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Abstract: Biomass gasification acquired great interest over the past decades as an effective and trustable
technology to produce energy and fuels with net-zero carbon emissions. Moreover, using biomass waste as
feedstock enables to recycle organic wastes and to fit the circular economy goals thus reducing the
environmental impacts of waste management. Even if many studies have been already carried on, this kind of
process must still be investigated and optimized with the final aim to develop industrial plants for different
applications, from the hydrogen production to net-negative emission strategies. Modeling and developing of
process simulations became an important tool to investigate the chemical and physical behavior of the plant,
allowing to make a first raw optimization of the process and to define heat and material balances of the plant
as well as to define optimal geometrical parameters with cost and time effective approaches. The present review
paper focuses on the main literature models developed until now to describe biomass gasification process, and
in particular on kinetic models, thermodynamic models, and computational fluid dynamic models. The aim of
this study is to point out the strengths and the weakness of those models, comparing them and indicating in
which situation is better to use an approach instead of another. Moreover, theoretical shortcut models and
software simulations, not explicitly addressed by prior reviews, are taken into account. For researchers and
designers this review provides a detailed methodology characterization as a guide to develop innovative study
or project.

Keywords: biomass gasification; process simulation; thermodynamic equilibrium; kinetic model; ANN;
multivariate data analysis

1. Introduction

During the Anthropocene, the pressure on environment is increasing exponentially along with
global warming. On the other hand, the need for each country to be energy-independent and to find
low-price solution for energy production, represent an actual challenge.

In order to deal with those problems, many researchers pointed out that it is possible to make
an energetic transition from fossil fuels to renewable energy sources. Among the most investigated
renewable energy sources, biomass is confirmed as the most favourable one, since it is the widest
source of energy after coal, oil, and natural gas [1-4]. Using biomass as feedstock for energy
production allows to achieve both green energy production and national energy security goal.
Moreover, using biomass waste instead of energetic culture accomplish the request for circular
economy to reuse those organic wastes that otherwise would be dispose polluting soil and air and
also avoiding the fuel vs. food issue [5-7].

During the last years, many processes for biomass conversion into energy were investigated,
and gasification was highlighted as one of the most efficacious [8-10]. Gasification is a thermo-
chemical technology to convert biomass into a combustible gas mixture by the partial oxidation of
the biomass at high temperature (750-950 °C) in presence of a gasifying agent [11-14]. Fluidized bed
reactor was confirmed as the most suitable as gasifier reactor due to the excellent thermal and mixing
properties that ensure high heat transfer rates, high efficiency, low combustion temperature and low
pollutant emissions [15,16]. The gas mixture produced by gasification process is called syngas and it
is mainly made of Hz, CO, CO2, CHs, H20, along with organic and inorganic contaminants [17]; the
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quantity of each produced component depends on feedstock characteristics, gasifying agent,
operative conditions of the process, reactor design, etc. [18,19].

To investigate biomass waste gasification process, modelling approaches and simulation
software provide useful tools to investigate different operative conditions, to make a first raw
optimization of the process obtaining the most suitable syngas for the desired uses and to scale-up
lab-scale and pilot apparatus. Results coming from simulative models must be the base for the
realization of pilot plant, allowing to reduce cost, avoiding risk for human health as well as to
interpret the experimental data and build the foundations of knowledge necessary for the realization
of a project [20]. Both mathematical and numerical simulative models are suitable for those purposes
since they both are able to predict the performance of the process and to give a good representation
of the chemical and physical phenomena occurring, in order to optimize the process with swift time
and minimal cost [21]. Then, it is also possible to choose to simulate the process in steady state
condition (time independent) or in dynamic condition (time dependent), according to what is the
focus of the investigation. Kinetic, thermodynamic, Computational Fluid Dynamic (CFD), and
Artificial Neural Network (ANN) models have been adapted and implemented for the study of
syngas production from a wide variety of feedstocks [22-25].

Kinetic models take into account the kinetic of the gasification reactions given the reactor
properties (residence time, operative temperature, and pressure). They predict the syngas yield, the
produced syngas composition after a finite time, or in a finite volume in a flowing medium. These
models, after a proper validation, allow to predict the process performances for a specific operating
conditions and reactor design [26,27].

Since kinetic models depend on the specific fluid-dynamics and geometry of the case study, their
applicability is restricted to specific reactor configurations. Complex configuration of the reactors
enhances the complexity of the describing model.

Thermodynamic models predict the syngas composition based on the assumption that the
reactants react in a fully mixed condition for an infinite time, so to reach the thermodynamic
equilibrium [28]. The main advantage of those models is the independency from the gasifier design
[29], that means thermodynamic models can be used to describe a wide range of plants, without any
particular restrictions, despite kinetic models.

CFD models describe the gasification process based on the conservation of mass, momentum,
species, and energy into a certain portion [28,30]. Those models are able to predict a very accurate
syngas composition when coupled with a well-known fluid-dynamic of the gasifier and are especially
suitable for fluidized bed reactors, in which they provide important information about temperature
profiles and species concentration.

Black-box approaches, including algorithms of Artificial Intelligence as ANN, are considered a
relatively new approach for modelling biomass gasification process. They have the great merit to not
require the formulation of a complex mathematical equations and also to be able to understand and
identify non-linear relations [31]. Therefore, ANN modelling is acquiring great interest when the aim
of the study is to investigate biomass gasification process there complex non-linearities occur in the
dataset [32].

The aim of the present paper is to investigate the most recent simulative models and results from
scientific literature, in order to provide a critic review that is able to indicate which is the best
approach, among kinetic, thermodynamic, CFD, Multivariate Data Analysis (MVDA) and ANN to
describe a biomass gasification process according to the specifications and the desired goal.

2. Biomass gasification principle and technology

Gasification is a partial thermal oxidation, occurring at high temperature (in the range 750-900
°C) in presence of a gasifying agent (steam, air, oxygen, or a mixture of them) that reacts with biomass
producing a gaseous product mainly composed of Hz, CO, CHs, CO2 along with small quantities of
solid product (char), inorganic contaminants (mainly H>S and HCI), and organic contaminants (tar).
The amount of final inorganic compounds depends on biomass inlet properties, for instance, it is
recommended to take as low as possible the inlet concentrations of S and Cl. The gasifying agent
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influences the final gas composition (see Table 1), steam provides the highest H> content and the
highest Low Heating Value (LHV), while air provides a lower quality syngas due to the bigger
amount of inlet Na.

Table 1. Effect of gasifying agents on the composition of gas products [25].

