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Abstract: Matrix Factorization is a long established method employed for analyzing and extracting
valuable insight recommendations from complex networks containing user ratings. The execution
time and computational resources demanded by these algorithms pose limitations when confronted
with large datasets. Community detection algorithms play a crucial role in identifying groups and
communities within intricate networks. To overcome the challenge of extensive computing resources,
we present a novel parallel computation framework utilizing community information available in the
rating network. Our proposed approach named as Community-based Matrix Factorization(CBMF),
parallelizes matrix factorization technique by dividing the network into communities using existing
community detection algorithms. We prove that this parallel approach not only increases the quality
of recommendations in connection with Root Mean Square Error (RMSE), but also yields substantial
performance improvement. We empirically evaluate our idea on diverse datasets and present
comprehensive experimental results. These results serve as empirical evidence of the effectiveness
and performance gains offered by our parallel computation framework.

Keywords: matrix factorization; recommendation; community detection; parallel computation;
RMSE

1. Introduction

To predict recommendations to the users based on past behavior and their preferences, a technique
in recommender systems namely collaborative filtering is used [1]. The main objective is to suggest
items or content to the users by considering their interactions or resemblances with other users. Due
to the continuous growth in data availability and the interconnected nature of diverse systems, these
techniques hold immense importance in revealing patterns, relationships, and significant insights [2].

Matrix Factorization (MF) is a technique utilized in collaborative filtering to break down a matrix
of user-item ratings into lower-rank matrices capturing the latent factors, underlying the data [3,4].
The user-item rating matrix serves as a representation of user ratings assigned to different items [5].
The matrix is frequently sparse as users typically only rate a small subset of items. MF techniques
strive to complete the missing entries in the matrix by decomposing it into lower-rank matrices, one
capturing the user’s underlying preferences and the other reflecting the item’s latent characteristics [6].
The latent representations of users along with items can be used to estimate future ratings or calculate
missing ratings once the matrix has been factorized.

In network analysis, community detection stands as a fundamental task, endeavoring to
identify cohesive subsets of nodes, referred to as communities or modules within a network [7].
These communities in networks signify groups of nodes that display stronger interconnections
amongst themselves compared to connections with nodes outside the community [8]. These
communities provide insightful information on the structure, organization, and dynamics of complex
systems [9,10]. The applications of community detection across various domains such as social
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network analysis, biological networks, online forums, and recommendation systems have garnered
substantial attention [11]. Through the identification of communities, we gain insights into the
underlying interaction patterns, discover influential groups, and develop a deeper comprehension of
the network’s functionality [12].

1.1. Applications

Matrix Factorization techniques have been widely applied across diverse domains, demonstrating
their versatility and effectiveness. Some of the notable applications of the matrix factorization
techniques include

1. Natural Language Processing (NLP): Within the field of NLP, techniques for matrix factorization
have been used in a variety of tasks in topic modeling, text classification, etc [13,14]. Through
the decomposition of the document matrix, MF algorithms can reveal latent representations that
effectively capture the underlying semantic structure of the textual data.

2. Social Network Analysis: MF techniques have been utilized in social network analysis to unveil
communities of individuals sharing common interests or behaviors [15,16]. SVD++ facilitates the
identification of friends, influencers, or interest-based communities by enhancing user experience
and engagement on social media platforms. FANMEF is used to uncover community structures
and identify influential nodes within the network. FANMEF can effectively detect the group of
nodes by exposing hidden relationships and structures by factorizing them into non-negative
adjacency matrices.

3. E-commerce: In the realm of e-commerce platforms, SVD++ is extensively utilized to
deliver personalized product recommendations to users [17,18].By including implicit feedback,
supplementary data, and user-item ratings, SVD++ can adeptly capture user preferences and
item characteristics for accurate product recommendations [19].

4. Streaming Services: Streaming platforms including music or video services, SVD++ provide
personalized content recommendations to the users. SVD++ significantly enhances the discovery
and recommendation of relevant and captivating content. It ensures that the users are presented
with content aligned with their individual tastes and preferences [20].

