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Article

Induced Electrostatic Fields in the Presence of
Conductors and Dielectrics: A Purely Laplace
Equation-Based Treatment

George Bjornsen

Department of Physics, University of California San Diego, La Jolla, CA 92093, USA; bjornsen1674@gmail.com

Abstract: This article studies electrostatic fields and potentials in the presence of conductors and

point charges under the framework of solving Laplace’s equation with specified boundary conditions.

The results demonstrate that many problems posed and solved in elementary electrostatics through

various heuristics such as the method of images, can be more rigorously treated under the solution

framework of Laplace’s equation.
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1. Introduction

Since the times when electricity was studied by rubbing objects like amber and pith [1], empirical

formulas have been proposed for the electric force created by a charge at a given distance. By the

18th century, several prominent mathematicians and natural scientists were already aware of the

inverse square dependence of the force, and in 1785, French physicist Charles–Augustin de Coulomb

published his famous papers [2,4] stating the law now commonly referred to as Coulomb’s law. In

modern terminology and notation, the law states that the electric field E produced at a point r due to a

stationary charge q placed at the origin, is given by

E(r) =
q

4πǫ0r2
r̂,

or due to a volume charge density ρ(r′) distributed over a set r′ ∈ D by

E(r) =
∫

D

ρ

4πǫ0 ‖r − r′‖3

(

r − r′
)

dV
′. (1)

This formulation provided considerable mathematical advances in electrostatics, and mathematician

Carl Friedrich Gauss used Coulomb’s law to formulate the so-called Gauss’s law or Gauss’s flux

theorem [5,6], which states that the electric flux through a closed surface is proportional to the total

charge enclosed by the surface, or, equivalently in differential form, ∇ · E = ρ/ǫ0, where ρ is the

electrostatic charge density and ∇ · A for a vector field A(r) ≡ Ax(r)x̂ + Ay(r)ŷ + Az(r)ẑ is defined as

∇ · A :=
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z
.

With Maxwell’s unification of electromagnetism [8], it was proved that Gauss’s law is more general

than Coulomb’s law, and continues to hold beyond electrostatics, even for time-varying fields and

charge distributions, and ultimately, from the point of view of modern quantum electrodynamics [10],

is a limitation on the degrees of freedom of the photon, the fundamental particle carrying the

electromagnetic field.

An electrostatic field satisfying Coulomb’s law (1) is known to be conservative, i.e., the line integral

of E from a point A to a point B depends only on the vector rA→B from A to B. Potential theory then
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tells us [12] that any such electrostatic field E can be expressed as E = −∇V for some differentiable

scalar field V. Combining this with Gauss’s law yields the Poisson equation [14]

∇2V = −ρ/ǫ0.

If a region of space has no net charge density, Poisson’s equation reduces to ∇2V = 0, which is the

so-called Laplace’s equation [16] arising in diverse application areas such as fluid flow [18], gravitation,

electrodynamics [19], and general relativity and cosmology [20]. Due to the broad application and

richness of Laplace’s equation, it has spawned a new mathematical field of harmonic functions [21]. In

this work, we examine some solutions of Laplace’s equation with various boundary conditions in the

context of calculating electric fields and potentials produced by static charge distributions.

2. Laplace’s Equation and Electric Fields

We will solve Laplace’s equation ∇2V = 0 with various boundary conditions to determine the

electric potentials (and thereby, the electric fields) produced by various charge distributions and

conductors and dielectrics. Since the boundary conditions and charge distributions we will consider

will typically have some sort of spherical symmetry, it will be easier to solve Laplace’s equation in the

spherical polar coordinates rather than Cartesian coordinates. To facilitate the solution, we first state the

following lemma on the form of the Laplace operator in spherical polar coordinates.

Lemma 1. The Laplacian operator ∇2 can be represented in spherical polar coordinates (r, θ, φ) as

∇2 ≡ 1

r2

∂

∂r

(

r2 ∂

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

r2 sin2 θ

∂2

∂φ2
. (2)

For completeness, we provide the proof of Lemma 1 in the Appendix.

Remark 1. Similar to Lemma 1, one can readily establish that the Laplacian operator ∇2 can be written in the

cylindrical coordinates (ρ, φ, z) as

∇2 ≡ 1

ρ

∂

∂ρ

(

ρ
∂

∂ρ

)

+
1

ρ2

∂2

∂φ2
+

∂2

∂z2
. (3)

We now establish the solution of Laplace’s equation in spherical coordinates with spherical

boundary conditions.

