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Induced Electrostatic Fields in the Presence of
Conductors and Dielectrics: A Purely Laplace
Equation-Based Treatment

George Bjornsen

Department of Physics, University of California San Diego, La Jolla, CA 92093, USA; bjornsen1674@gmail.com

Abstract: This article studies electrostatic fields and potentials in the presence of conductors and
point charges under the framework of solving Laplace’s equation with specified boundary conditions.
The results demonstrate that many problems posed and solved in elementary electrostatics through
various heuristics such as the method of images, can be more rigorously treated under the solution
framework of Laplace’s equation.
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1. Introduction

Since the times when electricity was studied by rubbing objects like amber and pith [1], empirical
formulas have been proposed for the electric force created by a charge at a given distance. By the
18th century, several prominent mathematicians and natural scientists were already aware of the
inverse square dependence of the force, and in 1785, French physicist Charles—Augustin de Coulomb
published his famous papers [2,4] stating the law now commonly referred to as Coulomb’s law. In
modern terminology and notation, the law states that the electric field E produced at a point r due to a
stationary charge g placed at the origin, is given by

__ 1
E(r) = 47reqr? b

or due to a volume charge density p(r’') distributed over a set’ € 2 by

E(r) :/ S (r—r')dv'. 1)

7 4reg ||r — |

This formulation provided considerable mathematical advances in electrostatics, and mathematician
Carl Friedrich Gauss used Coulomb’s law to formulate the so-called Gauss’s law or Gauss’s flux
theorem [5,6], which states that the electric flux through a closed surface is proportional to the total
charge enclosed by the surface, or, equivalently in differential form, V - E = p/¢eg, where p is the
electrostatic charge density and V - A for a vector field A(r) = Ay(r)X + Ay, (r)§ + A;(r)2 is defined as

_0Ay | 0A, | 9A

VoA ax+ay+az

With Maxwell’s unification of electromagnetism [8], it was proved that Gauss’s law is more general
than Coulomb’s law, and continues to hold beyond electrostatics, even for time-varying fields and
charge distributions, and ultimately, from the point of view of modern quantum electrodynamics [10],
is a limitation on the degrees of freedom of the photon, the fundamental particle carrying the
electromagnetic field.

An electrostatic field satisfying Coulomb’s law (1) is known to be conservative, i.e., the line integral
of E from a point A to a point B depends only on the vector r4_,5 from A to B. Potential theory then
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tells us [12] that any such electrostatic field E can be expressed as E = —VV for some differentiable
scalar field V. Combining this with Gauss’s law yields the Poisson equation [14]

V2V = —p/eo.

If a region of space has no net charge density, Poisson’s equation reduces to V2V = 0, which is the
so-called Laplace’s equation [16] arising in diverse application areas such as fluid flow [18], gravitation,
electrodynamics [19], and general relativity and cosmology [20]. Due to the broad application and
richness of Laplace’s equation, it has spawned a new mathematical field of harmonic functions [21]. In
this work, we examine some solutions of Laplace’s equation with various boundary conditions in the
context of calculating electric fields and potentials produced by static charge distributions.

2. Laplace’s Equation and Electric Fields

We will solve Laplace’s equation V2V = 0 with various boundary conditions to determine the
electric potentials (and thereby, the electric fields) produced by various charge distributions and
conductors and dielectrics. Since the boundary conditions and charge distributions we will consider
will typically have some sort of spherical symmetry, it will be easier to solve Laplace’s equation in the
spherical polar coordinates rather than Cartesian coordinates. To facilitate the solution, we first state the
following lemma on the form of the Laplace operator in spherical polar coordinates.

Lemma 1. The Laplacian operator V% can be represented in spherical polar coordinates (r,0, $) as

19 (,9 1 0 0 1 0
219 (29 1 /. 0
V= 2o (r ar) t 2sn6 90 <5m939> t ran?e g2 @)
For completeness, we provide the proof of Lemma 1 in the Appendix.