Gasifying H: (%mol) CO: Cco CHs N2 (%mol) LHV
agent (%mol) (%mol) (%mol) (M]/kg)
Air 3-13 10-18 5-28 0-7 40-50 4-6
Oxygen 20-30 25-40 20-30 5-10 0-1 7-8
Steam 30-50 8-25 20-40 6-15 0-1 9-11

The chemistry of biomass gasification is quite complex. The reactions involved in the process are
listed in Table 2, while the gasification stages can be summarized as follow [8,33]:

o  Drying. Occurring at 100-200 °C, drying stage reduces the moisture content of biomass below
5%.

o Devolatilization (pyrolysis). In this step, the thermal decomposition of biomass occurs, in absence
of oxygen or air. The volatile matter is decreased, releasing hydrocarbon gases from biomass,
which is then reduced to solid charcoal.

o  Oxidation. In this stage, CO: is produced from the reaction of solid carbonized biomass and
oxygen in the air. H2 present in the biomass is oxidized to produce water. Then, if oxygen is
present in sub-stoichiometric quantities, partial oxidation of carbon may happen, producing CO.

o Reduction. At high temperature (800-950 °C) several reduction reactions occur in the absence (or
sub-stoichiometric presence) of oxygen. Those reactions are water-gas reaction, Boudouard
reaction, water-gas shift reaction and methane reaction.

Table 2. — Chemical reactions of gasification process [8,34,35].

Oxidation reaction

Volatiles Char
CO+3 0, = CO, ) C+30; & CO 3)
AH= - 283 kJ/mol AH=- 111 kJ/mol
H, +§ 0, « HO, 2) C+0, & CO, .. 4)
AH= - 242 kJ/mol AH= - 394 kJ/mol

Boudouard reaction
C+CO,— 2C0 (5) AH=- 172 KJ/mol

Water-Gas reaction

Primary Secondary
C + H,0 < CO + H, (6) C +2H,0 «» CO,+ 2H, (7)
AH-= - 131 kJ/mol AH= - 90 kJ/mol

Methanation reaction
C+2H, + CH; (8) AH= - 75 kJ/mol

Water-Gas shift reaction
CO,+ H, & CO+ H,0 (9) AH= - 41 kJ/mol

Steam Reforming reaction
AH= 206 kJ/mol

doi:10.20944/preprints202308.0398.v1
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n+m

C,H + nH,0 < nCO + THZ (11)

Dry Reforming reaction
CHy+ COy > 2C0 +2H, (12)
AH= 247 KkJ/mol
CpHp +1CO; = 2nCO + 2 H,  (13)

2. Thermodynamic models

Thermodynamic models describe the thermodynamic equilibrium (temperature, pressure, and
composition), achieved by perfect mixing and infinite reaction time. The system is time-invariant and
not depending on kinetic factors such as the design of reactor and fluid dynamics [29]. This property
makes the models at thermodynamic equilibrium very flexible to use and suitable for a wide variety
of process without any specific constraints. Indeed, they provide information about limit gas yield,
gas composition, and even if they apply under many rescripted assumptions, still they provide
insights about unit operation, process optimization, energy recovery and also life-cycle assessment
and techno-economic analysis [2,36-38]. Equilibrium models have a wide range of applicability since
usually gasification process is driven close to equilibrium [29]. Thermodynamic equilibrium models
can be classified into [39-41]:

e  Stoichiometric models, which are based on equilibrium constants: the specific chemical reactions
of the process must be declared;

¢ Non-stoichiometric models, which are based on minimisation of the Gibbs free energy,
neglecting the chemical reactions involved. Only the definition of a set of chemical compounds
that are expected at equilibrium is needed.

Stoichiometric models and non-stoichiometric models, even if built with a completely different
mathematical implementation, were demonstrated to reach close results if some conditions are
satisfied [42]. Even if stoichiometric models are based on simple mathematical formulation, they have
not been widely utilized in literature, while non-stoichiometric models are used in approximately 73%
of equilibrium simulations in literature, while 27% of literature relies on stoichiometric ones [39].
Stoichiometric models include mass balances and the calculation of equilibrium constants at a
given temperature. The mathematical model combines the conservation laws of atomic species with
those of thermodynamic equilibrium by referring to the global gasification reaction starting from
reactants and inert compounds in the feed. The result is a tool to predict the composition of the
produced gas, once the characteristics of the feed to be gasified are known (proximate and ultimate
analysis), such as the operating conditions in terms of pressure, temperature, and steam/feed ratio.
Mass and energy balances result into a system of non-linear algebraic equations for each reaction,
whose unknown variables are the extent of each reaction; the solution is found applying the classic
methods to evaluate the roots of non-linear algebraic equations, such as the Newton-Rapson one.
Once computed the extents of all reactions at equilibrium, it is possible to compute the equilibrium
composition of the products at a given temperature. If the temperature is unknown, it is necessary to
couple an energy balance taking into account the enthalpies of the reactants and products, thus
increasing the complexity of the system. These models are commonly based on the following
assumptions [43]:
a) all the reactions considered are at thermodynamic equilibrium equivalent to an infinite
residence time;
b) all the carbon is gasified and is not present among the reaction products;
c) the products leaving the gasifier, except for the ashes in the solid phase, are in the gaseous
phase and consist of CO, CO2, H20, Hz, CHs, Nz;
d) among the reaction products there is no tar.
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The mass balances in presence of the equilibrium reaction require the molar concentrations and
the molar ratios of components in the feedstock. Since the solid feedstock (solid biomass) is often a
complex mixture, it is described by a brute formula derived from the ultimate analysis of dry and
ash-free biomass samples. Thus, the feedstock is represented as a single component CHmOpNq
reacting as:

CHpO,N, + WH,0 = aCO + bCO, + cH, + d CH, + eH,0 + fN, (14)
—AGp (15)
Keq = e RT

AGP  AGog J‘T AH? T (16)

RT ~ R 29815 ),o5,cRT?
0 0 & (17)

AHT = AH39g45 + Z v;Cp i (T)dT
298.15
A1'15)98.15 = Z Vi H398.15 products — Z Vi Hg98.15 reactants (18)
AGS‘)BJS = Z Vi 6398.15 products — z Vi G§98.15 reactants (19)
e f 20
Cp_i(T)=a+bT+ cT? + dT3 + F-Fm ( )
AG® and AH° are the variation of standard Gibbs free energy and enthalpy formation,

respectively.

Assuming to know the composition of the biomass and the characterization of the reactants,
including the biomass moisture and the gasifying agent (steam), it is possible to develop the model
taking into account two chemical reactions: water-gas shift (9) and steam reforming (10). The solving
system is represented by the four mass balance equations and the two chemical equilibrium equations

(21)-(26).
l=a+b+c (21)
m+2w =2c+4d +2e (22)
q=2f (23)
ptw=a+2b+e (24)
(72)- () -
P Py) b-c

Ty

()

w— P)\P) _ acc
2 Py,0\  (Pcn, d-e-n
Po Po

Po represents the system operative pressure, while Pchs, Prz, Preo, and Pcoz are the partial
pressures of CHs, Hz, H20, and COs, respectively. nrare the total moles of produced gas.

In Table 3 are listed the values of coefficient a, b, c ,d, e, and {, following the Hougen-Watson
approach [44]. In Table 4 are listed the values of standard Gibbs free energy and enthalpy formation.