5. Image Processing: FANMEF finds application in image processing tasks, where the image data
is factored into non-negative matrices. By extraction, it improves image quality and facilitates
the analysis of visual data. By decomposition, matrix factorization algorithms are capable of
distinguishing noise from the underlying structure. It also completes missing parts, and extracts
significant features for analysis and representation [21].

In essence, the applications of MF techniques have a broad scope of transforming the methods
through which we analyze, comprehend, and leverage complex data [22]. The ongoing evolution of
these techniques holds the potential to unlock fresh possibilities and propel advancements in numerous
domains. It ultimately benefits individuals, organizations, and society at large.

2. Literature Review

In recent years, the MF method has garnered significant attention as a widely adopted and
successful method for rating prediction in recommendation systems. The Netflix Prize competition,
which was started in 2006, is one early piece of work noteworthy in relation to MF in recommender
systems [23]. The fundamental matrix factorization model creates user and item latent feature matrices
from the rating matrix, enhancing the accuracy of rating predictions through the understanding of
possible connections between users and items.

As the information interconnection era has emerged, the basic MF model is no longer satisfied the
demands of recommender systems. It thus leads to the emergence of numerous variants of this model.
Excluding all the non-negative entries in latent features, a model Non-Negative Matrix Factorization
(NMF) has been initiated by Paatero et al., and Tapper et al. in 1994 that improves the accuracy of the
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model [24]. R.Salakhuntidnov et al., and A .Mnih ef al. in the year 2007 proposed Probabilistic Matrix
Factorization (PMF) that utilizes probabilistic modeling to effectively capture uncertainties in user-item
ratings, resulting in recommendations that are more reliable and precise [25]. The significance of the
Singular Value Decomposition (SVD) technique is introduced by Eugenio Beltrami et al., and Camille
Jordan et al. in 1857 and came into existence from 2006 [26]. The method has the ability to perform
robust MF, enabling the identification of hidden features and effective dimensionality reduction in
data analysis.

By integrating explicit and implicit feedback to enhance recommendation accuracy and
personalization, Yehuda Koren et al. in the year 2008 introduced Advanced Singular Value
Decomposition (SVD++) method [27]. Through the incorporation of user-item ratings and implicit
feedback, SVD++ boosts the performance of the recommender systems, enabling better capture of user
preferences and more effective recommendation generation. In 2015, Xiaohua Shi et al. introduced a
method namely Pairwisely Constrained Nonnegative Symmetric Matrix Factorization (PCSNMF) that
incorporates the symmetric community structures found in undirected networks but also leverages
pairwise constraints derived from ground-truth group information [28]. By doing so, we enhance the
accuracy of community detection. In 2017, Deep Matrix Factorization (DMF) is a significant technique
introduced by Xiangnan He ef al. that emerges the deep learning with MF [29]. This method enables
the discovery of intricate patterns and the extraction of complex features from large-scale datasets. Kipf
et al., and Welling et al. in the year 2018 combines the power of MF and graph convolutional neural
network to capture both collaborative filtering patterns and graph structures in recommendation
systems [30]. By incorporating the graph information, the recommendation accuracy is improved by
leveraging the connectivity and relationships among users and items. In 2019, Factorized Asymmetric
Non-Negative Matrix Factorization (FANMF) was introduced by Tosyali et al. by considering the
asymmetric relationships between users and items [31]. It leads to enhanced recommendation quality,
a deeper understanding of user preferences, and ultimately providing personalized user experiences
in various data analysis tasks.

M. Girvan et al. and M. E. J. Newman et al. in 2002 proposed an algorithm namely Girvan-Neuman
that is very significant because it uses edge betweenness centrality to iteratively remove edges and
identify communities in a network [32]. In 2007 Raghavan et al., Albert et al., and Kumara et al. initiated
a label propagation algorithm that is a straightforward and efficient approach, updating node labels
iteratively based on the majority of their neighbors to effectively detect communities in a network [33].
Vincent D. Blondel et al., Jean-Loup Guillaume et al., Renaud Lambiotte et al., and Etienne Lefebvre ef al.
in 2008 proposed an algorithm Louvain that has the ability to efficiently optimize modularity, making
it highly effective in detecting communities in large-scale networks while maintaining computational
speed [34]. In 2011 by Pascal Pons et al.and Matthieu Latapy et al. introduced the Walktrap algorithm
that is notable for its use of random walks to assess node similarities, providing an effective technique
for locating communities in large networks [35]. The Leiden algorithm was bought up in 2019 by
V.A.Traag et al., L.Waltman et al., and N. J. van Eck et al. to ensure there are connected communities,
and iterative application results in a partition when local best assignments are made to all community
subsets.

