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Abstract: Machine Learning can be used for social good. In this paper, we discuss how it can be used
to combat climate change and facilitate land management and farming in developing countries and
in particular in Côte d’Ivoire. This paper explores models that improve land and water management
and agricultural farming cultivation to contrast climate change. Côte d’Ivoire is the largest producer
of cocoa beans (43%) in the world, but deforestation, lack of rainfall, drought, and climate change
threaten crops and the already fragile economy of Ivorian farmers. It is important to combat climate
change with methods and techniques that are affordable to the local farmers and also induce positive
effects in production. We discuss the use of low-cost sensors to collect data on the soil and open
data and open source software to develop AI tools. We show that using deep neural networks
(YOLOv5m) is effective for detecting healthy plants and pods of cocoa from damaged ones only
using mobile phone images. Focusing on a single land is not enough to combat climate change,
which has different causes and involves also knowledge at a higher scale. We propose a new method
of forecasting for the analysis of remote sensors. Remote sensor data come from GRACE NASA
Mission and ERA5 produced by the Copernicus Climate Change Service at ECMWF. We implement
a new deep neural network architecture named CIWA-net. It is based on a Fully Convolutional
Neural Network (FCN) [1] and it is a U-net like architecture [2]. The aim of CIWA-net is to forecast
Total Water Storage Anomalies (TWSA). We show the quality of our model with a comparison to
a vanilla Convolutional Neural Network. CIWA-net could be used also for the detection of lands
that interfere with agricultural work and yields, such as deserted areas, water-soaking soil areas,
zones at risk of desertification, and poor land use. The employment of AI at the service of agriculture
can decrease crop losses and waste, lower the inputs onto the soil of fertilizers, responsible for the
increase of Greenhouse Gases. It could be useful to help the small farmers (at a local scale) and also
the policy-makers and farmers’ cooperatives (at the regional scale) to take valid and coordinated
countermeasures to improve the correct use of the lands, helping to contrast and adapt to climate
change.

Keywords: cocoa farmers; low-cost smart agriculture; remote sensors monitoring; water resources
forecasting; YOLO; U-NET; deforestation; drought prevision; socio-technical transition

1. Introduction

The Anthropocene is the geological era that began when human activities have had a global
and evident effect on the ecosphere of lands, oceans, and water, all over the world. Human actions
are driving anthropological climate change (ACC) which is an effect of the human socio-economical
activities.
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1.1. The complex system that causes and is implied in the ACC

Climate change includes global warming: Earth’s weather patterns are caused by the emission of
greenhouse gases (GHGs), carbon dioxide (CO2), and methane which are mostly emitted from the
use of fossil fuels for energy use. Also, agricultural practices and forest loss are relevant additional
inducers of climate change. 23% of the GHGs are produced by agriculture farming, coastal economies,
and the erroneous management of forests and land.

The 2019 UN "Climate Change and Land Report" [3] draft by the Intergovernmental Panel on
Climate Change (IPCC) states:

• The ACC will increase drought in some areas and extreme rainfall in other areas of the world,
affecting agricultural production, the ocean economy, and the security of food supplies around
the world;

• it will have effects on the water level by deeply involving the coastal areas and their cities;
• it will raise the temperature averages 1-4 degrees upward, "shifting" warm climatic zones

northward, altering marine habitat, and coastal economies, changing land needs and local habits,
inducing tropical rains, dramatically reducing the extent of glaciers, lake levels, and the natural
water reserves;

• it will have an effect in terms of the transmigration of animals and insects to areas where they
were not normally present.

The IPCC 2023 literally states that human activities, mainly through emissions of greenhouse gases,
"have unequivocally caused global warming, with the global average surface temperature in 2011–2020
reaching 1.1°C above the average temperature in 1850–1900" [4]. Global greenhouse gas emissions have
continued to increase, with unequal historical and ongoing contributions arising from unsustainable
energy use, land use and land-use change, lifestyles, and patterns of consumption and production
across regions, between and within countries, and among individuals.

Heat waves, intense storms, and weather extremes are other visible effects of the ACC. It affects
everyone and any area on the planet, no one can consider themselves exempt, but the consequences
will weigh most heavily on the weakest and most vulnerable populations and areas. The coastal zone
is considered at risk of flooding, intense storm, and rising water levels. The Mediterranean is at high
risk of desertification and weather extremes. The savage intensive agriculture in Africa is destroying
the forests with the effects of desertification of entire regions (Côte d’Ivoire has used 90% of their forest
to produce Cocoa, mainly exported to western countries). This area will be subject to relevant climate
changes with severe economic consequences: wars or mass migrations are expected with effects on
the economy and lifestyle. Econometric models indicate that the ACC has reduced global agricultural
Total Factor Productivity (TFP) by about 21% since 1961, a slowdown that is equivalent to losing seven
years of productivity growth [5,6]. The effect is substantially more severe in warmer regions, like
Africa, Latin America, and Asia where it is expected a reduction of ~26-34% [5]. The agriculture and
ocean food industries have grown more vulnerable to ongoing climate change [4].

There are three categories of causes for GHGs:

• the anthropogenic activity that changes the land cover and land management;
• indirect effects of anthropogenic activity, such as carbon dioxide (CO2), fertilization, and nitrogen

deposition;
• natural climate variability and natural disturbances (e.g., wildfires, windrow, disease).

Deforestation makes cultivation areas more exposed. It decreases the variety of species, weakens
the ecosystem, and makes soils drier and more arid, pushing local farmers to compensate by using even
more fertilizers and the already scarce waters. These significantly increase GHGs, water dispersion,
and the exploitation of the territory.
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1.2. The motivations of the case study

Côte d’Ivoire is the largest producer of cocoa beans in the world accounting for 43% of the
global production [7]. However, the working conditions in the region are far from ideal, with farmers
earning about 1.00 Euro per day. The combination of deforestation, inadequate rainfall, the drain of
underground waters, and the impacts of climate change poses significant threats to crops and the
already fragile cocoa economy of Ivorian farmers. To address this pressing issue in a developing
country, it is crucial to combat climate change using methods and techniques that are affordable and
accessible to the local economy.