Table 3. - Coefficients for the computation of the specific heat at constant pressure [44].

Compound a b c d e f
CH. 4.75 1.200E-02 3.030E-06 -2.63E-09 0 0
H2Ogas) 6.97 3.464E-03 -4.833E-07 0 0 0
CcoO 6.48 1.566E-03 -2.387E-07 0 0 0
CO:2 18.036 -4.474E-05 0 0 0 -158.08
Ha 6.424 1.039E-03 -7.804E-08 0 0 0
N2 6.50 1.00E-03 0 0 0
H2Oiquid) 18 0 0 0 0
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Table 4. - Standard Gibbs free energy and molar enthalpy formation [43].

Compound H’ (kcal/mol) G’ (kcal/mol)
CHa -17.810 -12.057
H2Ogas) -57.7979 -54.6351
cO -26.416 -32.808
CO2 -94.052 -94.26
He 0 0
Csolid) 0 0

These models are of rapid use and are based on solid theoretical foundations widely developed
in chemical engineering and reactor engineering textbooks. On the other hand, they often generate a
non-negligible error due to the following reasons: the reactions really occurring are only partially
known, they describe only the gaseous phase, at a given fixed temperature where all reactions are in
equilibrium.

Non-stoichiometric models demonstrated their reliability over the years since were successfully
used in modelling the gasification process, especially in fluidised-bed gasifiers [40,45,46], allowing to
evaluate the effect of temperature, equivalence ratio, steam to biomass ratio, moisture content of
feedstock on the gasification process.

Non-stoichiometric equilibrium models may be upgraded into the so called quasi-equilibrium
approach, that is a compromise between equilibrium thermodynamic models and experimental data
in reaction conditions close to the equilibrium [9,29], providing more accurate results about syngas
composition.

The non-stoichiometric equilibrium modelling approach is founded on the direct minimization
of the Gibbs free energy of reaction species. This methodology can be used to find equilibrium
compositions "virtually" including unknown reaction paths. On the other hand, the minimization of
the Gibbs free energy can be stopped in non-equilibrium conditions as explained in our previous
works [43,47] and in some cases referred to as quasi-equilibrium temperature (QET) approach. This
latter is actually considered the most effective way to model the gasification process [48] and have
also been adopted by commercial process simulators as mentioned in the next chapters. The final
composition is derived by setting a QET for each reaction that occurs into the gasifier. In this way
each reaction occurs at its equilibrium temperature instead of the gasification temperature set for the
gasifier block [49]. On the other hand, the minimization can be stopped by introducing other criteria.
For instance, in our previous work [47] we defined an algorithm based on the minimization of the
error model predictions and experimental data. In this way it is possible to train a quasi-equilibrium
model and then use it as a scaling-up tool. We report below the formulation of a non-stoichiometric
model based on the minimization of Gibbs free energy (G) for the previously selected set of reactions:
steam reforming and water gas shift. It must be premised that this type of modelling starts following
a first devolatilization defining the composition of the gaseous state that participates in the reaction.
This preliminary phase is often trained on experimental data to get a more realistic description of the
formation of ash, char, and tar. In fixed temperature and pressure conditions, the function G depends
only on the extent of the reactions a and f3, expressed as an extensive variable as follows:

6(@Blrp = ) mi(@f)- (@, f,T) @7)
s = uO(T) + RT Inp )
S (C D (29)

' nTOl%(O(' B))
T H;(T 30
uizu?(To)T—o—TfTo%dT+RTlnPi (30)

where i = CO, CO:, H20, Hz, CHs, N2, H2S. The partial pressure Pi is written by assuming an ideal
mixture of gases. ni is the number of moles of the i-component; pi is the chemical potential; Hi is the
standard molar enthalpy of the component i in the gaseous phase, calculated at the temperature T of
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the system. p?(T) is the standard chemical potential of the i-component at temperature T. R is the
universal constant of gas and P is the partial pressure of i-component.

Once the chemical potentials of the components present in the system have been defined, at a
given temperature, it is possible to evaluate the total free energy of the system at fixed G(a,)|rp in
equation (27) as function of two independent variables «,f. In other words, the free energy
G(a,B)|rpis as a surface in the space (a, 8, G) and is characterized by the presence of a minimum
which corresponds exactly to the equilibrium conditions of the system. The Gibbs Free Energy
Gradient Method Model (GMM) exploits the thermodynamic principle stating that a system always
reaches the equilibrium conditions starting from initial conditions by minimizing the energy value.
The minimum energy value corresponds to the condition of all reactions being at the equilibrium
simultaneously. From a theoretical point of view, the equilibrium condition is reached after an infinite
time.

In practice, real systems can reach, even in very low time, conditions so close to the equilibrium
that the difference lies within the error threshold of the current measurement methods, entering a
kind of “grey zone”, not observable.

In an industrial equipment, the system will reach this “grey zone” if the residence time is large
enough, according to the reactor geometry and operating conditions. Among the infinite routes
between the initial point (a = = 0) and the equilibrium point, the system chooses the path that offers
the maximum gradient VG(«, f) [43,47].Through a purposed set of experiments, it is possible to train
the model by comparing the simulated with the experimental states. Figure 1 reports a comparison
of trajectories following the VG(«, ) between the GMM method and the final equilibrium state in a
given experiment [43,46].

-14510°

-145510%

equilibrium

Figure 1. - GMM training pathway: 2-D representation in the a, f plan and highlights on the
equilibrium and non-equilibrium coordinates [46].

Even if some studies over the past decades focused on the improvement of the evaluation of the
QET by means of a data-fit made by experimental data [50-52], there is still a lack of comprehensive
studies applied to fluidised-bed gasifier taking into account the use of different gasifying agents and
also the undesired by-products (organic and inorganic compounds). Marcantonio et. al [29] proposed
a process simulation study that tried to overcome this issue by developing a quasi-equilibrium model
that includes air/steam/oxygen biomass-gasification in presence of organic and inorganic by-
products. The results were in good agreement with experiments, and it was also possible to make an
optimization of the process investigating the effect of gasification temperature and S/B ratio on the
gas composition for different gasifying agents.

The most common properties whose experimental observation mostly deviates from ideal
equilibrium prediction are the concentration of methane and the amount of unreacted char. The
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under or over prediction of methane is an ordinary issue in equilibrium models [53]. Indeed, in real
case the conversion of methane is kinetically limited, so the final methane concentration is controlled
by non-equilibrium factors and it is not possible to obtain a good prediction by means of equilibrium
model [54]. The unreacted char issue is best dealt with and avoided by only computing the
equilibrium of the volatile gas-phase components rather than the complete heterogeneous
equilibrium or otherwise setting as input the specific amount of unreacted char from experimental
results. Loha et al. [55,56] compared an equilibrium model of steam gasification in a fluidized-bed
reactor with the correspondent experimental data. They showed that the actual deviation of methane
increases at higher temperature, against the “general rule” stating that at higher temperatures reduce
the gap between equilibrium model and experimental case. Applying a QET approach to simulate
the syngas concentration at 750 °C Loha et al. found that the experimental molar dry concentration
of methane was 4.2% against the simulated 2%. Many other studies in literature confirmed this trend
of methane to be even twice in experimental case compared with equilibrium simulation [57]. As for
the other main syngas components (hydrogen, carbon monoxide, carbon dioxide, steam) there is a
good agreement between the simulations in QET conditions and corresponding experimental data,
whit poor deviations (within 5% molar fraction) [58]. More in general, however, thermodynamic
equilibrium model poorly applies to specific gasifier conformations and under some operating
conditions, in particular for reactors operating at low temperatures [8,59,60].