Proposition 1. Consider Laplace’s equation ∇2V = 0 with one or more boundary conditions of the form

V(ri, θ, φ) ≡ fi(θ), (4)

∂V

∂r

∣

∣

∣

r=rj

≡ gj(θ), (5)

for piecewise continuous functions { fi : [0, π] → R}i and {gj : [0, π] → R}j. Then, the solution, if it exists, is

of the form

V(r, θ, φ) =
∞

∑
l=0

(

Alr
l +

Bl

rl+1

)

Pl(cos θ),

where the constants {Al}∞
l=0 and {Bl}∞

l=0 are determined by the functions { fi}i and {gj}j, and the function

Pl(·) is the lth order Legendre polynomial given as [26]

Pl(t) =
1

2l l!

dl

dtl

(

(t2 − 1)l
)

.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2023                   doi:10.20944/preprints202308.0515.v1

https://doi.org/10.20944/preprints202308.0515.v1


3 of 17

In order to prove Proposition 1, we need 2 additional lemmas, whose proofs are omitted.

Lemma 2 ([22]). The solution to the Laplace equation ∇2V = 0 with boundary conditions V(r0, θ, φ) =

f (θ, φ) is uniquely determined by the function f and the radius r0 (> 0). The solution to the Laplace equation

with boundary conditions ∂V/∂r|r=r0 = g(θ, φ) is uniquely determined by the function g and the radius r0

(> 0), up to an additive constant.

Lemma 3 ([23]). Given any piecewise continuous function f (x) with finitely many discontinuities in the

interval [−1, 1], consider the sequence of sums

fn(x) =
n

∑
l=0

al Pl(x),

where Pl(x) is the Legendre polynomial defined as

Pl(t) =
1

2l l!

dl

dtl

(

(t2 − 1)l
)

.

Then, we have

lim
n→∞

∫ 1

−1
| fn(x)− f (x)|2 dx = 0,

provided we take

al =
2l + 1

2

∫ 1

−1
f (x)Pl(x) dx.

Proof of Proposition 1. To solve Laplace’s equation with the stated boundary conditions, we will use

the so-called separation of variables method [25]. We note that the setting of Proposition 1 is similar to

that of Lemma 2, except that the functions fi and gj are now functions of θ only; therefore, by Lemma 2,

if we can find a solution V(r, θ, φ) ≡ V(r, θ) matching the boundary conditions, then that would be

the unique solution, at most up to an additive constant. To this end, let us define a trial solution of

Laplace’s equation of the form V(r, θ) ≡ R(r)Θ(θ), where R : R+ → R and Θ : [0, π] → R are twice

differentiable functions. Using (2), the Laplace equation then reduces to

Θ

r2

d

dr

(

r2R′(r)
)

+
R

r2 sin θ

d

dθ

(

sin θ · Θ′(θ)
)

= 0,

or

1

R

d

dr

(

r2R′(r)
)

+
1

Θ · sin θ

d

dθ

(

sin θ · Θ′(θ)
)

= 0. (6)

Now, Equation (6) has to hold for every (r, θ) in the domain, therefore, we must have

1

R

d

dr

(

r2R′(r)
)

= − 1

Θ · sin θ

d

dθ

(

sin θ · Θ′(θ)
)

= K,

where K is a constant independent of the coordinates (r, θ). Examining the θ equation first, we obtain,

through a slight rearrangement,

d

dθ

(

sin θ · Θ′(θ)
)

+ KΘ · sin θ = 0.

Writing ξ(cos θ) := Θ(θ) enables us to write Θ′(θ) = −ξ ′(cos θ) sin θ, and the equation therefore

reduces to

− d

dθ

(

sin2 θξ ′(cos θ)
)

+ Kξ(cos θ) sin θ = 0.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 August 2023                   doi:10.20944/preprints202308.0515.v1

https://doi.org/10.20944/preprints202308.0515.v1


4 of 17

Now, dividing throughout by sin θ, writing u := cos θ, and noting that

− 1

sin θ

d

dθ

(

sin2 θξ ′(cos θ)
)

=
d

du

(

sin2 θξ ′(u)
)

=
d

du

(

(1 − u2)ξ ′(u)
)

,

the θ equation becomes, in terms of u := cos θ as the independent variable,

d

du

(

(1 − u2)θξ ′(u)
)

+ Kξ(u) = 0. (7)

Equation (7) is the Legendre equation [26] with K = l(l + 1). For non-integer l ∈ R, the solutions to

Legendre’s equation are power series with radius of convergenece smaller than 1. For the current

problem, however, the domain is u ∈ [−1, 1]. Therefore, the only possible solutions to (7) that would

make the trial solution valid, should be polynomials. Through the application of Sturm–Liouville

theory (see, for example, [23]), we can conclude that the solutions are indeed polynomials when l is

a non-negative integer. Therefore, for the trial solution to be valid, we must have K = l(l + 1) for a

non-negative integer l, and the corresponding solution of the θ equation becomes

Θl(θ) = Pl(cos θ) (8)

up to a multiplicative constant. To tackle the r equation, writing ζ(log r) := R(r) enables us to write

