtHyperholic) : (34)

4. Validation

In this section, we present the validation of the numerical results obtained using the HiG-Flow
software by comparing them with the results reported in the scientific literature. The purpose is
to assess the accuracy and reliability of the HiG-Flow software by evaluating its agreement with
established findings. To assess the performance of the implemented interface reconstruction and
advection methods, benchmark problems were simulated. These benchmark problems, namely the
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3D shearing flow test and the 3D deforming field test, were chosen based on their relevance and
availability in the literature, particularly in the work by Liovic et al. [15]. In these tests, since the
velocity field is given, the sphere is not affected by the numerical dissipation of the methods used
to obtain the flow velocity and pressure. In other words, the Navier-Stokes equations do not need
to be solved, just the volume fraction transport equation. Therefore, it is expected that the sphere
maintains its original shape at the final time of the simulation. By comparing the results obtained from
the HiG-Flow simulations with the established solutions, the accuracy and fidelity of the implemented
methods can be evaluated. Furthermore, the solver for the Navier-Stokes equations developed in
HiG-Flow was validated using the 3D rising drop test proposed by Adelsberger et al. [16]. This test
serves as a benchmark to assess the accuracy and performance of the solver in simulating the rising
behavior of a three-dimensional droplet. Both quantitative and qualitative analyses of the results
obtained from the simulations of these benchmark problems are presented in the following sections.

To quantitatively evaluate the performance of the advection algorithm implemented in HiG-Flow,
the volume of fluid at the initial time (V}) and the volume of fluid at the final time (V) of the
simulation were compared for both the 3D shearing flow test and the 3D deforming field test. The
absolute error, €, between the volumes is defined as follows:

er, = |Vr — Vg|. (35)

To quantitatively evaluate the 3D rising drop test, the evolution of the bubble’s center of mass
and the bubble’s rise velocity were analyzed. The evolution of the bubble’s center of mass is given by:

Ze = / z dz, (36)
M

where (5 is the region of the domain filled by the bubble. By utilizing the volume fraction f,
Equation (36) can be expressed in a different form, as follows:

N
Ze = 2 zi - f - AxAyAz, (37)
i=1
where N is the number of cells that contain a non-zero volume fraction.
Lastly, the bubble’s rise velocity is given by:

d
Ve = oz (38)

4.1. 3D shearing flow test

The 3D shearing flow test is widely used in the literature to verify the accuracy of interface
advection algorithms in two-phase flows [15,34,35]. In this test, a sphere is subjected to a prescribed
velocity field defined by the combination of a single vortex in the x — y plane and laminar pipe flow in
the z direction.

To simulate this test, a sphere with a radius of 0.15 was considered, centered at the point
(0.5,0.75,0.25), in a domain with dimensions of [0,1] x [0,1] x [0,2]. The velocity field used to
move the sphere within the domain is defined by:

u = —sin(7x)?sin(27y)cos( &),
u = ¢ v = sin(my)>sin(2mx)cos( ), (39)

2
W = Upax (1— %) cos(%H),

where T = 6.0, 7 = \/(x —05)2+ (y — 0.5)2, R = 0.5 and uy,x = 1.0. This velocity field generates
a vortical flow, causing the initially spherical interface to take on a spiral shape. After reaching half
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of the total simulation time (i.e., t = 3.0), the interface reverses its trajectory and returns to its initial
position at time t = 6.0, and should also reverting to its original shape.

Figure 3a shows the point of maximum interface deformation in the 3D shear flow test simulated
in HiG-Flow. A mesh with a resolution of 64 x 64 x 128 and time-step of At = 1 x 1073 were used in
the numerical simulations. The result obtained by HiG-Flow is compared with the findings presented
by Liovic et al. [15], as shown in Figure 3b, where a mesh with a resolution of 64 x 64 x 128 was also
used. The interface shape calculated by HiG-Flow demonstrates qualitative agreement with the results
obtained by Liovic et al. [15].

e

(a) HiG-Flow (this work). (b) Liovic et al. [15].

Figure 3. Comparison of the interface shape at time ¢ = 3 for the 3D shearing flow test. Results
obtained using (a) HiG-Flow software and (b) PCFSC (Piecewise-Constant Flux Surface Calculation)
unsplit advection scheme presented by Liovic et al. [15], both with a mesh of 64 x 64 x 128 elements.

To perform a quantitative analysis of the 3D shearing flow test, the volume fraction absolute error
was calculated using Equation (35). The obtained result was then compared with the values reported
in the scientific literature. This comparison is shown in Table 1, where the HiG-Flow software showed
superiority, in terms of volume fraction conservation, when compared to the results presented by
Liovic et al. [15], Duz et al. [34] and Lopez et al. [35].