Modeling terrestrial water content is crucial for pursuing Sustainable Development Goals issued
by the 2030 Agenda of the United Nations, especially for the 6th Goal: Ensure Availability and
Sustainable Management of Water and Sanitation for all. Extreme hydrological events (i.e., droughts
and floods) have a severe impact on a region, making environmental resource policies very relevant
to the development of a country. All over the world over the last decade, nearly 1.43 billion people
have been affected by droughts and .65 billion by floods [8]. Furthermore, global warming is going to
make droughts more likely and severe [9]. Especially for Côte d’Ivoire, the likelihood of occurrence of
droughts will increase by 7.5% in the future (2051-2100) and 6.6 million people (22% of the population)
will be exposed every year to these events [10]. Of course, the agricultural sector will suffer from
this scenario: it implies catastrophic consequences on the already fragile economy and society of the
country because agriculture is one of its driving economic sectors1.

Many studies already analyzed the distribution of rainfall in space and time in Côte d’Ivoire and
they agree on a decreasing trend below the usual average causing water shortage [12–14]. This makes
Côte d’Ivoire an area highly vulnerable [12,15]. For these reasons, it is essential to develop supporting
instruments for mitigation and adaptation policies. However, in many Developing Countries, there
could be a lack of resources to build such instruments, for example, a collaborative network for
monitoring surface water or groundwater [8]. In this context, open data and Machine Learning
techniques can provide support to the sustainable management of environmental resources. For
example, Gravity Recovery And Climate Experiment (GRACE) NASA mission data [16,17] inform
about the Total Water Storage Anomalies (TWSA) which could be used for determining the water
shortage period, the anthropogenic drought, and the water resource depletion, in general, at a regional
or catchment level [18–20].

Terrain sensors, satellite data analysis, neural models, and digitalization can improve the total
factor productivity, by producing more with fewer inputs (less fertilizers, water, energy, capitals [21])
reducing land misuse, deforestation, and GHGs. The research community must use the capabilities at
its disposal to introduce instruments of control and methods of continuous monitoring and techniques
of forecasting that will help small farmers to produce more with a reduced environmental impact.
Also, it is relevant to give the political decision-makers the best information and a set of tools to control
and fight climate change at a larger level. Finally, a better perception of the green impacts of their
production can induce the local farmers to follow more correct habits and spread new agronomic
approaches more ecologically attentive.

1.3. Technology and Machine Learning methods at the service of the problem

Low-cost sensors, remote sensing, Machine Learning methods such as predictive models and more
specifically deep neural networks, and cooperative approaches can make an enormous contribution
to fighting climate change in agriculture in developing countries. The research must be addressed
affording the problem as a global phenomenon that has multiple causes. Collaboration among experts,
researchers from different areas, non-governmental organizations (NGOs), and local authorities is

1 Agriculture accounts for 22% of the Gross Domestic Product (GDP), about 50 − 70% of the total export earning and employs
nearly 50% of the labor force [11]
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essential to bring about lasting changes. The ability to manage territories, soil, waters, crops, and
countering extreme weather, also depends on how we act within communities that are part of the
projects and may have limited economic resources.

This article illustrates a method of crop monitoring to support the identification of cocoa health
status with low-cost imagery to help farmers in their production and increase their efficiency and
yield. It then shows a new model for TWSA forecasting to identify water availability increase or
reduction in dry areas at a regional scale, which can help to implement policies of intervention to
prevent phenomena of desertification and land management. We also discuss how the same methods
could be useful to local policymakers, and cooperatives of farmers, to identify land that is transforming
without planning or control, leading to forest depletion, deforestation, and land misuse.

Counteracting climate change requires working concurrently at different scales, long and short.
The short scale entails working at the local level, employing terrain sensors and images taken from
mobile devices to help single farmers’ crop activities (see task 1). The long scale is at the national
and sub-national level and consists of using satellite data (NASA’s GRACE mission [16] and ERA5
Copernicus Climate Change Service produced at the European Center Medium Weather Forecast -
ECMWF [22]) to detect changes and depletion of water resources in the terrestrial ecosystem at the
0.25° scale, harnessing and soliciting a cooperative approach among small farmers and policymakers
(see task 2).

With the results, we target the local smallholder cocoa producers [23] the NGOs operating in the
Abidjan area (e.g. Communauté Abel, Grand Bassam, Côte d’Ivoire [24] connected with the Gruppo
Abele Foundation’s Choco+ initiative [25]) working with the local farmers and the local authorities in
the context of Euro-African cooperation (cf. Pinardi et al. 2023 paragraph 3.2 [26]).

2. Related works in Smart Agriculture and Terrain Monitoring

Cocoa plantations in Côte d’Ivoire are one of the main drivers of degradation and deforestation [27,
28]. For this reason, tools for detecting the depletion of forestry resources are highly needed and
relevant to implement policies for sustainable management. Some studies already tried to detect cocoa
plantations in forest areas in Côte d’Ivoire [29,30]; and some global tools already exist to detect tree
losses or Tropical Moist Forest (TMF) degradation and deforestation [31,32]. In Africa, several factors
contribute to GHGs emissions. Deforestation, driven by activities like logging and the expansion of
agricultural lands, releases significant amounts of CO2 into the atmosphere [33,34]. Additionally, the
agricultural sector emits methane – a potent GHG [34,35]. Furthermore, the use of synthetic fertilizers
in agriculture and waste management practices release N2O, another powerful GHGs [34,35]. Africa
contributed 11% of GHG emissions growth since 1990 (2.3 GtCO2-eq) and 10% (0.7 GtCO2-eq) since
2010 [36]. Vast tropical rainforests and other ecosystems play a crucial role in mitigating the impacts of
GHGs emissions. Unfortunately, deforestation and land degradation reduce their capacity [33,34,37].

