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Abstract: There has been growing interest in using permanent magnet synchronous motors (PMSMs)
for pumping applications to improve energy efficiency. One promising approach for powering
these motors in variable speed applications is using modular multilevel cascaded converters based
on a Triple-Star Bridge Cell (M3C) due to their inherent fault tolerance capability. However, M3C
converters require a more complex control system than simpler converters. For instance, A basic
M3C control system for power transmission requires seventeen (17) PI controllers, whose adjustment
depends on the M3C’s dynamical model parameters’ value knowledge needing extensive and
time-consuming testing to obtain them. To solve this control system issue, we propose an adaptive
M3C control system for variable speed drives powering multiple PMSM-driven centrifugal pumps
that reduces the number of controllers to six (6). Furthermore, the proposal does not require
knowledge of the converter, motor, or load parameters, making it more practical and versatile.
The proposal introduces an ad-hoc hybrid passivity-based model reference adaptive controller in
cascade with a passivity-based control. It has been validated through theoretical stability proof and
comparative simulation results with a basic control system under normal and fault operations. As
a result, the proposal effectively follows the required rotor speed while enhancing performance by
decreasing the current consumption and recovering from a 10% input phase imbalance, a cell short
circuit, and an open cell.

Keywords: M3C control; adaptive control; PMSM; model reference adaptive control; adaptive
passivity-based control

1. Introduction

In recent years, a growing emphasis has been on utilizing permanent magnet synchronous motors
(PMSM) to enhance energy efficiency in pumping applications [1]. Compared to traditional induction
motors (IM), PMSM motors have demonstrated superior efficiency, as evidenced by [1, Figure 3]. The
work [2] proposes customizing PMSM design for this application, while [3,4] study a variable speed
PMSM for water pumps powered by AC-AC converter fed by photovoltaic panels. The works [3,4]
use a two-level voltage source inverter controlled by model reference adaptive control (MRAC).

However, the work [5] proposes several fault-tolerant multilevel converters. In this sense, the use
of modular multilevel cascaded converter (MMCC) obtained popularity due to its many benefits, such
as redundancy, high efficiency, robustness, lower output voltage TDH, and low maintenance [6–8].
Among these converters, the triple-star bridge cells (M3C) topology is particularly noteworthy. M3C
employs smaller floating capacitors [6,9].

What sets M3C apart is its inherent fault tolerance characteristics, allowing it to continue
proper operations even after having a power supply phase imbalance or a power cell failure [6,9]. It
ensures energy balancing with low impact on the output currents [9]. Furthermore, it reduces current
harmonics, enhances power factor and efficiency, [6,8,10], eliminates voltage fluctuations and ensures
optimal operation at low output frequencies [11,12]. There are even several studies that propose fault
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detection and control under fault of M3C [13–15]. This manuscript focuses on controlling fault-tolerant
M3C-based variable speed drive for PMSM-driven centrifugal pumps.

Figure 1 shows a commonly used M3C. It has modularity, the ability to reach high-voltage levels,
power quality, bidirectional power conversion, and redundancy [16,17]. It has nine clusters (three
per phase) that link the input phases (a, b, c) with the output phases (r, s, t), each consisting of three
cells. Additionally, each cell has a full-bridge monophasic inverter. It has been widely utilized [18];
examples are to inject wind energy into an electrical network [17,19], and feed general loads [20].

𝐿𝒊𝒂𝒓𝑣𝑎𝑟
𝐿𝒊𝒃𝒓𝑣𝑏𝑟
𝐿𝒊𝒄𝒓𝑣𝑐𝑟
𝐿𝒊𝒂𝒔𝑣𝑎𝑠
𝐿𝒊𝒃𝒔𝑣𝑏𝑠
𝐿𝒊𝒄𝒔𝑣𝑐𝑠

𝒊𝒂𝒕𝑣𝑎𝑡
𝒊𝒃𝒕𝑣𝑏𝑡
𝒊𝒄𝒕𝑣𝑐𝑡

𝑴𝟑𝑪

𝑃ℎ𝑎𝑠𝑒 𝑎𝑃ℎ𝑎𝑠𝑒 𝑏𝑃ℎ𝑎𝑠𝑒 𝑐 𝑃ℎ𝑎𝑠𝑒 𝑟𝑃ℎ𝑎𝑠𝑒 𝑠𝑃ℎ𝑎𝑠𝑒 𝑡
𝐶𝑙𝑢𝑠𝑡𝑒𝑟 𝑖𝑗

𝐶𝑒𝑙𝑙𝑷𝒖𝒍𝒔𝒆𝒔𝑽𝑪𝒊𝒋𝒌

𝑺𝒚𝒎𝒃𝒐𝒍𝒐𝒈𝒚𝒊𝒊𝒋 measured cluster current𝒗𝑪𝒊𝒋𝒌 measured capacitor voltage𝑷𝒖𝒍𝒔𝒆𝒔 of cluster voltage𝒗𝒊𝒋 cluster voltage

where 𝑖 = 𝑎, 𝑏, 𝑐 (input phase)𝑗 = 𝑟, 𝑠, 𝑡 (output phase)𝑘 = 1, 2, 3 (Cluster Cell)𝐿 coupling inductor

𝑷𝒐𝒘𝒆𝒓𝑺𝒖𝒑𝒑𝒍𝒚 𝑳𝒐𝒂𝒅
𝐿
𝐿
𝐿

Figure 1. Basic power topology of an M3C for transferring energy between the power supply and the
load, which is based on [6,9,19,21,22].

However, while having these fault-tolerant capabilities, controlling M3C is complex compared to
simpler converters. Figure 2 describes how the control system of an M3C involves:

• Complex managing feedback signals that rearrange nine-dimensional measurement vectors iij,
VCij, into matrixes form to work with variables at the intricate coordinate system called 2αβγ,
and later rearrange them back to their vector form to allow the control [9,22,23].

• Controlling the average capacitor voltage (ACV) VCavg in cascade with the input currents
amplitude Iin control, through the required input voltage v∗in−cl .

• Keeping zero imbalance of the cluster capacitor voltage (CCV) in cascade with the circulating
current icir control via the needed cluster voltage v∗cl . It considers reducing to zero the Inter-CCV
imbalances (CCV imbalance among clusters of different Sub-Converters) and the Intra-CCV
imbalances (CCV imbalance among clusters inside the same Sub-Converters).

• Controlling a required output variable by adjusting the output voltage v∗out−cl amplitude and
frequency.

The control diagram of Figure 2 uses Park transform P [24], αβγ transform C [22], doble αβγ

transform CXCT of different matrix variables X [22], and the combined components transformation
matrix CD [25]. Furthermore, the local cell balancing (LCB) and modulation block may use a
phase-shifted (PS) pulse-wide modulation (PWM) technique [12,26], a space vector modulation (SVM)
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[27] or Predictive Control [11,21]. This manuscript controls an M3C with the most extensively used
PS-PWM [6].

Regarding the controllers, the works [17,21,25,28,29] consider M3C has several single-input and
single-output (SISO) subsystems and use Proportional Integer (PI) controllers for all variables except
for the circulating current. Most reported control strategies for the circulating current regulation are
based on a simple P controller [17,25,28]. However, some authors use a P-resonant (PR) controller
[21,29] as described in [6]. As a result, there are thirteen (13) PI controllers and four (4) PR or P
controllers. One (1) PI regulates the ACV direct component in cascade with two (2) PIs for the input
current amplitude direct and quadrature components. Eight (8) PIs aim to reduce the CCV imbalance
in cascade with four (4) PR or P circulating current controllers. Finally, two (2) PIs regulate the load
output current amplitude direct and quadrature components for energy transfer applications between
the power supply and the load [6].

Output Control

𝑉𝐶𝑎𝑣𝑔
Control

𝐼𝐿𝑖𝑛−𝑐𝑙∗𝑉𝐶𝑎𝑣𝑔∗
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Figure 2. Basic control system of an M3C for transferring energy between the power supply and the
load, which is based on [6,17,22,29].

The M3C has also been powering electrical motors with an output control strategy that differs
from the one shown in Figure 2 and uses a speed control loop. The works [12,22,30] power IMs with an
M3C, while [26] drives PMSMs. However, [12,22,26,30] do not describe the used output control strategy.
In contrast, [31, Figure 3 (a)] clearly identifies a field-oriented control (FOC) strategy for an MMCC
converter feeding IMs. Moreover, it presents multiple-input and multiple-output (MIMO) controllers,
significantly reducing the number of controllers. All control systems proposed in [12,22,26,30,31]
require knowledge of the plant parameters for their adjustment, which is typically obtained through
extensive and time-consuming testing.

To overcome this issue and as the main contribution, this manuscript proposes a MIMO adaptive
control of an M3C-based variable speed drive. It operates multiple PMSM-driven centrifugal pumps
using a scalar control scheme (V/ f ) [32] for the output control, as FOC is unnecessary in pumping
applications. Our proposal involves the following novelties:
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1. Obtaining the multivariable M3C state-space model for control. It is a MIMO dynamical system
with a currents inner loop, a voltages outer loop, and an inner-outer interface. Appendix A of
this manuscript details the model obtaining, which complements, describes, rearranges, and
summarizes elements taken from [6,22,23,33]. In contrast to [6,22,23,33], herein we give details
for control implementation, such as the matrix and vector operations (please see, for instance, the
Managing feedback signals details given in Figure 2), and identify the state-space model form
with inner and outer loops.

2. Using MIMO adaptive controllers instead of non-adaptive SISO controllers [17,21,25,28,29,31].

We show it is a viable and more straightforward solution. The proposal gains the benefits
discussed in [31] of reducing the number of controllers by using a MIMO approach for an MMCC
but herein for the M3C. In contrast to the works [17,21,25,28,29,31], tuning adaptive controllers
does not require plant parameters knowledge, decreasing the commissioning time. Moreover,
they adapt to plant changes without compromising their effectiveness.

3. Proposing a passivity-based hybrid MRAC called PBMRAC. In contrast to [3,4,34], it uses the
MRAC as a low-pass filter for the noisy reference input signals. Moreover, PBMRAC introduces to
MRAC a term of an adaptive passivity-based controller (APBC) [35] to attend to the closed-loop
system response time. M3C control particularly needs it after having inner reference input noise
periods more than sixty times distant from the M3C inner time constant.

4. Presenting APBC in cascade with PBMRAC. It expands the Cascade MRAC [36] and the cascade
APBC [37]. The first uses an outer SISO controller, whereas the M3C outer loop requires a MIMO
controller. Moreover, as Figure 2 shows, the M3C has zero or constant outer references eliminating
the need for the outer reference model; therefore, an outer APBC [37] ensures a faster outer loop’s
time response.

