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Health, University “Campus Bio-Medico” di Roma, Via Álvaro Del Portillo 21, 00128 Rome, Italy  
* Correspondence: m.capocelli@unicampus.it; v.marcantonio@unicampus.it 

Abstract: Biomass gasification acquired great interest over the past decades as an effective and trustable 
technology to produce energy and fuels with net-zero carbon emissions. Moreover, using biomass waste as 
feedstock enables to recycle organic wastes and to fit the circular economy goals thus reducing the 
environmental impacts of waste management. Even if many studies have been already carried on, this kind of 
process must still be investigated and optimized with the final aim to develop industrial plants for different 
applications, from the hydrogen production to net-negative emission strategies. Modeling and developing of 
process simulations became an important tool to investigate the chemical and physical behavior of the plant, 
allowing to make a first raw optimization of the process and to define heat and material balances of the plant 
as well as to define optimal geometrical parameters with cost and time effective approaches. The present review 
paper focuses on the main literature models developed until now to describe biomass gasification process, and 
in particular on kinetic models, thermodynamic models, and computational fluid dynamic models. The aim of 
this study is to point out the strengths and the weakness of those models, comparing them and indicating in 
which situation is better to use an approach instead of another. Moreover, theoretical shortcut models and 
software simulations, not explicitly addressed by prior reviews, are taken into account. For researchers and 
designers this review provides a detailed methodology characterization as a guide to develop innovative study 
or project.  

Keywords: biomass gasification; process simulation; thermodynamic equilibrium; kinetic model; ANN; 
multivariate data analysis 

 

1. Introduction  

During the Anthropocene, the pressure on environment is increasing exponentially along with 
global warming. On the other hand, the need for each country to be energy-independent and to find 
low-price solution for energy production, represent an actual challenge.  

In order to deal with those problems, many researchers pointed out that it is possible to make 
an energetic transition from fossil fuels to renewable energy sources. Among the most investigated 
renewable energy sources, biomass is confirmed as the most favourable one, since it is the widest 
source of energy after coal, oil, and natural gas [1–4]. Using biomass as feedstock for energy 
production allows to achieve both green energy production and national energy security goal. 
Moreover, using biomass waste instead of energetic culture accomplish the request for circular 
economy to reuse those organic wastes that otherwise would be dispose polluting soil and air and 
also avoiding the fuel vs. food issue [5–7].  

During the last years, many processes for biomass conversion into energy were investigated, 
and gasification was highlighted as one of the most efficacious [8–10]. Gasification is a thermo-
chemical technology to convert biomass into a combustible gas mixture by the partial oxidation of 
the biomass at high temperature (750-950 °C) in presence of a gasifying agent [11–14]. Fluidized bed 
reactor was confirmed as the most suitable as gasifier reactor due to the excellent thermal and mixing 
properties that ensure high heat transfer rates, high efficiency, low combustion temperature and low 
pollutant emissions [15,16]. The gas mixture produced by gasification process is called syngas and it 
is mainly made of H2, CO, CO2, CH4, H2O, along with organic and inorganic contaminants [17]; the 
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quantity of each produced component depends on feedstock characteristics, gasifying agent, 
operative conditions of the process, reactor design, etc. [18,19].  

To investigate biomass waste gasification process, modelling approaches and simulation 
software provide useful tools to investigate different operative conditions, to make a first raw 
optimization of the process obtaining the most suitable syngas for the desired uses and to scale-up 
lab-scale and pilot apparatus. Results coming from simulative models must be the base for the 
realization of pilot plant, allowing to reduce cost, avoiding risk for human health as well as to 
interpret the experimental data and build the foundations of knowledge necessary for the realization 
of a project [20]. Both mathematical and numerical simulative models are suitable for those purposes 
since they both are able to predict the performance of the process and to give a good representation 
of the chemical and physical phenomena occurring, in order to optimize the process with swift time 
and minimal cost [21]. Then, it is also possible to choose to simulate the process in steady state 
condition (time independent) or in dynamic condition (time dependent), according to what is the 
focus of the investigation. Kinetic, thermodynamic, Computational Fluid Dynamic (CFD), and 
Artificial Neural Network (ANN) models have been adapted and implemented for the study of 
syngas production from a wide variety of feedstocks [22–25].  

Kinetic models take into account the kinetic of the gasification reactions given the reactor 
properties (residence time, operative temperature, and pressure). They predict the syngas yield, the 
produced syngas composition after a finite time, or in a finite volume in a flowing medium. These 
models, after a proper validation, allow to predict the process performances for a specific operating 
conditions and reactor design [26,27].  

Since kinetic models depend on the specific fluid-dynamics and geometry of the case study, their 
applicability is restricted to specific reactor configurations. Complex configuration of the reactors 
enhances the complexity of the describing model.  

Thermodynamic models predict the syngas composition based on the assumption that the 
reactants react in a fully mixed condition for an infinite time, so to reach the thermodynamic 
equilibrium [28]. The main advantage of those models is the independency from the gasifier design 
[29], that means thermodynamic models can be used to describe a wide range of plants, without any 
particular restrictions, despite kinetic models. 

CFD models describe the gasification process based on the conservation of mass, momentum, 
species, and energy into a certain portion [28,30]. Those models are able to predict a very accurate 
syngas composition when coupled with a well-known fluid-dynamic of the gasifier and are especially 
suitable for fluidized bed reactors, in which they provide important information about temperature 
profiles and species concentration. 

Black-box approaches, including algorithms of Artificial Intelligence as ANN, are considered a 
relatively new approach for modelling biomass gasification process. They have the great merit to not 
require the formulation of a complex mathematical equations and also to be able to understand and 
identify non-linear relations [31]. Therefore, ANN modelling is acquiring great interest when the aim 
of the study is to investigate biomass gasification process there complex non-linearities occur in the 
dataset [32]. 

The aim of the present paper is to investigate the most recent simulative models and results from 
scientific literature, in order to provide a critic review that is able to indicate which is the best 
approach, among kinetic, thermodynamic, CFD, Multivariate Data Analysis (MVDA) and ANN to 
describe a biomass gasification process according to the specifications and the desired goal.  

2. Biomass gasification principle and technology 

Gasification is a partial thermal oxidation, occurring at high temperature (in the range 750-900 
°C) in presence of a gasifying agent (steam, air, oxygen, or a mixture of them) that reacts with biomass 
producing a gaseous product mainly composed of H2, CO, CH4, CO2 along with small quantities of 
solid product (char), inorganic contaminants (mainly H2S and HCl), and organic contaminants (tar). 
The amount of final inorganic compounds depends on biomass inlet properties, for instance, it is 
recommended to take as low as possible the inlet concentrations of S and Cl. The gasifying agent 
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influences the final gas composition (see Table 1), steam provides the highest H2 content and the 
highest Low Heating Value (LHV), while air provides a lower quality syngas due to the bigger 
amount of inlet N2. 

Table 1. Effect of gasifying agents on the composition of gas products [25]. 