2. Kinetic models

Kinetic models are commonly used in chemical reactor engineering to predict non-equilibrium
product distributions, evolution of the system over time as a function of temperature and residence
time. For their nature, they should be also accompanied by thermal energy and momentum balance.
In order to obtain the information listed above, the kinetic equations must be very accurate, that
means the reaction mechanism and the kinetic constant of the process must be validated on a wide
range of experimental conditions. For these reasons, the kinetic model developed is strictly
dependent on the geometry of the reactor and on the characteristic of the specific process and, if used
to simulate other processes with different specifications, it can result an unpredictable error. The
majority of kinetic models in literature is built to calculate the kinetic parameters to predict biomass
feedstock conversion, syngas yield and composition.

Castello and Fiori [61] proposed a simplified model for hydrothermal gasification of methanol,
they adapted the kinetic model according to elementary equations of combustion. They pointed out
the relevance of two reactions among others: water-gas shift and CO methanation, which mostly
influence the process. Another way to simplify the kinetic modelling of gasification process is
through the lumped method, considering a pseudo-mono-component for the intermediate products
and assuming that the syngas is produced from the decomposition of this single component [62].
Resende and Savage [63] developed a lumped first-order kinetic model to describe the gasification of
cellulose and lignin fitting the experimental results in order to adjust the output. The model was able
predict gas yield and syngas composition for different feeds. The results from this kinetic model were
compared with those from a thermodynamic equilibrium model, adopting Gibbs free energy
minimization method, found a good agreement. Guan et al. [64] studied hydrothermal gasification
of algae by means of a lumped first-order kinetic model, which was able to give the precise gas yield
and also the effect of water density and biomass inlet on the final gas composition. Jin et al. [65]
investigated the gasification of lignite by means of lumped method; they were able to predict the gas
yield in good agreement with experimental data obtained by means of a micro quartz tube reactor.

Even if the lumped first-order method seems promising in estimating gas yield and gas
composition, it is not flexible for all processes. For instance, it is not suitable to predict the syngas
composition in supercritical water gasification, whose reaction conditions strongly depend on
structures and distributions of pores in the feedstock material, which vary their structure along with
the gasification process in turn affecting the reaction rate [66,67]. For this reason, some authors
proposed a kinetic alternative model based on random pore size distribution. Vostrikov et al. [68]
proposed a kinetic model based on random pore size distribution for the investigation of supercritical
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water gasification of coal. The study confirmed that the model is suitable for describing the rate of
coal conversion dependent upon the coal conversion degree. Moreover, it was highlighted that
random pore size distribution model is not trustable when catalytic effects occurred in non-uniform
way.

Di Carlo et al. [69] developed a semi-empirical kinetic model for steam gasification via fluidized-
bed gasifier. The reactor was a cylinder, and the model was based on a mono-dimensional modelling
of the mass and energy balance in order to calculate the syngas composition along the axis of the
cylinder. The corresponding algorithm flowchart implemented by the authors is shown in Figure 2.
Kunii and Levenspiel [70] developed a hydrodynamic model in order to describe the multiphase
(bubble and emulsion) nature of reacting mixture phases and their interaction.

Input for simulation
Process Temperature (K)
Biomass flowrate (kg/s)
Reactor sizes (Diameter and Height m x m)
Feeding Steam (mol/s)
Olivine flowrate (g/s)

!

6. Experimental pyrolisis composition (mol/s):
H,, CO, CO,, CH,, H,0, Char, C4Hy, C;Hg, C;oHg

1

7.  Estimation of Solid fraction of char in the bed (&car,)

l

Bed Hydrodynamic solution using an adapted Kunii and Levenspiel model

9.  Solution of the ODEs derived from kinetic species transport equations at
steady state for Gas Emulsion Phase and Gas Bubble Phase

10. Solution of the CSTR model of the bed for char gasification (steady state)

11.  Evaluation of the new ggp,yn

uvhwWNE

[

€char,o = €char,n

IS |&charn — é‘chur,ol =0

12. Solution of the Energy equation to evaluate olivine inlet T I

Figure 2. — Model algorithm flowchart developed by [69].

The kin-semi approach helps simplifying the complexity of kinetic models by assuming local
equilibrium for specific reactions and/or gasifier zones, while concentrations and temperatures of the
other reactions and/or zones are kinetically controlled [71-73]. The most common choice for the kin-
semi model is to consider homogenous gas-phase equilibrium of reacting components from the step
of pyrolysis; the equilibrium compositions is computed through three equilibrium constants or by
minimizing Gibbs free energy.

Then, the produced gas mixture is mixed with the gasifying agent and char and became the inlet
of a kinetic module were the final gas composition is computed using kinetic models [74,75]. Kin-
semi approach are easier to use compared with kin-total one, indeed it need less kinetic information
and parameters, while kin-total model describes with kinetic reaction rates both the volatile and char
gasification reactions. For this reason, kin-semi model provides more precises output results when
the gas phase is near to the chemical equilibrium.

To come to the point, kinetic models have the potential to indicate which reaction route or
pathway is responsible for the production of a particular gaseous product and are also able to give


https://doi.org/10.20944/preprints202308.0398.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2023 doi:10.20944/preprints202308.0398.v1

10

precise output results only if the reaction rates, kinetic constant and gasifier geometry are well-
known. However, this means that these models are not flexible to use, since it must be developed
precisely on a specific process with given conditions, and moreover it is also though to develop since
the required input information is not easy to reach and scientific literature is still struggled to obtain
them. On the other, it is possible to use simplified kinetic models providing quite accurate results for
gas yield and gas composition. However, the simplified models are not able to identify which reaction
route or pathway is responsible for the production of a particular gaseous product, so when such
information is needed it is possible to overcome the limitation of the simplified models coupling them
with a CFD model.

4. CFD models

CFD modeling is based on fluid mechanics principles and the use of numerical methods to solve
the Navier-Stokes equations [76,77]. It is a powerful tool to simulate the interaction among fluids that
have surfaces inside specific boundary conditions. In literature, there are several examples of CFD
models to simulate biomass conversion processes such as thermochemical gasification [23,78,79] and
pyrolysis [80,81]. CFD models are widely used to optimize the design of fluidized-bed reactor since
they are able to predict inert material concentration of in-bed gasifier, emissions, operational
parameters, fuel mixing efficiency, temperature profiles, heat flux, etc. [82,83].

