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Abstract: The primary goal of picture compression is to reduce the amount of unused image data
while still storing or transmitting it in a format that is appropriate. The compression of raw binary data
is quite different from the compression of a picture, and these differences may be rather substantial.
In light of this, compression is often regarded as an essential technique for the purposes of both data
storage an d transmission in order to mitigate the excessive amounts of data that are generated by
these images. In order to transmit enormous datasets, particularly for the purposes of telemedicine
and teleradiology, one needs a significant amount of storage capacity as well as an expansive network.
As a result, compression is an important aspect of medical imaging. In addition to the importance of
compression, the quality of the photos themselves is also an essential factor in the success of analysis.
In addition to this, the amount of time necessary to compress the photographs before sending them
should be reduced. When it comes to telemedicine, the necessity for data storage and bandwidth
needs continues to grow; thus, the use of lossless compression methods has become crucial. The
primary purpose of this study is to create a compact representation and eliminate duplication as
a means of contributing to the effort of striving to achieve high compression performance for the
encoding of medical pictures.
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1. INTRODUCTION

Deep learning framework integrated with predictive encoding is implemented in this work for
improving the compression performance of medical images. Inter pixel redundancy is eliminated
by considering the causal template. Current pixel is predicted from causal template by considering
the difference between the previous pixel and current pixel.Convolutional Neural Network (CNN) is
employed for generating convergence. Convergence property of CNN with a novel Local Maximal
Contiguous Directional Predictor (LMCDP) is integrated with an entropy encoder has attained
an effective compression. The performance measures such as Compression Ratio, Peak Signal to
Noise Ratio, Mean Square Errorand Structural Similarity Index Measure are utilized to evaluate the
compression performance compared with other existing methods.method for image prediction to
perform efficient medical image compression. In this approach, LMCDP is utilized for predicting the
current pixel with the neighborhood pixels. The proposed LMCDP employs a two layer approach
for prediction. This is very much helpful to obtain a superior compression performance which is
considered as the objective of this proposed work.

The contributions of this Research are given as follows:

* A novel predictor LMCDP is proposed in which horizontal, vertical and diagonal elements
along with a centre element are considered for finding the residual image obtained after
prediction. Two-layer novel predictor structure is presented along with different orientation
for eliminating interpixel redundancy

*  Convolutional Neural Network (CNN) is proposed for compression which provides a compact
representation of the image.

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.
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¢  Convolutional Neural Network combined with LMCDP a novel predictor and arithmetic encoder
is employed for enhancing the compression ratio results.

*  Compression Ratio (CR) is compared with the existing techniques to justify the results.

®  Accurate reconstruction is attained after compression as two-layer neighborhood is implemented
for obtaining the prediction values.

®  Quality of the image is improved and is proven with experimental results.

*  Errorrate is less for the proposed method when compared to the existing techniques which reveals
that there is not much degradation when comparing the original image with the reconstructed

image.

2. LITERATURE REVIEW

Table 1. GAPS IN PREVIOUS APPROACHES.

Study Gap Methodology Dataset
[1] Limited exploration of Convolutional Neural ImageNet, MNIST
deep learning methods Networks (CNNs)
[2] Lack of consideration for Predictive coding with Medical Image Compression
lossless compression arithmetic coding Benchmark (MedCom?2018)
[3] Inadequate evaluation of Structural Similarity Index Kodak Lossless True Color Image
subjective quality (SSIM) Suite, LIVE Image Quality DB
[4] Insufficient analysis of Transform-based methods DICOM CT and MRI images
computational complexity  (DCT, DWT)
[5] Limited investigation of Combination of transform Lung CT scans
hybrid methods coding and predictive coding

[2,3] Lack of consideration for
specific modalities

[5,6] Insufficient exploration of
medical video

[7,8] Limited analysis of

compression ratios

Lack of evaluation of

different compression

levels

[9,10]

Region-of-Interest (ROI)
coding

Motion compensation with
predictive coding
JPEG2000 standard

Quantization and entropy
coding

Digital Retinal Images for Vessel
Extraction (DRIVE) dataset

VIDIT (Video Database for Imaging
Technology) dataset

CT colonography images

Publicly available medical image
databases (e.g., ImageCLE

3. MATERIAL AND METHODOLOGY

3.1. MATERIAL

The IXI Dataset provides a valuable resource for studying and developing medical image

compression algorithms specifically tailored for brain imaging. It contains images from a large
number of subjects, capturing both healthy individuals and patients with various brain conditions.
The dataset includes images acquired from different scanners and imaging protocols, reflecting the
variability encountered in clinical practice.

Access to the IXI Dataset requires registration and adherence to specific data usage agreements.
You can find more information about the dataset and access instructions on the official IXI website
(http:/ /brain-development.org/ixi-dataset/).

3.2. M

Figure 1 shows the complete structure of the proposed method. The proposed methodology
consists of three stages for obtaining compact representation namely, deep learning using CNN,
predictive coding using LMCDP and entropy coding using arithmetic encoder.
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Input Medical Image

Compact Representation

CNN

Predictive Encoding

LMCDP

Figure 2 highlights the encoder and decoder model employed in the proposed work. Figures 4.3
and Figure 4.4 illustrates the encoding and decoding algorithm employed for the proposed system
respectively.