Gasifying 

agent 

H2 (%mol) CO2 

(%mol) 

CO 

(%mol) 

CH4 

(%mol) 

N2 (%mol) LHV 

(MJ/kg) 

Air 3-13 10-18 5-28 0-7 40-50 4-6 
Oxygen 20-30 25-40 20-30 5-10 0-1 7-8 
Steam 30-50 8-25 20-40 6-15 0-1 9-11 

The chemistry of biomass gasification is quite complex. The reactions involved in the process are 
listed in Table 2, while the gasification stages can be summarized as follow [8,33]:  

o Drying. Occurring at 100-200 °C, drying stage reduces the moisture content of biomass below 
5%. 

o Devolatilization (pyrolysis). In this step, the thermal decomposition of biomass occurs, in absence 
of oxygen or air. The volatile matter is decreased, releasing hydrocarbon gases from biomass, 
which is then reduced to solid charcoal.  

o Oxidation. In this stage, CO2 is produced from the reaction of solid carbonized biomass and 
oxygen in the air. H2 present in the biomass is oxidized to produce water. Then, if oxygen is 
present in sub-stoichiometric quantities, partial oxidation of carbon may happen, producing CO. 

o Reduction. At high temperature (800-950 °C) several reduction reactions occur in the absence (or 
sub-stoichiometric presence) of oxygen. Those reactions are water-gas reaction, Boudouard 
reaction, water-gas shift reaction and methane reaction.  

Table 2. – Chemical reactions of gasification process [8,34,35]. 

Oxidation reaction 

Volatiles Char 𝐶𝑂 + 1

2
 𝑂2  ⇿  𝐶𝑂2        (1) 

ΔH= - 283 kJ/mol 

𝐶 + 1

2
 𝑂2  ⇿  𝐶𝑂      (3) 

ΔH= - 111 kJ/mol 𝐻2 + 1

2
 𝑂2  ⇿  𝐻𝑂2      (2) 

ΔH= - 242 kJ/mol 

𝐶 + 𝑂2  ⇿  𝐶𝑂2 ..       (4) 
ΔH= - 394 kJ/mol 

  
Boudouard reaction 𝐶 + 𝐶𝑂2 ⇿  2𝐶𝑂  (5)      ΔH= - 172 kJ/mol 

  
Water-Gas reaction 

Primary Secondary 𝐶 + 𝐻2𝑂 ⇿  𝐶𝑂 + 𝐻2      (6) 
ΔH= - 131 kJ/mol 

𝐶 + 2𝐻2𝑂 ⇿  𝐶𝑂2 + 2𝐻2 (7) 
ΔH= - 90 kJ/mol 

  
Methanation reaction 𝐶 + 2𝐻2 ⇿  𝐶𝐻4   (8)    ΔH= - 75 kJ/mol 

 
Water-Gas shift reaction 𝐶𝑂2 + 𝐻2 ⇿  𝐶𝑂 + 𝐻2𝑂   (9)    ΔH= - 41 kJ/mol 

 
Steam Reforming reaction 𝐶𝐻4 + 𝐻2𝑂 ⇿  𝐶𝑂 + 3𝐻2   (10) 

ΔH= 206 kJ/mol 
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𝐶௡𝐻 + 𝑛𝐻2𝑂 ⇿  𝑛𝐶𝑂 + ௡ା௠
2

𝐻2       (11) 

  
Dry Reforming reaction 𝐶𝐻4 + 𝐶𝑂2 ⇿  2𝐶𝑂 + 2𝐻2   (12) 

ΔH= 247 kJ/mol 𝐶௡𝐻௠ + 𝑛𝐶𝑂2 ⇿  2𝑛𝐶𝑂 + ௠
2

𝐻2   (13) 

2. Thermodynamic models 

Thermodynamic models describe the thermodynamic equilibrium (temperature, pressure, and 
composition), achieved by perfect mixing and infinite reaction time. The system is time-invariant and 
not depending on kinetic factors such as the design of reactor and fluid dynamics [29]. This property 
makes the models at thermodynamic equilibrium very flexible to use and suitable for a wide variety 
of process without any specific constraints. Indeed, they provide information about limit gas yield, 
gas composition, and even if they apply under many rescripted assumptions, still they provide 
insights about unit operation, process optimization, energy recovery and also life-cycle assessment 
and techno-economic analysis [2,36–38]. Equilibrium models have a wide range of applicability since 
usually gasification process is driven close to equilibrium [29]. Thermodynamic equilibrium models 
can be classified into [39–41]: 

• Stoichiometric models, which are based on equilibrium constants: the specific chemical reactions 
of the process must be declared; 

• Non-stoichiometric models, which are based on minimisation of the Gibbs free energy, 
neglecting the chemical reactions involved. Only the definition of a set of chemical compounds 
that are expected at equilibrium is needed. 

Stoichiometric models and non-stoichiometric models, even if built with a completely different 
mathematical implementation, were demonstrated to reach close results if some conditions are 
satisfied [42]. Even if stoichiometric models are based on simple mathematical formulation, they have 
not been widely utilized in literature, while non-stoichiometric models are used in approximately 73% 
of equilibrium simulations in literature, while 27% of literature relies on stoichiometric ones [39].  

Stoichiometric models include mass balances and the calculation of equilibrium constants at a 
given temperature. The mathematical model combines the conservation laws of atomic species with 
those of thermodynamic equilibrium by referring to the global gasification reaction starting from 
reactants and inert compounds in the feed. The result is a tool to predict the composition of the 
produced gas, once the characteristics of the feed to be gasified are known (proximate and ultimate 
analysis), such as the operating conditions in terms of pressure, temperature, and steam/feed ratio. 
Mass and energy balances result into a system of non-linear algebraic equations for each reaction, 
whose unknown variables are the extent of each reaction; the solution is found applying the classic 
methods to evaluate the roots of non-linear algebraic equations, such as the Newton-Rapson one. 
Once computed the extents of all reactions at equilibrium, it is possible to compute the equilibrium 
composition of the products at a given temperature. If the temperature is unknown, it is necessary to 
couple an energy balance taking into account the enthalpies of the reactants and products, thus 
increasing the complexity of the system. These models are commonly based on the following 
assumptions [43]: 

a) all the reactions considered are at thermodynamic equilibrium equivalent to an infinite 
residence time; 

b) all the carbon is gasified and is not present among the reaction products; 
c) the products leaving the gasifier, except for the ashes in the solid phase, are in the gaseous 

phase and consist of CO, CO2, H2O, H2, CH4, N2; 
d) among the reaction products there is no tar. 
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The mass balances in presence of the equilibrium reaction require the molar concentrations and 
the molar ratios of components in the feedstock. Since the solid feedstock (solid biomass) is often a 
complex mixture, it is described by a brute formula derived from the ultimate analysis of dry and 
ash-free biomass samples. Thus, the feedstock is represented as a single component CHmOpNq 
reacting as: 𝐶𝐻௠𝑂௣𝑁௤ + 𝑤𝐻ଶ𝑂 → 𝑎𝐶𝑂 + 𝑏𝐶𝑂ଶ + 𝑐𝐻ଶ + 𝑑 𝐶𝐻ସ + 𝑒𝐻ଶ𝑂 + 𝑓𝑁ଶ (14) 𝐾௘௤ =  𝑒ି∆ீ೅బோ்  

(15) ∆𝐺଴்𝑅𝑇 =  ∆𝐺ଶଽ଼଴𝑅 ∙ 298.15 − න ∆𝐻଴்𝑅𝑇ଶ  𝑑𝑇்
ଶଽ଼.ଵହ  

(16) 

∆𝐻଴் =  ∆𝐻ଶଽ଼.ଵହ଴ + ෍ න 𝑣௜𝐶௣,௜(𝑇)𝑑𝑇మ்ଶଽ଼.ଵହ  
(17) 

∆𝐻ଶଽ଼.ଵହ଴ =  ෍ 𝑣௜ 𝐻ଶଽ଼.ଵହ ௣௥௢ௗ௨௖௧௦଴ − ෍ 𝑣௜ 𝐻ଶଽ଼.ଵହ ௥௘௔௖௧௔௡௧௦଴  (18) ∆𝐺ଶଽ଼.ଵହ଴ =  ෍ 𝑣௜ 𝐺ଶଽ଼.ଵହ ௣௥௢ௗ௨௖௧௦଴ −  ෍ 𝑣௜ 𝐺ଶଽ଼.ଵହ ௥௘௔௖௧௔௡௧௦଴  (19) 𝐶௣,௜(𝑇) = 𝑎 + 𝑏𝑇 + 𝑐𝑇ଶ + 𝑑𝑇ଷ + 𝑒𝑇ଶ + 𝑓𝑇଴.ହ (20) ∆𝐺଴ and ∆𝐻଴  are the variation of standard Gibbs free energy and enthalpy formation, 
respectively. 