It is possible to classify the CFD numerical approaches into three classes:

=  Eulerian-Lagrangian Discrete Particle Model (DPM), which considers gas as continuous and
particle as discrete phase. It is used where there are diluted particle conditions, such as freeboard
of reactor. CFD DPM models consider particles trajectory in a continuous phase of fluid and take
into account the interaction between particles by means of the heat and mass transfer as the
governing phenomena [84,85]. The main advantage is the simple accounting of the particle size,
allowing to track the changes in physic-chemical characteristics of the biomass particles during
conversion along their path through the reactor.

=  Eulerian-Eulerian Two Fluid Models (TFM), which is used to investigate both the gaseous and
solid (particle) phase. Interaction of granular and continuous phase is considered via momentum
transfer contribution based on drag models [86]. The CFD TEM approach has the disadvantages
of high computational demand when a wide range of particle sizes have to be investigated
because each size fraction of the distribution is accounted as a separated phase. Moreover,
another drawback of these models is they are poor in recognizing the discrete character of the
particle phase, so they are consequently poor in modeling flows of particles with a wide size and
in tracking movement and conversion of single particles.

=  Eulerian-Eulerian Discrete Element Model (DEM) within Eulerian-Lagrangian framework,
which uses Eulerian method for gas phase and discrete element method for particle phase,
tracking individually each particle and associating it with multiple physical (size, density,
composition, and temperature) and thermo-chemical (reactive or inert) properties [87,88]. The
main disadvantages of this method is the extremely small required time-steps, making this
approach highly computationally demanding thus practically avoiding for design and
optimization of industrial scale facilities [89].

In literature many studies [90-94] investigated coal gasification in fluidized-bed by means of
CDF TEM approach. Those studies showed great potential in modelling gasification process, but at
the same time the still need to be improved in describing chemical reactions, especially pyrolysis step.

Adnan et al. [95] made a comparison between CDF TFM and CFD DPM model, showing similar

results for the fluid dynamics of a fluidized-bed gasifier. More in general, DPM models are more
suitable for large-scale applications, where there is more independency from grids.
Ramos et al. [30] investigated results from a CFD TFM and CFD DEM model, concluding that the
latter gives a more accurate prediction. However, when the prediction is given for a local discrete
temperature value, TFM models were demonstrated to be more accurate compared with DEM model.
Moreover, DEM approach requires about twice the time needed to execute TFM model.
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5. Process modelling

Process modelling is a sequential approach in which each process is divided into unit operation
and a series of equations are solved by means of kinetic or thermodynamic models. The most used
software in this field is Aspen Plus [1,21,96]. Developed by Massachusetts Institute of Technology
(MIT), Aspen Plus is a chemical engineering process optimization software that utilizes unit
operation blocks, such as reactors, pumps, columns, heat exchangers, etc. Unit blocks are connected
to each other through mass and energy streams, and this is represented in terms of a flowchart of the
whole process. The software is based on a sub-sequential modular approach and the simulation
calculations use the in-built physical properties database [48]. The main advantage of Aspen Plus is
that each unit can be analyzed independently and the properties of the outlet stream of each unit
depends only on its inlet stream properties. In order to evaluate all physical properties of
conventional components in the gaseous phase of the gasification process, the most suitable
description is provided by the Peng-Robinson equation of state, with the Boston-Mathias (PR-MB)
modification [29], present in the default simulation setting of the Aspen Plus software. The evaluation
of the enthalpy and density of the non-conventional components (biomass and ash), is obtained
choosing the modules HCOALGEN and DCOALGEN, for enthalpy and density, respectively [29];
those settings are meant for the general coal model, but they are now used for other non-conventional
feedstock too, despite the reported deviations in the estimated heating value of biomass [97].

The main merits of process modelling are [12,27,39]:

e the whole process is taken into account (e.g., separators, mixers, heat exchangers, pumps, etc.)
and not only the reaction unit.

e  overall energy duty of the process is estimated.

e  optimization to improve CAPEX and OPEX are allowed.

The main assumptions for process modelling in Aspen Plus are:

e  process is steady-state and isothermal [98];

e  volatile products are H2, CO, CO2, CH4 and H20 [99];

. char is 100% carbon [100];

o all gas mixtures are supposed to behave as perfect gases;
e  pressure drops and heat losses are neglected.

When process modelling is based on thermodynamic modelling, it is possible to obtain a QET
approach also in process models, with the same benefits listed in paragraph 2. Thermodynamic models.

Several authors investigated biomass gasification process by means of Aspen Plus,
demonstrating that it is a powerful tool to describe biomass gasification [12,101-104]. However, in
literature there is a lack of scientific articles that point out the basic understanding of each model type
and its applicability for designing a common biomass gasification process. In order to fill that gap, in
Table 5 are shown the basic unit that make up the gasification model, considering both the
thermodynamic equilibrium and the kinetic approach.

Table 5. — Basic blocks for gasification process in Aspen Plus.

Aspen Plus Description
Block
Name

Thermodynamic equilibrium approach [53,104]

RYield Usually called DECOMP block (DECOMP stays for decomposition), it is a yield
reactor which converts the non-conventional inlet stream of biomass into its
conventional components (carbon, hydrogen, oxygen, sulphur, nitrogen, and ash)

Ryield by specifying the yield distribution according to the biomass ultimate analysis.
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RStoic Stoichiometric reactor, used to simulate the production of inorganic compounds.
Indeed, DECOMP block creates N, Cl and S as elemental components that are
@ known to produce mainly HCl, NHs and H:S, and the results of the real fractional
Rtoic conversion model are closer to the experimental data than that of the chemical
equilibrium. This is the reason why a stoichiometric reactor is needed to simulate
the production of H25, NHs and HCl specifying the proper reactions and the
fractional conversion for S, C12 and N.
RGibbs Gibbs free energy reactor, which simulates drying, pyrolysis, partial oxidation, and

gasification. It is possible to let the software individuate all the possible products
without specifying any reactions or products by means of the option “Calculate
RGibbs phase equilibrium and chemical equilibrium” . Otherwise, it is also possible using the
QET approach of the specified reactions to set the syngas composition by
specifying a temperature approach for individual reactions by means of the option
“Restrict chemical equilibrium — specify temperature approach or reaction extents”.

Total kinetic approach [105,106]

RYield Yield reactor represents the virtual reaction step that decomposes the biomass into
its three principal biochemical building blocks: cellulose, hemicellulose, and lignin.
This reaction step does not represent any part of the actual pyrolysis reaction
Riield mechanism but is necessary for the following interlinked reaction model. The
yields are calculated iteratively by an embedded Excel worksheet which
determines the cellulose, hemicellulose, and lignin composition of the biomass
according to its elemental composition.