Entropy Encoding

(Arithmetic
Encoding)

Figure 1. Overall Architecture Diagram of the Proposed System
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Figure 2. A Complete Framework of Encoder and Decoder for the Proposed Methodology
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Algorithm 1: Encoder algorithm Input:

Uncompressed Medical Image, I Output: Compressed Image, CI
Perform Convolutional Neural Network Encoding (CNNEnc) for the Image I of size M x N
Compute prediction for each pixel using LMCDP Perform arithmetic encoding to obtain compressed image

Algorithm 2: Decoder algorithm

Input: Compressed Medical Image, CI

Output: Uncompressed Image, I

Perform arithmetic decoding for the entire stream of bits Compute prediction for each pixel using LMCDP
Perform Convolutional Neural Network Decoding (CNNDec) for the Image I of size M x N

Perform Convolutional Neural Network Encoding (CNNEnc) for the Image I of size M x Compute
prediction for each pixel using LMCDP Perform arithmetic encoding to obtain compressed image
Perform arithmetic decoding for the entire stream of bits Compute prediction for each pixel using
LMCDP Perform Convolutional Neural Network Decoding (CNNDec) for the Image I of size M x N
Step by step workflow of the algorithm of the proposed work CNN- LMCDP is presented in Figure 3

135 90° 45

i | P

NNEE

180

Figure 3. Causal Template along four orientations for 45, 90, 135 and 180 for pixel predictionEdge and
Texture Feature Prediction using LMCDP Input: Compact Representation Image

3.2.1. Proposed Work of LMCDP Predictor

The architecture of the proposed LMCDP is shown in Figure 4. This method is proposed to predict
the pixel which is used for eliminating the inter pixel redundancy thereby enhancing compression
accuracy.The schematic map explains the proposed LMCDP lossless predictive encoder algorithm of
an MxN input image. CNN is employed to generate a compact representation for the input image.
Contiguous directional difference is estimated along 45, 90, 135 and 180. The four vectors are sorted
in ascending order and the maximum index is found from each vector.In a medical image I, consider
a pixel Xij, where 1< i < N and 1< j < N columns, where N rows and N columns represent the
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total number of rows and columns of the image. Let us consider a pixel X; ; which is the pixel to
be predicted using the proposed method LMCDP with the help of the causal template as shown in

Figure 6
: CNNLMCDP
ORIGINAL EECF BANLC CNNRIGED CNN.GAP —o—onmiss
IMAGE (PROPOSED)

Figure 4. Compression performance of Medical Image Samples of Proposed Work Compared with
Existing Works

a) ORIGINAL PREDICTED PREDICTED IMAGE

IMAGE IMACE AFTER RECOVERY COMPRESSED IMAGE

Figure 5. Sample outputs of the Proposed Work
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16-hit Datasets

Figure 6. Comparison of CR (16 bit images) obtained by the proposed method with existing compression
methods
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Estimating contiguous directional difference for prediction

Difference can be estimated for each pixel in level one with the pixel in level two along four
orientations such as 45, 90, 135, 180. The general representation for difference estimation along four
orientations is given in Equation (1).

Pygiff(CPy — P) (1) .

where P refers to pixels contiguous to the predicting pixel X; ;*""8"°"s such as WNW,N,NE in
level one and CP refers to the pixels contiguous to Xi”]-c"”tig uous guch as WW, NWW, NNWW, NNW,
NN, NNE, NNEE of level two.

Vectors are generated for the pixels in level one, by considering the context of contiguous pixels
along four orientations. W is calculated using intensity difference between Win level one with WW in
level two, whereas W is calculated using intensity difference between Win level one with NWW in
level two, whereas W is calculated using intensity difference between Win level one with NW in level
two, whereas W is calculated using intensity difference between Win level one with N in level two.

The predicted values contain both positive and negative values. Absolute function is used for
converting the negative values into positive values. The contiguous directional difference for predicting
the intensity value of W along the four orientations is calculated using Equation (2) to (4.5). The causal
template for computing directional difference along 180, 135, 90 and 45, for W direction is shown in
Figure 4.9.

Wiggedifrabs (WW — W) (2)

W135°diffabs (NWW — W) (43)
Wgoodiffabs (NW - W) (4.4)
W45°diffabs (N — W) (45)

Table 2. Causal Template for N along four orientations 45, 90, 135 and 180 for pixel prediction

NNW NN NNE NNEE NNWW NNW NN NNE NNEE

NWW NW N NE NWw NwW N NE
WW W X WWwW W X

Table 3. Causal Template for N along four orientations 45, 90, 135 and 180 for pixel prediction

NNWW NNW NN NNE NNEE NNWW NNW NN NNE NNEE

NWW NwW N NE NWW NwW N NE
WWwW W X WW W X

Figure 4.9 Causal Template for W along four orientations 45, 90, 135 and 180 for pixel prediction

The contiguous directional difference for predicting the intensity value of NW along the four
orientations is calculated using Equation (4.6) to (4.9). The causal template for computing directional
difference along 180, 135, 90 and 45, for NW direction is shown in Figure 4.10.