Remark 1. Similar to Lemma 1, one can readily establish that the Laplacian operator V2 can be written in the
cylindrical coordinates (p, ¢, z) as

19 (9 192 &
2 = — R— —_— —_
V= 0o <p8p> TR e ®
We now establish the solution of Laplace’s equation in spherical coordinates with spherical
boundary conditions.

Proposition 1. Consider Laplace’s equation V>V = 0 with one or more boundary conditions of the form

V(ri,0,6) = fi(0), @
oV
o lrer, = 81 ®

]

for piecewise continuous functions { f; : [0, 71] — R}; and {g; : [0, 7t] — R};. Then, the solution, if it exists, is
of the form

(o)

V(r,6,¢) =) (Alrl + ﬁ) Py(cos®),

1=0

where the constants { A }72 ) and { By}, are determined by the functions {f;}; and {g;};, and the function
Py(-) is the I™ order Legendre polynomial given as [26]

B = o ().

~ 20ad
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In order to prove Proposition 1, we need 2 additional lemmas, whose proofs are omitted.

Lemma 2 ([22]). The solution to the Laplace equation V>V = 0 with boundary conditions V (rq,0,$) =
£(6, ) is uniquely determined by the function f and the radius ry (> 0). The solution to the Laplace equation
with boundary conditions oV /or|,—y, = g(0, $) is uniquely determined by the function g and the radius ro
(> 0), up to an additive constant.

Lemma 3 ([23]). Given any piecewise continuous function f(x) with finitely many discontinuities in the
interval [—1,1], consider the sequence of sums

ful®) = Y arPi(x),
1=0

where Pj(x) is the Legendre polynomial defined as

i
Pi(t) = %% (1)),

Then, we have
1

tim [ £~ F(x)2dx =0,

n—oo J_

provided we take

=271 fm)ax

Proof of Proposition 1. To solve Laplace’s equation with the stated boundary conditions, we will use
the so-called separation of variables method [25]. We note that the setting of Proposition 1 is similar to
that of Lemma 2, except that the functions f; and g; are now functions of 6 only; therefore, by Lemma 2,
if we can find a solution V (7,6, ¢) = V(r,0) matching the boundary conditions, then that would be
the unique solution, at most up to an additive constant. To this end, let us define a trial solution of
Laplace’s equation of the form V(r,0) = R(r)®(6), where R : R — Rand © : [0, 1] — R are twice
differentiable functions. Using (2), the Laplace equation then reduces to

©d/,., R d . .
i (r R (r)) + T 0 (sinf-@'()) =0,
or
1d (on LA o)) —
R dr (r R (r)) + o smpas S0 ©(0) =0. ©)

Now, Equation (6) has to hold for every (r,6) in the domain, therefore, we must have

1d /5., 1 d . p
~“ (2R - _ . . =K

Rar ("R = ~ggmgag (inf-@'0) = K

where K is a constant independent of the coordinates (7, §). Examining the 6 equation first, we obtain,
through a slight rearrangement,

% (sinf-©'(0)) + KO - sinf = 0.
Writing &(cos ) := ©(0) enables us to write @' (6) = —¢&’(cos ) sinf, and the equation therefore
reduces to

—% (Sin2 0¢&' (cos 9)) + K&(cos ) sin® = 0.
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Now, dividing throughout by sin 0, writing u := cos 6, and noting that
—ﬁ% (Sin2 0¢&' (cos 9)) = % (sin2 0@'(14)) = % ((1 - uz)gl(u)> ,
the 0 equation becomes, in terms of u := cos 6 as the independent variable,
(-0 () + Kg(w) =0 7)

Equation (7) is the Legendre equation [26] with K = I(I 4 1). For non-integer I € R, the solutions to
Legendre’s equation are power series with radius of convergenece smaller than 1. For the current
problem, however, the domain is u € [—1,1]. Therefore, the only possible solutions to (7) that would
make the trial solution valid, should be polynomials. Through the application of Sturm-Liouville
theory (see, for example, [23]), we can conclude that the solutions are indeed polynomials when [ is
a non-negative integer. Therefore, for the trial solution to be valid, we must have K = [(I + 1) for a
non-negative integer /, and the corresponding solution of the § equation becomes