Fundamental research is essential to explore new hypotheses and gain a deeper understanding of
ecological processes and their interactions [37].

Also, the determination of reasonable scales and the selection of appropriate explanatory and
response variables is dependent on an understanding of the context and systems under study [38].
Fortunately, some initiatives to analyze these phenomena already exist. For instance, ECMWF gives
access to the reanalysis data set of atmospheric composition (AC) produced by the Copernicus
Atmosphere Monitoring Service (CAMS): data are currently covering the period 2003-June 2022 [39]
with a resolution of approximately 80 km with a sub-daily and monthly frequency. The separate CAMS
global greenhouse gas reanalysis (EGG4) currently covers the period 2003-2020. In Section 5 we discuss
a data analysis of ERA5, from the Copernicus reanalysis database [22].

Today it is widespread the idea that AI can be employed in Precision Agriculture [40,41]
where operators mainly follow a cost-benefit analysis, focusing on ROI (return on investment) [42].
Little emphasis is placed on the social impacts of the processes. Instead, our concern is how the
transformation can take into account the social dimensions that may influence development. In this
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context, it is also important to address the digital costs, which are particularly relevant when working
in developing countries, such as Côte d’Ivoire, where, according to the World Economic Forum [43],
farmer wages average around 1.00 Euro per day, and these workers contribute significantly to national
domestic production.

To address the economic constraint, we have adopted a cost-effective approach by leveraging
open-source software and accessing freely available data from sources such as GRACE, and ERA5.
Furthermore, we have implemented low-cost ground sensors (see 3.1). Taking advantage of the
widespread use of mobile phones in Côte d’Ivoire, farmers capture close-up images of cocoa plants
and pods to assess the plants’ health. This method allows for easy identification of health issues. By
employing open-source methods, we can significantly reduce the financial burden. This approach
ensures that even in regions with limited financial resources, it is possible to give a meaningful
contribution to environmental conservation and sustainable agricultural practices. This calls for
equal attention to these constraints and opens up a new area of research related to socio-technical
transition [26], where machine learning and sensor monitoring are not only instruments to increment
yield production, or to generate new business or markets [42] but are pivotal to changing the social
and economical landscape of an entire region.

With these constraints in mind, the article focuses on YOLOv5m [44] for the identification of
healthy/unhealthy cocoa pod (cf. 4), Convolutional Neural Network (CNN), Fully Convolutional
Neural Network (FCN) [1] U-net like architecture [2] for remote sensor analysis for water resources
monitoring (cf. 5) and land management (cf. section future works 7) in the context of a social-technical
transition [26].

3. Open-Source Strategic Tools

An open-source approach to precision agriculture and more in general big data management and
stream data processing for prediction comes with a large potential for innovation capacity thanks to
the ability to freely reuse the software under open-source licenses [45].

The capability to deploy existing technology, digital platforms, and open data collections facilitates
innovation by leveraging innovative services and organizational models. In particular, the evolution
of open-source software communities that support software development, sharing, and reuse (like
Github [46], Joinup [47], Apache [48], GNU and the Free Software Foundation [49]) increase the
diversity of potential users, that act as testers and expert sources. For businesses that have less
expertise in programming, open-source offers visibility into how developers manage datasets and
software and helps them to cut costs because they do not need an in-house software development
company. Open-source platforms, communities, and initiatives provide accessibility to a myriad of AI
tools, libraries, and documentation that facilitate the development of new tools in different business
sectors, using AI techniques while they are receiving feedback from experts within the community.

Open collaboration environments and open-source software (OSS) are the results of collaborative
projects that speed up the reproducibility of the research (like Wikipedia and Open data repositories,
such as the University of California Irvine [50] and Kaggle [51]). In turn, the presence of large volumes
of data and pre-trained models accelerated advancements in deep learning with software libraries like
TensorFlow [52], DSSTNE (Deep Scalable Sparse Tensor Network Engine) [53] and Keras [54]. Other
frameworks are based on High-Performance Computing [55,56] and cloud environments with virtual
machines and software containers, like ML-Ops [57]: they assist the developer and machine learning
expert in the pipeline of data analysis, provide memory space and computing power for storage and
computing resources. For specific applications such as image recognition, there are web services that
let users perform deep learning and even prediction without programming [58,59].

Finally, open data licenses such as Community Data License Agreement (CDLA) have begun to
commoditize training data. These license terms will help ”democratize” the overall AI marketplace by
lowering the barriers to entry in the market of AI. Proprietary datasets could continue to exist, but in
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two versions (one of them under the CDLA license) and this solution could allow everyone, including
smaller players, to build credible products [60].

3.1. Pervasive IoT systems

The implementation of pervasive IoT systems needs components that communicate data and
perform efficient data ingestion from a stream coming from sensors. In these tasks, many open source
software projects exist that allow data ingestion, like Apache Kafka [61], and data storage in specialized
databases for time series such as InfluxDB [62].

Among the communication protocols in a distributed system, there are many protocols with
different characteristics. There is Message Queue Telemetry Transport (MQTT), which is lightweight
and can work in very low bandwidth networks, HyperText Transfer Protocol (HTTP) and WebSocket
which establish a TCP connection and are based on the request-response scheme. Constrained
Application Protocol (CoAP) is based on a web transfer protocol and should be used with limited
networks, with low bandwidth and low availability. Data Distribution Service (DDS) adopts a
publish-subscribe methodology, Advanced Message Queue Protocol (AMQP) is TCP-based and
guarantees delivery and acknowledgment and has two levels of quality of service. Extensible
Messaging and Presence Protocol (XMPP) are based on Extensible Markup Language (XML). OPC
Unified Architecture (OPC UA) is a transport-agnostic protocol and supports both request/response
and publish/subscribe methods.