Assuming to know the composition of the biomass and the characterization of the reactants, 
including the biomass moisture and the gasifying agent (steam), it is possible to develop the model 
taking into account two chemical reactions: water-gas shift (9) and steam reforming (10). The solving 
system is represented by the four mass balance equations and the two chemical equilibrium equations 
(21)-(26). 

1 = a + b + c (21) 

m + 2w = 2c + 4d + 2e (22) 

q = 2f (23) 

p + w = a + 2b + e (24) 

𝐾ଵ =  ൬𝑃஼ைమ𝑃଴ ൰ ∙  ൬𝑃ுమ𝑃଴ ൰ቀ𝑃஼ை𝑃଴ ቁ ∙  ൬𝑃ுమை𝑃଴ ൰ =  𝑏 ∙ 𝑐𝑎 ∙ 𝑒 

(25) 

𝐾ଶ =  ቀ𝑃஼ை𝑃଴ ቁ ∙ ൬𝑃ுమ𝑃଴ ൰ଷ  ൬𝑃ுమை𝑃଴ ൰ ∙  ൬𝑃஼ுర𝑃଴ ൰ =  𝑎 ∙ 𝑐ଷ𝑑 ∙ 𝑒 ∙  𝑛ଶ்  

(26) 

P0 represents the system operative pressure, while PCH4, PH2, PH2O, and PCO2 are the partial 
pressures of CH4, H2, H2O, and CO2, respectively. nT are the total moles of produced gas.  

In Table 3 are listed the values of coefficient a, b, c ,d, e, and f, following the Hougen-Watson 
approach [44]. In Table 4 are listed the values of standard Gibbs free energy and enthalpy formation. 

Table 3. – Coefficients for the computation of the specific heat at constant pressure [44]. 

Compound a b c d e f 

CH4 4.75 1.200E-02 3.030E-06 -2.63E-09 0 0 

H2O(gas) 6.97 3.464E-03 -4.833E-07 0 0 0 

CO 6.48 1.566E-03 -2.387E-07 0 0 0 

CO2 18.036 -4.474E-05 0 0 0 -158.08 

H2 6.424 1.039E-03 -7.804E-08 0 0 0 

N2 6.50 1.00E-03 0 0 0 0 

H2O(liquid) 18 0 0 0 0 0 
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Table 4. - Standard Gibbs free energy and molar enthalpy formation [43]. 

Compound 
0
H  (kcal/mol) 

0
G  (kcal/mol) 

CH4 -17.810 -12.057 
H2O(gas) -57.7979 -54.6351 

CO -26.416 -32.808 
CO2 -94.052 -94.26 
H2 0 0 

C(solid) 0 0 
These models are of rapid use and are based on solid theoretical foundations widely developed 

in chemical engineering and reactor engineering textbooks. On the other hand, they often generate a 
non-negligible error due to the following reasons: the reactions really occurring are only partially 
known, they describe only the gaseous phase, at a given fixed temperature where all reactions are in 
equilibrium. 

Non-stoichiometric models demonstrated their reliability over the years since were successfully 
used in modelling the gasification process, especially in fluidised-bed gasifiers [40,45,46], allowing to 
evaluate the effect of temperature, equivalence ratio, steam to biomass ratio, moisture content of 
feedstock on the gasification process.  

Non-stoichiometric equilibrium models may be upgraded into the so called quasi-equilibrium 
approach, that is a compromise between equilibrium thermodynamic models and experimental data 
in reaction conditions close to the equilibrium [9,29], providing more accurate results about syngas 
composition. 

The non-stoichiometric equilibrium modelling approach is founded on the direct minimization 
of the Gibbs free energy of reaction species. This methodology can be used to find equilibrium 
compositions "virtually" including unknown reaction paths. On the other hand, the minimization of 
the Gibbs free energy can be stopped in non-equilibrium conditions as explained in our previous 
works [43,47] and in some cases referred to as quasi-equilibrium temperature (QET) approach. This 
latter is actually considered the most effective way to model the gasification process [48] and have 
also been adopted by commercial process simulators as mentioned in the next chapters. The final 
composition is derived by setting a QET for each reaction that occurs into the gasifier. In this way 
each reaction occurs at its equilibrium temperature instead of the gasification temperature set for the 
gasifier block [49]. On the other hand, the minimization can be stopped by introducing other criteria. 
For instance, in our previous work [47] we defined an algorithm based on the minimization of the 
error model predictions and experimental data. In this way it is possible to train a quasi-equilibrium 
model and then use it as a scaling-up tool. We report below the formulation of a non-stoichiometric 
model based on the minimization of Gibbs free energy (G) for the previously selected set of reactions: 
steam reforming and water gas shift. It must be premised that this type of modelling starts following 
a first devolatilization defining the composition of the gaseous state that participates in the reaction. 
This preliminary phase is often trained on experimental data to get a more realistic description of the 
formation of ash, char, and tar. In fixed temperature and pressure conditions, the function G depends 
only on the extent of the reactions 𝛼 and 𝛽, expressed as an extensive variable as follows:  𝐺(𝛼, 𝛽)|்,௉ = ෍ 𝑛௜(𝛼, 𝛽) ∙ 𝜇௜(𝛼, 𝛽, 𝑇)௜  (27) μ୧ = μ୧଴(𝑇) + RT lnP୧ (28) P୧ =  n୧(α, β)n୘୓୘(α, β)  P 

(29) 

μ୧ = μ୧଴(T଴) TT଴ − T න H୧(T)Tଶ dT୘
୘బ + RT lnP୧ (30) 

where i = CO, CO2, H2O, H2, CH4, N2, H2S. The partial pressure Pi is written by assuming an ideal 
mixture of gases. ni is the number of moles of the i-component; µi is the chemical potential; Hi is the 
standard molar enthalpy of the component i in the gaseous phase, calculated at the temperature T of 
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the system. μ୧଴(𝑇) is the standard chemical potential of the i-component at temperature T. R is the 
universal constant of gas and Pi is the partial pressure of i-component.  

Once the chemical potentials of the components present in the system have been defined, at a 
given temperature, it is possible to evaluate the total free energy of the system at fixed 𝐺(𝛼, 𝛽)|்,௉ in 
equation (27) as function of two independent variables 𝛼, 𝛽 . In other words,  the free energy 𝐺(𝛼, 𝛽)|்,௉ is as a surface in the space (𝛼, 𝛽, 𝐺) and is characterized by the presence of a minimum 
which corresponds exactly to the equilibrium conditions of the system. The Gibbs Free Energy 
Gradient Method Model (GMM) exploits the thermodynamic principle stating that a system always 
reaches the equilibrium conditions starting from initial conditions by minimizing the energy value. 
The minimum energy value corresponds to the condition of all reactions being at the equilibrium 
simultaneously. From a theoretical point of view, the equilibrium condition is reached after an infinite 
time.  