ζ ′(log r) = rR′(r), and a change of independent variable to v := log r enables us to write the v equation

as
d

dr

(

rζ ′(v)
)

− l(l + 1)ζ(v) = 0,

and replacing r with ev leads to

e−v d

dv

(

evζ ′(v)
)

− l(l + 1)ζ(v) = 0,

which simplifies to

ζ ′′(v) + ζ ′(v)− l(l + 1)ζ(v) = 0. (9)

From elementary calculus, Equation (9) has the general solution of the form

ζ(v) = A · exp(αv) + A · exp(βv),

where α and β are solutions of the quadratic equation x2 + x − l(l + 1) = 0. We immediately obtain

α = l and β = −(l + 1), which yields the solution

ζ(v) = A · exp(lv) + B · exp (−(l + 1)v) ,

and the solution to the r equation then becomes

Rl(r) = Alr
l +

Bl

rl+1
. (10)

Finally, noting that since the Laplace equation is linear, any linear combination of a set of valid solutions

will also be a solution, we come up with the largest set of soltuions that the trial solution enables us to

get, by combining (10) and (8):

V(r, θ, φ) =
∞

∑
l=0

(

Alr
l +

Bl

rl+1

)

Pl(cos θ). (11)
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Now, by uniqueness (Lemma 2), if we can find constants {Al , Bl} matching the boundary conditions (4)

and/or (5), then (11) with the determined constants will be the unique solution to the problem. Let

us now focus on the boundary conditions (4). The result will similarly follow for the boundary

conditions (5). Since fi is a piecewise continuous function, by the completeness of Legendre

polynomials (Lemma 3), there exist constants {Al , Bl} for which

fi(θ) =
∞

∑
l=0

(

Alr
l
i +

Bl

rl+1
i

)

Pl(cos θ).

More specifically, we have, in this case,

Alr
l
i +

Bl

rl+1
i

=
2l + 1

2

∫ π

0
fi(θ)Pl(cos θ) sin θ dθ. (12)

Note that at least 2 such boundary conditions are needed to uniquely determine the constants Al

and Bl . For such consistent boundary conditions, (11) with the constants Al and Bl determined by the

boundary conditions (12) is the unique solution to the Laplace equation.

We will now directly use Proposition 1 to calculate electric potentials (and, thereby, electric

fields) rigorously for various electrostatics problems commonly posed in many textbooks (see, for

example, [19]).

2.1. Conducting Sphere in Uniform Electric Field

Consider a conducting sphere of radius a > 0 (with center at the origin) placed in a uniform

electric field E0. Without loss of generality, let E0 = E0ẑ = E0 cos θr̂ − E0 sin θθ̂. If a unique solution

exists in the region r > a, it must only be determined by the vector E0, and therefore, V(r, θ, φ) must

be independent of φ. (This property is referred to as azimuthal symmetry.) We can then write a trial

solution as

V(r, θ, φ) =
∞

∑
l=0

(

Alr
l +

Bl

rl+1

)

Pl(cos θ),

which yields
∂V

∂r
=

∞

∑
l=0

(

lAlr
l−1 − (l + 1)Bl

rl+2

)

Pl(cos θ).

Since the conductor is finite, the distortion caused by it to the electric field is local and therefore, as

r → ∞, the electric field must approach E0. We thus have limr→∞ ∂V/∂r = −E0 cos θ, which is only

possible if Al = 0 for l ≥ 2, and A1 = −E0. The solution then becomes

V(r, θ, φ) = A0 +
B0

r
+

(

B1

r2
− E0r

)

cos θ +
∞

∑
l=2

Bl

rl+1
Pl(cos θ) (13)

for some constants A0, B0, B1, . . . . Now, for a conductor, the electric field at the surface is purely along

the normal to the surface, and therefore, we have

∂V

∂θ
|r=a = 0,

which, combining with (13), yields

(

B1

a2
− E0a

)

sin θ + sin θ
∞

∑
l=2

Bl

al+1
P′

l (cos θ) = 0
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for θ ∈ [0, π]. This is satisfied if B1 = E0a3 and Bl = 0 for l ≥ 2, and the solution therefore becomes

V(r, θ, φ) = A0 +
B0

r
+

(

a3

r2
− r

)

E0 cos θ,

which yields the electric field

E(r, θ, φ) = −∇V

= −∂V

∂r
r̂ − 1

r

∂V

∂θ
θ̂

=

(

B0

r2
+

(

2a3

r3
+ 1

)

E0 cos θ

)

r̂ +

(

a3

r3
− 1

)

E0 sin θθ̂

= E0 +
a3

r3

(

2(E0 · r̂)r̂ − (E0 · θ̂)θ̂
)

+
B0

r2
r̂

= E0 +
a3

r3
(2(E0 · r̂)r̂ − [E0 − (E0 · r̂)r̂]) +

B0

r2
r̂

= E0 +
a3

r3
(3(E0 · r̂)r̂ − E0) +

B0

r2
r̂

=

(

1 − a3

r3

)

E0 +

(

3a3

r3
(E0 · r̂) +

B0

r2

)

r̂. (14)

Note that (14) satisfies limr→∞ E(r, θ, φ) = E0, as required. However, the constant B0 is still

undetermined. It is a measure of the state of the conductor, as can be seen from the following.