Table 1. Comparison of the L errors for the volume fraction conservation in the 3D shearing flow test.
The HiG-Flow errors are compared against the ones reported by Liovic et al. [15], Duz et al. [34] and
Lopez et al. [35].

Solver Mesh Error (er,)
HiG-Flow 50 x 50 x 100 2.86 x 10~*
HiG-Flow 64 x 64 x 128 490 x 10~

CVTNA +unsplit[15] 64 x64x 128 3.64x 1073
ELVIRA + COSMIC [34] 64 x 64 x 128 3.97 x 1073
CLC-CBIR [35] 64 x 64 x 128 327 x 1073

4.2. 3D deforming field test

The 3D deforming field test is also widely used in the literature to verify interface advection
methods [15,35], as the prescribed velocity field causes the interface to assume a complex geometry
during its motion. To perform this test, a sphere with a radius of 0.15 was considered, centered at the
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point (0.35, 0.35, 0.35), within a cubic cavity with dimensions [0,1] x [0,1] x [0, 1]. The velocity field
used to move the sphere within the domain is defined by:

u = 2sin(mx)?sin(2my)sin(27z)cos(mt/ T),
u = < v = —sin(my)?sin(2mx)sin(2mz)cos(rt/ T), (40)

w = —sin(rnz)%sin(2mx)sin(2my)cos(rt/ T),

where T = 3.0.

Similarly to the 3D shearing flow test studied in Section 4.1, the prescribed solenoidal velocity
field causes the sphere to deform until reaching half of the total simulation time, and then follows a
reverse trajectory, tending back to its original shape and position.

Figure 4a shows the point of maximum interface deformation in the 3D deforming field test
simulated in HiG-Flow. A mesh with a resolution of 128> and time-step of At = 1 x 103 were used
in the numerical simulations. The result is compared with the findings presented by Liovic et al. [15],
as shown in Figure 4b, where a mesh with a resolution of 128 was also used. The interface shape
obtained by HiG-Flow exhibits qualitative agreement with the results obtained by Liovic et al. [15],
with fewer regions of void volume fraction compared to their results, despite using the same level of
mesh refinement.

(a) HiG-Flow (this work). (b) Liovic et al. [15].

Figure 4. Comparison of the interface shape at time ¢+ = 3 for the 3D deforming field test. Results
obtained using (a) HiG-Flow software and (b) PCFSC (Piecewise-Constant Flux Surface Calculation) unsplit
advection scheme presented by Liovic et al. [15], both using a mesh constituted of 128% elements.

Analogously to the previous test shown in Section 4.1, we analyze quantitatively the results
obtained here for the 3D deforming field test. For that purpose, the volume fraction absolute error was
calculated using Equation (35) in order to verify the ability of the volume tracking scheme to conserve
volume. The results obtained by our newly-developed multiphase algorithm were compared with the
results presented by Liovic et al. [15] and by Lopez et al. [35], as shown in Table 2. Across all levels
of mesh refinement utilized, our numerical formulation consistently yields lower errors compared to
those reported in references [15] and [35]. These results support the methodology of developing an
interface advection scheme with a divergence correction approach inside the volume fraction transport
equation (see right-hand side of Equation(18)), which leads to a closer satisfaction of both local and
global volume-filling constraints.
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Table 2. Comparison of the L; errors for the volume fraction conservation in the 3D deformation field
test. The HiG-Flow errors are compared against the ones reported by Liovic et al. [15] and Lopez et

al. [35].
Solver Mesh Error (er,)
HiG-Flow 50 x 50 x 50 1.15 x 1074
HiG-Flow 64 X 64 X 64 2.19 x 107>
HiG-Flow 128 x 128 x 128  9.41 x 1076
CVTNA + PCFSC unsplit [15] 64 x 64 x 64 1.99 x 103
CVTNA + PCFSC unsplit [15] 128 x 128 x 128  3.09 x 104
CLC-CBIR [35] 64 x 64 x 64 2.09 x 1073
CLC-CBIR [35] 128 x 128 x 128 352 x 1074

4.3. 3D buoyancy-driven rising drop

To conclude the validation of the newly implemented numerical algorithm for simulating 3D
multiphase flows, we now turn our attention to the problem of the buoyancy-driven rise of a bubble
immersed in a Newtonian fluid. In this test case, we consider a bubble with a density lower than the
fluid filling the column. As a result, the pressure gradient induced by gravity causes the bubble to
move in the direction opposite to the gravitational field.