3. Methodology

In this work, we come up with a parallel framework for Matrix Factorization. This section first
provides an elaborate exposition elucidating the various Matrix Factorization methods. Then discusses
the community detection algorithms.

3.1. Matrix Factorization (MF)

In the early 2000s, the concept of matrix factorization emerged from the field of linear algebra.
It can be used in diverse domains like recommender systems and data analysis. Simon Funk’s work
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during the Netflix Prize competition in 2006 played a significant role in popularizing the use of matrix
factorization algorithms for recommender systems [23].

In the MF method, we compute the latent features based on user-item interactions of which a
matrix serves as a representation [36]. Ratings are used to describe the interactions between users and
items in the matrix, which is created by placing people on one axis and items on the other [37]. The
representation of the matrix is shown below.

o T miy o .. M| (P11 .- N1p
"m1 -+ Vmn Mg .. Mg N1 .. Ny
axb axk k x b a stands for users, b for items, and

k for the number of features that were extracted. M is a matrix representing the latent features of
the users, and N denotes the latent features of the items. The relation between R and R is shown in
Equation 1.

R~ XYT 1)

R=XxYT
The user and item rating vectors are combined to create the original rating R as shown in Equation 2.
Tap & mang (2)

The values of M and N are randomly distributed from 0 to 1. We compute the empty ratings in the
matrix by minimization of the squared error as shown in Equation 3.

miny_(ray — many)? (3)
ab

In order to avoid overfitting the squared error, the regularization term « is added as shown in

Equation 4.
min ) (ray — mang )2+ a(|lmal * + [|ny] ) @
a,b
where ||.|| is the frobenius norm. The approximation of this value is calculated using stochastic

gradient descent or alternating least squares. For each rating in the training data, the prediction error
is calculated using the stochastic gradient descent method as displayed in Equation 5.

Cap = Tap — manll; (5)

Then update the values of 1, and m, with  learning rate and « regularization constant is added as
shown in Equation 6.

ny — 1y + Bleamns — any)
Mg «— Mg + Blegpny — amy) (6)
The dot product of the prediction matrix that is obtained and the latent feature matrices m, and n;, as

shown in Equation 7.
T = ty.ny (7)
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After computing the predicted rating matrix, the difference between the cells of R and R as shown in
Equation 8 is computed as Root Mean Square (RMSE).

1 ~
RMSE = \/N 2 (rub - rab)z (8)
where ry;, is the original rating, 7, is the predicted rating, and N is the total number of predictions.

3.2. SVD++

It is an extension of the singular value decomposition method introduced by Yehuda Koren in
2008 [27]. He proposed this method as a part of his work improvement in the Netflix recommendation
algorithm.

In the SVD++ method, implicit feedback is added to the user’s latent feature vector [38,39]. The
implicit feedback PQ is added and is calculated as follows:

P Calculation:

In the P matrix, the values will be either 1 or 0. The value of P = [p,;]| V(a, b) is 1 if 1, is observed

or else 0. Every non-zero entry in the P matrix is written as —

VIl
Q Calculation:
Q = [9ap] ¥(a,b) which is similar to the item latent feature vector of order v X k.
Calculate the dot product of P and Q matrices and add it to the user latent feature matrix
i.e., (M + PQ). Then the deviation between the original rating R i.e., (1,1;,) and the predicted rating
matrix R i.e., (m + pq)anp) is computed as the RMSE value as shown in Eq. (8).

which is a u X v matrix.

3.3. Factorized Asymmetric Non-Negative Matrix Factorization (FANMEF)

In 2019, the FANMF method is introduced by Tosyali [31]. The main purpose of the FANMF
method is to handle non-negative data that has an asymmetric nature. Data in the real world is
often asymmetry, where the rows and columns are related in this way are not symmetrical [40]. In
the FANMF method, a rating matrix is decomposed into two non-negative latent feature matrices.
FANME is different from the traditional methods, as it accommodates the feature matrices of different
dimensions that enable to capture the of data that are asymmetric in nature. It also adds a sparsity
constraint along with the non-negativity constraint, that contains only a limited number of non-zero
elements.