In practice, real systems can reach, even in very low time, conditions so close to the equilibrium 
that the difference lies within the error threshold of the current measurement methods, entering a 
kind of “grey zone”, not observable.  

In an industrial equipment, the system will reach this “grey zone” if the residence time is large 
enough, according to the reactor geometry and operating conditions. Among the infinite routes 
between the initial point (α = β = 0) and the equilibrium point, the system chooses the path that offers 
the maximum gradient ∇G(α, β) [43,47].Through a purposed set of experiments, it is possible to train 
the model by comparing the simulated with the experimental states. Figure 1 reports a comparison 
of trajectories following the ∇G(α, β) between the GMM method and the final equilibrium state in a 
given experiment [43,46].  

 

Figure 1. - GMM training pathway: 2-D representation in the α, β plan and highlights on the 
equilibrium and non-equilibrium coordinates [46]. 

Even if some studies over the past decades focused on the improvement of the evaluation of the 
QET by means of a data-fit made by experimental data [50–52], there is still a lack of comprehensive 
studies applied to fluidised-bed gasifier taking into account the use of different gasifying agents and 
also the undesired by-products (organic and inorganic compounds). Marcantonio et. al [29] proposed 
a process simulation study that tried to overcome this issue by developing a quasi-equilibrium model 
that includes air/steam/oxygen biomass-gasification in presence of organic and inorganic by-
products. The results were in good agreement with experiments, and it was also possible to make an 
optimization of the process investigating the effect of gasification temperature and S/B ratio on the 
gas composition for different gasifying agents.  

The most common properties whose experimental observation mostly deviates from ideal 
equilibrium prediction are the concentration of methane and the amount of unreacted char. The 
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under or over prediction of methane is an ordinary issue in equilibrium models [53]. Indeed, in real 
case the conversion of methane is kinetically limited, so the final methane concentration is controlled 
by non-equilibrium factors and it is not possible to obtain a good prediction by means of equilibrium 
model [54]. The unreacted char issue is best dealt with and avoided by only computing the 
equilibrium of the volatile gas-phase components rather than the complete heterogeneous 
equilibrium or otherwise setting as input the specific amount of unreacted char from experimental 
results. Loha et al. [55,56] compared an equilibrium model of steam gasification in a fluidized-bed 
reactor with the correspondent experimental data. They showed that the actual deviation of methane 
increases at higher temperature, against the “general rule” stating that at higher temperatures reduce 
the gap between equilibrium model and experimental case. Applying a QET approach to simulate 
the syngas concentration at 750 °C Loha et al. found that the experimental molar dry concentration 
of methane was 4.2% against the simulated 2%. Many other studies in literature confirmed this trend 
of methane to be even twice in experimental case compared with equilibrium simulation [57]. As for 
the other main syngas components (hydrogen, carbon monoxide, carbon dioxide, steam) there is a 
good agreement between the simulations in QET conditions and corresponding experimental data, 
whit poor deviations (within 5% molar fraction) [58]. More in general, however, thermodynamic 
equilibrium model poorly applies to specific gasifier conformations and under some operating 
conditions, in particular for reactors operating at low temperatures [8,59,60]. 

2. Kinetic models 

Kinetic models are commonly used in chemical reactor engineering to predict non-equilibrium 
product distributions, evolution of the system over time as a function of temperature and residence 
time. For their nature, they should be also accompanied by thermal energy and momentum balance. 
In order to obtain the information listed above, the kinetic equations must be very accurate, that 
means the reaction mechanism and the kinetic constant of the process must be validated on a wide 
range of experimental conditions. For these reasons, the kinetic model developed is strictly 
dependent on the geometry of the reactor and on the characteristic of the specific process and, if used 
to simulate other processes with different specifications, it can result an unpredictable error. The 
majority of kinetic models in literature is built to calculate the kinetic parameters to predict biomass 
feedstock conversion, syngas yield and composition. 

Castello and Fiori [61] proposed a simplified model for hydrothermal gasification of methanol, 
they adapted the kinetic model according to elementary equations of combustion. They pointed out 
the relevance of two reactions among others: water-gas shift and CO methanation, which mostly 
influence the process. Another way to simplify the kinetic modelling of gasification process is 
through the lumped method, considering a pseudo-mono-component for the intermediate products 
and assuming that the syngas is produced from the decomposition of this single component [62]. 
Resende and Savage [63] developed a lumped first-order kinetic model to describe the gasification of 
cellulose and lignin fitting the experimental results in order to adjust the output. The model was able 
predict gas yield and syngas composition for different feeds. The results from this kinetic model were 
compared with those from a thermodynamic equilibrium model, adopting Gibbs free energy 
minimization method, found a good agreement. Guan et al. [64] studied hydrothermal gasification 
of algae by means of a lumped first-order kinetic model, which was able to give the precise gas yield 
and also the effect of water density and biomass inlet on the final gas composition. Jin et al. [65] 
investigated the gasification of lignite by means of lumped method; they were able to predict the gas 
yield in good agreement with experimental data obtained by means of a micro quartz tube reactor.  

Even if the lumped first-order method seems promising in estimating gas yield and gas 
composition, it is not flexible for all processes. For instance, it is not suitable to predict the syngas 
composition in supercritical water gasification, whose reaction conditions strongly depend on 
structures and distributions of pores in the feedstock material, which vary their structure along with 
the gasification process in turn affecting the reaction rate [66,67]. For this reason, some authors 
proposed a kinetic alternative model based on random pore size distribution. Vostrikov et al. [68] 
proposed a kinetic model based on random pore size distribution for the investigation of supercritical 
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water gasification of coal. The study confirmed that the model is suitable for describing the rate of 
coal conversion dependent upon the coal conversion degree. Moreover, it was highlighted that 
random pore size distribution model is not trustable when catalytic effects occurred in non-uniform 
way.  

Di Carlo et al. [69] developed a semi-empirical kinetic model for steam gasification via fluidized-
bed gasifier. The reactor was a cylinder, and the model was based on a mono-dimensional modelling 
of the mass and energy balance in order to calculate the syngas composition along the axis of the 
cylinder. The corresponding algorithm flowchart implemented by the authors is shown in Figure 2. 
Kunii and Levenspiel [70] developed a hydrodynamic model in order to describe the multiphase 
(bubble and emulsion) nature of reacting mixture phases and their interaction.  

 

Figure 2. – Model algorithm flowchart developed by [69]. 

The kin-semi approach helps simplifying the complexity of kinetic models by assuming local 
equilibrium for specific reactions and/or gasifier zones, while concentrations and temperatures of the 
other reactions and/or zones are kinetically controlled [71–73]. The most common choice for the kin-
semi model is to consider homogenous gas-phase equilibrium of reacting components from the step 
of pyrolysis; the equilibrium compositions is computed through three equilibrium constants or by 
minimizing Gibbs free energy. 

Then, the produced gas mixture is mixed with the gasifying agent and char and became the inlet 
of a kinetic module were the final gas composition is computed using kinetic models [74,75]. Kin-
semi approach are easier to use compared with kin-total one, indeed it need less kinetic information 
and parameters, while kin-total model describes with kinetic reaction rates both the volatile and char 
gasification reactions. For this reason, kin-semi model provides more precises output results when 
the gas phase is near to the chemical equilibrium. 

