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Abstract: There has been growing interest in using permanent magnet synchronous motors (PMSMs)
for pumping applications to improve energy efficiency. One promising approach for powering
these motors in variable speed applications is using modular multilevel cascaded converters based
on a Triple-Star Bridge Cell (M3C) due to their inherent fault tolerance capability. However, M3C
converters require a more complex control system than simpler converters. For instance, A basic
M3C control system for power transmission requires seventeen (17) PI controllers, whose adjustment
depends on the M3C’s dynamical model parameters’ value knowledge needing extensive and
time-consuming testing to obtain them. To solve this control system issue, we propose an adaptive
M3C control system for variable speed drives powering multiple PMSM-driven centrifugal pumps
that reduces the number of controllers to six (6). Furthermore, the proposal does not require
knowledge of the converter, motor, or load parameters, making it more practical and versatile.
The proposal introduces an ad-hoc hybrid passivity-based model reference adaptive controller in
cascade with a passivity-based control. It has been validated through theoretical stability proof and
comparative simulation results with a basic control system under normal and fault operations. As
a result, the proposal effectively follows the required rotor speed while enhancing performance by
decreasing the current consumption and recovering from a 10% input phase imbalance, a cell short
circuit, and an open cell.

Keywords: M3C control; adaptive control; PMSM; model reference adaptive control; adaptive
passivity-based control

1. Introduction

In recent years, a growing emphasis has been on utilizing permanent magnet synchronous motors
(PMSM) to enhance energy efficiency in pumping applications [1]. Compared to traditional induction
motors (IM), PMSM motors have demonstrated superior efficiency, as evidenced by [1, Figure 3]. The
work [2] proposes customizing PMSM design for this application, while [3,4] study a variable speed
PMSM for water pumps powered by AC-AC converter fed by photovoltaic panels. The works [3,4]
use a two-level voltage source inverter controlled by model reference adaptive control (MRAC).

However, the work [5] proposes several fault-tolerant multilevel converters. In this sense, the use
of modular multilevel cascaded converter (MMCC) obtained popularity due to its many benefits, such
as redundancy, high efficiency, robustness, lower output voltage TDH, and low maintenance [6-8].
Among these converters, the triple-star bridge cells (M3C) topology is particularly noteworthy. M3C
employs smaller floating capacitors [6,9].

What sets M3C apart is its inherent fault tolerance characteristics, allowing it to continue
proper operations even after having a power supply phase imbalance or a power cell failure [6,9]. It
ensures energy balancing with low impact on the output currents [9]. Furthermore, it reduces current
harmonics, enhances power factor and efficiency, [6,8,10], eliminates voltage fluctuations and ensures
optimal operation at low output frequencies [11,12]. There are even several studies that propose fault
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detection and control under fault of M3C [13-15]. This manuscript focuses on controlling fault-tolerant
M3C-based variable speed drive for PMSM-driven centrifugal pumps.

Figure 1 shows a commonly used M3C. It has modularity, the ability to reach high-voltage levels,
power quality, bidirectional power conversion, and redundancy [16,17]. It has nine clusters (three
per phase) that link the input phases (a, b, c¢) with the output phases (z, s, t), each consisting of three
cells. Additionally, each cell has a full-bridge monophasic inverter. It has been widely utilized [18];
examples are to inject wind energy into an electrical network [17,19], and feed general loads [20].

Cell
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i ij measured cluster current
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Figure 1. Basic power topology of an M3C for transferring energy between the power supply and the
load, which is based on [6,9,19,21,22].

However, while having these fault-tolerant capabilities, controlling M3C is complex compared to
simpler converters. Figure 2 describes how the control system of an M3C involves:

*  Complex managing feedback signals that rearrange nine-dimensional measurement vectors i;j,
Vcij, into matrixes form to work with variables at the intricate coordinate system called 2af7,
and later rearrange them back to their vector form to allow the control [9,22,23].

¢  Controlling the average capacitor voltage (ACV) Vg in cascade with the input currents
amplitude I, control, through the required input voltage o7, _ ;.

¢  Keeping zero imbalance of the cluster capacitor voltage (CCV) in cascade with the circulating
current i control via the needed cluster voltage v7;. It considers reducing to zero the Inter-CCV
imbalances (CCV imbalance among clusters of different Sub-Converters) and the Intra-CCV
imbalances (CCV imbalance among clusters inside the same Sub-Converters).

¢ Controlling a required output variable by adjusting the output voltage v} , ., amplitude and

frequency.

The control diagram of Figure 2 uses Park transform P [24], af+y transform C [22], doble a Sy
transform CXCT of different matrix variables X [22], and the combined components transformation
matrix Cp [25]. Furthermore, the local cell balancing (LCB) and modulation block may use a
phase-shifted (PS) pulse-wide modulation (PWM) technique [12,26], a space vector modulation (SVM)


https://doi.org/10.20944/preprints202308.0302.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2023 doi:10.20944/preprints202308.0302.v1

3 0f 30

[27] or Predictive Control [11,21]. This manuscript controls an M3C with the most extensively used
PS-PWM [6].