FANMEF extends NMF to asymmetric scenarios where the user and item bias are considered
in addition to the user-item interactions to make the model more accurate and improve the
recommendation quality. User item bias includes the inherent inclinations of users towards specific
items or the inherent attractiveness of items to users, independent of their previous interactions or
behaviors.

The original rating matrix is represented as the product of user and item rating vectors as shown
in Equation 9.

Tap =~ ma”g )

Update the values of M and N by using a multiplicative update algorithm that contains update
values [41].

M M- x((R-/(Mx N+ (R==0))) x NT)
N = N-x(M'x(R-/(MxN+(R==0))))

where M - x N is the dot product of M and N similarly M- /N is the dot division of M and N i.e.,
element wise division. M x N is the product of two matrices M and N. M is the transpose of the
matrix M. The term R == 0 is included in the denominator to prevent division by zero.
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Make the dot product of the updated latent feature matrices which is R. The deviation between
the original and the predicted rating matrices is computed as RMSE value as shown in Equation 8.

In this work, we introduce parallelism in matrix factorization with the help of community
information. Various community detection algorithms are available in the literature to divide a complex
network into communities. The Girvan-Newman is one of the first popular algorithms that uses edge
betweenness centrality to detect communities in networks, achieved through iterative removal of
edges with high betweenness. The shortcoming of the above-mentioned algorithms is while it excels
at identifying overlapping communities, it faces the drawback of being computationally expensive,
particularly for large graphs, due to repeated edge removals and recalculations of betweenness.
Louvain algorithm addresses these shortcomings by adopting an efficient approach centered around
optimizing modularity. Through iterative modularity optimization with node movements, it achieves
fast and scalable community detection, effectively capturing communities even in large-scale networks.
Louvain’s superior optimization of modularity enables it to outperform Girvan-Newman in terms
of speed and scalability, making it the preferred choice for real-world community detection tasks
involving massive and complex networks. Therefore, we use the Louvain algorithm to divide the
rating network into communities. Next section gives the details of Louvain.

3.4. Louvain Algorithm

The Louvain algorithm works effectively in covering large communities or groups that are densely
interconnected in a network. It employs a modularity optimization process, iteratively refining the
network’s community structure to maximize modularity.

Louvain algorithm has a 6 step procedure to find the appropriate communities. Each node in the
initial step is attached to its own community. Next, rearrange the nodes between the communities that
iteratively optimize the modularity score which elevates the standards of the community structure. By
iteratively considering each node, evaluate the modularity score by relocating the nodes to nearby
communities. It is followed until there is no change in the modularity score. A new graph is
constructed by combining the nodes in each community by connecting the nodes and edges of
different communities. All these steps are repeated until there is no change in the modularity score is
observed.

The Louvain algorithm has become popular because of its efficiency in detecting communities
in the network by achieving a high modularity score, all while maintaining computational
efficiency [9]. A higher modularity score signifies a more robust community structure, characterized
by tightly interconnected nodes within communities while having fewer connections between
communities [42,43]. This indicates the algorithm’s successful identification of distinct and internally
cohesive communities, demonstrating their meaningful organization within the network.

4. Proposed Method

In any type of MF method, the rating matrix is constructed by using users and items. The
predicted rating matrix is obtained by using different update rules for the latent feature matrices in
each kind of MF. The variation between the original and the predicted rating matrix is defined as the
RMSE value. In order to run such huge rating matrices, the computational time and efficiency are
very high. To reduce that, a combination of the MF method with the community detection algorithm
"Louvain" is used.

The following procedure is carried out for using this approach as shown in Algorithm 1.
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Algorithm 1: Community-based Matrix Factorization Algorithm (CBMF)
Input: R: Rating matrix of size m x n, containing user-ratings. m is the number of users and n
is the number of items
Output: RMSE Value
begin
Step 1: Construct a bipartite graph BG from R. Step 2: Apply the Louvain algorithm to BG
to generate c communities. Let the community partition is denoted by C, where
C=BGUBGU...UBG,
fori=1tocdodo
Step 3: Extract rating matrix R; corresponding to BG; from R.
Step 4: Apply the chosen MF method to the rating matrix R; and generate predicted
rating matrix ﬁi.
end

Step 5: Combine predicted rating matrices generated for each community into a single
predicted rating matrix R.