Nngoodiffabs (NWW — W) (46)
W135°diff‘1b5 (NNWW — NW) (47)
Wogegifrabs (NNW — NW) (4.8)
W45odiffabs (NN — W) (49)

Table 4. Causal Template for N along four orientations 45, 90, 135 and 180 for pixel prediction

NNWW NNW NN NNE NNEE NNWW NNW NN NNE NNEE

NWw NwW N NE NwWw NwW N NE
WWwW W X WW W
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Table 5. Causal Template for N along four orientations 45, 90, 135 and 180 for pixel prediction

NNWW NNW NN NNE NNEE NNWW NNW NN NNE NNEE

NWW Nw N NE NWW NwW N NE
WW W X WW W X

Figure 4.10 Causal Template for NW along four orientations 45, 90, 135 and 180 for pixel prediction

The contiguous directional difference for predicting the intensity value of N along the four
orientations is calculated using Equation (4.10) to (4.13). The causal template for computing directional
difference along 180, 135, 90 and 45, for N direction is shown in Figure 4.11.

NWiggegifrabs (NW — W) (4.10)
Wigsegiffabs (NNW — NW) (4.11)
Wgoodiffabs (NN — N) (412)
Wyseaifrabs (NNE — W) (4.13)

Table 6. Causal Template for N along four orientations 45, 90, 135 and 180 for pixel prediction

NNW NN NNE NNEE NNW NN NNE NNEE
NWwW NW N NE NWwW NW N NE
WW W X WW W X
Table 7.
NNW NN NNE NNEE NNW NN NNE NNEE
NWW NwW N NE NWW NwW N NE
WW W X WW W X

Figure 4.11 Causal Template for N along four orientations 45, 90, 135 and 180 for pixel prediction

The contiguous directional difference for predicting the intensity value of NE along the four
orientations is calculated using Equation (4.14) to (4.17). The causal template for computing directional
difference along 180, 135, 90 and 45, for NE direction is shown in Figure 4.12.

NEigo-4iffabs (N — NE) (4.14)
NEi3504i¢fabs (NN — NE) (4.15)
NEogeaiffabs (N — NE) (4.16)
NEyse4ifrabs (NNEE — NE) (4.17)

Table 8. Causal Template for N along four orientations 45, 90, 135 and 180 for pixel prediction

NNW NN NNE NNEE NNW NN NNE NNEE
NWW NW N NE NWW NW N NE
WW W X WW W X

NNW NN NNE NNEE NNW NN NNE NNEE
NWW NW N NE NWW NW N NE
WW W X WW W X

Figure 4.12 Causal Template for NE along four orientations 45, 90, 135 and 180 for pixel prediction

Directional difference vector generation

After the directional difference estimation for W, NW, N and NE of the contributing pixels, the
directional vectors computed are:
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W, NW, N, NE as in Equation (4.18) to (4.21).

Woaifs = (W180°diffr Wasseaiff Wooodif £+ W45°diff} (4.18)
NWegirr = (N Wisoeaif £, NWisseair £, NWogegisr, N W45°diff} (4.19)
Noaiff = (N180°diffr Nisseaiffr Nooedif fs N45°diff} (4.20)

NEggifs = (NE180°diff/ NEys5°4iff» NEgooaiff, NE45°diff} (4.21)

Now, W ,NW ,N ,NE constitutes four positive values for each directional vector of k elements.
The four positive values difference

vectors are shown in Equation (4.18) to (4.21). Then the four vectors are arranged in increasing
order for k elements.

4. PERFORMANCE METRICS AND RESULTS

The proposed experimental works are conducted for 8 bit and 16 bit MRI and CT medical image
samples. Various compression performance metrics such as CR, PSNR, MSE, BPP, SSIM, SC, NAE, NK
and LMSE are used to validate the compression performance.

4.1.

4.1.1. Performance Metrics

The proposed work is evaluated using various quantitative measurements for medical images
and standard chain code images.

Compression Ratio (CR)

CR which is an objective measure is used to measure the original image size with the compressed
image size as shown in Equation (4.32).

CR = size of the original image / size of the compressed image  (4.32)

Mean Square Error (MSE

Equation (4.33) defines the cumulative squared error compared with the compressed and the
input image.where, M? denotes the size of the image, yi,j and y ; ; represents the intensity values of
the original image and reconstructed image respectively. If the PSNR value is high, then the quality of
the reconstructed image is also high.

Peak Signal to Noise Ratio (PSNR

Equation (4.34) defines PSNR as a measure of peak error. Higher value of PSNR indicates that the
quality is good.

F range

(4.34)

where, the range of the signal is denoted as Frange and is measured in decibels(dB).
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Percentage Rate of Distortion (PRD

Equation (4.35) which is a fidelity measure used for quantifying the amount of distortion occurred
after image reconstruction. A minimum value of PRD specifies the effective image reconstruction and
is shown in Equation (4.35)

% 100 (4.35)

PRD = Yo oy (8 (w,0) - g’(z;, 0)]?
e TR (g (u0)]

Here, QxR represents size of the image, g (u,v) istheoriginalis the reconstructedimage.