The following manuscript sections describe the control preliminaries in Section 2. Section 3 details
the proposed adaptive control algorithm. Section 4 exhibits the experimental setup and obtained
results illustrating the proposal’s effectiveness. Finally, the Authors present concluding remarks in
Section 5.

2. Preliminaries

This section commences by introducing the M3C state-space dynamical model. Subsequently, it
presents the conventional PI tuning methods. Finally, it gives the requisite background information of
the cascade MRAC to be extended with the proposal.

2.1. M3C State-Space Model

The M3C state-space model obtaining is detailed in Appendix A, resulting in the equations (A7)
and (A13). The following dynamical equations describe it:

2αβγ Currents Inner Loop

˙ILin−cl(t) = −
√

3
L Vin−cl(t) + ∆in−cl(t), Input current amplitude

˙icir−cl(t) = − 1
L vcl(t), Circulating alternating current

˙Iout−cl(t) = − 1
L Vout−cl(t) + ∆out−cl(t), Output current amplitude

(1)

2αβγ Inner-Outer Interface

ILin−cl(t) = [ILin−cl_d(t) 0]T ,

icir−cl(t) = C−1
D

{

T−1
r

[

P(−θin)
−1

P(θin)
−1

]

Icir1(t) +

[

P(−θout)−1

P(θin)
−1

]

Icir2(t)

}

,
(2)
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2αβγ Voltages Outer Loop

V̇Cavg(t) =
Vavg(t)

3Cǫ(t)V∗
C

ILin−cl_d(t) + ∆avg(t), ACV amplitude

V̇Cintra(t) =
Vintra(t)

T
√

6Cǫ(t)V∗
C

Tr Icir1(t) + ∆intraCD
(t), Intra-CCV imbalance amplitude

V̇Cinter(t) =
Vinter(t)

T(t)√
3Cǫ(t)V∗

C

Icir2(t) + ∆inter(t), Inter-CCV imbalance amplitude

(3)

where in the inner loop, the output variables to control are the amplitudes of the input and output
cluster currents Iin−cl ∈ ℜ2×1 and Iout−cl ∈ ℜ2×1, and the instantaneous circulating current icir−cl ∈
ℜ4×1. Here, the input variables are the amplitudes of the input and output voltages Vin−cl ∈ ℜ2×1

and Vout−cl ∈ ℜ2×1, and the instantaneous cluster voltage vcl ∈ ℜ4×1. The parameter is the coupling
inductors inductance L. Finally, the time-varying and bounded disturbance terms for the input are

∆in−cl(t) = 3
L ǫin(t)Vin_rated ∈ ℜ2×1 and ∆out−cl(t) = −

√
3

L ǫout(t)Vout_rated ∈ ℜ2×1 for the output
currents, where ǫin(t) and ǫout(t) are rated voltages fluctuations.

For the outer loop, the output variables are the ACV VCavg ∈ ℜ, the intra-CCV imbalance
VCintra ∈ ℜ4×1, and the inter-CCV imbalance VCinter ∈ ℜ4×1. The input variables are the amplitudes
of the cluster input direct component Iin−cl_d ∈ ℜ, and the circulating currents Icir1 ∈ ℜ4×1 and
Icir2 ∈ ℜ4×1. There are also time-varying bounded disturbance terms ∆avg(t) ∈ ℜ, ∆intraCD

(t) ∈ ℜ4×1,

and ∆inter(t) ∈ ℜ4×1. Finally, the fixed parameters are the cells capacitor capacitance C and required
capacitor voltage V∗

C ∈ ℜ; while the time-varying parameters are the cluster voltages amplitudes
Vintra(t) ∈ ℜ4×1, Vinter(t) ∈ ℜ4×1, Vavg(t) ∈ ℜ, and the capacitor voltage fluctuations ǫ(t).

The inner-outer interface links the direct component of the line input cluster current ILin−cl_d with
the input cluster current Iin−cl . Moreover, it relates the circulating current amplitudes Icir1 and Icir2

with the instantaneous circulating current icir−cl , after using the auxiliary transformation matrix CD

[25] and the Park transformation matrix P [24] with the corresponding input θin and output θout angles
dependence. Please see Appendix A and Figure 2 for details.

Regarding the operating points in this 2αβγ coordinate, the outer loops consider an ACV setpoint
of V∗

Cavg = 3V∗
C [22, Definition given bellow Equation (26)], working at zero intra-CCV Imbalance

V∗
CintraCD

= 0 and zero inter-CCV Imbalance V∗
Cinter = 0 [18]. Moreover, the output current reference

would be I∗out−cl =
sqrt(3)

3 Iout for applications of energy transference between the power supply and
the load [6, Equation (24)].

The following section describes the PI controllers design for the M3C converter.

2.2. Basic Control Based PI Controllers

PI controllers design starts by assuming that plant parameters are constant, thus ǫin(t) = ǫout(t) =

ǫ(t) = 1. Later, the method splits every equation (1) to (3) in scalar subsystems having each one the
general form ẏ(t) = b · u(t) + δ(t). Here, y(t) ∈ ℜ is the output variable, u(t) ∈ ℜ is the input, b

represents the fixed subsystems parameter, and δ(t) is the disturbance.
Then, Laplace transform is applied obtaining Y(S) = ( b

S )(U(S) + b−1∆(S), not including the
circulating current working in alternating current. Here, the corresponding open-loop transfer function
is FTLA(S) =

b
S , after neglecting the disturbance term, i.e., ∆(S) = 0.

After considering the PI transfer function (Kp +
Ki
S ) acting in series with the FTLA, the feed

forward transfer function is G(S) = (Kp +
Ki
S )( b

S ). Later, considering the feedback transfer function
H(S), you may obtain the following closed-loop transfer function as [38]:

FTLC =
G(S)

1 + G(S)H(S)
=

Kpb · S + Kib

S2 + Kpb · S + Ki · b
=

2ξωnS + ω2
n

S2 + 2ξωnS + ω2
n

, (4)

where ξ is the damping coefficient, and ωn is the natural frequencies in rad/s.
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The feedback sensor transfer function H(S) is often considered a unitary gain. Moreover, we can
identify in (4) the equivalence terms 2ξωn = Kpb and ω2

n = Kib, between the general second-order
equation of the right side and the obtained result of the center side. It allows adjusting the PI controllers
as follows:

Kp =
2ξωn

b
, Ki =

ω2
n

b
. (5)

To tune all PI controllers based on (5), ξ =
√

2
2 is usually considered [38, Section (5-3)]. However,

there are different values of b, ωn, and PI quantities for the distinct controlled variables, as Table 1
shows. Two (2) identical PI regulates the input and output current amplitude components d and q

with b = −
√

3
L , as described in (1) and (A7). One (1) PI controls the ACV with b =

Vavg

3CV∗
C

as can be

seen in (3) and (A14). Four (4) PIs control the intra-CCV imbalance, where Vintra = Vinα

[

1 1 1 1
]T

from (A14); thus, all components of the vector Vintra of are equal Vinα
, having the same b =

VT
intra√
6CV∗

C

.

Finally, also four (4) PI controls the inter-CCV imbalance. However, these have different values of b as

described in Table 1, due to Vinter =
[

−Voutα Voutα Vinα
Vinα

]T
from (A14).

Table 1. Values of b and ωn for each controller.

Controller b ωn PI Quantity

Input Current
Amplitude Control dq

−
√

3
L 2π( fin) 2

ACV Control d
Vavg

3CV∗
C

2π (1 Hz) 1

Intra-CCV Imbalance
Control

Vinα√
6CV∗

C

2π (5 Hz) 4

Inter-CCV Imbalance
Control αγ

− Voutα√
3CV∗

C

2π (5 Hz) 1

Inter-CCV Imbalance
Control βγ

Voutα√
3CV∗

C

2π (5 Hz) 1

Inter-CCV Imbalance
Control γαβ

Vinα√
3CV∗

C

2π (5 Hz) 2

The alternating circulating current controller often considers four (4) P controllers adjusted as in
(5) but a ki = 0 [23], and our case b = − 1

L and ωn = 2π(10 fout).
Finally, for applications of energy transference between the power supply and the load [6,17,22,

29], the output current amplitude control dq would have two PI controllers adjusted as in (5) and
considering b = − 1

L and ωn = 2π( fout).

Remark 1. It is imperative to know the plant parameters value to adjust the PI controllers, as can be seen

in equation (5) and Table 1. This knowledge is usually obtained through extensive testing, which can be

time-consuming. It’s also crucial for the controllers to handle plant changes without compromising their

effectiveness.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 August 2023                   doi:10.20944/preprints202308.0302.v1

https://doi.org/10.20944/preprints202308.0302.v1


7 of 30

Finally, the output controller must be adjusted as we study pumping applications. Thus, the
following P controller called scalar control scheme (V/ f ) is commonly used for a two-level voltage
source inverter feeding PMSD-driven centrifugal pumps [32, Equation (1)]:

V∗
out−cl_d =







0 for 0 < ωr < ωr_min

P1ω∗
r +

√
2Vboost, with P1 =

√
2( Vs_rated

ωr_rated
− Vboost

ωr_c
) for ωr_min < ωr < ωr_c.

P2ω∗
r , with P2 =

√
2 Vs_rated

ωr_rated
for ωr_c < ωr < ωr_rated

(6)

Here, Vs_rated is the rated phase voltage from the motor data plate. ωr_rated is the motor-rated rotor
speed in rad/s. The Vboost is a controller bias or offset (with a value up to 50% of Vs_rated allowing the
PMSM to deliver a certain amount of starting torque. The Vboost operates from minimum frequency
ωr_min (with a value up to 6% of ωr_rated to the cut-frequency ωr_c (with a value up to 50% of ωr_rated)
[32].

Remark 2. In order to attain the desired rotor angular frequency ω∗
r with a ramp-up, a two-level voltage source

inverter necessitates a phase stator voltage amplitude of V∗
out−cl = [V∗

out−cl_d 0]T . However, the output voltage

required for the M3C is in double αβγ coordinates, utilizing a Power invariant transformation in lieu of Clarke’s

transformation that preserves the amplitude [39]. This paper proposes utilizing equation (6) [32, Equation (1)]

in conjunction with the subsequent equation:

V∗
out−cl =

√
3[V∗

out−cl_d 0]T (7)

The following section will give an overview of an adaptive controller that can maintain optimal
performance while adapting to plant changes without requiring knowledge of plant parameters.