Step 6: Calculate RMSE value from the original rating matrix R and the predicted rating
matrix R.

Return RMSE
end

A bipartite graph BG is constructed from users, and items in the dataset. The procedure followed
for the construction of a bipartite graph is: Consider two sets of nodes, one for users and one for items.
For each user node in one set, establish connections to every item node in the other set to represent the
interactions or relationships between users and items in the dataset. If there exists a relation between
the user and the item, there establishes an edge between the user and the item. For the bipartite graph
that is constructed, the Louvain algorithm is applied and divided into communities. A rating matrix is
formed by each community that is obtained from the graph. The size of the rating matrix is the same
as the community size. For the rating matrices that are obtained, we apply MF (i.e., MF, SVD++, or
FANMF) method, and by using the update rules we perform updation on the rating matrix, and the
predicted rating matrices are formed. Combine all the predicted rating matrices into a single prediction
rating matrix. RMSE value is calculated between the original rating matrix that is obtained before
dividing into communities with the predicted rating matrix that is obtained. The flowchart of the
overall approach is shown in Figure 1.

It is observed that we can get less RMSE value when dividing into communities by without
division. At some times a constant RMSE value is maintained after a certain number of communities.
The time taken for computing the RMSE value is also low due to parallel computation.

Hence, we can say that the computational time and efficiency are better as compared to only using
the MF method. A combination of the MF method with community detection gives better results.
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Bipartite graph BG with edge weights denoting
user-item rating
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communities of BG using Louvain community
detection algorithm
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Combine Rq,R;,..., R. o get R. » RMSE

Figure 1. Community-based Matrix Factorization (CBMF) framework.
5. Time Complexity

In computer science and algorithm analysis, the definition of time complexity plays a vital role.
By quantifying time complexity, we can compare various methods for problem-solving and assess their
performance considering input sizes or limitations. This comparison facilitates algorithm selection and
leads us to discover more efficient solutions. Let us consider the time complexities of our different
matrix factorization methods (MF, SVD++, and FANMEF) in this section.

For the Matrix Factorization method, let a x b be a rating matrix of a users, b items, and k latent
features. The iterations are same for every method and are taken as constant. The time complexity
required for calculating the MF method is typically considered to be O(abk) [44]. The Louvain
community detection method takes O(aloga) time complexity, where 4 is the graph’s number of
nodes [45].

For a bipartite graph BG that contains users and items is taken as input for the louvain algorithm,
the total of users and items will equal the number of nodes in the graph. Here, in this case, (2 + b)
will be the nodes in the graph. Therefore, the time complexity of the louvain algorithm will be
O((a+b)log(a+Db)). A flow graph G is constructed from the bipartite graph and is divided into
appropriate community structures by using the louvain algorithm (say ci,c¢2, -+ ,¢:). From each
community, a small rating matrix will be obtained (say Ry, Ry, - - - , R¢). Apply MF time complexity
for each rating matrix and we get a time complexity of O(a1b1ky), O(axbsky), - -, O(acbck.), consider
the maximum of all these time complexities. Suppose R, community rating matrix has the maximum
value and the time complexity is O (a,bykp).

Hence, the overall time complexity for the MF method using the louvain community detection
method is O((a +b)log (a + b)) + O(apbyky).
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Similarly for SVD++ and FANMF methods, the time complexity is O(abk). Therefore the total
time complexity that is required for the calculation of SVD++, and FANMF methods will be O((a +
b)log (a+b)) + O(apbpkp).

6. Dataset Statistics

To process our analysis, we have taken different datasets from different domains. Datasets namely
Movie Lens-100K, Film Trust, Jester, Good Books, Wikilens, and Cell Phone Recommendation are
taken. The dataset statistics of all these datasets are shown in Table 1.