As regards sensors, emitting the measured data, we refer to the open sensors. Arduino sensors
play a vital role in modern agriculture, enabling farmers to monitor and optimize various aspects of
their crops and environment. These sensors are relatively affordable, easy to use, and can be integrated
into automated systems. Here are some key applications of Arduino sensors in agriculture:

Soil Moisture Sensors: These sensors measure the moisture content in the soil, allowing farmers to
determine the optimal time for irrigation. By ensuring the right amount of water is provided to the
plants, farmers can prevent overwatering or under watering, leading to better crop yield and water
conservation [63].
Temperature and Humidity Sensors: Monitoring temperature and humidity levels is crucial for crop
health. Arduino’s sensors can help farmers assess the environmental conditions and make adjustments
accordingly, such as turning on irrigation systems or activating ventilation in greenhouses [64].
Light Sensors: Light sensors help farmers analyze the intensity of sunlight reaching the crops. This
information is valuable in determining suitable planting locations, optimizing crop layouts, and even
deciding the best time for harvesting [65].
Weather Stations: Arduino-based weather stations can collect data on various weather parameters
such as temperature, humidity, wind speed, and precipitation. Farmers can use this data to anticipate
weather changes and prepare for potential adverse conditions [66].
Crop Health Monitoring: Sensors like pH sensors and nutrient level sensors can provide insights
into the health of the crops and soil. Farmers can adjust fertilization and nutrient application based on
real-time data, leading to healthier plants and better yields [67].
Pest Detection: Some Arduino sensors can identify pests and diseases early on by detecting specific
patterns or changes in the environment caused by these issues. This helps farmers implement targeted
pest control measures, reducing the need for excessive pesticide use [68].
Automated Irrigation Systems: By integrating Arduino sensors with irrigation systems, farmers can
create automated setups that respond to real-time data. These systems can turn on or off the irrigation
based on soil moisture levels, weather conditions, and crop requirements [69].
Crop Growth Monitoring: Sensors like ultrasonic distance sensors or infrared sensors can measure
crop height and growth rate. This information allows farmers to track the development of their crops
and make timely decisions regarding pruning or harvesting [67].
Livestock Monitoring: In addition to crop-related applications, Arduino sensors can also be used to
monitor the health and behavior of livestock. For example, sensors can track the body temperature of
animals, detect estrus in cattle, or monitor feeding and drinking habits [70].
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Automated Greenhouse Systems: Arduino sensors can be integrated into smart greenhouse systems,
controlling temperature, humidity, and ventilation automatically to create an optimal environment for
plant growth [71].

Overall, Arduino sensors offer an affordable and accessible way for farmers to gather valuable
data, optimize their farming practices, and make informed decisions to enhance productivity and
sustainability in agriculture.

4. Task 1: cocoa pods classification model

To guarantee good quality beans, cocoa plants have to be continuously monitored from the
ripening to the harvesting phase. The accurate selection of cocoa beans is a crucial undertaking that
has a significant impact on the subsequent activities and, consequently, on the final product’s quality.
Recognizing ripeness and the absence of anomalies in the bean is still a manual activity and assumes
the presence of expert operators employed in the field. Recently, to provide partial support to operators,
some AI tools have been proposed [72–74]. In this paper, we suggest a possible approach to support
farmers to recognize good-quality cocoa beans using state-of-the-art AI tools, such as the neural net
architecture YOLO [44].

4.1. Data

In our setting, we employed an open-source labeled dateset2 identifying healthy and damaged
beans affected by Monilia and Phytophthora diseases, in three different classes (Healthy, Monilla, Fito).
More specifically, we have 312 images: 107 Fito, 105 Monilla, and 100 Healthy. These data are already
labeled and ready to use, then no pre-processing steps are necessary.

4.2. Model

For this task, we adopt the pre-trained YOLOv5m model3, an improvement of the original YOLO
model [44]. We train the last layer of the model on the Cocoa Diseases dataset using Google Colab4.
Previous systems like Region-based CNN (R-CNN) first generate potential bounding boxes and then
run a classifier for detecting objects inside images. However, post-processing is needed to eliminate
duplicates and produce a valuable output. YOLO approach is different: it is made by a unique
Convolutional Neural Network (CNN) that simultaneously predicts different bounding boxes and the
associated probabilities. YOLO does not look at inputs locally but globally, and it uses information
from the entire image for each simultaneous box prediction; not by chance, YOLO stands for You Look
Only Once. This structure makes YOLO very efficient and effective such that it can be used for object
detection on smartphone applications [75–77].

4.3. Results

We trained the model on the training-set for 50 epochs using a batch size of 16 images. Figure 2
shows the loss reduction on the training set with the number of epochs. While Figure 1 shows
the confusion matrix on test-set with 5-fold cross validation. It represents the performance of the
implemented models in discriminating different classes. Our model detects almost every time (98%) a
healthy fruit, while it has some difficulties in differentiating between diseases. A more complex model
could be implemented to discriminate better. However, given we are proving the feasibility of an
instrument that should be used on smartphones, it could be worth giving up a little bit of performance
in favor of a faster and lighter model. Furthermore, detecting a specific disease could be difficult also

2 Contains information from https://www.kaggle.com/datasets/serranosebas/enfermedades-cacao-yolov4, which is made
available here under the Open Database License (ODbL).