©,(0) = Py(cosb) (8

up to a multiplicative constant. To tackle the r equation, writing (logr) := R(r) enables us to write
{'(logr) = rR'(r), and a change of independent variable to v := log r enables us to write the v equation
as

20 ) ~ 1+ 1) (2) =0,
and replacing r with e leads to
e (@ () 1+ 1)) =,
which simplifies to
{"(0) +'(0) =11+ 1)¢(v) = 0. ©)
From elementary calculus, Equation (9) has the general solution of the form
{(v) = A-exp(av) + A-exp(pv),

where « and B are solutions of the quadratic equation x? + x — (I + 1) = 0. We immediately obtain
a =1land B = —(I + 1), which yields the solution

{(0) = A-exp(10) + B-exp (~ (I +1)0),

and the solution to the r equation then becomes
B

Finally, noting that since the Laplace equation is linear, any linear combination of a set of valid solutions
will also be a solution, we come up with the largest set of soltuions that the trial solution enables us to
get, by combining (10) and (8):

[e)

V(r,6,¢) =) (Alrl + f#) Py(cos ). (11)

I=0
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Now, by uniqueness (Lemma 2), if we can find constants { A;, B;} matching the boundary conditions (4)
and/or (5), then (11) with the determined constants will be the unique solution to the problem. Let
us now focus on the boundary conditions (4). The result will similarly follow for the boundary
conditions (5). Since f; is a piecewise continuous function, by the completeness of Legendre
polynomials (Lemma 3), there exist constants {A;, B;} for which

fi(8) = i <Azr + fH) Py(cos9).

1=0 1
More specifically, we have, in this case,

By

)
A+
T

_ leil /O " £(6)Py(cos 8) sin 8 de. (12)

Note that at least 2 such boundary conditions are needed to uniquely determine the constants A;
and B,. For such consistent boundary conditions, (11) with the constants A; and B; determined by the
boundary conditions (12) is the unique solution to the Laplace equation. [

We will now directly use Proposition 1 to calculate electric potentials (and, thereby, electric
fields) rigorously for various electrostatics problems commonly posed in many textbooks (see, for
example, [19]).

2.1. Conducting Sphere in Uniform Electric Field

Consider a conducting sphere of radius a > 0 (with center at the origin) placed in a uniform
electric field Ey. Without loss of generality, let Eg = Eg2 = Eg cos 6% — Ejsin 00.1f a unique solution
exists in the region r > g, it must only be determined by the vector Ej, and therefore, V (r, 0, ¢) must
be independent of ¢. (This property is referred to as azimuthal symmetry.) We can then write a trial
solution as

B,
V(r,0,¢) = Z (Alr + l+1> Py(cos ),
=0
which yields
v =) <lA =1 U+ 1)31) Py(cos?).

1+2
or = r

Since the conductor is finite, the distortion caused by it to the electric field is local and therefore, as
r — oo, the electric field must approach Eg. We thus have lim,_, 0V /0r = —Ej cos 6, which is only
possible if A; = 0for[ > 2, and A; = —Ey. The solution then becomes

B B
V(r,0,¢) = Ao+ —0 + ( . Eor> cos 6 + Z l Pl (cos®) (13)

for some constants Ay, By, By, . ... Now, for a conductor, the electric field at the surface is purely along
the normal to the surface, and therefore, we have

W,
%r:u—

which, combining with (13), yields

By
(a —E0a> s1n9—|—sm92 l+1pl (cosf) =0
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for 6 € [0, 7t]. This is satisfied if By = Ega® and B; = 0 for I > 2, and the solution therefore becomes