To come to the point, kinetic models have the potential to indicate which reaction route or 
pathway is responsible for the production of a particular gaseous product and are also able to give 
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precise output results only if the reaction rates, kinetic constant and gasifier geometry are well-
known. However, this means that these models are not flexible to use, since it must be developed 
precisely on a specific process with given conditions, and moreover it is also though to develop since 
the required input information is not easy to reach and scientific literature is still struggled to obtain 
them. On the other, it is possible to use simplified kinetic models providing quite accurate results for 
gas yield and gas composition. However, the simplified models are not able to identify which reaction 
route or pathway is responsible for the production of a particular gaseous product, so when such 
information is needed it is possible to overcome the limitation of the simplified models coupling them 
with a CFD model.  

4. CFD models 

CFD modeling is based on fluid mechanics principles and the use of numerical methods to solve 
the Navier-Stokes equations [76,77]. It is a powerful tool to simulate the interaction among fluids that 
have surfaces inside specific boundary conditions. In literature, there are several examples of CFD 
models to simulate biomass conversion processes such as thermochemical gasification [23,78,79] and 
pyrolysis [80,81]. CFD models are widely used to optimize the design of fluidized-bed reactor since 
they are able to predict inert material concentration of in-bed gasifier, emissions, operational 
parameters, fuel mixing efficiency, temperature profiles, heat flux, etc. [82,83]. 
It is possible to classify the CFD numerical approaches into three classes:  

 Eulerian-Lagrangian Discrete Particle Model (DPM), which considers gas as continuous and 
particle as discrete phase. It is used where there are diluted particle conditions, such as freeboard 
of reactor. CFD DPM models consider particles trajectory in a continuous phase of fluid and take 
into account the interaction between particles by means of the heat and mass transfer as the 
governing phenomena [84,85]. The main advantage is the simple accounting of the particle size, 
allowing to track the changes in physic-chemical characteristics of the biomass particles during 
conversion along their path through the reactor. 

 Eulerian-Eulerian Two Fluid Models (TFM), which is used to investigate both the gaseous and 
solid (particle) phase. Interaction of granular and continuous phase is considered via momentum 
transfer contribution based on drag models [86]. The CFD TFM approach has the disadvantages 
of high computational demand when a wide range of particle sizes have to be investigated 
because each size fraction of the distribution is accounted as a separated phase. Moreover, 
another drawback of these models is they are poor in recognizing the discrete character of the 
particle phase, so they are consequently poor in modeling flows of particles with a wide size and 
in tracking movement and conversion of single particles. 

 Eulerian-Eulerian Discrete Element Model (DEM) within Eulerian-Lagrangian framework, 
which uses Eulerian method for gas phase and discrete element method for particle phase, 
tracking individually each particle and associating it with multiple physical (size, density, 
composition, and temperature) and thermo-chemical (reactive or inert) properties [87,88]. The 
main disadvantages of this method is the extremely small required time-steps, making this 
approach highly computationally demanding thus practically avoiding for design and 
optimization of industrial scale facilities [89]. 

In literature many studies [90–94] investigated coal gasification in fluidized-bed by means of 
CDF TFM approach. Those studies showed great potential in modelling gasification process, but at 
the same time the still need to be improved in describing chemical reactions, especially pyrolysis step.  

Adnan et al. [95] made a comparison between CDF TFM and CFD DPM model, showing similar 
results for the fluid dynamics of a fluidized-bed gasifier. More in general, DPM models are more 
suitable for large-scale applications, where there is more independency from grids.  

Ramos et al. [30] investigated results from a CFD TFM and CFD DEM model, concluding that the 
latter gives a more accurate prediction. However, when the prediction is given for a local discrete 
temperature value, TFM models were demonstrated to be more accurate compared with DEM model. 
Moreover, DEM approach requires about twice the time needed to execute TFM model. 
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5. Process modelling 

Process modelling is a sequential approach in which each process is divided into unit operation 
and a series of equations are solved by means of kinetic or thermodynamic models. The most used 
software in this field is Aspen Plus [1,21,96]. Developed by Massachusetts Institute of Technology 
(MIT), Aspen Plus is a chemical engineering process optimization software that utilizes unit 
operation blocks, such as reactors, pumps, columns, heat exchangers, etc. Unit blocks are connected 
to each other through mass and energy streams, and this is represented in terms of a flowchart of the 
whole process. The software is based on a sub-sequential modular approach and the simulation 
calculations use the in-built physical properties database [48]. The main advantage of Aspen Plus is 
that each unit can be analyzed independently and the properties of the outlet stream of each unit 
depends only on its inlet stream properties. In order to evaluate all physical properties of 
conventional components in the gaseous phase of the gasification process, the most suitable 
description is provided by the Peng-Robinson equation of state, with the Boston-Mathias (PR-MB) 
modification [29], present in the default simulation setting of the Aspen Plus software. The evaluation 
of the enthalpy and density of the non-conventional components (biomass and ash), is obtained 
choosing the modules HCOALGEN and DCOALGEN, for enthalpy and density, respectively [29]; 
those settings are meant for the general coal model, but they are now used for other non-conventional 
feedstock too, despite the reported deviations in the estimated heating value of biomass [97]. 

The main merits of process modelling are [12,27,39]: 

• the whole process is taken into account (e.g., separators, mixers, heat exchangers, pumps, etc.) 
and not only the reaction unit. 

• overall energy duty of the process is estimated. 
• optimization to improve CAPEX and OPEX are allowed.  

The main assumptions for process modelling in Aspen Plus are: 

• process is steady-state and isothermal [98]; 
• volatile products are H2, CO, CO2, CH4 and H2O [99]; 
•  char is 100% carbon [100]; 
•  all gas mixtures are supposed to behave as perfect gases; 
• pressure drops and heat losses are neglected. 

When process modelling is based on thermodynamic modelling, it is possible to obtain a QET 
approach also in process models, with the same benefits listed in paragraph 2. Thermodynamic models.  

Several authors investigated biomass gasification process by means of Aspen Plus, 
demonstrating that it is a powerful tool to describe biomass gasification [12,101–104]. However, in 
literature there is a lack of scientific articles that point out the basic understanding of each model type 
and its applicability for designing a common biomass gasification process. In order to fill that gap, in 
Table 5 are shown the basic unit that make up the gasification model, considering both the 
thermodynamic equilibrium and the kinetic approach. 

Table 5. – Basic blocks for gasification process in Aspen Plus. 

Aspen Plus 
Block 
Name 

Description 

Thermodynamic equilibrium approach [53,104] 

RYield 

  

Usually called DECOMP block (DECOMP stays for decomposition), it is a yield 
reactor which converts the non-conventional inlet stream of biomass into its 
conventional components (carbon, hydrogen, oxygen, sulphur, nitrogen, and ash) 
by specifying the yield distribution according to the biomass ultimate analysis. 
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RStoic 

 

Stoichiometric reactor, used to simulate the production of inorganic compounds. 
Indeed, DECOMP block creates N, Cl and S as elemental components that are 
known to produce mainly HCl, NH3 and H2S, and the results of the real fractional 
conversion model are closer to the experimental data than that of the chemical 
equilibrium. This is the reason why a stoichiometric reactor is needed to simulate 
the production of H2S, NH3 and HCl specifying the proper reactions and the 
fractional conversion for S, Cl2 and N. 

RGibbs 

 

Gibbs free energy reactor, which simulates drying, pyrolysis, partial oxidation, and 
gasification. It is possible to let the software individuate all the possible products 
without specifying any reactions or products by means of the option “Calculate 

phase equilibrium and chemical equilibrium”. Otherwise, it is also possible using the 
QET approach of the specified reactions to set the syngas composition by 
specifying a temperature approach for individual reactions by means of the option 
“Restrict chemical equilibrium – specify temperature approach or reaction extents”. 