3 https://docs.ultralytics.com/yolov5/
4 https://colab.research.google.com/
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for experts. A free, fast, and open tool that could tell farmers if fruits are healthy or not, could be
already a tremendous help for helping in crop monitoring and yield forecasting.

Figure 1. Confusion matrix for the YOLOv5m model trained on the Cocoa Diseases dataset

Figure 2. The loss over the training set for each epoch.

Some predictions for a validation set are in Figure 3. As the confusion matrix revealed, our model
detects healthy fruits very accurately, while it confuses Monilla and Fito classes. When the model
is more confused, and the chance of making a mistake grows, the probability associated with each
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predicted bounding box and its class is lower (like in the first images on the left in Figure 3). This
should be considered as a warning and more accurate analyses should be carried on the fruit.

Figure 3. Examples of labeled images in the training set and the corresponding prediction with
probabilities

5. Task 2: GRACE prediction Model

Previous studies already showed the effectiveness of using Deep Learning for Remote Sensing
data and in particular for Satellite Image Time Series (SITS) [78–80]. With this task, we develop an
instrument to monitor and predict the anomalies of water resources. In particular, our aim is to
model the Total Water Storage Anomalies (TWSA), predicting the value of the next month (at time
t + 1) considering the values of meteorological and land variables at previous time t. We used as a
baseline a vanilla Convolutional Neural Network (CNN) and implemented a Fully Convolutional
Neural Network (FCN) [1] with a U-net like architecture [2], named CIWA-net (Côte d’Ivoire Water
Anomalies network). We chose these architectures for the neural networks because previous studies
already reported their good performance in modeling spatio-temporal phenomena and SITS [81–84].
On the contrary, FCNs are more suited for pixel-per-pixel tasks [2,85]. In this work, we test these
two different architectures – vanilla CNN and CIWA-net – in different implementations. In each
implementation we integrate a different autoregressive component that consists in the delayed target
variable TWSA, at a different time lag, as an additional input. In this way, we test if a vanilla CNN or
CIWA-net could enhance their performances by integrating the temporal information of the target,
without a deep modification of their architecture.

5.1. Data

We use GRACE Mascons Solution5 [86] monthly data. GRACE satellite measures the variation
in the earth’s gravity field for each month and then estimates the changes in the Equivalent Water
Thickness (EWT) at a spatial resolution of 0.25° (25 km). EWT is related to the total amount of water

5 Downloaded from https://www2.csr.utexas.edu/grace/
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stored and available for a unit volume. However, the native cell grid resolution of GRACE data is
larger than 25 km – about 120 km – because the earth’s gravity field estimations vary slowly in space.
For this reason, it is advised to be careful in interpreting GRACE data in basins smaller than 200.000
km2. Notwithstanding these limitations, our aim is to build a model able to predict GRACE images
that represent the target variable in a spatial map. Therefore, we should not attribute these limits due
to the low resolution of the input images to the neural network models used for prediction.

The changes, or anomalies, in EWT are calculated with respect to the 2004-2009 time mean baseline
and they represent the Total terrestrial Water Storage Anomalies (TWSA) from soil, snow, surface
water, groundwater, and aquifers. GRACE mission started in April 2002 and ended in June 2017, but
from March 2018 the new GRACE-Follow-on (GRACE-FO) mission has started. Given the missing
values from October 2017 to March 2018, we get monthly data from April 2002 to June 2017. Given our
interest in the temporal relationship of the phenomenon, we consider the period from April 2002 to
April 2015 as our training set, roughly 85% of the available observations; and used the period from
May 2015 to June 2017 as our test set, nearly 15% of the available observations.

We use meteorological and land data from the fifth-generation ECMWF reanalysis for the global
climate and weather European dataset (ERA5) [22]. ERA5 contains a large number of atmospheric,
land, and oceanic climate variables, combining model data with observations from the year 1940 up
to the present time. The spatial resolution of the data is 0.25° with an hourly frequency. However,
given the time resolution (monthly) of the dependent variable, we use the monthly average ERA5 data.
Furthermore, we adopt the same time domain used for GRACE data (i.e., from April 2002 to June 2017)
and we split the data for training and testing accordingly. Among all the ERA5 variables, we select the
10 features that are likely to be associated with our target variable (listed in Table 1). All these features
are considered as the different channels of an image available at a time t. Hence, for each time step, we
have an ERA5 image made by 10 channels.

Table 1. ERA5 features selected for the neural network inputs

Feature Unit

Surface net solar radiation J · m2

Skin temperature K
Evaporation m of water equivalent
Total precipitation m
Leaf area index, high vegetation m2

· m−2

Leaf area index, low vegetation m2
· m−2

Volumetric soil water layer 1 m3
· m−3

Volumetric soil water layer 2 m3
· m−3

Volumetric soil water layer 3 m3
· m−3

Volumetric soil water layer 4 m3
· m−3

5.1.1. Data preprocessing

Focusing on Côte d’Ivoire, we cropped both GRACE and ERA5 to a square of coordinate -8.875°
and -2.125° of longitude, and 4.125° and 10.88° of latitude. Given the difference between ERA5 and
GRACE reference grid, we reproject ERA5 data on the GRACE reference grid. In this way, we obtained
28x28 resolution images with all pixels referenced to the same geographical coordinates.

GRACE data exhibit some monthly missing values (NA) in the selected time window due to
technical reasons [87]. For filling the missing monthly data we adopted a linear interpolation over the
time dimension. In other words, for each month t ∈ Tmissing without observations, a new sample yt

has been created linearly interpolating the samples yt−1 and yt+1 (where y denotes an entire image).
Given the different ranges of the variable, input and output were normalized. More precisely,

each feature of input was standardized such that
x f −µ f

σf
, where f ∈ F represents a specific feature, and

the mean and the variance (µ f , σf ) were calculated considering the pixels of all the images in the entire
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observed period. Finally, the output was scaled between 0 and 1 using the min-max feature scaling

formula Y−Ymin
Ymax−Ymin

.