RCSTR or  In the second phase, a kinetic reaction model is implemented for the primary
RBatch pyrolysis reactions. It is an interlinked model of individual decomposition
reactions of cellulose, hemicellulose and lignin, according to [62,107]. The reactor
G type can be chosen according to the pyrolysis reactor that wants to be modelled.
reste recn  For fast pyrolysis, the RCStir reactor is used, while the RBatch-type reactor is more
suitable for slow pyrolysis modelling.

RYield The secondary vapor reactions at longer residence times are implemented in
Aspen Plus as an embedded Excel sheet which determines the yields of the RYield
type secondary reactions reactor. The complete methodology and the

Ryield corresponding equations

The units listed in Table 5 are the strictly required three units needed to develop a
thermodynamic or kinetic process model by means of Aspen Plus software. Beyond the kinetic
approach reported in Table 3, the semi-kinetic method using a DECOMP block (yield reactor) provide
a simpler approach to convert the non-conventional inlet stream of biomass into its conventional
components (carbon, hydrogen, oxygen, sulphur, nitrogen, and ash). The biomass ultimate analysis
provides information to specify the yield distribution, the char gasification is performed in a CSTR
introducing the reaction kinetics written through an external FORTRAN module [71] (see Figure 3).
The separation column separates the volatile matter and solid matter, followed by a RGibbs reactor
where the volatile combustion occurs, according to the hypothesis that reactions in gaseous phase
occurs at Gibbs equilibrium. Moreover, the authors implemented hydrodynamic parameters to
divide the gasifier in two parts: bed and freeboard, both modelled as CSTR reactors. Using FORTRAN
code, each RCSTR is divided into a series of CSTR reactors with equal volume. The number of the
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elemental reactors depends on residence time, reactor dimensions, and operational conditions. Char
gasification was performed in the RCSTR by means of kinetic reactions introduced through an
external Fortran module. The model is used to predict the results of lab-scale gasification of pine with
air and steam and gave results in good agreement with experimental data.

5 STEAM
o AIR

RYIELD

Separation
Column

" GAS

Figure 3. — A basic kinetic model for biomass gasification [71].

An example of basic equilibrium process model, developed by Marcantonio et al. [53] by means
of Aspen Plus software, is shown in Figure 4. The modelling was done using the main units reported
in Table 5 and adding a mixer to mix the biomass volatile stream with gasifying agent stream (oxygen,
steam, air, or a mix of them). Moreover, the total amount of char was splitted according to literature
experimental data and only 89% went to the gasifier while 11% was unreacted [104]. The simulative
process was validated against experimental data showing good correlation between simulations and
experiments. The maximum error for the concentration of hydrogen, the main product of the
gasification process, was 16.3%.
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Figure 4. - A basic thermodynamic equilibrium model for biomass gasification [53].

Process models, as thermodynamic models, are not accurate at low temperature or at large scale.
To overcome such limitations, some authors suggested to improve the equilibrium model with
adjustable parameters and semi-empirical correlations [47].

6. Multivariate Data Analysis (MVDA) and Model Validation

In the ever-evolving fields of process and chemical engineering, managing and interpreting vast
amounts of data is critical for optimizing processes, ensuring product quality, and making informed
decisions [108,109]. In the area of biomass valorization and biorefinery processes, the process control
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is particularly challenging due to the high variability of biomass (feed) properties [110,111]. For
instance, Williams et al. [110] reviewed the effect of biomass properties variability in different
processes of energy conversion - fermentation, hydrothermal liquefaction, pyrolysis, and direct
combustion - with a special focus on ligno-cellulosic feedstock. They underlined the relevance of
some parameters, such as biomass moisture, in all process stages and on its performance, even
hindering the large-scale use of biomass as carbon-neutral source for energy production.

Statistical methods can be used to manage the biomass variability [112]. Multivariate Data
Analysis (MVDA) is a classical tool to extract meaningful insights from complex datasets, providing
engineers with a deeper understanding of their systems and enabling them to enhance efficiency,
reduce costs, and improve overall performance [109,113]. Multivariate Data Analysis (MVDA)
focuses on uncovering the connections among variables by leveraging correlation patterns. In
broader terms, MVDA enables the following [114]:

¢  Reducing the number of variables while maintaining the system's descriptive capacity.
e  Grouping variables into categories.
e  Utilizing correlations between variables to characterize system behavior.

The simplest MVDA tool relies on the Pearson correlation coefficient, which establishes direct
correlations between pairs of variables. However, in complex systems, this approach may not yield a
definitive response, as a high correlation coefficient (close to unity in absolute value) does not always
indicate a genuine causal relationship between the two variables. For instance, such a correlation
might be the result of a third variable's influence, which is independently highly correlated with both.
Therefore, additional methods are necessary to elucidate the true interdependencies between
variables.

Principal Component Analysis (PCA) [115] offers a solution by transforming the original
variables dataset into a new set of orthogonal variables known as Principal Components (PC).
Principal Components (PCs) are linear combinations of the initial dataset. Let X = { [(x) _1, [(x) _2
s, (x)] _m } represent the original dataset with m variables (LCA outputs), recorded on n samples
(statistical units). PCA transforms X into a new set of variables, PC = {P [(C) _1,P (C) _2,..,P [(C
) _k }, where k < m. PCs are mutually orthogonal and ordered based on the descending values of
explained variance. Given the PC set, the loadings matrix L = { [A) _((i,j)) } reports the correlation
coefficient between the i-th original variable, [(xJ) _(i), and the j-th principal component P (C) _j,
where each [(AJ) _((ij)) represents a generic element in the matrix. Another tool of MVDA is the
Canonical Correlation Analysis (CCA) [116]. CCA relies on initially dividing the entire dataset into
two or more categories. Variables within each category are then combined linearly to generate k
variables, known as Canonical Variables (CVs). The value of k corresponds to the minimum rank
(number of variables) among all categories. The scores obtained through linear combinations aim to
maximize the Pearson correlation coefficient between variables. As a result, CCA calculates the
correlations between different classes (categories) of variables, effectively describing the system's
behavior. Consequently, a high correlation coefficient between the first canonical variables of two
categories indicates a strong interdependency between the variables in those respective categories.
Similarly, in the loading’s matrix L={ [A) _((ij)) }, the generic element [A)J _((ij)) denotes the
correlation between the i-th canonical variable of a given category and the j-th variable from the
original dataset. The complexity of the gasification reactions produces a large number of variables
required to describe the kinetic and thermodynamic properties of the reacting phases. MVDA is an
elective tool for the analysis of the resulting data set; several works deal with the MVDA application
to gasifiers, providing unique information for their optimization [105,117-124].