3
V(r,0,¢) = Ao+ @ + ( r) Epcos 9,

which yields the electric field

E(r,0,¢) = —-VV

B E)VA 1 avé
- or r 89
a3 N
= < ( +1) Eocos()>i‘+<r3—l) E(sin 66
. may , Bo.
=E 73 (2(E )t — (Eo- 0)0) + =t
a e e By,
=E t3 5 (2(Eo - 1)t — [Eo — (Eo - £)%]) + ot
_ 3 R By,
=Ep+ 73 (3(Eo 1)t —Eo) + 5%
3 B
(1 _ ‘;) Eo + (3” (Eo - £) + r§> ;. (14)
Note that (14) satisfies lim, o E(7,6,¢) = Eg, as required. However, the constant By is still

undetermined. It is a measure of the state of the conductor, as can be seen from the following.
From (14), we have

Ey(a,6,¢) = 3(Eo - £) + 20

22
B
=3Egcosf + —. (15)
a
Since the electric field inside a conductor is zero, we have that the surface charge density induced on

the sphere is given by (6, ¢) = €oEr(a,0, ) = 3e9Ey cos 0 + %. The total charge on the conductor is
then given by

Q=a / / o (6, ¢) sin 0dOd¢
= 47'[6030, (16)

which enables us to finally write the electric field in terms of the physical invariants of the system as

a3 343 Q
E=(1—-— |E Ej - ¢ f.
( > 0+< (o r)+47f€072)r

This essentially says that the total net charge on the conductor gets distributed in such a way as to
produce the same field (outside the conductor) as a point charge placed at the center. In particular, if
we place an uncharged conductor inside a uniform electrostatic field Eg, then the final electrostatic

field will be given by

3 3
E— (1 _ ”;) Eo+ oy 3 —(Eo- )i (17)

We finally note that this expression for the electric field is “coordinate free” in the sense that it is only a
function of the vector E( and the radius vector r at each point, the latter of which essentially encodes
the position of the sphere.
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Figure 1 illustrates the electric field lines on a vertical plane (i.e., containing the z axis) obtained
from the electric field in (17). As expected, far away from the sphere, the lines are vertical, while close
by, they are “distorted” by the presence of the conductor. We also note that the field lines always enter
and leave the sphere normally, and field abruptly drops to 0 as soon as we cross the boundary into
the conductor. Finally, the field lines are seen to be the densest around the poles of the conductor
(r = a,0 = 0, ), which can also be verified analytically from Equation (17). An analytical derivation
yields a maximum field strength of 3E,.

Figure 1. Electric field lines.

2.2. Conducting Sphere Near a Point Charge

Consider a conducting sphere of radius 2 > 0 (with center at the origin) placed near a point
charge g located at 792 with ry > a (see Figure 2). Since the conducting sphere is an equipotential,
let it be at potential Vj. The overall potential V(r,6,¢) for r > a can be written as V(r,0,¢) =
V,(r,0,¢) + V(r,6,¢), where V, is the potential due to the charge g and V satisfies Laplace equation
with appropriate boundary conditions.

o

Figure 2. Conducting sphere near a point charge.

To determine these boundary conditions, we note that the potential due to the charge g at a
point (a,6,¢) on the sphere (assuming the boundary conditions lim, . V (1,0, ¢) = 0) is given by
Coulomb’s law as

1
Vy(a,0,¢) = .

4rteg (r3 — 2rpacos 6 + az)l/z'

Therefore, V satisfies the boundary condition

V(a,0,¢) = Vo — —1 L

4reg (r3 — 2rga cos 6 + az)l/z

q 1
=Vy— . . 18
0 47'[601’0 > 1/2 ( )
<1— %COSG—F’:z)
0
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Writing a trial solution V as

[e9)

V(r6,0) =Y <Alr 4 il) Py(cos ),

I=0

we observe that since we have the boundary conditions lim; e V(r,0, ¢) =0, we must have A; =0
for all I > 0. To obtain the coefficients B; using (18), we need the following lemma.

Lemma 4 ([16]). The series

i Pl(x)tl

=0

1
converges absolutely for x € [—1,1] and t € (0,1), and

LR

1
T (—2x+ )

(19)

Remark 2. The expansion (19) is the basis for the so-called “multi-pole” expansion (see, for example, [29]).