5.2. Model

As already said, we implemented and compared two different models, a vanilla CNN, and
CIWA-net using Google Colab. The best model is adopted to prove the feasibility of the task 2. Mean
absolute error loss is used for both architectures, and ReLU function is used for the activation of every
layer. Every convolutional layer is performed with zero-padding and strides equal to one 6, while
strides equal to two are used for downsampling the images of the CIWA-net model because it needs to
reduce the size of the input. Transposed convolutions are performed for the reverse operation in order
to obtain back images of the original size. Therefore, by upsampling images we augmented again the
resolution and, thanks also to the skip connections present in the CIWA-net model, we restored the
original input size. The implemented architectures are depicted in Figure 4 and Figure 5. Both models
take as input images of dimension (28, 28, n_ f eatures), where we recall that 28x28 are the dimensions
obtained after preprocessing GRACE and ERA5 images, and n_ f eatures is the number of features
selected for the experiments and is also the number of channels. The output of the neural network
models is an image of dimension (28, 28, 1) because for each image pixel it estimates one feature only:
the target variable. To integrate an "autoregressive“ component we developed different scenarios:

• n_ f eatures = 10, when models take in input only the 10 features of ERA5, listed in Table 1 at time
t, i.e. an image with 10 channels;

• n_ f eatures = 10 + δ, where δ stands for the number of additional channels, each of them made by
a delayed GRACE data image. Hence, for δ = 2 our input image has 12 channels, 10 of which are
ERA5 variables at time t, one is GRACE data at time t and the last is GRACE data at time t − 1, all
trying to predict GRACE at time t + 1.

Figure 4. Architecture of the ’vanilla’ CNN. The numbers under each layer are the number of filters.
The numbers under the images or the reshape layers are their dimensions

6 Zero-padding is used to fill the pixels in the contours to make input data of the same size of output; strides is the unit shift
between one window and the next one
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Figure 5. Architecture of CIWA-net. The numbers under each layer are the number of filters and the
output image resolutions; curly brackets are used for layers with the same numbers

5.3. Results

Table 2 shows Mean Squared Error (MSE) and Mean Absolute Error (MAE) for different scenarios
of the inputs in the training set and in the test set comparing the vanilla CNN and our implemented
CIWA-net models.

Table 2. Training and test loss using MAE and MSE for the vanilla CNN and CIWA-net models; we
vary the number of delayed GRACE data taken as additional input channels (δ). Bold numbers are the
best test scores for the CNN model. Underlined bold numbers are the overall best test scores

δ =0 δ =1 δ =2 δ =3 δ =4 δ =5

vanilla CNN

Train MAE 0.00440 0.00435 0.00328 0.00743 0.00547 0.00669
Train MSE 0.00004 0.00004 0.00002 0.00012 0.00007 0.00011
Test MAE 0.03940 0.03426 0.03593 0.03836 0.03585 0.03569
Test MSE 0.00304 0.00242 0.00267 0.00278 0.00260 0.00261

CIWA-net

Train MAE 0.01932 0.01948 0.01258 0.01490 0.02425 0.01639
Train MSE 0.00074 0.00078 0.00033 0.00046 0.00146 0.00055
Test MAE 0.04461 0.03479 0.03189 0.03273 0.03861 0.03435
Test MSE 0.00407 0.00218 0.00192 0.00200 0.00281 0.00217

The results exhibit promising outcomes. We can observe that the prediction errors are in the order
of some fraction of percent and this is generally very low.

Comparing the vanilla CNN and the CIWA-net models we can see that CNN models overfit the
data: in fact, they achieve much fewer errors in training-set but similar or higher errors on the test-set
than CIWA-net. For δ = 0 CNN model performs better than CIWA-net in terms of test-set, while for
δ > 0 CIWA-net models seem to take more advantage from the additional input represented by the
GRACE delayed channels, and succeed in achieving smaller test errors (except for δ = 4). For δ = 1
CNN model outperforms CIWA-net only if we consider MAE in the test-set. However, it has an MSE
in the test-set higher than the respective CIWA-net: this means that CIWA-net penalizes higher errors
more.

Apart from the slightly better performance among neural networks with δ > 0, it is evident
that introducing one or more (δ > 0) GRACE delays as additional input channels for both CNN and
CIWA-net seems to enhance their performance. Even if the differences are quite small (10−3 order of
magnitude), introducing too many GRACE delays appears to be not worth it because it increases the
test errors or does not significantly improve performances. The optimal number of delays appears
to be 1 or 2. Maybe this could be due to the fact that input images have already a high number of
channels (10) and adding too many channels seems to condense too much information in a single
image. The best results are obtained using δ = 1 for the CNN model, and δ = 2 for the CIWA-net
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model, the latter achieves the overall best scores (in underlined bold in Table 2) and it is selected as
the final model for task 2. Hence, we estimate the spatial and temporal errors committed by the final
model below.

As spatial error quantification, we compute the Root Mean Squared Error (RMSE) for each pixel
(in Figure 6a) in the test set (from May 2015 to June 2017). It is evident that in the southern-east part
the model makes more errors. This could be due to the fact that GRACE data exhibit the highest
variance in this area while ERA5 data have the lowest variance. This makes the task of explaining
TWSA variability using ERA5 data more difficult in this area.

(a) (b)

Figure 6. a) Root Mean Squared Error (RMSE) for each 0.25° pixel computed on the test set (from May
2015 to June 2017). b) Pixel average Root Mean Squared Error (RMSE) computed for every single image
(i.e. month) in the test set. Errors are computed using CIWA-net with δ = 2 predictions with respect to
the true TWSA GRACE values in cm

However, it is worth noting the highest errors are outside our region of interest (Côte d’Ivoire).
Given the overall standard deviation of 9.4cm for all the available GRACE data from April 2002 to June
2017, RMSE values inside Côte d’Ivoire (in which the maximum RMSE is 6.15cm) could be regarded as
acceptable, even if model improvements are needed.