Correlation Coefficient (CC

Equation (4.36) is a measure which is used to find the amount of correlation that exists between
the original image and the reconstructed image.CC value of 1specifies perfect reconstruction.

_ YR Y5 18(ab) x g (a,b)
VIR EE L (2 (a,0) 2R TS (8 (D))

Here, RS represents size of the image, g(a,b) is the original image
and g’ (a,b) is the reconstructed image.

cC

(4.36)

Normalized Absolute Error (NAE

It is a parameter used for measuring the quality of an image which is conveyed in Equation (4.37)
as,

Z]'Ail E}Y:l (Xj,k - Xj,k’

NAE = T oN
L1 Y= (Xj,k’

(4.37)

Equation (4.37) depicts that if the value of NAE is high then the rebuild image is of low quality.

Normalized Cross Correlation (NCC

This is a measure which is used to reveal the similarity between the original image and the
reconstructed image which is conveyed in Equation (4.38) as,

M 14
NCC — Ej:l Y k=1 Xik — Xjk
- ZM ZN x2
j=12k=1%jk

(4.38)

Least Mean Square Error (LMSE

This metric is used to measure the significance of edge and it is expressed in Equation (4.39) as,

2o (o (xia) — 0 (xia)

LMSE = Zj]\il YN (O (xj’k)} x2

(4.39)

If the value of LMSE is high, then the image is of very poor
quality.
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Structured Correlation (SC

This measure is used to compare two images to identify the common properties that exist between
them. SC value nearer to 1 indicates the reconstructed image of high quality and greater than 1 depicts
an image of poor quality and it is expressed in Equation (4.40) as,

sC — o1 ):;(42:1 Y2m, n
EZ:l 23:1 Y'2m,n

(4.40)

Here, P and Q are the dimensions of the image.

4.2. EXPERIMENTAL RESULTS

In this section, the experimental analysis is carried out for medical image datasets namely,
CT-skull, MRI_ head, CT-Lung R13 (Grove, 2015), CT-Lung-R4 (Grove, 2015), MR-Neuro (Barboriak,
2015) and MR-Breast (Meyer, 2015) which are publicly available.

The CT-skull images used for testing are collected from CIPR dataset and MRI_ head samples
from Computer Vision Group . CT-Lung R13, CT-Lung-R4, MR-Neuro and MR-Breast test samples of
16-bit depth are collected from Cancer Imaging Archive (Clark, 2013) dataset.

Figure 7 represents compression performance of various medical image samples. The proposed
CNN-LMCDP method is compared with the existing techniques such as End to End Compression
Framework (EECF) (Jiang, 2017), Block Adaptive Near Lossless Compression (BANLC) (Sharma,2020),
CNN-RIGED and CNN-GAP respectively. From the figure, it is observed that the proposed work is
better compared to the existing techniques.

18
16 - p—
55331
14 - 1:_;,
1»1;: e
12 - $334 7 BANLC
10 - 4 «» EECF
CRg 32t NN
7 3 7 * CNN-LMCDP{Proposed)
t:l.‘l.
8 7 % 44 & CNN-RIGED
%9 / \ = CNN-GAP
2 i //
0 )
8-bit -Datasets

Figure 7. Comparison of CR (8 bit images) obtained by the proposed method with existing compression
methods

Figure 7 represents the sample outputs obtained while compressing various medical image
samples. Firstly, the original image is fed into the encoder. Secondly, the predicted image is obtained
after prediction. Thirdly, the predicted image is recovered and as a final step, the compressed image is
obtained.

From the results obtained from Table 9, it is reported that the PSNR of the proposed CNN-LMCDP
method for 16 bit depth images is compared with other existing approaches such as BANLC, EECEF,
CNN- RIGED and CNN-GAP. The proposed CNN-LMCDP method has achieved 1% improvement in
the average PSNR results. Cancer Imaging Archive, a publicly available dataset reported in Table 9
have achieved 1% improvement in PSNR for the proposed work, when compared to BANLC method,
1% improvement in PSNR for EECF method, 1% improvement in PSNR for CNN-RIGED and 1%
improvement in PSNR for CNN-GAP.

doi:10.20944/preprints202308.0364.v1
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Table 9. Comparison of PSNR values (16 bit images) for the proposed method with the existing
compression methods

DATASETS BANLC EECF CNN- RIGED CNN- GAP CNN-LMCDP (Proposed)

CT-Lung-R13 66.35 65.42 66.64 65.87 67.35
CT-Lung-R4 67.30 67.02 67.60 66.81 68.32
MR-Neuro 64.46 65.16 63.74 63.99 65.43
MR-Breast 63.94 63.05 64.22 63.98 64.91
Average 65.51 65.16 65.55 65.16 66.50