Table 1. Dataset statistics for six different datasets namely Movie Lens-100K, Film Trust, Jester, Wikilens,
Good Books, and Cell Phone Recommendation datasets.

Dataset Number Number Number  Rating Average  Sparsity
of of of Range Rating
Users Items Ratings
Movie Lens-100K 943 1682 100000 1-5 3.529 0.937
Film Trust 1508 2071 35494 0.5-4 3.002 0.988
Jester 31958 140 1048575 -10- +10 0.955 0.839
Wikilens 326 5111 26936 0.5-5 3.468 0.983
Good Books 13123 7774 1048575 1-5 3.806 0.989
Cell Phone 99 33 990 1-10 6.689 0.708
Recommendation

All of these dataset’s distribution plots are displayed in Figure 2. The plots are drawn by taking
the ratings, the X-axis represents users, while the Y-axis represents the count of each rating provided
by those users. In the dataset movie lens-100K, the users are the people and the items are the movies
in the dataset. The rating distribution is from 1 to 5 where the people have rated movies. It is observed
in the plot that 34174 of the users had given a higher rating of four for the movies and a low rating of
one is given by 6110 the users out of 100000 ratings. For the dataset film trust, the users are the people
and the items are the films having a rating distribution from 0.5 to 4 where the people have rated films.
It is observed in the plot that 9170 users had given a rating of five for films and a low rating of 0.5
is given by the users 1060 out of 35494 ratings. In the dataset jester, the users are the people and the
items are jokes having a rating distribution from —10 to 410 where the people have rated the jokes. It
is observed that there are above 4000 users who have rated 410 in the dataset out of 1048575 ratings.

The wikilens dataset is shown in Figure 2 where the users are the people and the items are the
wikipedia articles. The rating distribution is given from 0.5 to 5, where the users rated the items in
wikipedia. From the plot, it is observed that a higher rating of four is given by 5721 users, and a low
rating of 1.5 is given by 730 users out of 26936 ratings. In the dataset, good books people are the users,
and the items are the books having a rating distribution from 1 to 5. The rating is given by the users on
different books. From the plot, we can observe that 376467 of the users have given a higher rating of
four for the books, and a low rating of one is given by 24676 users out of 1048575 ratings. For the cell
phone recommendation dataset, the users are the people and the items are the cell phone id’s having a
rating distribution from 1 to 10. The ratings are given by people on different cell phone id’s. From the
plot, it is observed that a higher rating of eight is given by 196 users, and a low rating of three is given
by 30 users out of 990 ratings.

In community detection algorithms, modularity plays a significant impact in determining the
standard of the communities that are formed. Girvan and Neuman introduced the modularity measure
to assess the standards of the communities that are formed and defined modularity as

1 kik;
G=5- (IZ]) [Aij - zlmf} 8 (ci,c)) (10)
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where m is the total number of edges in the graph, A;; is the edge weight between the nodes i and j, k;
and k; are the degree of nodes i and j respectively, c;, ¢; are the communities to which nodes i and j
belongs and, d(c;, ¢j) is the Kronecker delta function which is equal to 1 if ¢; = ¢; and 0 otherwise. The

term [A;; — ];’—:j] represents the difference between the observed number of edges between the nodes i
and j and the expected number of edges under a null model where edges are placed at random. The
values of modularity(G) varies between —1 to +1.
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Figure 2. Rating plots distribution for six different datasets namely Movie Lens-100K, Film Trust, Jester,
Wikilens, Good Books, and Cell Phone Recommendation

Figure 3 shows the modularity score that is obtained from six different datasets namely Movie
Lens-100K, Film Trust, Jester, Wikilens, Good Books, and Cell Phone Recommendation for Louvain
algorithm. It is observed from all the datasets that, the modularity score is increasing as the
communities are increased and maintained constant after a certain number of communities. The
highest modularity score is maintained by the wikilens dataset, and the lowest modularity score is
given by the movie lens-100K dataset. The time taken for calculating the modularity score is shown in
Table 2.
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Figure 3. Modularity performance for six different datasets namely Movie Lens-100K, Film Trust, Jester,
Wikilens, Good Books, and Cell Phone Recommendation for the Louvain algorithm.
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Table 2. Time taken (in seconds) to calculate dividing community modularity score for six different
datasets namely Movie Lens-100K, Film Trust, Jester, Wikilens, Good Books, and Cell Phone
Recommendation datasets.