Gil et al. [125] adopted a multifaceted Multivariate Analysis of the data of gasification of ten
different biomasses (almond shells, chestnut sawdust, torrefied chestnut sawdust, cocoa shells, grape
pomace, olive stones, pine leaves, pine sawdust, torrefied pine sawdust and pine kernel shells). The
experimental data were collected in a bubbling fluidized-bed gasifier under an air-steam atmosphere.
The analysis was carried out on the variables of the gasification outlet streams and biomass
properties. The analysis included different MVDA methods, including PCA: the ten different
biomasses were classified into two groups according to their gasification products. The findings
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revealed that gasification of pine kernel shells, pine leaves, torrefied pine sawdust, olive stones, and
pine sawdust resulted in substantial quantities of combustible gaseous products, including CO and
CH. Additionally, their gasification exhibited high conversion rates and cold gas efficiency. Thus, it
was inferred that C and H contents and the HHV of the biomass are the most important biomass
properties for promoting the gas production, calorific value of the product gas, gasification
conversion and energy efficiency. On the other hand, gasification of cocoa shells and grape pomace
produced high Hz concentration and H2/CO molar ratio in the gas product, mainly due to the higher
H/O ratio and K20 ash content of the biomass. Through a simple correlation analysis, the H-
concentration in the product gas were found negatively correlated to the O and volatile matter
contents of the biomass.

All in all, this study demonstrated the potentiality of the MVDA in analyzing the gasification
data, so as to reach valuable insight about the influence of the biomass properties on the gasification
results.

Similarly, Dellavedova et al. [121] analyzed biomass characterization, gasification process
conditions and obtained syngas properties from literature data by means of Principal Component
Analysis, showing again biomass can be characterized and classified on the basis of its properties;
this study showed that the most important variables for this model are the equivalence ratio (ER, i.e.
the actual air fuel ratio divided by the stoichiometric air fuel ratio), the steam to biomass ratio (SB,
i.e. the weight ratio between the amount of vapor used in the process and the biomass treated), the
high heating value HHV, the carbon content and temperature.

It was observed a strong direct correlation between SB and the syngas characteristics. On the
other hand, a negative correlation was found between syngas features and ER.

These two models show the potentiality of the MVDA in providing a data-driven description of
gasification processes and, more in general, of complex reacting systems where the detailed
description of all reactions and the characterization of the reactants can be very challenging.

6.1. Black-box approaches

Artificial Neural Networks models are inspired by natural neurons: they are composed of a wide
number of strictly interconnected processing elements, called neurons or nodes, working all together
at the same time to solve a given problem [126,127]. The nodes are organized in separated layers and
interconnected with a given architecture. Each layer has a weight matrix, a bias vector, and an output
vector [128].

This kind of model does not require physical description of the phenomena and is able to
approximate arbitrary non-linear functions, that is why it was found a suitable approach to simulate
and up-scale complex biomass gasification process [32].

Puig-Arnavat et al. [32] proposed a model to predict gas composition and gas yield from biomass
gasification in a fluidized-bed gasifier. The model structure developed by the authors is shown in

Figure 5.
Input layer Hidden layer Output layer
(p1)
i=1 Ash  —» Weights
e |
T
Moisture —— v
. —
o —
71 Output (CO,
— CO2, H2,CH4
H —> or Gas Yield)
k=1
L —N i=2
b2k
T —

B —» \ /

~ Biases


https://doi.org/10.20944/preprints202308.0398.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2023 doi:10.20944/preprints202308.0398.v1

16

Figure 5. - ANN model structure to predict producer gas composition and gas yield from biomass
gasification in a fluidized-bed gasifier [32].

Input and output variables used by Puig-Arnavat el al. [32] in their developed model are shown
in Table 6.

Table 6. - Input and output variables in the ANN model of [32].

Range
Input variables
Ash content of dry biomass (g/kg) 5.5-11.0
Moisture content of wet biomass (g/kg) 62.8-25.0
Carbon content of dry biomass (g/kg) 458.9-505.4
Oxygen content of dry biomass (g/kg) 411.1-471.8
Hydrogen content of dry biomass (g/kg) 56.4-70.8
Equivalence ratio (ER) 0.19-0.47
Gasification temperature (T) (°C) 700-900
Steam to dry biomass ratio (SB) (kg/kg) 0-0.04
Output variables
Gas yield (m?¥kg) 1.17-3.42
H2 volume fraction, dry basis (%) 4.97-26.17
CO volume fraction, dry basis (%) 10-29.47
CO: volume fraction, dry basis (%) 9.82-18.60
CHs volume fraction, dry basis (%) 2.40-6.07

Results from the computational implementation of the ANN model were demonstrated to be in
a good agreement with experiments.

Brown et al. [129] integrated an ANN approach with an equilibrium model for biomass
gasification in a fluidized-bed. The authors performed a non-linear regression with ANN to compute
temperature changes, fuel composition and operational variables. They demonstrated that the
application of the ANN model improved the accuracy of the equilibrium model and, consequently,
the quantity of required input data decreased.

Sreejith et al. [130] developed an ANN model to predict the output gas composition, the heat
content, and the temperature profile in a fluidized-bed gasifier. Results obtained from the model were
in good agreement with experimental data: at steam to biomass of 2.5 the simulative results of H
concentration was found to be 28.2 %, while the experimental result was 29.1 %.

Although the application of ANN method has yielded positive results in biomass gasification, it
remains a scarcity of studies on the subject in the current literature. It is important to emphasize that
ANN models are limited to the range of operating conditions used in their previous training study.
To enhance the effectiveness of ANN predictions, expanding the experimental database with a
broader range of operating conditions could be highly beneficial.

7. Discussion

Table 7 shows features, pros, and cons of the three modelling approaches discussed in the
previous paragraphs.

Table 7. — Description of gasification modelling approaches.

Approach Features Pros Cons
Kinetic modelling e Finite time or e Accurate and ¢  Computationally
volume detailed results intensive
e  Explicitly even at low e Dependent on
accounts temperatures geometric

reactions kinetic, parameters, so the
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Thermodynamic
modelling

CFD modelling

MVA analysis

system
hydrodynamics
and particle size
distribution

Assumption: the
reactants react in
a fully mixed
condition for an
infinite period of
time

Zero dimensional

No chemical
reactions or
conversion

mechanisms are
needed

Can be improved
by using the
coefficients  for
equilibrium
constants or
yields
distribution

Based on mass,
momentum, and
heat balances in
presence of
gasification
reactions

It applies the
principles of fluid

dynamics,
numerical
methods, and
different
algorithms to
solve Navier-

Stokes equations

It applies the
statistics

principles to
understand and

Able to predict
the spatial
distribution  of
products in the
reactor

Simple and easy
to develop and
implement

Independent of
gasifier design,
SO the
applicability is
not  restricted,
and the model is

flexible for
various
feedstocks and
process
parameters
Good prediction
of maximum
yield

It produces
temperature,

pressure, and
velocity profile

across the
reactor at a
steady or
transient state

It can predict the
flow pattern of
reactants

through the
reactor together
with the heat

and mass
transfer
Accurate
prediction  of
syngas yield

It is able to
strongly reduce
the number of

applicability is
limited to the
specific plant the
model is built for

Complete reaction
mechanisms are
often unknown or
only partially
known

Sensitive to gas-
solid  contacting
process

Equilibrium
condition may not
be reached in real
cases, especially at
low temperatures