From (14), we have

Er(a, θ, φ) = 3(E0 · r̂) +
B0

a2

= 3E0 cos θ +
B0

a2
. (15)

Since the electric field inside a conductor is zero, we have that the surface charge density induced on

the sphere is given by σ(θ, φ) = ǫ0Er(a, θ, φ) = 3ǫ0E0 cos θ + ǫ0B0

a2 . The total charge on the conductor is

then given by

Q = a2
∫ π

0

∫ 2π

0
σ(θ, φ) sin θdθdφ

= 4πǫ0B0, (16)

which enables us to finally write the electric field in terms of the physical invariants of the system as

E =

(

1 − a3

r3

)

E0 +

(

3a3

r3
(E0 · r̂) +

Q

4πǫ0r2

)

r̂.

This essentially says that the total net charge on the conductor gets distributed in such a way as to

produce the same field (outside the conductor) as a point charge placed at the center. In particular, if

we place an uncharged conductor inside a uniform electrostatic field E0, then the final electrostatic

field will be given by

E =

(

1 − a3

r3

)

E0 +
3a3

r3
(E0 · r̂)r̂. (17)

We finally note that this expression for the electric field is “coordinate free” in the sense that it is only a

function of the vector E0 and the radius vector r at each point, the latter of which essentially encodes

the position of the sphere.
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Figure 1 illustrates the electric field lines on a vertical plane (i.e., containing the z axis) obtained

from the electric field in (17). As expected, far away from the sphere, the lines are vertical, while close

by, they are “distorted” by the presence of the conductor. We also note that the field lines always enter

and leave the sphere normally, and field abruptly drops to 0 as soon as we cross the boundary into

the conductor. Finally, the field lines are seen to be the densest around the poles of the conductor

(r = a, θ = 0, π), which can also be verified analytically from Equation (17). An analytical derivation

yields a maximum field strength of 3E0.

Figure 1. Electric field lines.

2.2. Conducting Sphere Near a Point Charge

Consider a conducting sphere of radius a > 0 (with center at the origin) placed near a point

charge q located at r0ẑ with r0 > a (see Figure 2). Since the conducting sphere is an equipotential,

let it be at potential V0. The overall potential V(r, θ, φ) for r > a can be written as V(r, θ, φ) =

Vq(r, θ, φ) + Ṽ(r, θ, φ), where Vq is the potential due to the charge q and Ṽ satisfies Laplace equation

with appropriate boundary conditions.

Figure 2. Conducting sphere near a point charge.

To determine these boundary conditions, we note that the potential due to the charge q at a

point (a, θ, φ) on the sphere (assuming the boundary conditions limr→∞ V(r, θ, φ) = 0) is given by

Coulomb’s law as

Vq(a, θ, φ) =
q

4πǫ0
· 1
(

r2
0 − 2r0a cos θ + a2

)1/2
.

Therefore, Ṽ satisfies the boundary condition

Ṽ(a, θ, φ) = V0 −
q

4πǫ0
· 1
(

r2
0 − 2r0a cos θ + a2

)1/2

= V0 −
q

4πǫ0r0
· 1
(

1 − 2 a
r0

cos θ + a2

r2
0

)1/2
. (18)
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Writing a trial solution Ṽ as

Ṽ(r, θ, φ) =
∞

∑
l=0

(

Alr
l +

Bl

rl+1

)

Pl(cos θ),

we observe that since we have the boundary conditions limr→∞ Ṽ(r, θ, φ) = 0, we must have Al = 0

for all l ≥ 0. To obtain the coefficients Bl using (18), we need the following lemma.

Lemma 4 ([16]). The series
∞

∑
l=0

Pl(x)tl

converges absolutely for x ∈ [−1, 1] and t ∈ (0, 1), and

∞

∑
l=0

Pl(x)tl =
1

(1 − 2tx + t2)
1/2

. (19)

Remark 2. The expansion (19) is the basis for the so-called “multi-pole” expansion (see, for example, [29]).