CIPR, a publicly available dataset reported in Table 10 for MRI_head image sequences have
achieved approximately 5% improvement in PSNR for the proposed work when compared to
BANLC method, 1% improvement in PSNR for EECF, 1% improvement in PSNR for CNN- RIGED
and 2% improvement in PSNR for CNN-GAP CIPR dataset of BANLC, EECF, CNN-RIGED and
CNN-GAPreported in Table 10 for CT skull image sequences have achieved 5% improvement in PSNR
when compared to BANLC method, 2% improvement in PSNR for EECF method, 1% improvement in
PSNR for CNN-RIGED and 2% improvement in PSNR for CNN-GAP. From Figure 8§, it is observed
that the PSNR values of the proposed work for 16 bit depth images has achieved better results when
compared to the existing techniques. It is 4%, 2%, 1%, 1%, 1% and 1% better than Set Partitioning in
Hierarchical Trees (SPIHT) (Said, 1996), JPEG 2000[65], BANLC, EECF, CNN-RIGED and CNN-GAP
respectively.

Table 10. Comparison of PSNR values (8 bit images) for the proposed method with the existing
methods

DATASETS BANLC EECF CNN-RIGED CNN- GAP CNN-LMCDP (Proposed)

MRI_head 43.617 46.88  44.86 45.32 46.09
CT-skull 46.018 5044  52.00 50.56 52.06
Average 448175 48.66  48.43 47.94 49.075

From Figure 9, it is observed that the PSNR value of the proposed work for 8 bit depth images is
better when compared to the existing techniques. It is 5%, 5%, 5%, 1%, 1% and 2% better than SPIHT,
JPEG 2000, BANLC, EECF, CNN-RIGED and CNN-GAP respectively.

Various measures are taken into consideration to validate the proposed method results.CR is an
effective measure which is used for assessing compression efficiency. Figures 4.17 and 4.18 represent
the results obtained from various datasets for 16 bit and 8 bit images in terms of CR. Higher value of CR
represents better compression and that is attained in the proposed work.From Figure 8, it is revealed
that the proposed CNN-LMCDP method has achieved a maximum CR compared with other existing
works. For the 16 bit test samples such as CT-Lung R13, CT-Lung-R4, MR-Neuro and MR-Breast
images, the proposed CNN-LMCDP method has exhibited superior results with a higher average CR
of 10.22.

CT-Lung R13 image sequences have achieved 7% improvement in CR for the proposed work,
when compared to BANLC method, 2% improvement in CR for EECF method, 1% improvement in
CR for CNN- RIGED and 2% improvement in CR for CNN-GAP. CT-Lung R4 image sequences have
achieved 6% improvement in CR when compared to BANLC method, 3% improvement in CR for
EECF method, 1% improvement in CR for CNN-RIGED and 1% improvement in CR for CNN-GAP.

Cancer Imaging Archive [27] dataset for MR-Neuro image sequences have achieved 6%
improvement in CR when compared to BANLC method, 3% improvement in CR for EECF, 1%
improvement in CR for CNN- RIGED and 2% improvement in CR for CNN-GAP. For MR-Breast image
sequences, the dataset has achieved 9% improvement in CR when compared to BANLC method, 3%
improvement in CR for EECF method, 1% improvement in CR for CNN-RIGED and 1% improvement
in CR for CNN- GAP.
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For all the other methods, the test images have achieved an average CR of 3.05,7.14,9.74 and 9.17
for BANLC, EECF, CNN-RIGED and CNN-GAP respectively, which is very less when compared to the
proposed method.

Figure 9 for MRI_head and CT-skull image sequences have achieved a maximum average CR
of 15.75 bits which is an improvement of 9%, 5%, 1% and 3% for BANLC, EECF, CNN-RIGED and
CNN-GAP respectively.

In the same manner, Figure 9 for 16 bit dataset images such as MRI_head and CT-skull, the
proposed method excels with superior performance with an average CR of 10.22. There is an
improvement by 8%, 8%, 7%, 3%, 1% and 1% for SPTHT, JPEG 2000, BANLC, EECF, CNN-RIGED and
CNN-GAP respectively for the proposed method.

From Figure 10, it is observed that the proposed work for 8 bit depth images has achieved better
CR results when compared to the existing techniques. It is 10%, 11%, 9%, 5%, 2% and 3% better than
SPIHT, JPEG- 2000, BANLC, EECF, CNN-RIGED and CNN-GAP respectively.the proposed method is
compared with state of art compression techniques

1.5 || EBANLC
1.3 |
B EECF
11 4
BPP |
il 8 CNN-
0.7 Jl LMCDP(Proposed)
0.5 % O CNN-RIGED
MRI head ' ! B CNN-GAP
a CT-skull
8-bit Datasets

Figure 8. 1 BPP results (8 bit images) obtained bythe proposed method is compared with existing
compression techniques for MRI_head and CT-skull datasets

From Figure 11, it is observed that the proposed work for 8 bit depth images has achieved better
CR results when compared to the existing techniques. It is 10%, 11%, 9%, 5%, 1% and 3% better than
SPIHT, JPEG 2000, BANLC, EECF, CNN-RIGED and CNN-GAP respectively.
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Figure 9. 2 BPP results (16 bit images) obtained by the proposed method is compared with existing
compression techniques for MRI and CT Datasets

From Figure 12, it is observed that the proposed work for 16 bit depth images has achieved better
BPP results of 0.79 bits when compared to the existing techniques. BPP results achieved by existing
methods such as BANLC, EECF, CNN-RIGED and CNN-GAP are 2.67, 1.15, 0.83 and 0.89respectively.