For the temporal error, we computed the RMSE for each image of the test set (i.e. for each month
of the test set) considering all the pixels of a particular month as observations of the same instance.
Figure 6b shows the RMSE series. A peak for the date 2016-12-01 is evident, and it is an explanation for
the previously mentioned spatial estimation difficulties. In fact, we notice that the spatial distribution
of the target is very different in the two consecutive months (see Figure 7a). Similar explanations could
be given for the two other peaks (2015-10-01 and 2016-09-01).
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(a)

(b)

Figure 7. Ground truth (first row) and prediction (second row) of GRACE TWSA from 2016-11-01 to
2017-02-01 (a), and from 2015-12-01 to 2016-03-01 b). Predictions are made using CIWA-net model
with δ = 2. In a) 2016-12-01 is the date for which CIWA-net performs the worst. In b) 2015-12-01 and
2016-02-01 are dates for which CIWA-net performs the best.
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Figure 7a and Figure 7b show some predictions made by the selected model in task 2 for some
dates of the test set, including the one for which the model commits the highest RMSE (2016-12-01) and
some of the best performance model dates (2015-12-01 and 2016-02-01). In general, the model is able to
correctly predict the evolution of TWSA, apart from some anomalous and abrupt changes (2016-12-01)
with respect to the previous months, for which the model needs to be improved. Differences between
the resolutions of ERA5 and the native one in GRACE make model outputs vary more than the true
ones. In fact, true GRACE values remain constant also in the neighbor pixels, which does not occur
in ERA5 data and model predictions. However, this is not a relevant problem for the final aim of
the research: we should consider that the model should be used by policymakers for a national or
sub-national forecast about the main TWSA, and not necessarily at a 0.25° resolution. Considering the
above mentioned resolution limitations, for this task we consider that our model succeeds: it is able to
detect major changes and their approximate locations.

6. Discussion

In the paper, we demonstrate that different types of low-cost sensors can be employed to help
developing countries in managing their resources. On one hand, policymakers can have a regional
level perspective analyzing satellite data and, on the other hand, local farmers can be supported by
tools for on-site decision-making or monitoring.

As demonstrated in Section 4, with a relatively simple dataset for classification purposes, it is
possible to build classification apps to support local farmers in their activities. Nowadays, local farmers
endowed with a smartphone could be able to collect on-site pictures of their crops and make them
labelling by an expert. With such a dataset, it is feasible to create AI classifiers able to help farmers in
identifying particular features, which inexpert workers could not detect. Locals can be instructed on
how to build classification datasets correctly for training machine learning models.

For instance, depending on the case, it could be necessary to collect more than a certain number
of samples, take pictures respecting some characteristics (e.g., with a variable or constant distance
from the target, one or several features to detect, avoiding or allowing redundant object samples,
constant sensor’s type for acquiring the image, etc.). Consequently, without employing expensive
instruments, a dataset is easily producible through the use of a low-cost smartphone or camera and a
local expert could label it once and for all. Then, using a free GPU usage service (e.g., Google Colab,
etc.), a standard pre-trained machine learning model can be easily adapted to the chosen task. Finally,
a model implemented using libraries such as TensorFlow, Keras or PyTorch can be easily converted
into a format running on a smartphone, making it usable by the local farmers who can benefit in their
activities.

The accuracy of our model based on YOLOv5m image segmentation, as depicted in Figure 1, is
98% for detecting healthy fruits, while the other two classes are often confused. However, if the task
of the farmer is to detect healthy and damaged fruits, the tool is pretty accurate. YOLOv5m is not
the best model for object detection in terms of accuracy, but it revealed to be particularly suitable for
real-time tasks, like in our case. Furthermore, the model has been trained over a small dataset, given
the scarcity of this kind of data (only 312 images). Nevertheless, even though the dataset needs to be
extended, the result should be considered interesting since the model internally implements a data
augmentation step that makes it more general and robust with new images.

Other cheap sensors can be employed on-site (e.g., based on Arduino) to measure various aspects
of the environment (e.g., soil moisture, air humidity, air quality, etc). In this way, it would be feasible
to gather specific information impossible to be collected by other means with a similar local precision
(e.g., satellites, drones, etc).

In addition, the huge amount of satellite public images and data present online enables several
terrestrial analyses, from shorter (e.g., centimeters or meters of ground resolution) to longer scale (e.g.,
kilometers of ground resolution). NASA and ESA space agencies offer for free access to their satellites
datasets and encourage their usage. In particular, Earth Observing System (EOS) and Copernicus
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programs, implemented respectively by NASA and ESA, supply continuously different images of the
Earth in the visible and non-visible spectral range. Visible and non-visible bands enable everyone to
perform several analyses for free: for instance to detect deforestation or degradation of the land with a
few meters of ground resolution.

In our case, we demonstrated in Section 5 the possibility to use GRACE and ERA5 datasets to
build a model based on deep neural networks of prediction for drought a month in advance, which
could represent a decisive improvement for the developing countries and would allow them to manage
water resources in the short-mid term. This proved the feasibility of building such a tool to support
policymakers who have to monitor and manage resources at the regional level. However, this kind of
dataset is quite limited by its low resolution, which is approximately 25km/pixel, which is already
extrapolated by an original granularity of 120km as explained in Section 5.1. Therefore, this dataset
could be improved significantly in the future in order to detect smaller basins and bigger ones more
accurately. Anyway, over the years, satellite missions are increasing the acquisition frequency and
ground resolution of their products which will contribute to building more precise predictive models
from a temporal and a resolution perspective. Additionally, when it is feasible, this information could
be also improved by integrating data acquired by sensors placed on the ground, resorting to the
so-called down-scaling methods.