Since we have | cos θ| ≤ 1 and a < r0, we can use Lemma 4 to rewrite (18) as

Ṽ(a, θ, φ) = V0 −
q

4πǫ0r0

∞

∑
l=0

(

a

r0

)l

Pl(cos θ)

= V0 −
qa/r0

4πǫ0

∞

∑
l=0

(

a2

r0

)l
1

al+1
Pl(cos θ). (20)

Therefore, by the uniqueness theorem (Lemma 2), the coefficients {Bl}l are given by

B0 = aV0 −
qa

4πǫ0r0
, (21)

Bl = − qa

4πǫ0r0

(

a2

r0

)l

for l ≥ 1. (22)

The general solution Ṽ is thus given by

Ṽ(r, θ, φ) =
aV0

r
− qa

4πǫ0r0

∞

∑
l=0

(

a2

r0

)l
1

rl+1
Pl(cos θ) (23)

for r > a. Equation (23) can be written in a more illuminating form as

Ṽ(r, θ, φ) =
aV0

r
− qa/r0

4πǫ0r

∞

∑
l=0

(

a2

rr0

)l

Pl(cos θ)

(19)
=

aV0

r
− qa/r0

4πǫ0r
· 1
(

1 − 2a2

rr0
cos θ +

(

a2

rr0

)2
)1/2

=
aV0

r
− qa/r0

4πǫ0
· 1
(

r2 − 2r · a2

r0
cos θ +

(

a2

r0

)2
)1/2

. (24)
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The overall potential is then given by

V(r, θ, φ) = Vq(r, θ, φ) + Ṽ(r, θ, φ)

=
q

4πǫ0
· 1
(

r2 − 2rr0 cos θ + r2
0

)1/2
− qa/r0

4πǫ0
· 1
(

r2 − 2r · a2

r0
cos θ +

(

a2

r0

)2
)1/2

+
aV0

r
. (25)

The potential (25) is the same as that produced by the charge q at z = r0, together with “virtual” charges

−qa/r0 at z = a2/r0 and 4πǫ0aV0 at the center of the conducting sphere. This can also be obtained

through the so-called method of images as used in many treatments of this topic [19]. Equation (25) also

enables us to write the surface charge density on the sphere as

σ(θ, φ) = −ǫ0
∂V

∂r
|r=a

=











q

4π
· r − r0 cos θ
(

r2 − 2rr0 cos θ + r2
0

)3/2
− qa/r0

4π
·

r − a2

r0
cos θ

(

r2 − 2r · a2

r0
cos θ +

(

a2

r0

)2
)3/2

+
aǫ0V0

r2











r=a

=

(

q

4π
· a − r0 cos θ
(

a2 − 2ar0 cos θ + r2
0

)3/2

)

−











qa/r0

4π
·

a − a2

r0
cos θ

(

a2 − 2a · a2

r0
cos θ +

(

a2

r0

)2
)3/2











+
ǫ0V0

a

=

(

q

4π
· a − r0 cos θ
(

a2 − 2ar0 cos θ + r2
0

)3/2

)

−





qr2
0

4πa2
·

a − a2

r0
cos θ

(

a2 − 2ar0 cos θ + r2
0

)3/2



+
ǫ0V0

a

=
ǫ0V0

a
−
(

q

4πa2
· a2(r0 cos θ − a) + ar0(r0 − a cos θ)

(

a2 − 2ar0 cos θ + r2
0

)3/2

)

=
ǫ0V0

a
−
(

q

4πa
· r2

0 − a2

(

a2 − 2ar0 cos θ + r2
0

)3/2

)

. (26)

The charge density (26) can be integrated to obtain the total charge on the sphere as

Qtot = a2
∫ π

0

∫ 2π

0
σ(θ, φ) sin θdφdθ

= 4πǫ0aV0 −
aq

2

∫ π

0

(r2
0 − a2)

(

a2 − 2ar0 cos θ + r2
0

)3/2
sin θdθ. (27)

Writing u :=
(

a2 − 2ar0 cos θ + r2
0

)1/2
, we have

u
du

dθ
= ar0 sin θ. (28)

We can then continue (27) as

Qtot = 4πǫ0aV0 −
q(r2

0 − a2)

2r0

∫ r0+a

r0−a

1

u2
du

= 4πǫ0aV0 −
qa

r0
. (29)

Equation (29) is often interpreted (see, for example, [19,29]) as the sum of the image charges − qa
r0

and

4πǫ0aV0.
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2.3. Uniform Dielectric Sphere in Uniform Electric Field

Consider a sphere of radius a > 0, made of a linear deielectric material of electric susceptibility

χ (with center at the origin) placed in a uniform electric field E0. Without loss of generality, let

E0 = E0ẑ = E0 cos θr̂ − E0 sin θθ̂. We now wish to find the field both inside and outside the sphere. As

we shall see later (cf. Remark 4), this situation can be thought of as a generalization to the problem

studied in Section 2.1. As argued in Section 2.1, this problem exhibits azimuthal symmetry since the

boundary conditions are independent of φ. We can then write trial solutions for the potentials inside

and outside the sphere as

Vin(r, θ, φ) =
∞

∑
l=0

(

Ain
l rl +

Bin
l

rl+1

)

Pl(cos θ), (30)

Vout(r, θ, φ) =
∞

∑
l=0

(

Aout
l rl +

Bout
l

rl+1

)

Pl(cos θ), (31)

We will now discuss the boundary conditions to this problems, which are what will turn out to cause

the crucial differences in the solutions for this case. First, as argued in Section 2.1, the electric field

must approach E0 as r → ∞, and we therefore conclude that Aout
l = 0 for l ≥ 2, and Aout

1 = −E0.