In the same manner, Figure 13 for 16 bit test samples such as CT- Lung R13, CT-Lung-R4,
MR-Neuro and MR-Breast images, the proposed CNN-LMCDP method has exhibited BPP results with
a minimum average BPP of 0.7.

Figure 14 explains the result of the proposed method compared to the standard methods such as
SPIHT and JPEG 2000 and with the existing methods like BANLC, EECF, CNN-RIGED and CNN-GAP.
From the results, it is revealed that the BPP result for the proposed CNN-LMCDP method of 8- bit
image samples outperform other methods. The BPP result achieved by the proposed LMCDP technique
is 0.50 whereas the BPP results excels by the other methods such as SPIHT, JPEG 2000, BANLC, EECF,
CNN-RIGED and CNN-GAP with 1.43,1.81, 1.21, 0.77, 0.57 and 0.61 respectively.

From Figure 15, it is revealed that the proposed CNN-LMCDP method has achieved the maximum
average SSIM of 0.997 compared with other existing works for 16 bit test samples for different datasets
such as CT- Lung R13, CT-Lung-R4, MR-Neuro and MR-breast images. For all the other methods,
the test images have achieved an average SSIM of 0.984, 0.990, 0.996 and 0.990 for BANLC, EECF,
CNN-RIGED and CNN-GAP respectively.
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Figure 10. 5 Comparison of proposed method in terms of SSIM for 16 bit images over other compression

techniques
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Figure 11. Comparison of proposed method in terms of SSIM for 8 bit images over other compression
techniques

From Figure 13, it is obvious that for 8 bit dataset images such as MRI-head and CT-skull, the
proposed CNN-LMCDP method has exhibited best result with an average SSIM of 0.982. For all the
other methods, the test images have achieved an average SSIM of 0.970, 0.974, 0.968 and 0.966 for
BANLC, EECF, CNN-RIGED and CNN-GAP respectively

Table 11. Comparison of SC values for the proposed method over other existing compression techniques
for various datasets

DATASETS BANLC  EECF CNN- RIGED CNN- GAP CNN-LMCDP (Proposed)

CT-Lung-R13 0.9935 1.0067  0.98793 0.9744 1.0023
CT-Lung-R4 0.9895 0.9895  1.0043 0.98054 0.9998
MR-Neuro 0.9997 0.9977  0.9922 0.9893 1.0045
MR-breast 0.9933 0.9905  0.9605 0.9751 0.9832
MRI_head 0.9531 0.9653  0.9622 0.9608 0.9727

CT-skull 0.9503 0.961 0.9711 0.963 0.9766
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explains the SC value for the proposed work which is compared with the existing approaches
such as BANLC, EECE, CNN-RIGED and CNN-GAP for different datasets such as CT-Lung R13,
CT-Lung-R4, MR-Neuro, MR-Breast, MRI_ head and CT-skull images.

Table 12. Comparison of NAE values for the proposed method over other existing compression
techniques for various datasets

DATASETS BANLC  EECF CNN- RIGED CNN- GAP CNN- LMCDP (Proposed)
CT-Lung-R13 0.000617  0.000617  0.000617 0.000617 0.000617
CT-Lung-R4 0.000619  0.000619  0.000619 0.000619 0.000619
MR-Neuro 0.000941  0.000941  0.000937 0.000937 0.000937
MR-breast 0.000628  0.000627  0.000627 0.000627 0.000626
MRI_head 0.001050  0.001050  0.001042 0.001042 0.001049
CT-skull 0.001044  0.001040  0.001040 0.001040 0.001038

The SC value for the proposed scheme for different datasets such as CT-Lung R13, CT-Lung-R4,
MR-Neuro, MR-Breast and MRI_ head and CT- skull reported are 1.0023, 0.9998, 1.0045, 0.9832, 0.9727
and 0.97666 respectively. The SC value nearer to 1 indicates that the reconstructed image is of high
quality and it is achieved by all the datasets and it is also superior compared to other methods.explains
the NAE value for the proposed work and is compared with the existing approaches such as BANLC,
EECF, CNN-RIGED and CNN-GAP. The NAE value for the proposed scheme for different datasets
such as CT-Lung-R13, CT-Lung-R4, MR-Neuro, MR-Breast, MRI_head and CT-skull reported are
1.0023, 0.9998, 1.0045, 0.9832, 0.9727 and 0.97666 respectively.