2.3. Cascade Adaptive Control Background

M3C modeled as (1) to (3) needs a cascade control system and the following cascade MRAC [36,
Equations (14) - (22)] ensures the outputs yo and yi tracks the references y∗o and y∗i :

ẏro(t) = −aroyro(t) + broy∗o (t), Outer reference model
uo(t) = −θo(t)Tωo(t), Outer adaptive control law

ωo(t) =
[

yo(t) f2(u; I, yi) y∗o (t)
]T

, MRAC outer information vector

θ̇o(t)T = −(sign(bo)eo(t)ωo(t)T + σoθo(t)T)Γo, Outer adaptive law for MRAC

θ∗o (t)
T =

[

b−1
o (t)aro b−1

o (t)ao −b−1
o (t)bro

]

, Ideal outer MRAC parameter

(8)

y∗i (t) = f1(uo(t)), Inner-outer loop interface (9)

ẏri(t) = −Ariyri(t) + Briy
∗
i (t), Inner reference model

ui(t) = −θi(t)
Tωi(t), Inner adaptive control law

ωi(t) =
[

yi(t)
T 1T

m y∗i (t)
T
]T

, MRAC inner information vector

θ̇i(t)
T = −(sign(Bi)ei(t)ωi(t)

T + σiθi(t)
T)Γi, Inner adaptive law for MRAC

θ∗i (t)
T =

[

B−1
i Ari B−1

i Ai(t) −B−1
i Bri

]

. Ideal inner MRAC parameter

(10)

Here, the outer tracking error is eo(t) = yro(t) − yo(t) ∈ ℜ and the inner tracking error is
ei(t) = yri(t)− yi(t) ∈ ℜm. The variables yro(t) ∈ ℜ, yri(t) ∈ ℜm are the outer and inner reference
model outputs. The set point are y∗o (t) ∈ ℜ and y∗i (t) ∈ ℜm. The reference model parameters are
aro, bro ∈ ℜ and Ari, Bri ∈ ℜ(m×m−Diagonal) made equal (aro = bro and Ari = Bri) for an exact set point
tracking without scaling. The adaptive external and internal controllers uo(t) ∈ ℜ and ui(t) ∈ ℜm

depends on their adaptive parameters θo(t) ∈ ℜ3 and θi(t) ∈ ℜ(m×3m) and their corresponding
information vectors ωo(t) ∈ ℜ3 and ωi(t) ∈ ℜ3m. The ideal adaptive parameters are θ∗o (t) ∈ ℜ3 and
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θ∗i (t) ∈ ℜ(m×3m). The term 1m ∈ ℜm refers to a vector with all its components equal to one. Besides the
model reference parameters, the cascade MRAC has the following tuning parameters: adaptive law
fixed-gains Γo ∈ ℜ(3×3−Diagonal) and Γi ∈ ℜ(3m×3m−Diagonal), and adaptive law modification factors
σo ∈ ℜ and σi ∈ ℜ(3m×3m−Diagonal).

Cascade MRAC (8)-(10) applies to time-varying cascade systems of the following form [36,
Equations (11)-(13)]:

ẏi(t) = Ai(t) + Bi(t) · ui(t), Inner loop
yi(t) = f1(uo(t)), Inner-outer interface
ẏ0(t) = ao(t) f2(u; I, yi) + bo(t) · uo(t), Outer loop

(11)

where yo(t) ∈ ℜ and yi(t) ∈ ℜm are the outer and inner output variables, respectively. The inputs
are uo(t) ∈ ℜ for the outer loop and ui(t) ∈ ℜm for the inner loop. Moreover, ao(t), bo(t) ∈ ℜ
and Ai(t), Bi(t) ∈ ℜm×m are time-varying plant parameters, where Bi(t) = |Bi(t)|Sign(Bi(t)) and
b0(t) = |b0(t)|Sign(b0(t)) with |Bi(t)| and |b0(t)| the modulus of each element of Bi(t) and b0(t).

Remark 3. It is important to note that the cascade MRAC (8)-(10) uses an outer SISO controller, whereas the

M3C outer loop (3) requires a MIMO controller. Additionally, Figure 2 shows that M3C has zero or constant

outer references, eliminating the need for the outer reference model of (8), which would slow down the outer loop’s

time response. Finally, the inner control loop receives noisy reference input signals with certain switching noise

periods. Although the inner reference model of (10) could filter these signals, it would disregard the required

inner loop response time, failing to ensure both needs.

These issues are solved by the controller proposed in the following section.

3. Proposal

This section proposes an adaptive controller for the following system that encompasses the M3C
state-space model (1)-(3):

ẏi(t) = Bi(t)ui(t) + ∆i(t), Inner loop
yi(t) = f1(uo(t)), Inner-outer interface
ẏ0(t) = Bo(t)uo(t) + ∆o(t), Outer loop

(12)

where yo(t) ∈ ℜn and yi(t) ∈ ℜm are the outer and inner output variables, respectively. The
outer control input is uo(t) ∈ ℜn and the inner is ui(t) ∈ ℜm. Moreover, Bo(t) ∈ ℜn×n and
Bi(t) ∈ ℜm×m are time-varying and unknown plant parameters, where Bi(t) = |Bi(t)|Sign(Bi(t)) and
B0(t) = |B0(t)|Sign(B0(t)). Here, the matrix |Bi(t)| and |B0(t)| are compose by the modulus of each
element of Bi(t) and B0(t) and are unknown. Furthermore, the matrix Sign(Bi(t)) and Sign(B0(t)) are
compose by the sign of each element of Bi(t) and B0(t) and are known. The known interface nonlinear
function is f1 ∈ ℜm×n. Finally, ∆i(t) and ∆o(t) are the inner and outer bounded and unknown
disturbances, respectively.

The following Theorem describes the proposal:

Theorem 1. For systems of the form (12), the following adaptive controller ensures the outputs yo and yi tends

to the constant references y∗o and y∗i , respectively:

uo(t) = −θo(t)Tωo(t), Outer control law

ωo(t) =
[

∆T
o_b u

p
o (t)

T
]T

, with u
p
o (t) = Ko∇Veo (t), APBC outer information vector

θ̇o(t)T = −(sign(bo)∇Veo (t)ωo(t)T + σoθo(t)T)Γo, APBC outer adaptive law

θ∗o (t)
T =

[

B−1
o (t) B−1

o (t)
]

, Ideal outer APBC parameter

(13)
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y∗i (t) = f1(uo(t)), Inner-outer loop interface (14)

ẏri(t) = −Ariyri(t) + Briy
∗
i (t), Inner reference model

ui(t) = −θi(t)
Tωi(t), Inner control law based

ωi(t) =
[

yi(t)
T y∗i (t)

T ∆T
i_b u

p
i (t)

T
]T

, PBMRAC inner inform. vector

with u
p
i (t) = Ki∇Vei

(t),
θ̇i(t)

T = −(sign(Bi)∇Vei
(t)ωi(t)

T + σiθi(t)
T)Γi, PBMRAC inner adaptive law

θ∗i (t)
T =

[

B−1
i Ari −B−1

i Bri B−1
i

]

. Ideal inner PBMRAC parameter

(15)

Here, the outer tracking error is eo(t) = yro(t)− yo(t) ∈ ℜn and the inner tracking error is ei(t) =

yri(t)− yi(t) ∈ ℜm. The variables yro(t) ∈ ℜn and yri(t) ∈ ℜm are the outer and inner reference model

outputs, respectively. The set points are y∗o (t) ∈ ℜn and y∗i (t) ∈ ℜm. The inner and outer controllers

uo(t) ∈ ℜn and ui(t) ∈ ℜm depends on their adaptive parameters θo(t) ∈ ℜn×2n and θi(t) ∈ ℜ(m×3m)

and their corresponding information vectors ωo(t) ∈ ℜ2n and ωi(t) ∈ ℜ3m. The unknown ideal adaptive

parameters are defined as θ∗o (t) ∈ ℜn×2n and θ∗i (t) ∈ ℜ(m×3m). Moreover, Veo (t) and Vei
(t) are Lyapunov-type

energy terms.

Following, the adaptive controller tuning parameters settings are described. The outer APBC loop tunes

the outer PB gain as Ko =
5δ1o
T∗

s
In ∈ ℜ(n×n−Diagonal), where 5T∗

s is the process required stabilization time [32].

The adaptive law modification term is σo = δ2o In ∈ ℜ(n×n−Diagonal), depending on the identity matrix In of

order n. The adaptive law fixed-gain is Γo ∈ ℜ(2n×2n−Diagonal). Moreover, the fine-tuning scalar factors are

0 < αo1l , αo2l < 10 and 0 < δ1o, δ2o < 10, with l = 1, 2, 3, ..., n [36, Theorem 1]. Finally, APBC adjusts the

adaptive law fixed-gain [32, Equation (11)] as follows:

Γo = Diag

[
αo11∆o1_b

1+∆2
o1_b

. . . αo1n∆on_b

1+∆2
on_b

αo21u
p
o1_b

1+u
p

o1_b2
. . .

αo2nu
p
on_b

1+u
p

on_b2

]

. (16)

The inner PBMRAC loop adjusts the model reference parameter as Ari =
fnoiseδ1i

20 In ∈ ℜ(n×n−Diagonal).

The PB gain Ki is computed as (Ari + Ki) = 15Ko (over fifteen times faster than the outer loop), and the

adaptive law modification terms σi = δ2i Im ∈ ℜ(m×m−Diagonal). Here, 0 < δ1i, δ2i < 10 are fine-tuning scalar

adjusting factors, toguether with 0 < αi1l , αi2l , αi3l , αi4l < 10 where l = 1, 2, 3, ..., n. Finally, the adaptive law

fixed-gain Γi ∈ ℜ(2m×2m−Diagonal) is adjusted via the following equation [36, Theorem 1]:

Γi = Diag

[

αi11yi1_b

1+yi1_b
2 . . . αi1nyin_b

1+yin_b
2

αi21y∗i1_b

1+y∗i1_b
2 . . .

αi2ny∗in_b

1+y∗in_b
2

αi31∆i1_b

1+∆2
i1_b

. . . αi3n∆in_b

1+∆2
in_b

αi41u
p
i1_b

1+u
p

i1_b2
. . .

αi4nu
p
in_b

1+u
p

in_b2

]

.
(17)

Following is the Theorem Proof.

Proof of Theorem 1. As a result of applying the adaptive controllers (13) and (15) to the corresponding
dynamical equation of (11), we obtain the closed-loop dynamical error equations whose require
verification of their stability.

In detail, the term u
p
o (t) is added and subtracted to the right side of the outer loop equation of (11).