Over-under
estimations of the
amount of
produced methane
and char

Special  software
are often used for
analysis, most of
which are
expensive

Large number of
experimental data
are required
Huge
computational
power is needed

It does not add any
physical
interpretations  of
correlation
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exploit the variable to be
correlation monitored
patterns between It provides
gasification prediction  of
variables both  dynamic
behavior  and
equilibrium
conditions
It requires a light
computational
burden
Process The process is It takes into Based on
Simulation represented by account the thermodynamic or
modelling with means of single global  process kinetic modelling,
. unit operations (i.e., exchangers, it takes all their
commercial
A series of pumps, reactors, pros and cons. So,
software equations are etc) and not process simulation
solved based on only the reaction based on kinetic
Kinetic or step model is more
equilibrium It allows the complex to  be
models. estimation of the developed, but

Artificial neural

The model is

overall energy
duty and
economics of the
system

It is able to

more accurate,
while when based
on thermodynamic
model is easier to
develop but less
trustable

Purposed and
expensive software
is required, such as

Aspen Plus,
Chemcad, Aspen
HYSYS, etc.

Required a wide
dataset of

network trained on syngas represent non-
modelling composition and linearity experimental data
other It accurately
experimental predicts
parameters experimental
data used for the

training set

The choice of the model depends on the objectives and the experimental information available.

A first raw prediction of gasification process performance is well given by thermodynamic
modelling, easy to implement and flexible to use thanks to the independence of geometry. However,
this approach does not give a realistic representation of the process at low temperature; and,
moreover, it is not able to predict gasification process far from equilibrium (controlling kinetics and
fluid dynamics phenomena, such as unconverted solid carbon and the formation of gaseous
hydrocarbons).

Kinetic modelling gives a more accurate description of phenomena, but it requires a complete
description of the reaction mechanisms, often unknown or only poorly known.

The main limitation of both kinetic and thermodynamic modelling in the investigation of
gasification process is related to the interaction between solid and gas phases reactions, highly
undescribed. In order to overcome this issue, CFD modelling is used to answer about interaction
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between solid and gas phases reactions involving a combined solution of mass, momentum, energy
balances, including turbulence regimes and multiphase hydrodynamics. In turn, the CFD
computational complexity is very high, so it is reasonably used if some reliable experimental data are
known and used as reference. The black box approaches do not require any preliminary
understanding and description of the physical phenomena.

Compared with other modeling approaches, ANN copes non-linearity in a superior manner.
Moreover, it does not require any mathematical or physical description of the phenomena and is able
to adapt and learn, for those reasons ANN modelling makes the computational tool able to update
itself. On the other hand, it works only within the specific range of operational conditions it was
trained on.

Finally, MVA and more in general statistical methods provide insight about the correlation
patterns of variables in gasification process: this information is particularly valuable in the case of
systems controlled by a large number of variables, such as in the case of gasification. High correlation
may infer a causal link between variables, worth to be explored through more detailed physical
descriptions.

Additionally, the correlation analysis is the basis for the sensitivity analysis, which guides the
optimization methods for process engineering.

In summary, it is possible to affirm that black-box models with some empirical constraints are
enough for preliminary predictions (e.g., quasi-equilibrium model).

In Figure 6 (a)-(e) is briefly reported a schematic approach of each modelling.
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Figure 6. — Basic input/output diagram of (a) thermodynamic equilibrium modelling, (b) kinetic
modelling, (c) CFD modelling, (d) ANN modelling, (e) process modelling for biomass gasification
process.

8. Conclusions

A review of the most important and recent gasification modelling approaches was presented.
Even if the most appropriate choice of model depends on factors such as the scope of the simulation,
the type of gasifier, the feedstock, and operational parameters several general observations can be
made.

Equilibrium models are the simplest and easiest to develop and implement and have the
advantage of being independent of gasifier design. They are able to predict the maximum achievable
yield of a desired product from a reacting system and the gas composition. But they lost their
accuracy at low temperature. Unlike equilibrium models, kinetic models predict the progress and
product composition at different positions along a reactor, also providing a useful design aid in
evaluating the possible limiting behavior of a system that is difficult or unsafe to reproduce
experimentally. However, kinetic models are strictly dependent on the geometry, and they cannot be
used for system different from the ones they are built for. CFD model results showed a good
agreement with experimental data in many cases. However, CFD models are computationally
intensive and still have many approximations as well as assumptions and there are many aspects of
fluidized-bed reactor where the application of CFD modeling still needs to be explored (i.e., fuel
combustion/gasification behavior during feeding, mixing of fuel in the dense bed, ash sintering, fuel
characteristics, char reactivity, fragmentation of fuel in dense bed). In order to avoid complex
processes and develop the simplest possible model that incorporates the principal gasification
reactions and the gross physical characteristics of the reactor, process simulation models were
developed, using the process simulator Aspen Plus. Process simulation models are able to give a first
raw evaluation of the overall energy duty and economic of the system, bust they have all the pros
and cons of the modelling they are based on (thermodynamic or kinetic modelling). ANN models
offer some contribution to research in gasification process. Literature results show how the
percentage composition of the main four gas species (Hz, CO, COz and CH4) in producer gas and
producer gas yield for a fluidized-bed gasifier can be successfully predicted by applying a neural
network. However, ANN models still need to be trained and improved, for this reason it is necessary
to enlarge the literature database adding more experimental data. MVA analysis provides a good
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prediction of both dynamic behavior and equilibrium conditions, requiring a minimal computational
burden, but it does not add any physical interpretation of the phenomena occurring.
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Nomenclature

Acronyms

ANN Artificial Neural Network GMM Gibbs Free Energy Gradient Method Model

CCA Canonical Correlation Analysis LHV Low Heating Value

CFD Computational Fluid Dynamics MVDA Multivariate Data Analysis

CSTR Continuous-flow Stirred-Tank Reactor QET Quasi-Equilibrium Temperature

DEM Discrete Element Method PCA Principal Component Analysis

DPM Discrete Particle Model TFM Two Fluid Model

Symbols Unit Description

Cpi J/(mol-k) Specific heat at constant pressure of the

i-component

H kJ/mol Enthalpy

AH® kJ/mol Enthalpy formation

G kJ/mol Gibbs free energy

AG® kJ/mol Gibbs energy formation

ni mol Number of moles of the i-component

nr mol Total moles of produced gas

P Pa Pressure

Pi Pa Partial pressure of i-component

Po Pa Operative pressure of the system

R J/(mol-k) Universal constant of gas

T K Temperature

Greek letters

a Reaction coordinate of water gas shift reaction

B Reaction coordinate of steam reforming reaction

LLi Chemical potential

e (1) Standard chemical potential of the i-component
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