Further, since the field inside the sphere is finite, Vin must have finite derivatives as r → 0, and (30)

then leads us to conclude that Bin
l = 0 for all l. Equation (30) and (31) then enable us to write down a

global trial solution as

V(r, θ, φ) =







∑
∞
l=0 Ain

l rl Pl(cos θ), r < a,

Aout
0 +

Bout
0
r +

(

Bout
1
r2 − E0r

)

cos θ + ∑
∞
l=2

Bout
l

rl+1 Pl(cos θ), r > a.
(32)

By the continuity of V at the surface of the dielectric, the two expressions in (32) must match at r = a.

Rearrangement leads to

(

Aout
0 +

Bout
0

a
− Ain

0

)

+

(

Bout
1

a2
− E0a − Ain

1 a

)

cos θ +
∞

∑
l=2

(

Bout
l

al+1
− Ain

l al

)

Pl(cos θ) = 0. (33)

Using the completeness of Legendre polynomials (Lemma 3) and noting that P1(cos θ) = cos θ,

Equation (33) enables us to write

Aout
0 +

Bout
0

a
= Ain

0 =: V0, (34)

Ain
1 =

Bout
1

a3
− E0, (35)

Ain
l =

Bout
l

a2l+1
, l ≥ 2. (36)

Finally, we come to the behavior of the electric field at the surface of the dielectric, which will yield

additional boundary conditions and will be determined by the properties of the dielectric. The surface

density of bound charges on the dielectric can be written as

σ(θ, φ) = ǫ0

[

∂Vin

∂r
− ∂Vout

∂r

]

r=a

. (37)
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This bound charge density, however, is also given by the radial component of the polarization vector

P, i.e., σ(θ, φ) = [P · r̂]r=a . Finally, since the material is a linear dielectric, we have P(r) = χǫ0E(r) for

‖r‖ < a. We therefore have

σ(θ, φ) = −χǫ0 ·
∂Vin

∂r
|r=a. (38)

Equations (37) and (38) enable us to write

[

(1 + χ)
∂Vin

∂r
− ∂Vout

∂r

]

r=a

= 0. (39)

Using Lemma 3 again, the boundary condition (39) enables us to write

Bout
0 = 0, (40)

Ain
1 = − 1

1 + χ

(

2Bout
1

a3
+ E0

)

, (41)

Ain
l = − (l + 1)Bout

l

l(1 + ξ)a2l+1
, l ≥ 2. (42)

For l ≥ 2, (36) and (42) can simultaneously hold only if Ain
l = Bout

l = 0. Moreover, (35) and (41) enable

us to solve for Bout
1 as

Bout
1

a3
− E0 = − 1

1 + χ

(

2Bout
1

a3
+ E0

)

,

i.e.,

Bout
1 = a3

(

1 − 1
1+χ

)

E0

1 + 2
1+χ

=
χ

χ + 3
a3E0.

This immediately yields

Ain
1 = − 3

χ + 3
E0,

and we can finally write down the full solution (32) as

V(r, θ, φ) =







V0 − 3
χ+3 E0r cos θ, r < a,

V0 +
((

χ
χ+3

)

a3

r2 − r
)

E0 cos θ, r > a.
(43)

The potential (43) yields the electric field

E(r, θ, φ) = −∇V

= −∂V

∂r
r̂ − 1

r

∂V

∂θ
θ̂

=







(

3
χ+3

)

E0 cos θr̂ −
(

3
χ+3

)

E0 sin θθ̂, r < a
(

1 + 2χa3

(χ+3)r3

)

E0 cos θr̂ +
((

χ
χ+3

)

a3

r3 − 1
)

E0 sin θθ̂, r ≥ a.

The electric field inside can then be written as

Ein =

(

3

χ + 3

)

E0

(

cos θr̂ − sin θθ̂
)

=

(

3

χ + 3

)

E0, (44)
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which turns out to be uniform. The field outside can be written as

Eout = E0 +
a3

r3

(

2

(

χ

χ + 3

)

(E0 · r̂)r̂ −
(

χ

χ + 3

)

(E0 · θ̂)θ̂

)

= E0 +
a3

r3

(

χ

χ + 3

)

(2(E0 · r̂)r̂ − [E0 − (E0 · r̂)r̂])

= E0 +
a3

r3

(

χ

χ + 3

)

(3(E0 · r̂)r̂ − E0) (45)

=

(

1 − χa3

(χ + 3)r3

)

E0 +

(

3χa3

(χ + 3)r3
(E0 · r̂)

)

r̂. (46)

Figure 3 illustrates the electric field lines on a vertical plane (i.e., containing the z axis) obtained

from the electric field in (46) and (44). As expected, far away from the sphere, the lines are vertical,

while close by, they are “distorted” by the presence of the dielectric. We also note that there is a

discontinuity of the field at the boundary of the dielectric, but unlike Figure 1 in Section 2.1, the

field inside the dielectric is nonzero. Finally, the field lines are no longer orthogonal to the surface

of the dielectric; the field can have a tangential component and electrostatic conditions can still be

maintained.