The outer control law of (13) is then applied, the outer tracking error definition eo(t) = y∗o (t)− yi(t)

considered, and the terms regrouped conveniently. In regards to the inner loop, we subtract the
inner reference model of (15) from the inner loop equation of (11). Later, we add and subtract the
term Ariyi(t) to the right side and consider the inner tracking error definition ei(t) = yri(t)− yi(t).
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Moreover, we apply the inner control law of (15) and regroup terms. As a result, the following control
error dynamical equations is obtained:

ėo(t) = u
p
o (t)− Bo(t)φo(t)Tωo(t),

ėi(t) = −Ariei(t) + u
p
i (t)− Bi(t)φi(t)

Tωi(t),
(18)

where φo(t)T = θo(t)T − θ∗o (t)
T and φi(t)

T = θi(t)
T − θ∗i (t)

T are the adaptive parameters errors.
Obtaining now the first-time derivative of φo(t)T and φi(t)

T , considering the definitions given in
Theorem 1 for θo(t)T , θ∗o (t)

T , θi(t)
T , and θ∗i (t)

T , these errors dynamical equations give:

φ̇o(t)T = −(sign(Bo)∇Veo (t)ωo(t)T + σoθo(t)T)Γo − θ̇∗o (t)
T ,

φ̇i(t)
T = −(sign(Bi)∇Vei

(t)ωi(t)
T + σiθi(t)

T)Γi − θ̇∗i (t)
T .

(19)

These closed-loop dynamical error equations (18) and (19) have the following associated Lyapunov
function:

V(ei, e0, φi, φo) = Vei
+ Ve0 + Trace( 1

2 |Bi|φT
i Γ−1

i φi) +
1
2 |bo|φT

o Γ−1
o φo. (20)

Taking the first-time derivative of (20), considering the derivative property of the product in the trace,
and replacing the control errors dynamical equations (18), we obtain:

V̇(ei, e0, φi, φo) = −∇VT
ei

Ariei −∇VT
ei

u
p
i +∇VT

ei
Biφ

T
i ωi −∇VT

eo
u

p
o +∇VT

eo
BoφT

o ωo

+Trace(|Bi|φ̇T
i Γ−1

i φi) + |Bo|φ̇T
o Γ−1

o φo.
(21)

Moreover, using the vector property aTb = Trace(abT), we can rewrite the following
term (∇VT

eo
Bo)(φT

o ωo) = Trace((BT
o ∇Veo )(ω

T
o φo)). Moreover, we can also re express the term

(∇VT
ei

Bi)(φ
T
i ωi) = Trace((BT

i ∇Vei
)(ωT

i φi)). Finally, considering that Bo = |Bo|Sign(B0) and Bi =

BT
i = |Bi(t)|Sign(Bi(t)) (due to Bi is diagonal), it gives the following expression:

V̇(ei, e0, φi, φo)−∇VT
ei

Ariei −∇VT
ei

u
p
i −∇VT

eo
u

p
o

+Trace(|Bi|sign(Bi)∇Vei
)(ωT

i φi)) + |Bi|φ̇T
i Γ−1

i φi)

+Trace(|Bo|sign(Bo)∇Veo )(ω
T
o φo)) + |Bo|φ̇T

i Γ−1
o φo).

(22)

Here, replacing the control parameters errors dynamical equation (19), canceling terms, and taking
into account the expressions θo(t)T = φo(t)T + θ∗o (t)

T and θi(t)
T = φi(t)

T + θ∗i (t)
T , the Lyapunov

function first-time derivative becomes:

V̇(ei, e0, φi, φo, ) = −∇VT
ei

Ariei −∇VT
ei

u
p
i −∇VT

eo
u

p
o

−Trace(|Bi|σiφ
T
i φi)− Trace(|Bo|σoφT

o φo)

−Trace(|Bi|σiθ
∗T

i φi)− Trace(|Bi|θ̇∗
T

i Γ−1
i

−Trace(|Bo|σoθ∗
T

o φo)− Trace(|Bo|θ̇∗
T

o Γ−1
o .

(23)

Here, we have that Ari, |Bi|, σi, |Bo|, and σo are positives; therefore the first five terms of (23) are
negatives. However, although the terms Γi and Γo are also positives, there is nothing we can say about
the sign of the last fourth terms of (23) at first sight. Therefore, we re-express equation (23) using some
modulus and norm properties.

Using the Frobenius norm definition and the Cauchy–Schwarz inequality, we have that
|Trace(ABC)| ≤ ‖A‖F‖B‖F‖C‖F [40, Section 11.2.2]. Moreover, considering a positive A,
Trace(ABT B) = |Trace(ABT B)| ≤ ‖A‖F‖B‖2

F. Therefore, the following terms become
−Trace((|Bi|σi)φ

T
i φi) ≤ −‖(|Bi|σi)‖F‖φi‖2

F and −Trace((|Bo|σo)φT
o φo) ≤ −‖(|Bo|σo)‖F

‖φo‖2
F. Also, the last fourth terms fulfill −Trace(|Bi|σiθ

∗T

i φi) ≤ −‖(|Bi|σi)‖F‖θ∗
T

i ‖F‖φi‖F,

−Trace(|Bo|σoθ∗
T

o φo) ≤ −‖(|Bo|σo)‖F‖θ∗
T

o ‖F‖φo‖F, −Trace(|Bi|θ̇∗
T

i Γ−1
i φi) ≤ −‖(|Bi|)‖F

‖θ̇∗i ‖F‖φi‖F‖Γ−1
i ‖F, and −Trace(|Bo|θ̇∗

T

o Γ−1
o φo) ≤ −‖(|Bo|)‖F‖θ̇∗o ‖F‖φo‖F‖Γ−1

o ‖F. Finally, using the
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property 2ab ≤ a2 + b2 [40, Section 11.2.2], and conveniently adding the term r2 to the right side of
equation (23), the Lyapunov function first-time derivative (23) becomes:

V̇(ei, e0, φi, φo, ) = −∇VT
ei

Ariei −∇VT
ei

u
p
i −∇VT

eo
u

p
o

+r2 − ‖(|Bi|σi)‖F‖φi‖2
F − ‖(|Bo|σo)‖F‖φo‖2

F

− 1
2‖(|Bi|σi)‖F‖(θ∗

T

i ‖2
F + ‖φi‖2

F)− 1
2‖(|Bo|σo)‖F‖(θ∗

T

o ‖2
F + ‖φo‖2

F)

− 1
2‖(|Bi|)‖F(‖θ̇∗i ‖2

F + ‖φi‖2
F)‖Γ−1

i ‖F − 1
2‖(|Bo|)‖F(‖θ̇∗o ‖2

F + ‖φo‖2
F)‖Γ−1

o ‖F,

(24)

where the plant parameters and their first-time derivatives are bounded. Therefore, V̇ ≤ −∇VT
ei

u
p
i −

∇VT
eo

u
p
o and closed-loop dynamical error equations (18) and (19) are passive outside the region Ω. This

last, is the following instability hyper elliptical paraboloid that is compact, closed, and includes the
origin:

Ω = [‖(|Bi|σi)‖F‖φi‖2
F + ‖(|Bo|σo)‖F‖φo‖2

F

+ 1
2‖(|Bi|σi)‖F‖(θ∗

T

i ‖2
F + ‖φi‖2

F) +
1
2‖(|Bo|σo)‖F‖(θ∗

T

o ‖2
F + ‖φo‖2

F)

+ 1
2‖(|Bi|)‖F(‖θ̇∗i ‖2

F + ‖φi‖2
F)‖Γ−1

i ‖F +
1
2‖(|Bo|)‖F(‖θ̇∗o ‖2

F + ‖φo‖2
F)‖Γ−1

o ‖F] < r2.
(25)

Furthermore, substituting into (25), the terms u
p
o (t) = Ko∇Veo (t) and u

p
i (t) = Ki∇Vei

(t) defined
in (13) and (15), and using Lyapunov’s second method, we can conclude that the closed-loop dynamical
error equations (18) and (19) are bounded outside Ω. Suppose the errors are as minor as possible,
resulting in V̇ > 0 within the instability compact and closed region Ω, including the origin. In that
case, they will be pushed back to a stable boundary. In practice, the values of σi, σo, Γi, and Γo are
chosen so the permanent errors are the possible lowest.

Thus, ei(t), eo(t), φi(t), and φo(t) are bounded outside Ω, i.e., ei(t), eo(t), φi(t), φo(t) ∈ L∞ outside
Ω. Since ei(t) = yi(t)− yri and eo(t) = yo(t)− yro are bounded, it implies that yi(t) and yo(t) are
bounded, as yri, y∗i and yro, y∗0 are bounded references. Moreover, φi(t) and φo(t) are bounded, and
we have bounded plant parameters, then the adaptive parameters θi(t) and θo(t) are bounded, since
θi(t)

T = φi(t)
T + θ∗i (t)

T and θo(t)T = φo(t)T + θ∗o (t)
T . Having all these bounded signals outside Ω,

and that V, e(t), φ(t) ∈ L∞, from (18) and (19), we have that ėi(t), ėo(t), φ̇i(t), φ̇o(t) ∈ L∞. Integrating
both sides of V̇(ei, e0, φi, φo, ) in the interval (0, ∞), it gives

V(∞)− V(0) =
∫ ∞

0 (−∇VT
ei

Ariei −∇VT
ei

Ki∇Vei
(t)−∇VT

eo
Ko∇Veo (t)

+r2 − ‖(|Bi|σi)‖F‖φi‖2
F − ‖(|Bo|σo)‖F‖φo‖2

F

− 1
2‖(|Bi|σi)‖F‖(θ∗

T

i ‖2
F + ‖φi‖2

F)− 1
2‖(|Bo|σo)‖F‖(θ∗

T

o ‖2
F + ‖φo‖2

F)

− 1
2‖(|Bi|)‖F(‖θ̇∗i ‖2

F + ‖φi‖2
F)‖Γ−1

i ‖F − 1
2‖(|Bo|)‖F(‖θ̇∗o ‖2

F + ‖φo‖2
F)‖Γ−1

o ‖F) dτ.

(26)

As V is bounded outside Ω, from the right-hand side of this last equation; we have that e(t) ∈ L2

outside Ω. Furthermore, as ei(t), ėi(t) ∈ L∞ and ei(t) ∈ L2, and eo(t), ėo(t) ∈ L∞ and e0(t) ∈ L2,
all outside Ω, using Barbalat’s Lemma [34, Section 4.5.2] we have that ei(t) and eo(t), both tend
asymptotically to zero outside Ω. Hence, yi(t) → y∗i and yo(t) → y∗o outside Ωc. We do not ensure
parameter convergence. This concludes the proof.