Since we have | cos| < 1and a < rg, we can use Lemma 4 to rewrite (18) as

0 1
- B B q a
V(a,0,9) =V pr— 1;) <70) Py(cos )
I
- qa/ry o a? 1
=Vy— tres IX%) (7’0> e ——P;(cos9). (20)

Therefore, by the uniqueness theorem (Lemma 2), the coefficients { B, }; are given by

ga
By =aVy— 21
0=4av 4megry’ 1)
ga (a2\'
— - > 1.
B, = Treoro (7’0> forl >1 (22)

The general solution V is thus given by

2

-

r 47‘[601’0 = \1o

1
> TZ%PZ (cosB) (23)

for r > a. Equation (23) can be written in a more illuminating form as

0 1
V(r,@,(p) = % ‘711/7’0 Z <rro> Pl COSG)

r 47'ce0r
9aVo qa/ry 1
r Admegr 1/2
<1 C059+(,,O) )
aVo qa/ro 1

= - . . 24
r 4meq , 2 2\2 1/2 (24)
(r —2r - j-cost + (%) )
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The overall potential is then given by
V(r,6,9) = Vy(r,6,¢) + V(r,6,¢)
_ 9 1 _qa/ro. ! + 20 (25)

1/2 1/2
4meo (”2 — 2rrg cos b + ”%) e (1’2 —2r- % cosf + (ﬂz>2) r
1o ro

The potential (25) is the same as that produced by the charge g at z = rg, together with “virtual” charges
—qga/rgatz = a?/ry and 47egaVj at the center of the conducting sphere. This can also be obtained
through the so-called method of images as used in many treatments of this topic [19]. Equation (25) also
enables us to write the surface charge density on the sphere as

A%
o(0,¢) = —€0§|r:a

2
q r —1rgcost qa/ro r— % cos 6 aepVy
ar (a2 N3/2  Ax 2\ 3/2 r2
(r2 — 2rrg cos 6 + 13) (r2—2r-‘;zcosﬂ+ (%) >

r=a
_ 2 s0
- ( q a—rgcosf ) ga/rg a4 — 5, cos n eoVo
BT 3/2 | ' 3/2
4 (a% — 2argcos 6 + r3) 4 (a2 Ca % cosf 4 (,12>2> a
10 70
2
_ (4. a—rgcosf _ qr% . a— %COSG n eoVo
4m (a2 — 2arycos 6 + r%)3/2 47a? (a2 — 2arycos 6 + r3)3/2 a

_a% q  a*(rgcos@ —a) + arg(rg — acos)
a 47ta? (a2 — 2arg cos 6 + r%)g'/2

eV _ q r% — a2
o 4 3/2 | ° (26)
a T4 (a2 — 2argcos 0 + r3)

The charge density (26) can be integrated to obtain the total charge on the sphere as

Quot = a2 / / (6, ) sin 6dpd6

(12 —a?)
= 4megaVy — / 0 373 sin 0d0. (27)
— 2ary cos 6 + 13)
R 2 2\1/2
Writing u := (a® — 2argcos6 +13) '~ , we have
d
ud—g = arpsin6. (28)
We can then continue (27) as
2_ 2
a0 =) o 1
=4 Vo— —+—+~ —d
Qrot = 471€0aV) 270 e 12 u
= 4mreqaVy — ﬂ. (29)

ro

Equation (29) is often interpreted (see, for example, [19,29]) as the sum of the image charges — % and
47tegaVy.
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2.3. Uniform Dielectric Sphere in Uniform Electric Field

Consider a sphere of radius a > 0, made of a linear deielectric material of electric susceptibility
X (with center at the origin) placed in a uniform electric field Ey. Without loss of generality, let
Ey = Egz = Ej cos 0% — Egsin 0. We now wish to find the field both inside and outside the sphere. As
we shall see later (cf. Remark 4), this situation can be thought of as a generalization to the problem
studied in Section 2.1. As argued in Section 2.1, this problem exhibits azimuthal symmetry since the
boundary conditions are independent of ¢. We can then write trial solutions for the potentials inside
and outside the sphere as