Total kinetic approach [105,106] 

RYield 

 

Yield reactor represents the virtual reaction step that decomposes the biomass into 
its three principal biochemical building blocks: cellulose, hemicellulose, and lignin. 
This reaction step does not represent any part of the actual pyrolysis reaction 
mechanism but is necessary for the following interlinked reaction model. The 
yields are calculated iteratively by an embedded Excel worksheet which 
determines the cellulose, hemicellulose, and lignin composition of the biomass 
according to its elemental composition. 

RCSTR or 
RBatch 

 

In the second phase, a kinetic reaction model is implemented for the primary 
pyrolysis reactions. It is an interlinked model of individual decomposition 
reactions of cellulose, hemicellulose and lignin, according to [62,107]. The reactor 
type can be chosen according to the pyrolysis reactor that wants to be modelled. 
For fast pyrolysis, the RCStir reactor is used, while the RBatch-type reactor is more 
suitable for slow pyrolysis modelling.  

RYield 

 

The secondary vapor reactions at longer residence times are implemented in 
Aspen Plus as an embedded Excel sheet which determines the yields of the RYield 
type secondary reactions reactor. The complete methodology and the 
corresponding equations  

The units listed in Table 5 are the strictly required three units needed to develop a 
thermodynamic or kinetic process model by means of Aspen Plus software. Beyond the kinetic 
approach reported in Table 3, the semi-kinetic method using a DECOMP block (yield reactor) provide 
a simpler approach to convert the non-conventional inlet stream of biomass into its conventional 
components (carbon, hydrogen, oxygen, sulphur, nitrogen, and ash). The biomass ultimate analysis 
provides information to specify the yield distribution, the char gasification is performed in a CSTR 
introducing the reaction kinetics written through an external FORTRAN module [71] (see Figure 3). 
The separation column separates the volatile matter and solid matter, followed by a RGibbs reactor 
where the volatile combustion occurs, according to the hypothesis that reactions in gaseous phase 
occurs at Gibbs equilibrium. Moreover, the authors implemented hydrodynamic parameters to 
divide the gasifier in two parts: bed and freeboard, both modelled as CSTR reactors. Using FORTRAN 
code, each RCSTR is divided into a series of CSTR reactors with equal volume. The number of the 
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elemental reactors depends on residence time, reactor dimensions, and operational conditions. Char 
gasification was performed in the RCSTR by means of kinetic reactions introduced through an 
external Fortran module. The model is used to predict the results of lab-scale gasification of pine with 
air and steam and gave results in good agreement with experimental data. 

 

Figure 3. – A basic kinetic model for biomass gasification [71]. 

An example of basic equilibrium process model, developed by Marcantonio et al. [53] by means 
of Aspen Plus software, is shown in Figure 4. The modelling was done using the main units reported 
in Table 5 and adding a mixer to mix the biomass volatile stream with gasifying agent stream (oxygen, 
steam, air, or a mix of them). Moreover, the total amount of char was splitted according to literature 
experimental data and only 89% went to the gasifier while 11% was unreacted [104]. The simulative 
process was validated against experimental data showing good correlation between simulations and 
experiments. The maximum error for the concentration of hydrogen, the main product of the 
gasification process, was 16.3%. 

 

Figure 4. - A basic thermodynamic equilibrium model for biomass gasification [53]. 

Process models, as thermodynamic models, are not accurate at low temperature or at large scale. 
To overcome such limitations, some authors suggested to improve the equilibrium model with 
adjustable parameters and semi-empirical correlations [47]. 

6. Multivariate Data Analysis (MVDA) and Model Validation  

In the ever-evolving fields of process and chemical engineering, managing and interpreting vast 
amounts of data is critical for optimizing processes, ensuring product quality, and making informed 
decisions [108,109]. In the area of biomass valorization and biorefinery processes, the process control 
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is particularly challenging due to the high variability of biomass (feed) properties [110,111]. For 
instance, Williams et al. [110] reviewed the effect of biomass properties variability in different 
processes of energy conversion - fermentation, hydrothermal liquefaction, pyrolysis, and direct 
combustion - with a special focus on ligno-cellulosic feedstock. They underlined the relevance of 
some parameters, such as biomass moisture, in all process stages and on its performance, even 
hindering the large-scale use of biomass as carbon-neutral source for energy production.  

Statistical methods can be used to manage the biomass variability [112]. Multivariate Data 
Analysis (MVDA) is a classical tool to extract meaningful insights from complex datasets, providing 
engineers with a deeper understanding of their systems and enabling them to enhance efficiency, 
reduce costs, and improve overall performance [109,113]. Multivariate Data Analysis (MVDA) 
focuses on uncovering the connections among variables by leveraging correlation patterns. In 
broader terms, MVDA enables the following [114]: 

• Reducing the number of variables while maintaining the system's descriptive capacity. 
• Grouping variables into categories. 
• Utilizing correlations between variables to characterize system behavior. 

The simplest MVDA tool relies on the Pearson correlation coefficient, which establishes direct 
correlations between pairs of variables. However, in complex systems, this approach may not yield a 
definitive response, as a high correlation coefficient (close to unity in absolute value) does not always 
indicate a genuine causal relationship between the two variables. For instance, such a correlation 
might be the result of a third variable's influence, which is independently highly correlated with both. 
Therefore, additional methods are necessary to elucidate the true interdependencies between 
variables. 

Principal Component Analysis (PCA) [115] offers a solution by transforming the original 
variables dataset into a new set of orthogonal variables known as Principal Components (PC). 
Principal Components (PCs) are linear combinations of the initial dataset. Let X = {〖x〗_1 ,〖x〗_2 
,...,〖x〗_m } represent the original dataset with m variables (LCA outputs), recorded on n samples 
(statistical units). PCA transforms X into a new set of variables, PC = {P〖C〗_1 ,P〖C〗_2 ,...,P〖C
〗_k }, where k ≤ m. PCs are mutually orthogonal and ordered based on the descending values of 
explained variance. Given the PC set, the loadings matrix L = {〖λ〗_((i,j)) } reports the correlation 
coefficient between the i-th original variable, 〖x〗_(i ), and the j-th principal component P〖C〗_j, 
where each 〖λ〗_((i,j)) represents a generic element in the matrix. Another tool of MVDA is the 
Canonical Correlation Analysis (CCA) [116]. CCA relies on initially dividing the entire dataset into 
two or more categories. Variables within each category are then combined linearly to generate k 
variables, known as Canonical Variables (CVs). The value of k corresponds to the minimum rank 
(number of variables) among all categories. The scores obtained through linear combinations aim to 
maximize the Pearson correlation coefficient between variables. As a result, CCA calculates the 
correlations between different classes (categories) of variables, effectively describing the system's 
behavior. Consequently, a high correlation coefficient between the first canonical variables of two 
categories indicates a strong interdependency between the variables in those respective categories. 
Similarly, in the loading’s matrix L={〖λ〗_((i,j)) }, the generic element 〖λ〗_((i,j)) denotes the 
correlation between the i-th canonical variable of a given category and the j-th variable from the 
original dataset. The complexity of the gasification reactions produces a large number of variables 
required to describe the kinetic and thermodynamic properties of the reacting phases. MVDA is an 
elective tool for the analysis of the resulting data set; several works deal with the MVDA application 
to gasifiers, providing unique information for their optimization [105,117–124].  