The following section applies the proposed controller to the M3C converter and describes the
obtained results.

4. Simulation Results

This section applies the proposed control system shown in Figure 2 to the power topology of
Figure 1 with three cells per cluster. It runs on a personal computer, in PLECS 4.7.2. The modeling
settings are solver RADAU with variable-step, using a relative tolerance of 1 × 10−3.

The M3C load corresponds to four equal PMSMs electrically connected in parallel and moving a
centrifugal pump each. Table 2 shows the motor-pump parameters.
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Table 2. Motor-pump parameters.

Parameter Value Parameter Value

Prated 644 [W] Trated 4.1 [N-m]
Vs_rated 165 [V] Is_rated 2.65 [A]

fe 75 [Hz] fp 0.95
P 3 Φ 0.305 [Wb]

ωr 157.08[rad/s] Jm 0.0036 [Nms2]
Rs 6.2 [Ω] JLoad 0.0108 [Nms2]
Ld 25.025 [mH] Kload 93.053 ·10−6 [Kg m2]
Lq 40.17 [mH] T0 0.41 [N-m]

Here, Vs_rated and Is_rated are the rated stator voltage and current of the PMSM, respectively. The
power factor is fp and fe is the electric required frequency of the PMSM for it to run at rated speed. P

is the number of pole pairs and ωr is the PMSM rated speed. The PMSM-rated torque and power are
Trated and Prated, respectively. Moreover, Rs, Ld and Lq are the resistance and inductance of the motor,
Φ is the magnetic flux induced by the motor magnets, Jm is the motor inertia, JLoad is the inertia of
the load. On the other hand, the load parameters are the initial load torque T0 are zero speed and the
constant Kload, characterizing the pump model equation TLoad = Kload · ω2

r + T0.
The M3C is designed to power these PMSMs-driven centrifugal pumps, having the same Prated.

Table 3 presents the plate data and parameters value of the M3C.

Table 3. Plate data and parameters value of the M3C.

Parameter Value Parameter Value

Prated 644 [W] V∗
C 1500 [V]

Vin_rated 220 [V] Vout_rated 165 [V]
fin 50 [Hz] fout 75 [Hz]
Lin 1.5 [mH] L 1.0 [mH]
fsw 10 [KHz] C 3.3 [mF]

The reference capacitor voltage mean value V∗
C is defined based on the M3C input and output rated

voltages Vin_rated and Vout_rated and the number of cells. Here, V∗
C ≥ 1.2 ·

√
2 · (Vin_rated + Vout_rated),

been divisible by 3 (number of cells per cluster). Therefore, V∗
C ≥ 1.2 ·

√
2 · (Vin_rated + Vout_rated) =

3 · 500[V] = 1500[V] ≥ 1.2
√

2 · (220[V] + 400[V]) ≥ 1052[V].
Moreover, the Power supply has the rated voltage Vin_rated, the input frequency fin, and an input

inductance Lin. The load has the rated voltage Vout_rated equals the rated motor voltage Vs_rated, and
an output frequency fout equals rated motor frequency fe. Finally, we have the cells with switching
frequency fsw and a capacitance capacitor C. The cluster coupling inductance is L.

The following two control systems are applied to the M3C-based variable speed drive for multiple
PMSM-driven centrifugal pumps for comparison purposes:

Basic Control System [23].

The basic control includes sixteen (16) PI controllers, whose settings are calculated based on the
definitions provided in equation (5) and Table 1:

• Input Control:

– One (1) PIs for the 2αβγ ACV Control:

Kp_VCavg =
8.485πCV∗

C
Vavg

= 0.4241, Ki_VCavg =
12π2CV∗

C
Vavg

= 1.8843,

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 August 2023                   doi:10.20944/preprints202308.0302.v1

https://doi.org/10.20944/preprints202308.0302.v1


13 of 30

where the constant cluster voltage amplitude is Vavg = Vind
=

√
2Vin_rated. The output of the ACV

controller is the input cluster line current amplitude direct component reference I∗Lin−cl_d. Here,
the input cluster line current amplitude reference is I∗Lin−cl = [ILin−cl_d 0]T and is controlled by
the following controllers.

– Two (2) PIs for the 2αβγ input cluster line current ILin−cl amplitude direct and quadrature
components:

Kp_Iin−cl_d = Kp_Iin−cl_q = −
√

2(2π fin)L√
3

= −81.65πL = −0.2567,

Ki_Iin−cl_d = Ki_Iin−cl_q = − (2π fin)
2L√

3
= −5773.5π2L = −56.98.

• CCV Imbalance Control.

– Four (4) PIs for the 2αβγ Intra-CCV Imbalance Control [23, Outer controller of Figure 3]:

Kp_VC1α = Kp_VC1β = Kp_VC2α = Kp_VC2β =
14.142π

√
6CV∗

C
Vind

= 1.1541,

Ki_VC1α = Ki_VC1β = Ki_VC2α = Ki_VC2β =
100π2

√
6CV∗

C
Vind

= 25.642.

– Four (4) PIs for the 2αβγ Inter-CCV Imbalance Control [23, Figure 4]:

Kp_VCαγ = − 14.142π
√

3CV∗
C

Voutd
= −0.6348, Kp_VCβγ =

14.142π
√

3CV∗
C

Voutd
= 0.6348,

Kp_VCγα = Kp_VCγβ =
14.142π

√
3CV∗

C
Vind

= 0.8161,

Ki_VCαγ = − 100π2
√

3CV∗
C

Voutd
= −14.1031, Ki_VCβγ =

100π2
√

3CV∗
C

Voutd
= 14.1031,

Ki_VCγα = Ki_VCγβ =
100π2

√
3CV∗

C
Vind

= 18.1316,

with the constant voltage Voutd
=

√
2Vout_rated. Both of these controllers are in cascade with the

following controller:

– Four (4) PIs controllers for the 2αβγ circulating current, considering only a P action [23,
Inner controller of Figure 3]:

Kp_icirc−cl_αα = Kp_icirc−cl_αβ = Kp_icirc−cl_βα = Kp_icirc−cl_ββ

= −
√

2
√

3(2π10 fout) = −4242, 64πL = −13.3266,
Ki_icirc−cl_αα = Ki_icirc−cl_αβ = Ki_icirc−cl_βα = Ki_icirc−cl_ββ = 0.

• Output control.
One (1) P for the 2αβγ output voltage amplitude V∗

out−cl = [Vout−cl_d 0]T , with the
V∗

out−cl_d of equation (6) [32, Equation (1)] with (7).

Adaptive Control System.

The adaptive control system consists of the following six (6) controllers, which are configured
according to the definitions given in equations (13)-(15). These controllers utilize the Lyapunov-type
energy terms Veo (t) = 1

2 eT
o eo and Vei

(t) = 1
2 eT

i ei. Moreover, all base disturbances ∆o_b and ∆i_b are
computed based on the equations (1) and (3) in a stable state (zero first-time-derivatives), considering
rated values from Table 3 and unitary parameter values (taking the known disturbance portion).

• Input Control.

– One (1) APBC (13) for the 2αβγ ACV Control, with:

∆o_b_VCavg
= − 4Prated

9V∗
C

= −0.19, Ko_VCavg
=

Ki_Iin−cl
15 = 0.67,

Γo_VCavg
= Diag[ 1

(1+0.192)
1

(1+102)
] = Diag[0.9649 0.0099], σo_VCavg

= 1.
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The output of this ACV controller is the input cluster line current amplitude direct component
reference I∗Lin−cl_d. Therefore the inner loop input cluster line current amplitude reference is
I∗Lin−cl = [ILin−cl_d 0]T , having the following controller:

– One (1) PBMRAC (15) for the 2αβγ input cluster line current, and filtering a 2 KHz reference
input noise:

Ari_in = Bri_in = 2000
20 I2 = 100I2,

Ki_in = Ki_Icirc−cl
(2π fin)I2 − Ari_in = (3141.6 − 100)I2 = −3041.6I2,

∆i_b_in = 3
√

2Vin_rated[1 1]T = 933.6[1 1]T , σi_in = I2,
Γi_in = Diag[ 16

(1+162)
16

(1+162)
16

(1+162)
16

(1+162)
933.6

(1+933.62)
933.6

(1+933.62)
16

(1+162)
16

(1+162)
]

= Diag[0.0623 0.0623 0.0623 0.0623 0.001 0.001 0.099 0.099].

• CCV Imbalance Control.

– One (1) APBC (13) for the 2αβγ intra-CCV imbalance.

∆o_b_VCintra
= −

√
2Vin_rated Icir_rated√

6V∗
C

[1 1 1 1]T = −4.23[1 1 1 1]T ,

Ko_VCintra
=

Ki_Icirc−cl
15 I4 = 0.67I4, σo_VCavg

= I4,
Γo_VCintra

= Diag[ 1
(1+102)

1
(1+102)

1
(1+4.232)

1
(1+4.232)

] = Diag[0.001 0.001 0.053 0.053].

– One (1) APBC (13) for the 2αβγ inter-CCV imbalance.

∆o_b_VCinter
= −[−

√
2Vout_rated Icir_rated√

3V∗
C

√
2Vout_rated Icir_rated√

3V∗
C

√
2Vin_rated Icir_rated√

3V∗
C

√
2Vin_rated Icir_rated√

3V∗
C

]T ,

= [7.7 − 7.7 − 6 − 6]T ,

Ko_VCinter
=

Ki_Icirc−cl
15 I4 = 0.67I4, σo_VCavg

= I4,
Γo_VCinter

= Diag[ 1
(1+7.72)

1
(1+7.72)

1
(1+62)

1
(1+62)

] = Diag[0.016 0.016 0.027 0.027].

The inner controller is designed as follows

– One (1) PBMRAC (15) for the 2αβγ circulating cluster current, and filtering a 3.0 KHz
reference input noise:

Ari_circ−cl = Bri_circ−cl = 2π 3000
20 I4 = 942.5I4,

Ki_circ−cl = Ki_Icirc−cl
(2π(2 fout)I4 − Ari_circ−cl = (9424.7 − 942.5)I4 = −8482.3I4,

∆i_b_circ−cl = 0 σi_circ−cl = 0, Γi_circ−cl =
10

(1+102)
I4 = 0.099I4.

• Output control.
One (1) P for the output voltage amplitude V∗

out−cl = [Vout−cl_d 0]T , using the
V∗

out−cl_d of equation (6) [32, Equation (1)] joined to (7).