Figure 3. Electric field lines.

Remark 3. We note that the field when an uncharged conductor is placed in a uniform electric field (cf. (17) in

Section 2.1) can also be written as

E = E0 +
a3

r3
(3(E0 · r̂)r̂ − E0) . (47)

Both (47) and (45) can be compared to the field of a dipole p placed at the origin (see, for example, [19]):

E =
1

4πǫ0r3
(3(p · r̂)r̂ − p) .
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This suggests that a sphere made of a conductor or a linear dielectric material placed in an uniform electrostatic

field acquires a dipole moment equal to

pcond. = 4πǫ0a3E0,

pdiel. = 4πǫ0a3

(

χ

χ + 3

)

E0.

(48)

The polarization P is defined as dipole moment per unit volume, therefore this suggests that the spheres acquire

polarizations Pcond. = 3ǫ0E0 and Pdiel. = 3(χ/(χ + 3))ǫ0E0. The electric susceptibility χ, therefore, can be

interpreted as a parameter quantifying the amount of “freedom of movement” of charges inside a metrial – in a

conductor they have perfect freedom of movement (i.e., ability to polarize), enabling complete cancellation of the

electric field, but in a dielectric sphere, the polarization is χ/(χ + 3) times relative to a conductor.

Remark 4. We note that all results in Section 2.1 follow from those in this section by taking χ → ∞. This

shows that in electrostatics, in many situations a conductor can be thought of as a dielectric within infinite

susceptibility. Taking this limit for (44) for the field inside the dielectric immediately recovers the result that the

field is zero inside the conductor.

Remark 5. Note that in this section, we tacitly assumed that the dielectric is uncharged when we equated (37)

and (38). The dielectric, in fact, could have a “free” surface charge density σf(θ, φ) which would then have to be

taken into account at that step. However, because charges cannot move about freely in a dielectric, unlike in

a conductor, the complete charge density σf(θ, φ) would have to be specified for this problem to have a unique

solution.

3. Discussion

The general setup described in this work can be used to find potentials and fields for a wide range

of charge distributions commonly used to demonstrate the “method of images” in electrostatics texts.

A popular and elementary problem setup not explored in this work is the infinite conducting plane near

a point charge q, which can be similarly solved, but in the cylindrical coordinates using (3). For a detailed

account of the history and development of Laplace’s equation and solution techniques in the context

of electrostatics, we refer the reader to [1].

Appendix A. Proofs

Proof of Lemma 1. We first establish some preliminary results that will make the proof considerably

easier. The relations between Cartesian and spherical polar coordinates can be written [31] as

(r, θ, φ) 7→ (x, y, z) :















x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ

(A1)

and

(x, y, z) 7→ (r, θ, φ) :



















r =
√

x2 + y2 + z2

θ = acos

(

z√
x2+y2+z2

)

φ = atan2(y, x),

(A2)
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where atan2(y, x) is the four-quadrant inverse tangent defined as the real number λ satisfying cos λ =

x/
√

x2 + y2 and sin λ = y/
√

x2 + y2. Treating the spherical unit vectors r̂, θ̂ and φ̂ as functions of

(r, θ, φ), we can then write

r̂ =
r

r

=
xx̂ + yŷ + xẑ

r

= sin θ cos φx̂ + sin θ sin φŷ + cos θẑ, (A3)

θ̂ =
∂r̂
∂θ
∥

∥

∥

∂r̂
∂θ

∥

∥

∥

= cos θ cos φx̂ + cos θ sin φŷ − sin θẑ, (A4)

and

φ̂ = r̂ × θ̂

= − sin φx̂ + cos φŷ. (A5)

Equations (A3)–(A5) can be easily inverted to yield

x̂ = sin θ cos φr̂ + cos θ cos φθ̂− sin φφ̂,

ŷ = sin θ sin φr̂ + cos θ sin φθ̂+ cos φφ̂,

ẑ = cos θr̂ − sin θθ̂,

or, more compactly,







x̂

ŷ

ẑ






=







sin θ cos φ cos θ cos φ − sin φ

sin θ sin φ cos θ sin φ cos φ

cos θ − sin θ 0













r̂

θ̂

φ̂







=: M(r, θ, φ) ·







r̂

θ̂

φ̂






. (A6)