A bubble with a radius of R = 0.25 was positioned at the point (0.5,0.5,0.5) inside a tank with
dimensions of [0,1] x [0,1] x [0,2]. The no-slip boundary condition was imposed on the domain walls.
The simulations were performed until time reached ¢ = 3.0. A mesh size of 50 x 50 x 100 elements
and a time-step of At = 2.0 x 103 was employed in the simulations. The two test cases proposed
by Adelsberger et al. [16] were simulated. In the first case, the density and viscosity ratios between
the two fluids in the tank are both equal to 10 (p1/p2 = p1/p2 = 10). In the second case, the density
ratio between the fluids is 1000 (p1/p2 = 1000) and the viscosity ratio is 100 (y1 /2 = 100). In test
case 1, the droplet undergoes a transformation into an ellipsoidal shape. On the other hand, in test
case 2, the droplet has the potential to break up due to the lower surface tension. Test case 1 can be
categorized as an ellipsoidal regime, while test case 2 falls somewhere between the skirted and dimpled
ellipsoidal-cap regimes. The physical and dimensionless parameters considered for simulating these
two cases are presented in Table 3. These parameters were also used by Metivet et. al [1] with an
high-order finite-element software, so-called FEEL.

Table 3. Physical and dimensionless parameters used on the 3D buoyancy-driven rising drop
simulation.

test cases pg P2 M1 M2 g o Re Bo

case 1 1000 100 10 1 098 245 35 10
case 2 1000 1 10 01 098 196 35 125

Figure 5 illustrates a comparison of the bubble shapes at time ¢t = 3 simulated using HiG-Flow
and OpenFOAM, for the test case 1 (ellipsoidal regime). The interface shape obtained by HiG-Flow
exhibits qualitative agreement with the result obtained by Adelsberger et al. [16] using the OpenFOAM
software, where the droplet reaches a stable ellipsoidal shape at steady-state regime.
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(a) HiG-Flow (this work). (b) OpenFOAM [16].
Figure 5. Comparison of the bubble shape at time ¢ = 3 for the test case 1 of the 3D buoyancy-driven

rising drop problem. The results were compared between (a) HiG-Flow and (b) OpenFOAM [16]
software.

For a better comparison of the actual droplet shape, Figure 6 illustrates the two-dimensional
contour through the droplet’s center generated by the HiG-Flow (this work) and FEEL [1] software at
time t = 3. The contour lines of HiG-Flow (blue) and FEEL (green) exhibit a close resemblance to each
other, with a small difference at the bottom of the drop.

e r—ar——

Figure 6. Comparison of the bubble contours at time t = 3 for the test case 1 of the 3D buoyancy-driven
rising drop problem. The results were compared between HiG-Flow (blue) and FEEL (green) software.

Figure 7 shows the evolution of the bubble’s center of mass and bubble’s rise velocity for test
case 1. The results obtained using the newly-developed algorithm in HiG-Flow are compared to the
results computed by FEEL [1], as well as OpenFOAM, DROPS, and NaSt3D [16]. In Figure 7(a), at the
initial stage of the simulation, up until approximately t ~ 1, the drop position is nearly identical in all
simulations. Afterwards, the vertical position of the droplet in OpenFOAM and FEEL software is lower
than the one obtained in HiG-Flow, DROPS and NaSt3D. Our results are in excellent agreement with
the findings obtained by DROPS and NaSt3D. Figure 7(b) illustrates the rise velocity of the droplet. In
the initial stages of the simulation, the vertical velocity component (w) of the fluid velocity gradually
increases from its initial value of zero, reaching a maximum magnitude of approximately 0.35 — 0.36 at
around ¢ ~ 0.9. Then, the steady-state velocity of the droplet decreases, being again in agreement with
the findings obtained by DROPS and NaSt3D.

Figure 8 illustrates a comparison of the bubble shapes at time ¢t = 3 simulated using HiG-Flow
and OpenFOAM,, for the test case 2 (skirted and dimpled ellipsoidal-cap regimes). Again, the interface
shape obtained by HiG-Flow exhibits qualitative agreement with the result obtained by Adelsberger et
al. [16] using the OpenFOAM software, where the droplet reaches a stable cap shape at steady-state
regime. In the simulated time, our results do not indicate the presence of satellite droplets, contrary to
the OpenFOAM results which predicts 8 satellite droplets as stated in Adelsberger ef al. [16].
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(a) Evolution of the bubble’s center of mass. (b) Bubble’s rise velocity.

Figure 7. 3D buoyancy-driven rising drop: Test case 1 (ellipsoidal regime). (a) Bubble’s center of mass
z and (b) Bubble’s rise velocity component w.

(a) HiG-Flow (this work). (b) OpenFOAM [16].

Figure 8. Comparison of the bubble shape at time ¢ = 3 for the test case 2 of the 3D buoyancy-driven
rising drop problem. The results were compared between (a) HiG-Flow and (b) OpenFOAM [16]
software.