Table 13. Comparison of NCC values for the proposed method over other existing compression
techniques for various datasets

DATASETS BANLC  EECF CNN- RIGED CNN-GAP CNN- LMCDP (Proposed)

CT-Lung-R13 0.98001 0.9889  0.9812 0.9799 0.9901
CT-Lung-R4 0.9722 0.9844  0.98762 0.9712 0.9922
MR-Neuro 0.9844 0.9965  0.9901 0.9799 0.9955
MR-breast 0.9744 0.9803  0.9688 0.9611 0.9813
MRI_head 0.9512 0.9533  0.9677 0.9711 0.9733
CT-skull 0.9512 09599  0.9612 0.9599 0.9798

illustrates the NCC value for the proposed work and is compared with the existing approaches
such as BANLC, EECF, CNN-RIGED and CNN-GAP for different datasets such as CT-Lung R13,
CT-Lung-R4,

MR-Neuro, MR-Breast, MRI_ head and CT-skull images. The NK value for the proposed scheme
for different datasets such as CT-Lung R13, CT-Lung- R4, MR-Neuro and MR-Breast reported are
1.0023, 0.9998, 1.0045, 0.9832,

Table 14. Comparison of LMSE values for the proposed method over other existing compression
techniques for various datasets

DATASETS BANLC EECF CNN- RIGED CNN- GAP CNN- LMCDP (Proposed)
CT-Lung-R13 0.001235  0.00124 0.00122 0.00121 0.00121

CT-Lung-R4 0.001216  0.00122 0.0012 0.0012 0.00121

MR-Neuro 0.001321  0.00132 0.00131 0.00131 0.00131

MR-breast 0.001224  0.00119 0.00118 0.00118 0.00115

MRI_head 0.001578  0.00152 0.00152 0.00153 0.00150

CT-skull 0.001512  0.001498  0.001465 0.001467 0.001436

The LMSE value for the proposed work is compared with the existing approaches such as
BANLC, EECEF, CNN-RIGED and CNN-GAP with different datasets such as CT-Lung R13, CT-Lung-R4,
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MR-Neuro, MR- Breast, MRI_ head and CT-skull images which are shown in Table 4.6. The LMSE
value for the proposed scheme for different datasets such as CT-Lung R13, CT-Lung-R4, MR-Neuro
and MR-Breast reported are 1.0023, 0.9998, 1.0045, 0.9832, 0.9727 and 0.97666, respectively. For most of
the data sets, the encoding time for RLE and AE is less when compared to the proposed work.

Table 15. Comparison of MSE values for the proposed method over other existing compression

techniques for various datasets

DATASETS BANLC  EECF CNN- RIGED CNN- GAP CNN- LMCDP (Proposed)
CT-Lung-R13 0.04605 0.04613  0.04601 0.04602 0.04501

CT-Lung-R4 0.04512 0.04527  0.0453 0.0453 0.04513

MR-Neuro 0.04645 0.04622  0.04548 0.04548 0.04548

MR-breast 0.04683 0.04624  0.04378 0.04376 0.04591

MRI_head 0.05619 0.05366  0.0552 0.05592 0.05356

CT-skull 0.05326 0.05144  0.50394 0.05322 0.5034

The MSE value for the proposed work is compared with the existing approaches such as BANLC,
EECF, CNN-RIGED and CNN-GAP with different datasets such as CT-Lung R13, CT-Lung-R4,
MR-Neuro, MR- Breast, MRI_ head and CT-skull images which are shown in Table 4.7.

Table 16. Comparison of PSNR values for the proposed method over other existing compression

techniques for various datasets

DATASETS BANLC EECF CNN- RIGED CNN- GAP CNN-LMCDP (Proposed)
CT-Lung-R13 66.35 65.42 66.64 65.87 67.35
CT-Lung-R4 67.30 67.02 67.60 66.81 68.32
MR-Neuro 64.46 65.16 63.74 63.99 65.43
MR-Breast 63.94 63.05 64.22 63.98 64.91
MRI_head 43.61 46.88  44.86 45.32 46.09
CT-skull 46.01 50.44 52.00 50.56 52.06

The MSE value for the proposed scheme for different datasets such as CT-Lung R13, CT-Lung-R4,
MR-Neuro and MR-Breast reported are 1.0023, 0.9998, 1.0045, 0.9832, 0.9727 and 0.97666, respectively.
The MSEvalue nearer to 1 indicates that the reconstructed image is of high quality and it is achieved by
all the datasets for the proposed work. reports the PSNR value for the proposed work in comparison
with the existing approaches such as BANLC, EECE, CNN- RIGED and CNN-GAP. The PSNR values of
the proposed scheme for different datasets such as CT-Lung R13, CT-Lung-R4, MR-Neuro, MR- Breast,
MRI_ head and CT-skull images reported are 67.35, 68.32, 65.43, 64.91, 46.09 and 52.06 respectively.
The PSNR value is improved by 1%,2%,1%, and 2% for CT-Lung R13 and improved by 1%, 1%,1%,
and 2% for CT-Lung R4 dataset.