) oo . Bin
LD (A;“rl + ,l.h) Pi(cos0), (30)
t - tl B?ut
Veul(r,6,¢) = go AP+ g | Pilcos0), (31)

We will now discuss the boundary conditions to this problems, which are what will turn out to cause
the crucial differences in the solutions for this case. First, as argued in Section 2.1, the electric field
must approach Eg as r — oo, and we therefore conclude that A;’“t =0forl > 2,and A‘f“t = —E,.
Further, since the field inside the sphere is finite, V'™ must have finite derivatives as r — 0, and (30)
then leads us to conclude that B}n = 0 for all /. Equation (30) and (31) then enable us to write down a
global trial solution as

Yiso A}nrlPl(cos 6), r<a,
Boout B?Ut

. Bout
A8“t LB ( S Eor) cosf+Y°, r{ﬁPl(cos 0), r>a.

r

V(r,0,¢) = (32)

By the continuity of V' at the surface of the dielectric, the two expressions in (32) must match at r = a.
Rearrangement leads to

out B 8ut in B <1)ut in - B ;)ut in I
AO +7_A0 + aT_an_ 1ﬂ COSQ“‘Z ul+1 _Al a PZ(COSQ):O (33)
1=2

Using the completeness of Legendre polynomials (Lemma 3) and noting that P;(cosf) = cos®,
Equation (33) enables us to write

Bout .
AR+ = = AT =V, (34)
. Bout
lln = ﬂ13 — Eo, (35)
) ;)ut
in _

Finally, we come to the behavior of the electric field at the surface of the dielectric, which will yield
additional boundary conditions and will be determined by the properties of the dielectric. The surface
density of bound charges on the dielectric can be written as

in out
A% aV } ' (37)
r=a

o (6, ¢) ZGO[ or  or
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This bound charge density, however, is also given by the radial component of the polarization vector
P,ie., c(6,¢) = [P-1],_,. Finally, since the material is a linear dielectric, we have P(r) = xeoE(r) for
||lr|| < a. We therefore have

avin
U(qu)) = —X€o- or |r:a~ (38)

Equations (37) and (38) enable us to write

aVin gyout

{(1 +x) ¥ " o La =0. (39)
Using Lemma 3 again, the boundary condition (39) enables us to write
g g y

By"t =0, (40)

. 1 2B0ut

. 1 1 Bout
A?:_M I>92 (42)

1(1 —|—§)a21+1' -

For I > 2, (36) and (42) can simultaneously hold only if A‘f‘ = B{" = 0. Moreover, (35) and (41) enable
us to solve for B{"" as

Bout 1 ZBout
1 1
—Ey=——— Ep |,
a3 0 1+x < a3 + O)
ie.,
1
pout 3 (1 1+X) Eo X P
2 0
1+ 15 xX+3
This immediately yields
; 3
m
=———E
1 X+ 3 0
and we can finally write down the full solution (32) as
Vi Eorcos@, r<a,
V(0,4 = 0 5 ° (43)
Vo + ((m) = —r) Egcosf, r > a.

The potential (43) yields the electric field

E(r,0,¢) = —VV

aV,_ 19V,
T v

(%) Eo cos 0t — (x+3) Eg sin 69, r<a
- (1+(X+3§ )E0c0s9r+<(x+3) a’ 1)Eosm96 r>a.