Figure 9 illustrates the comparison between two-dimensional contours through the droplet’s
center generated by the HiG-Flow (this work) and FEEL [1] software at time t = 3. The shape of the
contour lines of the bubbles obtained by both software are similar and reach a skirted format, since the
surface tension is lower and the ratio between the densities and viscosities between the fluids present
in the flow is higher. The differences between the two simulations are particularly noticeable along
the bottom edge of the droplet, where the curvature is most pronounced. As depicted in the contour
plot, the contour line in FEEL (green) appears more extended than in HiG-Flow. Furthermore, FEEL
exhibits a higher contour line at the top edge of the droplet and a smaller contour line at the central
part of the bottom side, when compared to that one obtained with HiG-Flow software.

o —

Figure 9. Comparison of the bubble contours at time f = 3 for the test case 2 of the 3D buoyancy-driven
rising drop problem. The results were compared between HiG-Flow (blue) and FEEL (green) software.
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Lastly, Figure 10 shows the evolution of the bubble’s center of mass and bubble’s rise velocity for
test case 2. In Figure 10(a), we show that the droplet’s position over time is similar for all the simulation
time in all the flow solvers, except for the FEEL software, which can explain the differences shown in
the contour plot in Figure 9. Figure 10(b) illustrates the rise velocity of the droplet. In the initial stages
of the simulation, the vertical velocity component (w) of the fluid velocity gradually increases from its
initial value of zero, reaching a maximum magnitude of approximately 0.37 at around ¢ ~ 0.54. Then,
the steady-state velocity of the droplet decreases so that a final velocity of 0.32 at f = 3 is obtained
using the HiG-Flow software. Our result is similar to the OpenFOAM, DROPS and NaSt3D software,
which predict a final velocity of 0.31. The final velocity predicted by FEEL is approximately 0.28,
showing the most significant difference compared to the velocities obtained from other software.
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(a) Evolution of the bubble’s center of mass. (b) Bubble’s rise velocity.

Figure 10. 3D buoyancy-driven rising drop: Test case 2 (skirted and dimpled ellipsoidal-cap regimes).
(a) Center of mass z and (b) Rise velocity component w.

5. Conclusions

In conclusion, this study presents a newly developed numerical method for simulating two-phase
flows of incompressible, immiscible, and isothermal Newtonian fluids. The geometric Volume of
Fluid (VOF) method is employed to locate and reconstruct the interface during the dynamics of
the two-phase flow. Specifically, the Piecewise-Linear Interface Calculation (PLIC) technique is
implemented for three-dimensional (3D) interface transport. This technique approximates the interface
in each interfacial cell using line segments. The methodology of developing an interface advection
scheme with a divergence correction approach inside the volume fraction transport equation, leads to
a closer satisfaction of both local and global volume-filling constraints. In addition, the continuum
interfacial force (CSF) model is utilized to account for the balance of forces at the interface. Laslty, the
Navier-Stokes equations are solved using meshless (possibly high-order) finite difference schemes
from the HiG-Flow computational fluid dynamics software.

To validate the numerical implementation, several benchmark two-phase flows are simulated
with the 3D PLIC-VOF HiG-Flow algorithm. Two standard advection numerical tests, namely the 3D
shearing flow test and the 3D deforming field test, are conducted, and good agreement is observed
between the 3D interface shapes obtained by the 3D PLIC-VOF HiG-Flow algorithm and those found
in the scientific literature. Furthermore, the absolute error of the volume tracking advection calculation
is found to be smaller than the values reported in the scientific literature for both tests, even if using
coarser meshes in our calculations. Additionally, the 3D bubble rising problem is simulated for
different fluid density and viscosity ratios, mimicking two different regimes, the ellipsoidal regime
and the skirted and dimpled ellipsoidal-cap regime. The results obtained with the newly implemented
algorithm are in good agreement with those obtained using the OpenFOAM, DROPS and NaSt3D
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software. The bubble’s rise velocity and center of mass evolution are computed with the 3D PLIC-VOF
HiG-Flow algorithm and found to be consistent with these software.

Overall, the developed method demonstrates promising accuracy and reliability in simulating
complex two-phase flows, making it a valuable tool for future fluid dynamics research. Particularly, its
applicability extends to the study of complex fluid rheology, including viscoelastic fluids.
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Abbreviations

The following abbreviations are used in this manuscript:

BDF Backward differentiation formula
BiCGS  Biconjugate gradient squared

Bo Bond number

CFL Courant-Friedrichs-Lewy

CSF Continuum surface force

HiG Hierarchical Grid

HYPRE High Performance Preconditioners
MLS Moving least squares
PETSc Portable, Extensible Toolkit for Scientific Computation

PLIC Piecewise-linear interface calculation
Re Reynolds number

SLIC Simple line interface calculation
TVD Total variation diminishing

VOF Volume of fluid
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