Gil et al. [125] adopted a multifaceted Multivariate Analysis of the data of gasification of ten 
different biomasses (almond shells, chestnut sawdust, torrefied chestnut sawdust, cocoa shells, grape 
pomace, olive stones, pine leaves, pine sawdust, torrefied pine sawdust and pine kernel shells). The 
experimental data were collected in a bubbling fluidized-bed gasifier under an air-steam atmosphere. 
The analysis was carried out on the variables of the gasification outlet streams and biomass 
properties. The analysis included different MVDA methods, including PCA: the ten different 
biomasses were classified into two groups according to their gasification products. The findings 
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revealed that gasification of pine kernel shells, pine leaves, torrefied pine sawdust, olive stones, and 
pine sawdust resulted in substantial quantities of combustible gaseous products, including CO and 
CH. Additionally, their gasification exhibited high conversion rates and cold gas efficiency. Thus, it 
was inferred that C and H contents and the HHV of the biomass are the most important biomass 
properties for promoting the gas production, calorific value of the product gas, gasification 
conversion and energy efficiency. On the other hand, gasification of cocoa shells and grape pomace 
produced  high H2 concentration and H2/CO molar ratio in the gas product, mainly due to the higher 
H/O ratio and K2O ash content of the biomass. Through a simple correlation analysis, the H2 
concentration in the product gas were found negatively correlated to the O and volatile matter 
contents of the biomass. 

All in all, this study demonstrated the potentiality of the MVDA in analyzing the gasification 
data, so as to reach valuable insight about the influence of the biomass properties on the gasification 
results. 

Similarly, Dellavedova et al. [121] analyzed biomass characterization, gasification process 
conditions and obtained syngas properties from literature data by means of Principal Component 
Analysis, showing again biomass can be characterized and classified on the basis of its properties; 
this study showed that the most important variables for this model are the equivalence ratio (ER, i.e. 
the actual air fuel ratio divided by the stoichiometric air fuel ratio), the steam to biomass ratio (SB, 
i.e. the weight ratio between the amount of vapor used in the process and the biomass treated), the 
high heating value HHV, the carbon content and temperature.  

It was observed a strong direct correlation between SB and the syngas characteristics. On the 
other hand, a negative correlation was found between syngas features and ER. 

These two models show the potentiality of the MVDA in providing a data-driven description of 
gasification processes and, more in general, of complex reacting systems where the detailed 
description of all reactions and the characterization of the reactants can be very challenging.  

6.1. Black-box approaches  

Artificial Neural Networks models are inspired by natural neurons: they are composed of a wide 
number of strictly interconnected processing elements, called neurons or nodes, working all together 
at the same time to solve a given problem [126,127]. The nodes are organized in separated layers and 
interconnected with a given architecture. Each layer has a weight matrix, a bias vector, and an output 
vector [128]. 

This kind of model does not require physical description of the phenomena and is able to 
approximate arbitrary non-linear functions, that is why it was found a suitable approach to simulate 
and up-scale complex biomass gasification process [32].  

Puig-Arnavat et al. [32] proposed a model to predict gas composition and gas yield from biomass 
gasification in a fluidized-bed gasifier. The model structure developed by the authors is shown in 
Figure 5. 
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Figure 5. - ANN model structure to predict producer gas composition and gas yield from biomass 
gasification in a fluidized-bed gasifier [32]. 

Input and output variables used by Puig-Arnavat el al. [32] in their developed model are shown 
in Table 6.  

Table 6. - Input and output variables in the ANN model of [32]. 

 Range 
Input variables  
Ash content of dry biomass (g/kg) 5.5-11.0 
Moisture content of wet biomass (g/kg) 62.8-25.0 
Carbon content of dry biomass (g/kg) 458.9-505.4 
Oxygen content of dry biomass (g/kg) 411.1-471.8 
Hydrogen content of dry biomass (g/kg) 56.4-70.8 
Equivalence ratio (ER) 0.19-0.47 
Gasification temperature (T) (°C) 700-900 
Steam to dry biomass ratio (SB) (kg/kg) 0-0.04 
Output variables  
Gas yield (m3/kg) 1.17-3.42 
H2 volume fraction, dry basis (%) 4.97-26.17 
CO volume fraction, dry basis (%) 10-29.47 
CO2 volume fraction, dry basis (%) 9.82-18.60 
CH4 volume fraction, dry basis (%) 2.40-6.07 

Results from the computational implementation of the ANN model were demonstrated to be in 
a good agreement with experiments.  

Brown et al. [129] integrated an ANN approach with an equilibrium model for biomass 
gasification in a fluidized-bed. The authors performed a non-linear regression with ANN to compute 
temperature changes, fuel composition and operational variables. They demonstrated that the 
application of the ANN model improved the accuracy of the equilibrium model and, consequently, 
the quantity of required input data decreased. 

Sreejith et al. [130] developed an ANN model to predict the output gas composition, the heat 
content, and the temperature profile in a fluidized-bed gasifier. Results obtained from the model were 
in good agreement with experimental data: at steam to biomass of 2.5 the simulative results of H2 
concentration was found to be 28.2 %, while the experimental result was 29.1 %.  

Although the application of ANN method has yielded positive results in biomass gasification, it 
remains a scarcity of studies on the subject in the current literature. It is important to emphasize that 
ANN models are limited to the range of operating conditions used in their previous training study. 
To enhance the effectiveness of ANN predictions, expanding the experimental database with a 
broader range of operating conditions could be highly beneficial.  

7. Discussion  

Table 7 shows features, pros, and cons of the three modelling approaches discussed in the 
previous paragraphs.  

Table 7. – Description of gasification modelling approaches. 

Approach Features Pros Cons 

Kinetic modelling • Finite time or 
volume 

• Explicitly 
accounts 
reactions kinetic, 

• Accurate and 
detailed results 
even at low 
temperatures 

• Computationally 
intensive 

• Dependent on 
geometric 
parameters, so the 
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system 
hydrodynamics 
and particle size 
distribution 

• Able to predict 
the spatial 
distribution of 
products in the 
reactor   

 

applicability is 
limited to the 
specific plant the 
model is built for 

• Complete reaction 
mechanisms are 
often unknown or 
only partially 
known 

• Sensitive to gas-
solid contacting 
process 

    

Thermodynamic 
modelling 

• Assumption: the 
reactants react in 
a fully mixed 
condition for an 
infinite period of 
time 

• Zero dimensional 

• No chemical 
reactions or 
conversion 
mechanisms are 
needed 

• Can be improved 
by using the 
coefficients for 
equilibrium 
constants or 
yields 
distribution 

• Simple and easy 
to develop and 
implement 

• Independent of 
gasifier design, 
so the 
applicability is 
not restricted, 
and the model is 
flexible for 
various 
feedstocks and 
process 
parameters 

• Good prediction 
of maximum 
yield 

• Equilibrium 
condition may not 
be reached in real 
cases, especially at 
low temperatures 

• Over-under 
estimations of the 
amount of 
produced methane 
and char 

 

    

CFD modelling • Based on mass, 
momentum, and 
heat balances in 
presence of 
gasification 
reactions  

• It applies the 
principles of fluid 
dynamics, 
numerical 
methods, and 
different 
algorithms to 
solve Navier-
Stokes equations 

• It produces 
temperature, 
pressure, and 
velocity profile 
across the 
reactor at a 
steady or 
transient state 

• It can predict the 
flow pattern of 
reactants 
through the 
reactor together 
with the heat 
and mass 
transfer 

• Accurate 
prediction of 
syngas yield 

• Special software 
are often used for 
analysis, most of 
which are 
expensive 

• Large number of 
experimental data 
are required 

• Huge 
computational 
power is needed 

    

MVA analysis  • It applies the 
statistics 
principles to 
understand and 

• It is able to 
strongly reduce 
the number of 

• It does not add any 
physical 
interpretations of 
correlation  
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exploit the 
correlation 
patterns between 
gasification 
variables 

variable to be 
monitored 

• It provides 
prediction of 
both dynamic 
behavior and 
equilibrium 
conditions 

• It requires a light 
computational 
burden  

    

Process 
Simulation 

modelling with 
commercial 

software 

• The process is 
represented by 
means of single 
unit operations 

• A series of 
equations are 
solved based on 
kinetic or 
equilibrium 
models. 