In summary, our article shows the potential of cost-effective sensors and freely available satellite
data to empower developing countries in managing their resources effectively. By providing tools and
models accessible to both policymakers and local farmers, we can make significant strides in resource
management and environmental monitoring without relying on expensive instruments.

7. Future works

Task 1 of Section 4 proposed a tool for local farmers to detect healthy and unhealthy fruits. This
tool could be used for smartphone images and a smartphone application could be implemented
for user-friendly usage. A more complex model could be implemented with the aim of better
discriminating among diseases. Anyway, fast and light implementation should be preferred given the
smartphone application context. Integrating more diseases and introducing additional classes could be
worth it. Experts should join the design and training phase of the model, bringing domain knowledge.
In this way, a more exhaustive and reliable tool could be implemented and furnished to local farmers
to improve their farming activities.

In task 2, we tested and proved the feasibility of supporting natural resource management using
open data and publicly available software. Developing countries will benefit the most from such
low-cost instruments to tackle climate change issues. One element that will improve CIWA-net
performances is the training set dimension, which is now limited to the Côte d’Ivoire. Future analyses
could take into consideration also neighboring countries with similar morphology, economy, and
climate for the same period. In this way, we could offer more reliable instruments capable of making
more precise predictions. Furthermore, it should be worth retrieving proxy data of anthropogenic
pressure on water resources: in this way, a model could predict not only meteorological droughts
but also those induced by human over-consumption. Other types of CNN-like architectures could
be very suited for this task, for example, tempCNN, TCN, and convLSTM [82,88,89] could be used
considering our SITS as a video. These architectures may be useful for additional comparisons to our
CIWA-net selected model or to implement a new mixed architecture specifically designed to capture
spatio-temporal relations proper of SITS.

It is possible to implement models for detecting degradation and deforestation using
satellite images of Sentinel-1 and Sentinel-2 European Space Agency (ESA) missions (available at:
https://dataspace.copernicus.eu/). Sentinel-2 data are multi-spectral (RGB, NIR, VNIR, and SWIR)
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images of different resolutions up to 10m, and continental land coverage is about every 5 days7.
Some researches already showed the feasibility of using Sentinel-2 images and neural networks for
deforestation detection [90–93]. Differently, Sentinel-1 furnishes C-band synthetic aperture radar
images of the entire globe every 12 days8. This type of data appears to be relevant for forest change
detection, especially if combined with Sentinel-2 data to overcome cloud coverage and adverse
meteorological conditions[94–97]. CIWA-net model implemented for our task 2 in Section 5 could
be restructured for forest monitoring, i.e. a Fully Convolutional Network for classification purposes
taking in input Sentinel-1 and Sentinel-2 images at the beginning and at the end of a monitoring period,
producing in output a classification map detecting deforestation and degradation.

8. Conclusions

Our study focuses on the urgent need for climate change mitigation and adaptation in developing
countries like Côte d’Ivoire, where the economy heavily depends on agriculture, and farmers face
challenges due to deforestation, lack of rainfall, and climate change. By using cost-effective AI models
and open-source software, this work demonstrates the potential to provide valuable support to farmers
and policymakers, aiding in sustainable land and water management practices. The study emphasizes
the importance of collaboration among experts, researchers, NGOs, and policymakers to bring about
lasting changes and achieve sustainable development goals.

The article shows the application of machine learning for sensors analysis for social good,
specifically in combating climate change and facilitating land management and farming in developing
countries, focusing on Côte d’Ivoire, which is the largest producer of cocoa beans in the world. To
contrast climate change it is necessary to work at different scales from the single pod to the regional
scale. Furthermore, considering that cocoa cultivation is done by a number of small farmers that earn
around 1.0 Euro per day from their labor, it is important to maintain costs low. The paper proposes the
use of deep neural networks (YOLOv5m) to distinguish healthy cocoa plants and pods from unhealthy
ones using mobile phone images, thus helping local farmers improve cocoa production at low costs.
Additionally, the article suggests a new method of forecasting TWSA using Fully Convolutional Neural
Networks (FCN) U-net like architecture, called CIWA-net. These approaches can help combat climate
change by decreasing crop losses, and waste, reducing the inputs on the soil (fertilizers) which are
responsible for greenhouse gas emissions, and helping water resources forecasting to counter extreme
water events, desertification and growth of arid areas.

The new architecture CIWA-net is discussed and shown through comparison with a vanilla CNN
model. For the YOLOv5m accuracy is shown using a confusion matrix. The proposed models for
cocoa pod classification and water resources forecasting show promising results, with the potential to
help farmers, NGOs, and local authorities make informed decisions to address climate change impacts
and improve agricultural practices.

Overall, the article highlights the significant role of machine learning and open-source
technologies in addressing climate change and promoting a just social-technological transitions in
developing countries to benefit both small farmers and the larger community. The article underscores
the substantial role of machine learning and open source technologies in addressing climate change and
facilitating equitable socio-technological transitions in developing countries. It can bring advantages
to both small-scale farmers and the wider community.

We stress the urgent need to address the negative consequences of cocoa cultivation and habitat
loss in Côte d’Ivoire, and the nearby countries (Republic of Ghana, Togolese Republic, also producers
of cocoa), emphasizing the significance of biodiversity conservation, deforestation control, habitat and
water management, for effective sustainability measures. Our classifiers and sensor forecasting have

7 For more details, please visit: https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi.
8 For more details, please visit: https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-1-sar.
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the potential of mitigating the environmental impact at low costs and promoting social outcomes at
affordable costs.
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