Table 17. Comparison of CR values for the proposed method over other existing encoding techniques

of various datasets

DATASETS BANLC EECF CNN- RIGED CNN- GAP CNN- LMCDP (Proposed)
CT-Lung-R13 3.64 7.89 10.00 9.59 10.06

CT-Lung-R4 2.69 5.88 8.61 7.92 8.79

MR-Neuro 3.27 6.20 8.67 7.98 9.58

MR-breast 2.59 8.60 11.68 11.19 12.46

MRI_head 5.71 10.25 13.61 12.58 15.97

CT-skull 7.79 10.49 14.39 13.27 15.53

Similarly, the PSNR value is improved by 1%, 0.27%, 2% and 2% for MR-Neuro and is improved
by 1%, 1%, 0.69% and 2% for MR-Breas dataset. And also, the PSNR value is improved by 3%, 0.79%,
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2% and 1% for MR-head and improved by 6%, 2%, 0.06% and 2% for CT-skull dataset. The high
PSNR value indicates that the reconstructed image is of high quality and it is achieved for all the
datasets.discusses the CR value for the proposed work and is compared with the existing approaches
suchas BANLC, EECF, CNN-RIGED and CNN-GAP. The CR value of the proposed scheme is superior
for different datasets such as CT-Lung R13, CT-Lung-R4, MR-Neuro, MR- Breast, MRI_ head and
CT-skull and the results reported are 10.06, 8.79, 9.58, 12.46, 15.97 and 15.53 respectively.

Table 18. Comparison of BPP values for the proposed method over other existing compression
techniques for various datasets

DATASETS BANLC EECF CNN-RIGED CNN-GAP CNN-LMCDP (Proposed)

CT-Lung-R13 2.193 1.01 0.7999 0.83 0.795
CT-Lung-R4 2.967 1.36 0.929 1.01 0.91

MR-Neuro 2.445 1.29 0.923 1.0031 0.835
MR-breast 3.082 0.93 0.685 0.715 0.642
MRI_head 1.4 0.78 0.588 0.636 0.501
CT-skull 1.026 0.762 0.556 0.603 0.515

0 explains the BPP value for the proposed work in comparison with the existing approaches such
as BANLC, EECF, CNN- RIGED and CNN-GAP. The BPP value reported for the proposed scheme for
different datasets such as CT-Lung R13, CT-Lung-R4, MR-Neuro, MR- Breast, MRI_ head and CT-skull
are 0.795, 0.91, 0.835, 0.642, 0.501 and

4.3. COMPARATIVE ANALYSIS OF EXISTING WORKS OVER THE PROPOSED WORK

From Table 19, it is obvious that the CR (%) of the proposed work is better for MRI dataset
when evaluated with the previous techniques. This is because of the subsequent processing of deep
learning technique followed by CNN-LMCDP prediction and arithmetic encoding. During each stage
of processing, convergence has occurred which paves the way for efficient compression. The rest of
the works are weaker than the proposed method in terms of Compression Ratio.

Table 19. Comparison of proposed work with the existing approaches

Author Year Dataset CR (Compression Technique used
Used Ratio) in Bits
[6] 2018 CR=4.5 Enhanced Zero Tree Wavelet
[11] 2020 CR=3.70 Inter-slice correlation
MRI . )
switched predictor
[12] 2022 CR=2.94 Tetrolet transform
Proposed (CNN-LMCDP) - CR=15.9 CNN-LMCDP Predictor

To assess the proposed method in a thorough manner, CR of Table 20 is analyzed with existing
methods and the results are shown.The performance of the proposed work in terms of CR is high
because of the implementation of three stage compression process. Deep Learning based convolutional
neural network provides convergence on theimage thereby aids in better compression. Local Maximal
Contiguous Directional Predictor (LMCDP) employed in the second step removes the inter pixel
redundancies after convolving with neural network. Finally, the arithmetic encoding is applied which
considers the entire sequence as a single stream of bits for achieving efficient storage.


https://doi.org/10.20944/preprints202308.0364.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 August 2023 doi:10.20944/preprints202308.0364.v1

18 of 19

Table 20. Comparison of CR for the proposed work with the existing methods for CIPR dataset [26]

TECHNIQUES USED CR PSNR BPP SS (%)

BP Coder [13] 421 36.3 1.9 76.247031
SPIHT+AC [14] 1142  38.1 0.7 91.243433
DPCM [15] 5.71 38.3 14 82.486865
JPEG-LS+WAT [16] 347 38.5 23 71.181556
EC [17] 26.66  38.8 0.3 96.249062
SPIHT [18] 6.66 40.1 1.2 84.984985
Spatial Prediction [19] 421 47.3 1.9 76.247031
RIGED [20] 6.15 51.3 1.3 83.739837

Proposed(CNN-LMCDP) 15.75  52.06 0.515 93.650794

5. Conclusion

This research work proposes a novel CNN-LMCDP using a near lossless medical image
compression. The proposed work is tested with 8 bitand 16 bit medical images. The prediction efficiency
is compared with various datasets such as CT-Lung R13, CT-Lung R4, MR-Neuro, MR-Breast, MRI_ head
and CT-skull images. The compression performance of the proposed CNN-LMCDP technique is compared
with the existing approaches such as BANLC, EECF, CNN-RIGED and CNN-GAP. The proposed method
achieves superior results for compression ratio with high reconstruction quality.
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