The following sections present the comparative results of the M3C feeding the four PMSMs,
each moving a centrifugal pump. The results were obtained with a simulation time of 8 s, under the
following situations are described: normal operation, input phase imbalance, a cluster cell short-circuit,
and an opened cluster cell.

For all cases, the set points in this 2αβγ coordinate are: V∗
Cavg = 3V∗

C = 4500V, V∗
CintraCD

= 0, and

V∗
Cinter = 0. Moreover, the reference rotor angular speed ωr_rated∗ = is 0 rad/s between 0 s and 1 s,

having a ramp up reaching ωr_rated at 5 s and kept constant the remaining time.

4.1. Results Under a Normal Operation

Figure 3 shows the comparative results under a normal operation. Here, we operate with the
rated input and output voltages.
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Figure 3. Comparative results under normal operation, (a) Phase a input current, (b) Branch ar CCV,
(c) Controlled 2αβγ ACV, (d) Controlled d component of the input current amplitude in 2αβγ, (e)
Controlled intra and inter CCV imbalance in 2αβγ, (f) Controlled αα component of the circulating
current in 2αβγ, (g) Phase r output current, (h) PMSM angular rotor speed.

Figure 3 (a) and (g) demonstrate that the M3C adaptive proposal results in 25 % lower input and
output current consumption (with a reduction of 5 A) compared to the basis control that utilizes PI
controllers. Moreover, the adaptive controllers also exhibit less input current overshoot than the PI
controllers.

Figure 3 (b) shows that the proposed M3C adaptive control has a 64 % less CCV overshoot (with a
70 V reduction) than the basic solution. Both adaptive and basic solutions ensure that the rotor speed
follows the reference, as shown in Figure 3 (h).
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Regarding the directly controlled variables in double-αβγ coordinates, both adaptive and basic
solution also follow the reference. However, the adaptive solution has lower overshoots of ACV in
Figure 3 (c), input current amplitude in Figure 3 (d), intra and inter CCV Imbalance in Figure 3 (e),
circulating current in Figure 3 (f). Moreover the adaptive proposal consumes less input and circulation
currents. As for the basic solution, the adaptive one has a 5 KHz noisy input amplitude in double-αβγ.

4.2. Results Under an Input Phase Imbalance

Figure 4 displays the comparative results under an input phase imbalance. This first fault
considers a drop of 10% of the ”a” phase voltage, starting at 3 seconds.

Figure 4 (a) and (g) illustrates that prior to the fault, the M3C adaptive proposal results in 25 %
lower input and output current consumption, with a reduction of 5 A compared to the basis control.
The adaptive controllers also show less input current overshoot than the PI controllers. However,
during the first second after the fault, the basic solution deteriorated while the adaptive approach
recover its better performance faster.

Figure 4 (b) shows that the proposed M3C adaptive control has a 64 % less CCV overshoot (with a
70 V reduction) than the basic solution, similar to Figure 3 (b). However, the basic solution deteriorated
after the fault while the adaptive approach tend to recover its performance.

Figure 4 (h) demonstrates that both the proposal and basic M3C controllers maintain the rotor
speed in line with the reference, similar to Figure 3 (d). This is evident even when a fault occurs at the
second 3, as it does not affect the pumping speed response.

Regarding the variables in double-αβγ coordinates; again, the adaptive solution has lower
overshoots of ACV in Figure 3 (c), input current amplitude in Figure 3 (d), intra and inter CCV
Imbalance in Figure 3 (e), circulating current in Figure 3 (f). Moreover, the adaptive proposal consumes
less input and circulation currents before the fault. After the fault, the adaptive proposal completely
recover its performance within 2 s in contrast to the basic solution.
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Figure 4. Comparative results under an input voltage imbalance, with a 10% voltage drop in phase a

at 3 seconds, (a) Phase a input current, (b) Branch ar CCV, (c) Controlled 2αβγ ACV, (d) Controlled d

component of the input current amplitude in 2αβγ, (e) Controlled intra and inter CCV imbalance in
2αβγ, (f) Controlled αα component of the circulating current in 2αβγ, (g) Phase r output current, (h)
PMSM angular rotor speed.

4.3. Results Under a Cluster Cell Short Circuit

Figure 5 exhibits the comparative results under a cluster cell short circuit. This fault happens in
cell one of the cluster ar at 3 seconds.
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Figure 5. Comparative results under a cluster ar short circuit at 3 seconds, (a) Phase a input current, (b)
Branch ar CCV, (c) Controlled 2αβγ ACV, (d) Controlled d component of the input current amplitude
in 2αβγ, (e) Controlled intra and inter CCV imbalance in 2αβγ, (f) Controlled αα component of the
circulating current in 2αβγ, (g) Phase r output current, (h) PMSM angular rotor speed.

Figure 5 (a) and (g) show that prior to the fault, the M3C adaptive proposal results in 25% lower
input and output current consumption, with a reduction of 5 A compared to the basis control. However,
during the first two seconds after the fault, the basic solution deteriorated and had a 70% increase in
input current consumption, increasing by 35 A compared to the adaptive approach.

Figure 5 (b) shows that the M3C adaptive control method has a 64% reduction in CCV overshoot
compared to the basic solution, reducing 70V. This reduction is similar to the one shown in Figure 3 (b).
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However, the basic solution demonstrates a quicker CCV to recovery after the fault tending towards
the CCV reference of 1500V.

Figure 5 (h) demonstrates that both the proposal and basic M3C controllers maintain the rotor
speed in line with the reference, similar to Figures 3 (d) and 4 (d). Again. this is observed even after
the fault happens at the second 3, which does not have an impact on the pumping speed’s response.

Regarding the variables in double-αβγ coordinates; a similar behaviour than shown in 3 is
obtained. The adaptive solution has lower overshoots of ACV in Figure 5 (c), input current amplitude
in Figure 5 (d), intra and inter CCV Imbalance in Figure 5 (e), and circulating current in Figure 5 (f).
After the fault, the adaptive solution completely recover its performance within 2 s; while the basic
solution does not.

4.4. Results Under an Opened Cluster Cell

Figure 6 exhibits the comparative results under an opened cluster cell. This fault occurs in cell
one of the cluster ar at 3 seconds.
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Figure 6. Comparative results under a cluster ar open circuit at 3 seconds, (a) Phase a input current, (b)
Branch ar CCV, (c) Controlled 2αβγ ACV, (d) Controlled d component of the input current amplitude
in 2αβγ, (e) Controlled intra and inter CCV imbalance in 2αβγ, (f) Controlled αα component of the
circulating current in 2αβγ, (g) Phase r output current, (h) PMSM angular rotor speed.

Figure 6 describes a similar behaviour than in previously described faulty situations. However,
both solutions have a lower degradation under this fault.

5. Conclusions

In this study, an adaptive control for an M3C-based variable speed drive powering multiple
PMSM-driven centrifugal pumps was proposed. he study found that the adaptive proposal offers
better performance and fault tolerance compared to the non-adaptive solution. The first step was
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to obtain the multivariable M3C state-space model for control, which allowed for the design and
implementation of novel MIMO adaptive controllers.

Notably, the paper proposed and applied a novel cascade APBC-PBMRAC to the M3C. Simulation
results demonstrate that the proposal and basic M3C controllers ensure the rotor speed follows the
reference, even when a fault occurs. However, the proposal has several advantages over the basic
solution:

1. It reduces the number of non-adaptive PI controllers from thirteen (16) to five (5) MIMO adaptive
controllers.

2. It is a more straightforward solution that does not require plant parameters knowledge, reducing
commissioning time.

3. The proposed adaptive control has less overshoots than the basic solution.
4. Additionally, it shows a more stable CCV response (less noisy), as expected due to the

APBC-PBMRAC design.
5. Finally, the basic solution tends to remain degraded after a fault, while the adaptive approach

tends to recover quickly from any studied fault.
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Appendix A

This section starts by describing the M3C state-space dynamical model obtaining.

Appendix A.1. Inner control Loop M3C Dynamical model

The M3C inner loop dynamical model involves the following equation, obtained after applying
Kirchhoff’s voltage law to the power system of Figure 1 [22, Figure 2], [25] and rearranging terms in a
matrix form (for details, please see Appendix A.3):

x-y Voltage-current model [6, Equation (9)]

vin−xy = L ˙icl−xy + vcl−xy + vout−xy + vnN−xy, (A1)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 August 2023                   doi:10.20944/preprints202308.0302.v1

https://doi.org/10.20944/preprints202308.0302.v1


22 of 30

where L is the coupling inductor inductance shown in Figure 1. Moreover, the instantaneous input
phase voltage vin−xy, cluster phase current icl−xy, cluster phase voltage vcl−xy, output phase voltage
vout−xy, and neutral voltage vnN−xy are defined as follows:

vin−xy =






va vb vc

va vb vc

va vb vc




 , icl−xy =






iar ibr icr

ias ibs ics

iat ibt ict




 , vcl−xy =






var vbr vcr

vas vbs vcs

vat vbt vct




 ,

vout−xy =






vr vr vr

vs vs vs

vt vt vt




 , vnN−xy =






1 1 1
1 1 1
1 1 1




 ,

(A2)

where va, vb, vc are the instantaneous phase voltages of the power supply. The instantaneous phase
cluster currents and voltages are iar, ibr, icr, ias, ibs, ics, iat, ibt, ict and var, vbr, vcr, vas, vbs, vcs, vat, vbt, vct

respectively. Finally, vr, vs, vt are the instantaneous load phase voltages.
For independent control, a double-αβγ transformation CXCT [22] is applied to (A1). It consists

in multiplying (A1) by the αβγ transform C [22] from the left and the right side, with matrix X

representing each phase variable vin−xy, icl−xy, vcl−xy, vout−xy, and vnN−xy. As a result, we have:

Double-αβγ Voltage-current model [6, Equation (18)]

√
3vin−2αβγ = L ˙icl−2αβγ + vcl−2αβγ +

√
3vout−2αβγ + 3vnN−2αβγ, (A3)

where the αβγ transform C [22], the input phase voltage vin−2αβγ, the cluster phase current icl−2αβγ, the
cluster phase voltage vcl−2αβγ, the output phase voltage vout−2αβγ, and the neutral voltage vnN−2αβγ

are following defined:

C =







√
2√
3

−
√

2
2
√

3
−
√

2
2
√

3

0
√

2
2

−
√

2
2√

3
3

√
3

3

√
3

3







, vin−2αβγ =






0 0 0
0 0 0

vinα
vinβ

vinγ




 , icl−2αβγ =






iαα iβα iγα

iαβ iββ iγβ

iαγ iβγ iγγ




 ,

vcl−2αβγ =






vαα vβα vγα

vαβ vββ vγβ

vαγ vβγ vγγ




 , vout−2αβγ =






0 0 voutα

0 0 voutβ

0 0 voutγ




 , vnN−2αβγ =






0 0 0
0 0 0
0 0 1




 .