• It takes into 
account the 
global process 
(i.e., exchangers, 
pumps, reactors, 
etc.) and not 
only the reaction 
step 

• It allows the 
estimation of the 
overall energy 
duty and 
economics of the 
system 

• Based on 
thermodynamic or 
kinetic modelling, 
it takes all their 
pros and cons. So, 
process simulation 
based on kinetic 
model is more 
complex to be 
developed, but 
more accurate, 
while when based 
on thermodynamic 
model is easier to 
develop but less 
trustable 

• Purposed and 
expensive software 
is required, such as 
Aspen Plus, 
Chemcad, Aspen 
HYSYS, etc. 

    

Artificial neural 
network 

modelling 

• The model is 
trained on syngas 
composition and 
other 
experimental 
parameters 

• It is able to 
represent non-
linearity 

• It accurately 
predicts 
experimental 
data used for the 
training set 

• Required a wide 
dataset of 
experimental data 

The choice of the model depends on the objectives and the experimental information available.  

A first raw prediction of gasification process performance is well given by thermodynamic 
modelling, easy to implement and flexible to use thanks to the independence of geometry. However, 
this approach does not give a realistic representation of the process at low temperature; and, 
moreover, it is not able to predict gasification process far from equilibrium (controlling kinetics and 
fluid dynamics phenomena, such as unconverted solid carbon and the formation of gaseous 
hydrocarbons). 

Kinetic modelling gives a more accurate description of phenomena, but it requires a complete 
description of the reaction mechanisms, often unknown or only poorly known. 

The main limitation of both kinetic and thermodynamic modelling in the investigation of 
gasification process is related to the interaction between solid and gas phases reactions, highly 
undescribed. In order to overcome this issue, CFD modelling is used to answer about interaction 
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between solid and gas phases reactions involving a combined solution of mass, momentum, energy 
balances, including turbulence regimes and multiphase hydrodynamics. In turn, the CFD 
computational complexity is very high, so it is reasonably used if some reliable experimental data are 
known and used as reference. The black box approaches do not require any preliminary 
understanding and description of the physical phenomena. 

Compared with other modeling approaches, ANN copes non-linearity in a superior manner. 
Moreover, it does not require any mathematical or physical description of the phenomena and is able 
to adapt and learn, for those reasons ANN modelling makes the computational tool able to update 
itself. On the other hand, it works only within the specific range of operational conditions it was 
trained on. 

Finally, MVA and more in general statistical methods provide insight about the correlation 
patterns of variables in gasification process: this information is particularly valuable in the case of 
systems controlled by a large number of variables, such as in the case of gasification. High correlation 
may infer a causal link between variables, worth to be explored through more detailed physical 
descriptions. 

Additionally, the correlation analysis is the basis for the sensitivity analysis, which guides the 
optimization methods for process engineering.  

In summary, it is possible to affirm that black-box models with some empirical constraints are 
enough for preliminary predictions (e.g., quasi-equilibrium model). 

In Figure 6 (a)-(e) is briefly reported a schematic approach of each modelling. 

 
a) 
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(b) 

 
c) 
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(d) 

 
(e) 

Figure 6. – Basic input/output diagram of (a) thermodynamic equilibrium modelling, (b) kinetic 
modelling, (c) CFD modelling, (d) ANN modelling, (e) process modelling for biomass gasification 
process. 

8. Conclusions 

A review of the most important and recent gasification modelling approaches was presented. 
Even if the most appropriate choice of model depends on factors such as the scope of the simulation, 
the type of gasifier, the feedstock, and operational parameters several general observations can be 
made. 

Equilibrium models are the simplest and easiest to develop and implement and have the 
advantage of being independent of gasifier design. They are able to predict the maximum achievable 
yield of a desired product from a reacting system and the gas composition. But they lost their 
accuracy at low temperature. Unlike equilibrium models, kinetic models predict the progress and 
product composition at different positions along a reactor, also providing a useful design aid in 
evaluating the possible limiting behavior of a system that is difficult or unsafe to reproduce 
experimentally. However, kinetic models are strictly dependent on the geometry, and they cannot be 
used for system different from the ones they are built for. CFD model results showed a good 
agreement with experimental data in many cases. However, CFD models are computationally 
intensive and still have many approximations as well as assumptions and there are many aspects of 
fluidized-bed reactor where the application of CFD modeling still needs to be explored (i.e., fuel 
combustion/gasification behavior during feeding, mixing of fuel in the dense bed, ash sintering, fuel 
characteristics, char reactivity, fragmentation of fuel in dense bed). In order to avoid complex 
processes and develop the simplest possible model that incorporates the principal gasification 
reactions and the gross physical characteristics of the reactor, process simulation models were 
developed, using the process simulator Aspen Plus. Process simulation models are able to give a first 
raw evaluation of the overall energy duty and economic of the system, bust they have all the pros 
and cons of the modelling they are based on (thermodynamic or kinetic modelling). ANN models 
offer some contribution to research in gasification process. Literature results show how the 
percentage composition of the main four gas species (H2, CO, CO2 and CH4) in producer gas and 
producer gas yield for a fluidized-bed gasifier can be successfully predicted by applying a neural 
network. However, ANN models still need to be trained and improved, for this reason it is necessary 
to enlarge the literature database adding more experimental data. MVA analysis provides a good 
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prediction of both dynamic behavior and equilibrium conditions, requiring a minimal computational 
burden, but it does not add any physical interpretation of the phenomena occurring.  
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Nomenclature 

Acronyms   
ANN Artificial Neural Network GMM Gibbs Free Energy Gradient Method Model 

CCA Canonical Correlation Analysis LHV Low Heating Value 

CFD Computational Fluid Dynamics MVDA Multivariate Data Analysis 

CSTR Continuous-flow Stirred-Tank Reactor QET Quasi-Equilibrium Temperature 

DEM Discrete Element Method PCA Principal Component Analysis 

DPM Discrete Particle Model TFM Two Fluid Model 

 

Symbols Unit Description 

   

Cp,i J/(mol·k) Specific heat at constant pressure of the 

i-component 

H kJ/mol Enthalpy ∆𝐻଴  kJ/mol Enthalpy formation  

G kJ/mol Gibbs free energy  ∆𝐺଴  kJ/mol Gibbs energy formation 

ni mol Number of moles of the i-component 

nT mol Total moles of produced gas 

P Pa Pressure 

Pi Pa Partial pressure of i-component 

P0  Pa Operative pressure of the system 

R J/(mol·k) Universal constant of gas 

T K Temperature 

   

 

Greek letters  

α Reaction coordinate of water gas shift reaction 

β Reaction coordinate of steam reforming reaction 

µi Chemical potential μ୧଴(𝑇)  Standard chemical potential of the i-component 
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