The electric field inside can then be written as

: 3 A 3
m _ _ t — gl — _— E 44
E <X+3> Ey (cos 6t — sin 60) (X+3) 0, (44)
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which turns out to be uniform. The field outside can be written as
3
U =By + 2 (2 X ) (By- )2 — (-2~ ) (Bo-0)0
o+r3(<x+3(or)r X+3(0 )
_ e x e e
=E+ 3 P (2(Eg - #)t — [Eg — (Eo - )%])
R (3(Eqo - )& — Eo) (45)
T B \x+3 0 0
3 3
Xxa 3xa o) s
=({1—-————=)E — = (Ey- . 46
(1 i) oot (2 n) (46)

Figure 3 illustrates the electric field lines on a vertical plane (i.e., containing the z axis) obtained
from the electric field in (46) and (44). As expected, far away from the sphere, the lines are vertical,
while close by, they are “distorted” by the presence of the dielectric. We also note that there is a
discontinuity of the field at the boundary of the dielectric, but unlike Figure 1 in Section 2.1, the
field inside the dielectric is nonzero. Finally, the field lines are no longer orthogonal to the surface
of the dielectric; the field can have a tangential component and electrostatic conditions can still be
maintained.

Figure 3. Electric field lines.
Remark 3. We note that the field when an uncharged conductor is placed in a uniform electric field (cf. (17) in
Section 2.1) can also be written as
P
E=Ey+ 3 (3(Ep - #)t — Ep) . (47)

Both (47) and (45) can be compared to the field of a dipole p placed at the origin (see, for example, [19]):

_ 1
" 4megrd

Bp-t)t—p).
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This suggests that a sphere made of a conductor or a linear dielectric material placed in an uniform electrostatic
field acquires a dipole moment equal to

p = 471e0a’E,

diel. 3 X
=4 —— ) Eop.
P TTEQA (X T 3> 0

(48)

The polarization P is defined as dipole moment per unit volume, therefore this suggests that the spheres acquire
polarizations P"d = 3egEq and PYe! = 3(x/(x + 3))eoEo. The electric susceptibility x, therefore, can be
interpreted as a parameter quantifying the amount of “freedom of movement” of charges inside a metrial —in a
conductor they have perfect freedom of movement (i.e., ability to polarize), enabling complete cancellation of the
electric field, but in a dielectric sphere, the polarization is x / (x + 3) times relative to a conductor.

Remark 4. We note that all results in Section 2.1 follow from those in this section by taking x — oo. This
shows that in electrostatics, in many situations a conductor can be thought of as a dielectric within infinite
susceptibility. Taking this limit for (44) for the field inside the dielectric immediately recovers the result that the
field is zero inside the conductor.

Remark 5. Note that in this section, we tacitly assumed that the dielectric is uncharged when we equated (37)
and (38). The dielectric, in fact, could have a “free” surface charge density o¢(6, ¢) which would then have to be
taken into account at that step. However, because charges cannot move about freely in a dielectric, unlike in
a conductor, the complete charge density o¢(6, ¢) would have to be specified for this problem to have a unique
solution.

3. Discussion

The general setup described in this work can be used to find potentials and fields for a wide range
of charge distributions commonly used to demonstrate the “method of images” in electrostatics texts.
A popular and elementary problem setup not explored in this work is the infinite conducting plane near
a point charge g, which can be similarly solved, but in the cylindrical coordinates using (3). For a detailed
account of the history and development of Laplace’s equation and solution techniques in the context
of electrostatics, we refer the reader to [1].

Appendix A. Proofs

Proof of Lemma 1. We first establish some preliminary results that will make the proof considerably
easier. The relations between Cartesian and spherical polar coordinates can be written [31] as

x =rsinfcos¢
(r,0,¢) — (x,y,2z) :qy =rsinfsing (A1)
z =rcosf

and
ro=Vx2+y?+ 22

(x,y,2z) — (r,0,¢):< 0 =acos <\/m> (A2)
¢ =atan2(y,x),
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where atan2(y, x) is the four-quadrant inverse tangent defined as the real number A satisfying cos A =
x/+/x2+y? and sin A = y/+/x2 + y2. Treating the spherical unit vectors %, 8 and ¢ as functions of
(r,0,¢), we can then write

. T
P=-
r
XX+ yy+x2
N r
= sin 6 cos ¢X + sin 6 sin ¢y + cos 62, (A3)
oF
§— 00
‘@
6
= cos 0 cos pX + cos 0 sin ¢y — sin 02, (A4)
and
p=1x0