One can verify that the matrix M is orthogonal, i.e., M−1 = MT . Finally, the infinitesimal line element

can be written in spherical spherical polar coordinates as

dr = d(rr̂)

= drr̂ + r
∂r̂

∂θ
dθ + r

∂r̂

∂φ
dφ

(a)
= drr̂ + rdθθ̂+ r sin θdφφ̂, (A7)

where (a) follows from Equations (A3)–(A5). This also leads us to conclude immediately, that the

infinitesimal volume element (since r̂, θ̂, and φ̂ are orthonormal) is given by

dV = r2 sin θ · dr · dθ · dφ.
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Now, with these preliminaries established, let f be a differentiable scalar field. We have

d f =
∂ f

∂r
dr +

∂ f

∂θ
dθ +

∂ f

∂φ
dφ. (A8)

Now, writing ∇ f ≡ g(r)(r, θ, φ)r̂ + g(θ)(r, θ, φ)θ̂+ g(φ)(r, θ, φ)φ̂ and using the gradient theorem [12]

d f = ∇ f · dr, (A7) and (A8), we have

g(r)(r, θ, φ)dr +
(

rg(θ)(r, θ, φ)
)

dθ +
(

r sin θ · g(φ)(r, θ, φ)
)

dφ ≡ ∂ f

∂r
dr +

∂ f

∂θ
dθ +

∂ f

∂φ
dφ.

This implies that

∇ f =
∂ f

∂r
r̂ +

1

r

∂ f

∂θ
θ̂+

1

r sin θ

∂ f

∂φ
φ̂. (A9)

Equation (A9) also implies that

[

∂ f
∂x

∂ f
∂y

∂ f
∂z

]







x̂

ŷ

ẑ






=
[

∂ f
∂r

1
r

∂ f
∂θ

1
r sin θ

∂ f
∂φ

]







r̂

θ̂

φ̂






,

or in other words,







∂ f
∂x
∂ f
∂y
∂ f
∂z






= M ·







∂ f
∂r

1
r

∂ f
∂θ

1
r sin θ

∂ f
∂φ






. (A10)

We can write (A10) as the three scalar equations

∂ f

∂x
=

∂ f

∂r
sin θ cos φ +

1

r

∂ f

∂θ
cos θ cos φ − 1

r sin θ

∂ f

∂φ
sin φ, (A11)

∂ f

∂y
=

∂ f

∂r
sin θ sin φ +

1

r

∂ f

∂θ
cos θ sin φ +

1

r sin θ

∂ f

∂φ
cos φ, (A12)

∂ f

∂z
=

∂ f

∂r
cos θ − 1

r

∂ f

∂θ
sin θ. (A13)

Now, let A be a differentiable vector field. We have

A =
[

Ax Ay Az

]







x̂

ŷ

ẑ







(a)
=
[

Ax Ay Az

]

· M ·







r̂

θ̂

φ̂







≡
[

Ar Aθ Aφ

]







r̂

θ̂

φ̂






,

which leads to
[

Ax Ay Az

]

=
[

Ar Aθ Aφ

]

· M−1,
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or, since M is orthogonal,







Ax

Ay

Az






= M ·







Ar

Aθ

Aφ






. (A14)

We can write (A14) as the three scalar equations

Ax = Ar sin θ cos φ + Aθ cos θ cos φ − Aφ sin φ, (A15)

Ay = Ar sin θ sin φ + Aθ cos θ sin φ + Aφ cos φ, (A16)

Az = Ar cos θ − Aθ sin θ. (A17)

Using eqns (A11)–(A13) and (A15)–(A17), collecting terms, and simplifying, we obtain

∇ · A =
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

=
1

r2

∂

∂r

(

r2 Ar

)

+
1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

(

∂Aφ

∂φ

)

. (A18)

Combining (A9) and (A18), we can then write, for a twice differentiable scalar field f ,

∇2 f = ∇ · (∇ f )

(A9)
= ∇ ·

(

∂ f

∂r
r̂ +

1

r

∂ f

∂θ
θ̂+

1

r sin θ

∂ f

∂φ
φ̂

)

(a)
=

1

r2

∂

∂r

(

r2 ∂ f

∂r

)

+
1

r sin θ

∂

∂θ

(

sin θ
1

r

∂ f

∂θ

)

+
1

r sin θ

(

∂

∂φ

(

1

r sin θ

∂ f

∂φ

))

=
1

r2

∂

∂r

(

r2 ∂ f

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ f

∂θ

)

+
1

r2 sin2 θ

∂2 f

∂φ2
, (A19)

where (a) follows from (A18), by using Ar ↔ ∂ f /∂r, Aθ ↔ (1/r)∂ f /∂θ, Aφ ↔ (1/r sin θ)∂ f /∂φ.

Equation (A19) establishes the result.
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