(A4)

Here, vinα
, vinβ

, vinγ
are the phase voltages of the power supply in double-αβγ coordinates. The

cluster phase currents and phase voltages in double-αβγ coordinates are iαα, iβα, iγα, iαβ, iββ, iγβ, iαγ,
iβγ, iγγ and vαα, vβα, vγα, vαβ, vββ, vγβ, vαγ, vβγ, vγγ, respectively. Moreover, voutα , voutβ

, voutγ are the
load phase voltages in double-αβγ coordinates.

Based on previous equations (A3) and (A4), the obtained decoupled state-space model for the
input port, circulating currents, and output port is [25, Figure 2], [6, Figure 5]:

Double-αβγ State-space model of instantaneous voltage-current [6, Equations (19)–(21)]

˙iin−cl = − 1
L vin−cl +

√
3

L vin, Input phase current
˙icir−cl = − 1

L vcl , Circulating phase current
˙iout−cl = − 1

L vout−cl −
√

3
L vout, Output phase current

(A5)

with the instantaneous input phase voltage vin having an input frequency ωin, and the instantaneous
output phase voltage vout having an output frequency ωout. These variables, joined the instantaneous
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cluster phase currents iin−cl , icir−cl , iout−cl , and the instantaneous cluster voltages vin−cl , vcl , vout−cl ,
are defined as:

iin−cl =

[

iαγ

iβγ

]

, vin =

[

vinα

vinβ

]

, vin−cl =

[

vαγ

vβγ

]

,

icir−cl =

[

iαα iβα

iαβ iββ

]

, vcl =

[

vαα vβα

vαβ vββ

]

,

iout−cl =

[

iγα

iγβ

]

, vout =

[

voutα

voutβ

]

, vout−cl =

[

vγα

vγβ

]

.

(A6)

Finally, multiplying the Park Transformation P [24] from the left by the input and output phase
current equations of (A5), these are converted to their dq coordinates to allow their amplitudes control.
The circulating phase current equation of (A5) remains the same for the control of this instantaneous
variable. Moreover, we consider the input cluster line current control, related to the phase current as
ILin−cl =

√
3Iin−cl . As a result, the previous model (A5) takes the form:

Double-αβγ Voltage-current state-space model

˙ILin−cl = −
√

3
L Vin−cl +

3
L Vin, Input phase current amplitude

˙icir−cl = − 1
L vcl , Circulating phase current

˙Iout−cl = − 1
L Vout−cl −

√
3

L Vout, Output phase current amplitude

(A7)

where the Park Transformation P, the amplitudes of the input phase voltage Vin, output phase voltage
Vout, cluster input line current ILin−cl , cluster output phase current Iout−cl , and cluster phase voltages
Vin−cl , Vout−cl , all in d-q coordinates, are defined as:

P =

[

cos(θ) sin(θ)

−sin(θ) cos(θ)

]

, ILin−cl =

[

ILin−cl_d

ILin−cl_q

]

, Vin =

[

Vin_d

Vin_q

]

,

Vin−cl =

[

Vin−cl_d

Vin−cl_q

]

, Iout−cl =

[

Iout−cl_d

Iout−cl_q

]

, Vout =

[

Vout_d

Vout_q

]

, Vout−cl =

[

Vout−cl_d

Vout−cl_q

]

,

(A8)

where ILin−cl_d and ILin−cl_q are the amplitude components of the input coordinates of the cluster line
currents. Vin_d and Vin_q are the amplitude components of the power supply phase voltage. Vin−cl_d

and Vin−cl_q are the amplitude components of the input coordinates of the cluster phase voltages.
Iout−cl_d and Iout−cl_q are the amplitude components of the output cluster phase currents. Vout_d and
Vout_q are the amplitude components of the power supply phase voltage. Finally, Vout−cl_d and Vout−cl_q

are the amplitude components of the output cluster phase voltages. The Park transformation uses
θ = θin =

∫
ωindτ for the input signals and θ = θout =

∫
ωoutdτ for the output signals.

The following section describes the outer-loop M3C dynamical model obtaining.

Appendix A.2. Outer control Loop M3C Dynamical model

The outer loop M3C dynamical model considers the formula IC = CV̇Cijk of an ideal capacitor
instantaneous current IC, depending on the capacitance C and the capacitor voltage variation ˙VCijk

of a cell shown in Figure 1. Then, this last expression is re-expressed to obtain the variation rate
of the cluster capacitor voltage VCij = ∑

3
k=1(VCijk) in terms of the power through a cluster Pcl as

˙VCij =
1

CVC
Pcl [22, Equation (8)]. Finally, applying this concept to the M3C, assuming the clusters have

three cells (summing their voltage variation expressions), are balanced, and all capacitors are the same,
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and that the average cluster capacitor voltage fluctuates ǫ(t) times around its required value V∗
C , the

following matrix expression is obtained:

x-y Cluster capacitor voltage-power state-space model

V̇C−xy =
1

Cǫ(t)V∗
C

Pcl−xy. (A9)

The reference cluster capacitor voltage mean value is V∗
C ≥ 1.2 ·

√
2 · (Vin_rated + Vout_rated), where V∗

C

is a multiple of 3 (number of cells per cluster). Moreover, the instantaneous cluster capacitor voltage
VC−xy and cluster power Pcl−xy are defined as follows:

VC−xy =






VCar VCbr VCcr

VCas VCbs VCcs

VCat VCbt VCct




 , Pcl−xy =






Par Pbr Pcr

Pas Pbs Pcs

Pat Pbt Pct




 , (A10)

where the cluster capacitor instantaneous voltages are VCar, VCbr, VCcr, VCas, VCbs, VCcs, VCat, VCbt, VCct.
Again, for independent control, a double-αβγ transformation CXCT [22] is applied to (A9).

Thus, (A9) is multiplied by the αβγ transform C [22] from the left and the right side, with matrix X

representing the instantaneous cluster capacitor voltage VC−xy and the cluster instantaneous power
Pcl−xy (A10). Then, re-expressing the obtained result in a state space form, we have:

Double-αβγ state-space model of instantaneous voltage-power

V̇Cavg = 1
Cǫ(t)V∗

C
Pavg, ACV

V̇Cintra =
1

Cǫ(t)V∗
C

Pintra, Intra-CCV imbalance

V̇Cinter =
1

Cǫ(t)V∗
C

Pinter, Inter-CCV imbalance

(A11)

having the following variables definitions:

VCavg =VCγγ, Pavg = Pγγ,

VCintra =
[

VCαα VCαβ VCβα VCγα

]T
, Pintra =

[

Pαα Pαβ Pβα Pγα

]T
,

VCinter =
[

VCαγ VCβγ VCγα VCγβ

]T
, Pinter =

[

Pαγ Pβγ Pγα Pγβ

]T
.

(A12)

Here, in double-αβγ coordinates are vCαα, the cluster capacitor instantaneous voltages
components, vCβα, vCγα, vCαβ, vCββ, vCγβ, vCαγ, vCβγ, vCγγ and the instantaneous cluster power
components are Pαα, Pβα, Pγα, Pαβ, Pββ, Pγβ, Pαγ, Pβγ, Pγγ, which are clearly defined in [6, Equations
(26)-(33)]. However, there is an issue with the intra-CCV and inter-CCV imbalance control. Every
power component could be controlled by controlling certain component of the circulating current icir−cl

(A6) but Pγα [6, Equations (32)] that would be controlled by iαα as Pαγ [6, Equations (30)]. Therefore,
an extra auxiliary transformation is made after multiplying from the left the intra-CCV imbalance
equation of (A11) by the matrix CD [25] as a solution to allow control. Moreover, the power formulas
are re-expressed as a function of the phase voltages and phase currents as detailed in [6, Equations
(38)-(45)] separating the control terms from the rest, which are considered as a disturbance. Finally, the
state-space form for control takes the following form:

Double-αβγ voltage-power state-space model
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V̇Cavg =
Vavg(t)

3Cǫ(t)V∗
C

ILin−cl_d + ∆avg(t), ACV

V̇CintraD = Vintra(t)
T

√
6Cǫ(t)V∗

C

Tr Icir1 + ∆intraCD
(t), Intra-CCV imbalance

V̇Cinter =
Vinter(t)

T
√

3Cǫ(t)V∗
C

Icir2 + ∆inter(t), Inter-CCV imbalance

(A13)

where the auxiliary transformation matrix CD [25], capacitor voltage VCintra, VCinter, VCavg, the cluster
voltage Vintra, Vinter, Vavg, the cluster current Icir1, Icir2, Iavg, and the disturbances ∆intra, ∆inter, ∆avg,
are following defined:

CD =
1
2








1 0 0 1
0 1 −1 0
1 0 0 −1
0 1 1 0








, Tr =








0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0








,

Vavg = Vinα
, VCintraD =CDVCintra =

[

VC1α VC1β VC2α VC2β

]T
,

Vintra =
[

Vinα
Vinα

Vinα
Vinα

]T
,

Vinter =
[

−Voutα Voutα Vinα
Vinα

]T
,

Icir1 =
[

I1α1 I1β1 I2α1 I2β1

]T
,

Icir2 =
[

I1α2 I1β2 I2α2 I2β2

]T
,

∆avg = ∆γγ, ∆intraCD
=

[

∆2α ∆2β ∆1α ∆1β

]T
,

∆inter =
[

∆αγ ∆βγ ∆γα ∆γβ

]T
,

(A14)

where the disturbance terms are obtained from the power expressions [6, Equations (38)-(45)], [22,
Equations (17)-(25)], after separating the control terms components. The result gives:

∆γγ =
1
3
(Vinβ

Iinβ
)− 1

3
(Voutα Ioutα + Voutβ

Ioutβ
). (A15)

∆1α =
1
6
[(Vinα

Ioutα − Voutα Iinα
) + (Vinβ

Ioutβ
− Voutβ

Iinβ
)]

+
1√
6
[(−Vinβ

I2β) + (−Voutα I2α + Voutβ
I2β)]− Vn I1α,

∆1β =
1
6
[(Vinα

Ioutβ
− Voutβ

Iinα
)− (Vinβ

Ioutα − Voutα Iinβ
)]

+
1√
6
[(Vinβ

I2α) + (Voutα I2β + Voutβ
I2α)]− Vn I1β,

∆2α =
1
6
[(Vinβ

Ioutα − Voutα Iinβ
)− (Vinβ

Ioutβ
− Voutβ

Iinβ
)]

+
1√
6
[(Vinβ

I1β) + (−Voutα I1α + Voutβ
I1β)]− Vn I2α,

∆2β =
1
6
[(Vinβ

Ioutβ
− Voutβ

Iinβ
) + (Vinβ

Ioutα − Voutα Iinβ
)]

+
1√
6
[(−Vinβ

I1α) + (Voutα I1β + Voutβ
I1α)]− Vn I2β.