= —sin X + cos ¢y. (A5)
Equations (A3)—-(A5) can be easily inverted to yield

% = sin 6 cos i + cos 0 cos PO — sin ¢,
sin 0 sin ¢t + cos 6 sin pO + cos P,

2 = cos 0t — sin 60,

<>
|

or, more compactly,

b'e sin @ cos ¢ cos 0 cos ¢ —sing| | t
y| = |sinfsin¢ cos 0 sin ¢ cos ¢ 0
2 cos 0 —sin@ 0 ¢
f
=: M(r,0,¢)- | (A6)
¢

One can verify that the matrix M is orthogonal, i.e., M~! = M. Finally, the infinitesimal line element
can be written in spherical spherical polar coordinates as

dr = d(rt)
. ot ot
=dri+ rﬁde + r$d¢>
@ drt + rdod + rsin 0dpp, (A7)

where (a) follows from Equations (A3)—-(A5). This also leads us to conclude immediately, that the
infinitesimal volume element (since , 8, and ¢ are orthonormal) is given by

d¥ =r*sin@-dr-do - dg.
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Now, with these preliminaries established, let f be a differentiable scalar field. We have
of of of
af = 3 dr+aed9+ (Pd(p. (A8)

Now, writing Vf = ¢ (r,0,¢)¢ + ¢ (r,6,$)0 + ¢'?) (1,6, ¢)d and using the gradient theorem [12]
df = Vf -dr, (A7) and (A8), we have

f of 19, 9f
") (r,6,¢)dr + (rg (r,6, 4))) a6 + (rsmG g (r,0, cp)) d¢ = d + 89d9+ ¢d¢>

This implies that

of  1dfs 1 of
Vi= 5t 300 remaag

é. (A9)

Equation (A9) also implies that

X iy
) e} ) ~ _ |9 10 1 9 a
ER I =T L
z ¢
or in other words,
af of
g 1875f
of 1 9of
oz rsinf 9¢
We can write (A10) as the three scalar equations
of _of 1of 1o
5% = oy sin 6 cos ¢ + pey, cos 0 cos ¢ rsind o¢ sin ¢, (A11)
of _ of . . 19f of
By~ or sin  sin ¢ + Py cos 0 sin ¢+rsm98<pcos¢’ (A12)
of Bf 10f
5 = 3 C 0sf — — 30 sin 6. (A13)
Now, let A be a differentiable vector field. We have
X
A= [Ax Ay AZ} 9
2

—

@) [Ax Ay AZ] ‘M.

<> @

= [Ar Ag A¢]

D> @ =

which leads to
[Ax Ay Az]:[Ar A A(P]«M_l,
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or, since M is orthogonal,
Ay Ay
Ayl =M- | Ag| - (A14)
A, Agp
We can write (A14) as the three scalar equations
Ay = Aysinfcos¢ + Agcostcosp — Ay sing, (A15)
Ay = A;sinfsing + Agcossing + Ay cos ¢, (Ale6)
A; = Arcosf — Agsiné. (A17)
Using eqns (A11)—(A13) and (A15)—(A17), collecting terms, and simplifying, we obtain
_ 0Ay | 0Ay  0A;
VA=t oy Tz
T 2or (r Ar) teing rsin 6 90 (sin82g) + 7sin 6 (84) ’ (AL8)
Combining (A9) and (A18), we can then write, for a twice differentiable scalar field f,
Vif =V (Vf)
g (3, 10F5 1 O,
=V (a 260 T rsinoap?
@19 (,df 1 9 (. 1df 1 0 1 of
T 2or ( aor ) T rsin6 90 sinf7 790 ) " rsing 9¢ \ rsinf o
10 [,0f 1 of 1 9?f
_7’28< 8r) T 2sing a0 (Smeae>+rzsm 29 9¢2’ (AL9)

where (a) follows from (A18), by using A, <+ of /dr, Ag <+ (1/1)df /08, Ay <+ (1/rsinB)of /0¢.
Equation (A19) establishes the result. [
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