Dataset Time (in sec)
Movie Lens-100K 1473.21

Film Trust 936.00

Jester 11714.99
Wikilens 1068.41
Good Books 43125.11
Cell Phone 15.58
Recommendation

7. Result Analysis

This section presents a series of experiments designed to demonstrate the validity of the hypothesis
proposed in the paper. Using the Louvain community detection algorithm, three different matrix
factorization methods (MF, SVD++, and FANMF) are employed to predict the missing entries in the
rating matrix across six distinct datasets as shown in Table 1.

The computation of the root mean square error (RMSE) involves varying the number of latent
features at values of k = 2,10,20, 30,50. Considering the random nature of the Louvain algorithm,
each MF method is iterated for 25 communities and 25 iterations. The evaluation of different patterns
in RMSE values, along with the total time taken to assess the MF method for six datasets is presented.
The resulting graph depicts the relationship between the number of communities on the X-axis and
the corresponding RMSE value on the Y-axis. Given that the cell phone recommendation dataset
comprises only 99 users and 33 items, the value of k should be the minimum of number of users and
items. Therefore, the iteration for k is limited to 30.

Figure 4 illustrates the variation in RMSE values across six distinct datasets when employing the
MF method with different k values on a set of 25 communities. A notable observation from the graph is
that, in all datasets, the absence of the Louvain algorithm results in the highest RMSE value when ¢ = 1.
However, as the number of communities increases through the utilization of the Louvain algorithm
ie,c=2,3,---,25, adecline in the RMSE value is observed. Notably, the movie lens-100K, good
books, and cell phone recommendation datasets exhibit an increase in the RMSE value with higher
k values. Conversely, in the film trust and jester datasets, the RMSE value stabilizes after reaching a
certain number of communities, regardless of the k value. Furthermore, in the wikilens dataset, there
exhibit a constant relationship between the RMSE value for different communities as well as the k
values. Overall, it is evident that the MF method consistently yields better RMSE values with lower k
values across all datasets.

Figure 5 displays the computational time required to execute the MF method on six distinct
datasets, employing different k values across a set of 25 communities. Across all datasets, a noticeable
observation is that the computation time for the MF method, without the utilization of community
division, exceeds that of the method with community division. As the number of communities
increases, a reduction in computational time is observed. Interestingly, the evaluation time of the
method remains constant as the number of communities expands, regardless of the specific k values
employed.
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Figure 4. RMSE plots using MF method for six different datasets namely Movie Lens-100K, Film Trust,
Jester, Wikilens, Good Books, and Cell Phone Recommendation with 25 communities and different k
values.
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Figure 5. Time taken to calculate MF method for six different datasets namely Movie Lens-100K, Film
Trust, Jester, Wikilens, Good Books, and Cell Phone Recommendation with 25 communities.

Figure 6 presents the RMSE values across six distinct datasets when employing the SVD++ method
with varying k values on a set of 25 communities. Notably, at ¢ = 1, a significantly high RMSE value is
observed across all datasets. However, as the communities are divided, a decline in the RMSE value is
observed, reaching a stable state after a certain number of communities. It is worth noting that in the
SVD++ method, subtle variations in the RMSE value can be observed for different k values across all
datasets.
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Figure 6. RMSE plots using SVD++ method for six different datasets namely Movie Lens-100K, Film
Trust, Jester, Wikilens, Good Books, and Cell Phone Recommendation with 25 communities.

Figure 7 displays the computational time required to execute the SVD++ method on six distinct
datasets, employing different k values across a set of 25 communities. Noteworthy observations can
be made across various datasets. In the movie lens-100K and good books datasets, an increase in
the number of communities leads to a decrease in the evaluation time of the method. The maximum
evaluation time is observed at c = 1. Conversely, in the jester dataset, the maximum time is taken to
evaluate the SVD++ method at c value 1, with slight fluctuations in time as the communities increase.
Furthermore, for the film trust, wikilens, and cell phone recommendation datasets, it is observed that
initially, evaluating the method without dividing into communities requires less time compared to
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the division into communities. However, after reaching a certain number of community divisions
(i.e., k = 18 for film trust and wikilens datasets), the evaluation time becomes less than that at the
time taken without community division and remains constant. Similarly, in the case of the cell phone
recommendation dataset, the evaluation time becomes less than that at ¢ value 1, and starting from c
value 7 constant time is maintained for evaluation.
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Figure 7. Time taken to calculate SVD++ method for six different datasets namely Movie Lens-100K,
Film Trust, Jester, Wikilens, Good Books, and Cell Phone Recommendation with 25 communities.