(A16)
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∆αγ =
1

3
√

2
[(Vinα

Iinα
− Vinβ

Iinβ
)]− 1√

3
[Voutα(I2α) + Voutβ

(I1β + I2β)− Vn Iinα
],

∆βγ = − 1

3
√

2
[(Vinα

Iinβ
+ Vinβ

Iinα
)]− 1√

3
[Voutα(I2β) + Voutβ

(I1α − I2α)− Vn Iinβ
],

∆γα = − 1

3
√

2
[(Voutα Ioutα − Voutβ

Ioutβ
)] +

1√
3
[Vinα

(I1α) + Vinβ
(−I1β + I2β)− Vn Ioutα ],

∆γβ =
1

3
√

2
[(Voutα Ioutβ

+ Voutβ
Ioutα)] +

1√
3
[Vinα

(I1β) + Vinβ
(I1α − I2α)− Vn Ioutβ

].

(A17)

The following section details the different vector and matrix transformations made in the previous
state-space model obtaining.

Appendix A.3. Vector and Matrix Transformation Details

This section details the vector and matrix used transformations, starting from the managing
feedback signals block located at the right lower side of Figure 2. First, the vector of the cluster
capacitor voltages VCij is obtained after summing the capacitor voltages ∑

3
k=1(Vijk) per cell k inside

each cluster as follows:

VCijk
︷ ︸︸ ︷


















VCar1 VCar2 VCar3

VCbr1 VCbr2 VCbr3

VCcr1 VCcr2 VCcr3

VCas1 VCas2 VCas3

VCbs1 VCbs2 VCbs3

VCcs1 VCcs2 VCcs3

VCat1 VCat2 VCat3

VCbt1 VCbt2 VCbt3

VCct1 VCct2 VCct3



















⇒
3

∑
k=1

(VCijk) =

∑
3
k=1 VCijk

︷ ︸︸ ︷


















∑
3
k=1 VCark

∑
3
k=1 VCbrk

∑
3
k=1 VCcrk

∑
3
k=1 VCask

∑
3
k=1 VCbsk

∑
3
k=1 VCcsk

∑
3
k=1 VCatk

∑
3
k=1 VCbtk

∑
3
k=1 VCctk



















=

VCij
︷ ︸︸ ︷


















VCar

VCbr

VCcr

VCas

VCbs

VCcs

VCat

VCbt

VCct



















. (A18)

Then, the following rearrangements R are made to convert vectors to the matrix form to allow
implementation. It applies to the measurement vectors of the cluster currents iij and the cluster
capacitor voltage VCij:

iij
︷ ︸︸ ︷


















iar

ibr

icr

ias

ibs

ics

iat

ibt

ict



















⇒ R(iij) =

ixy
︷ ︸︸ ︷





iar ibr icr

ias ibs ics

iat ibt ict




,

VCij
︷ ︸︸ ︷


















VCar

VCbr

VCcr

VCas

VCbs

VCcs

VCat

VCbt

VCct



















⇒ R(VCij) =

VCxy
︷ ︸︸ ︷





VCar VCbr VCcr

VCas VCbs VCcs

VCat VCbt VCct




 . (A19)
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The matrix X previously obtained results are double-αβγ transformed CXCT [22]. The right lower
side of Figure 2 shows these operations, multiplying X by the αβγ transform C [22] from the left and
right sides. Following, for X = iij and X = VCij, it gives:

C
︷ ︸︸ ︷






√
2√
3

−
√

2
2
√

3
−
√

2
2
√

3

0
√

2
2

−
√

2
2√

3
3

√
3

3

√
3

3






·

ixy
︷ ︸︸ ︷





iar ibr icr

ias ibs ics

iat ibt ict




 ·

CT

︷ ︸︸ ︷






√
2√
3

0
√

3
3

−
√

2
2
√

3

√
2

2

√
3

3
−
√

2
2
√

3
−
√

2
2

√
3

3






=

icl−2αβγ
︷ ︸︸ ︷





iαα iβα iγα

iαβ iββ iγβ

iαγ iβγ iγγ




, (A20)

C
︷ ︸︸ ︷






√
2√
3

−
√

2
2
√

3
−
√

2
2
√

3

0
√

2
2

−
√

2
2√

3
3

√
3

3

√
3

3






·

VCxy
︷ ︸︸ ︷





VCar VCbr VCcr

VCas VCbs VCcs

VCat VCbt VCct




 ·

CT

︷ ︸︸ ︷






√
2√
3

0
√

3
3

−
√

2
2
√

3

√
2

2

√
3

3
−
√

2
2
√

3
−
√

2
2

√
3

3






=

VC−2αβγ
︷ ︸︸ ︷





VCαα VCβα VCγα

VCαβ VCββ VCγβ

VCαγ VCβγ VCγγ




 . (A21)

Moreover, there are other rearrangements R made to convert the matrix obtained in (A20) and
(A21) to their vector form to allow implementation. The resulting vectors are demultiplexed in
managing feedback signals block of Figure 2. It delivers the cluster instantaneous phase currents
and capacitor voltages defined in (A6) and (A14) (iin−cl , icirc−cl , iout−cl , and VCintra, VCinter, VCavg) as
follows:

icl−2αβγ
︷ ︸︸ ︷





iαα iβα iγα

iαβ iββ iγβ

iαγ iβγ iγγ




 ⇒ R(icl−2αβγ) =



















iαγ

iβγ

iαα

iαβ

iβα

iββ

iγα

iγβ

iγγ



















,

VC−2αβγ
︷ ︸︸ ︷





VCαα VCβα VCγα

VCαβ VCββ VCγβ

VCαγ VCβγ VCγγ




 ⇒ R(VC−2αβγ) =



















VCαα

VCαβ

VCβα

VCββ

VCαγ

VCβγ

VCγα

VCγα

VCγγ



















. (A22)

Additionally, the cluster instantaneous capacitor voltage intra-components are multiplied by the
matrix CD [25]:

CD
︷ ︸︸ ︷

1
2








1 0 0 1
0 1 −1 0
1 0 0 −1
0 1 1 0








VCintra
︷ ︸︸ ︷







VCαα

VCαβ

VCβα

VCββ







=

VCintraCD
︷ ︸︸ ︷







VCαα + VCββ

VCαβ − VCβα

VCαα − VCββ

VCαβ + VCβα







=

VCintraCD
︷ ︸︸ ︷







VC1α

VC1β

VC2α

VC2β








. (A23)

The outer signals of the Intra-CCV imbalance control are located at the left-center side of Figure 2.
These are multiplied by the T−1

r matrix to obtain icir1 to be sumed with icir2. The result is multiplied by
the inverse matrix C−1

D to obtain the circulating current i∗cir−cl as follows:

i∗cir1
︷ ︸︸ ︷







i∗1α1
i∗1β1

i∗2α1
i∗2β1







=

T−1
r

︷ ︸︸ ︷







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0








i∗cir1D
︷ ︸︸ ︷







i∗2α1
i∗2β1

i∗1α1
i∗1β1








,

i∗cir1
︷ ︸︸ ︷







i∗1α1
i∗1β1

i∗2α1
i∗2β1







+

i∗cir2
︷ ︸︸ ︷







i∗1α2
i∗1β2

i∗2α2
i∗2β2







=

i∗CintraCD
︷ ︸︸ ︷







i∗1α

i∗1β

i∗2α

i∗2β








, (A24)
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i∗cir−cl
︷ ︸︸ ︷







i∗1α + i∗2α

i∗1β + i∗2β

−i∗1β + i∗2β

i∗1α − i∗2α







=

C−1
D

︷ ︸︸ ︷







1 0 1 0
0 1 0 1
0 −1 0 1
1 0 −1 0








i∗cir−clD
︷ ︸︸ ︷







i∗1α

i∗1β

i∗2α

i∗2β







=

i∗cir−cl
︷ ︸︸ ︷







i∗αα

i∗αβ

i∗βα

i∗ββ








. (A25)

Later, the output signal of the controllers (V∗
in−cl , V∗

cl , V∗
out−cl) are multiplexed, considering v∗γγ = 0,

and the obtained vector is rearrangement R in the following matrix form:




















v∗αγ

v∗βγ

v∗αα

v∗αβ

v∗βα

v∗ββ

v∗γα

v∗γβ

v∗γγ




















⇒ R =

v∗cl−2αβγ
︷ ︸︸ ︷





v∗αα v∗βα v∗γα

v∗αβ v∗ββ v∗γβ

v∗αγ v∗βγ v∗γγ




 . (A26)

The obtained matrix X = v∗cl−2αβγ is then multiplied by the inverse αβγ transformation matrix

C−1 [22] from the left and right sides, obtaining the required cluster voltage as follows:

C−1

︷ ︸︸ ︷






√
2√
3

0
√

3
3

−
√

2
2
√

3

√
2

2

√
3

3
−
√

2
2
√

3
−
√

2
2

√
3

3






·

v∗cl−2αβγ
︷ ︸︸ ︷





v∗αα v∗βα v∗γα

v∗αβ v∗ββ v∗γβ

v∗αγ v∗βγ v∗γγ




 ·

C−1T

︷ ︸︸ ︷






√
2√
3

−
√

2
2
√

3
−
√

2
2
√

3

0
√

2
2

−
√

2
2√

3
3

√
3

3

√
3

3






=

v∗xy
︷ ︸︸ ︷





v∗ar v∗br v∗cr

v∗as v∗bs v∗cs

v∗at v∗bt v∗ct




 . (A27)

A final rearrangement R is made to convert the obtained matrix to the required voltage vector
form as follows:

v∗xy
︷ ︸︸ ︷





v∗ar v∗br v∗cr

v∗as v∗bs v∗cs

v∗at v∗bt v∗ct




 ⇒ R(v∗xy) =

v∗ij
︷ ︸︸ ︷


















v∗ar

v∗br

v∗cr

v∗as

v∗bs

v∗cs

v∗at

v∗bt

v∗ct



















. (A28)
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