The obtained RMSE values from applying the FANMF method to six distinct datasets, using
different values of k across a set of 25 communities are illustrated in Figure 8. In all datasets, it is evident
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that increasing the k value results in a decrease in the RMSE, regardless of the specific communities.
Significantly, in the film trust, wikilens, and cell phone recommendation datasets, it is notable that the
RMSE values stabilize after a certain number of communities. This stability is observed across all k
values, indicating a consistent RMSE value. Moreover, across all datasets, it can be observed that a
higher number of latent features leads to lower RMSE values when employing the FANMF method.
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Figure 8. RMSE plots using FANMF method for six different datasets namely Movie Lens-100K, Film
Trust, Jester, Wikilens, Good Books, and Cell Phone Recommendation with 25 communities.

The computational time needed to run the FANMF method on six different datasets using various
k values over a set of 25 communities is shown in Figure 9. A notable observation across all datasets
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is that the computation time for the community 2 exceeds that of the community 1. However, after
reaching a certain number of communities, the computation time decreases compared to the c =1
community for the film trust, wikilens, and good books datasets. Conversely, for the movie lens-100K
and jester datasets, a constant computation time is maintained, which is higher than that of the c =1

community.

12 Movie Lens-100K 120 Film Trust
m . —e—k=2 af o0
-810' A - ¢ -k=10 100 SR —e—k
9 s 80
Iy
0
£ 61 60
)
£ 4 40
=
E 24 20
(o]

- 04 0
0 2 4 6 8 10121416 18 20 22 24 26 0 2 4 6 8 10121416 18 20 22 24 26
350

S0 Jester Wikilens
(] " 300
'g 401 N
o 250
o
» 301 200
£
=20/ ! 150
g ! —e— k=2
E 14 - e -k=10 100
E e k=20
5 —o- k=30 50
= --m-- k=50 0

0 2 4 6 810121416 18 20 22 24 26 0 2 4 6 81012141618 20 22 24 26

700

Gopd Books 0.404 Cell Phone Recommendation
kY

0.35
0.30
0.25
0.20
0.15
0.10
0.05
0 2 4 6 8 10121416 18 20 22 24 26 0 2 4 6 8 10121416 18 20 22 24 26
Number of communities Number of communities

Figure 9. Time taken to calculate FANMF method for six different datasets namely Movie Lens-100K,
Film Trust, Jester, Wikilens, Good Books, and Cell Phone Recommendation with 25 communities.
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8. Conclusions

In this study, we have delved into the realm of parallel computation. We proposed Community
based Matrix Factorization(CBMF), which parallelizes matrix factorization utilizing community
information. The experimental results obtained from our study provide compelling evidence of
the scalability and speedup attained through CBMEF, surpassing the performance of sequential
implementations. These findings underscore the immense potential of parallel computation in
effectively tackling the resources in the distributed environment. Looking ahead, the introduction
of our parallel computation framework unlocks fresh opportunities for the efficient processing
of large datasets. It empowers researchers and practitioners to extract valuable insights from
intricate networks. This framework serves as a stepping stone for future advancements in providing
accurate recommendations across diverse domains. It lays the foundation for future innovations and
break-through in the realm of data-driven solutions.
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Abbreviations

Abbreviations used in this paper are as follows:

BG Bipartite Graph

DMF Deep Matrix Factorization

FANMF Factorized Asymmetric Non-Negative Matrix Factorization

MF Matrix Factorization

NLP Natural Language Processing

NMF Non-Negative Matrix Factorization

PCSNMF  Pairwisely Constrained Nonnegative Symmetric Matrix Factorization

RMSE Root Mean Square Error

SVD++ Advanced Singular Value Decomposition
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