Regarding the controllers, the works [17,21,25,28,29] consider M3C has several single-input and
single-output (SISO) subsystems and use Proportional Integer (PI) controllers for all variables except
for the circulating current. Most reported control strategies for the circulating current regulation are
based on a simple P controller [17,25,28]. However, some authors use a P-resonant (PR) controller
[21,29] as described in [6]. As a result, there are thirteen (13) PI controllers and four (4) PR or P
controllers. One (1) PI regulates the ACV direct component in cascade with two (2) PIs for the input
current amplitude direct and quadrature components. Eight (8) PIs aim to reduce the CCV imbalance
in cascade with four (4) PR or P circulating current controllers. Finally, two (2) PIs regulate the load
output current amplitude direct and quadrature components for energy transfer applications between
the power supply and the load [6].
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Figure 2. Basic control system of an M3C for transferring energy between the power supply and the
load, which is based on [6,17,22,29].

The M3C has also been powering electrical motors with an output control strategy that differs
from the one shown in Figure 2 and uses a speed control loop. The works [12,22,30] power IMs with an
M3C, while [26] drives PMSMs. However, [12,22,26,30] do not describe the used output control strategy.
In contrast, [31, Figure 3 (a)] clearly identifies a field-oriented control (FOC) strategy for an MMCC
converter feeding IMs. Moreover, it presents multiple-input and multiple-output (MIMO) controllers,
significantly reducing the number of controllers. All control systems proposed in [12,22,26,30,31]
require knowledge of the plant parameters for their adjustment, which is typically obtained through
extensive and time-consuming testing.

To overcome this issue and as the main contribution, this manuscript proposes a MIMO adaptive
control of an M3C-based variable speed drive. It operates multiple PMSM-driven centrifugal pumps
using a scalar control scheme (V' / f) [32] for the output control, as FOC is unnecessary in pumping
applications. Our proposal involves the following novelties:
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1. Obtaining the multivariable M3C state-space model for control. It is a MIMO dynamical system
with a currents inner loop, a voltages outer loop, and an inner-outer interface. Appendix A of
this manuscript details the model obtaining, which complements, describes, rearranges, and
summarizes elements taken from [6,22,23,33]. In contrast to [6,22,23,33], herein we give details
for control implementation, such as the matrix and vector operations (please see, for instance, the
Managing feedback signals details given in Figure 2), and identify the state-space model form

with inner and outer loops.

2. Using MIMO adaptive controllers instead of non-adaptive SISO controllers [17,21,25,28,29,31].
We show it is a viable and more straightforward solution. The proposal gains the benefits
discussed in [31] of reducing the number of controllers by using a MIMO approach for an MMCC
but herein for the M3C. In contrast to the works [17,21,25,28,29,31], tuning adaptive controllers
does not require plant parameters knowledge, decreasing the commissioning time. Moreover,
they adapt to plant changes without compromising their effectiveness.

3. Proposing a passivity-based hybrid MRAC called PBMRAC. In contrast to [3,4,34], it uses the
MRAC as a low-pass filter for the noisy reference input signals. Moreover, PBMRAC introduces to
MRAC a term of an adaptive passivity-based controller (APBC) [35] to attend to the closed-loop
system response time. M3C control particularly needs it after having inner reference input noise
periods more than sixty times distant from the M3C inner time constant.

4. Presenting APBC in cascade with PBMRAC. It expands the Cascade MRAC [36] and the cascade
APBC [37]. The first uses an outer SISO controller, whereas the M3C outer loop requires a MIMO
controller. Moreover, as Figure 2 shows, the M3C has zero or constant outer references eliminating
the need for the outer reference model; therefore, an outer APBC [37] ensures a faster outer loop’s
time response.

The following manuscript sections describe the control preliminaries in Section 2. Section 3 details
the proposed adaptive control algorithm. Section 4 exhibits the experimental setup and obtained
results illustrating the proposal’s effectiveness. Finally, the Authors present concluding remarks in
Section 5.

2. Preliminaries

This section commences by introducing the M3C state-space dynamical model. Subsequently, it
presents the conventional PI tuning methods. Finally, it gives the requisite background information of
the cascade MRAC to be extended with the proposal.

2.1. M3C State-Space Model

The M3C state-space model obtaining is detailed in Appendix A, resulting in the equations (A7)
and (A13). The following dynamical equations describe it:

2a 3y Currents Inner Loop

Iin_a(t) = — ?Vm_d (t) + Ajy_ar (£), Input current amplitude
icir_a(t) = —10a(t), Circulating alternating current 1)
Lout—c1(t) = =1 Vour—a1 (£) + Bous—al (1), Output current amplitude

2x 7y Inner-Outer Interface

ILin—cl(t) = [ILin—cl_d(t) O]T
_ -1
icirfcl(t> = C51 {Trl PI(D(:outl ‘| IcirZ(t>} ’ (2)

~

Icirl (t) +

m
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203y Voltages Outer Loop
- Vaog (t .
Veaog (t) = ﬁlun,d_d(t) + Aaog(t), ACV amplitude
. . T : .
Veintra(t) = \Ygg’eﬂ((:))v* Tyl () + Aintrac,, (t), Intra-CCV imbalance amplitude (3)
C
Veinter (t) = %Icirz(t) + Niner (1), Inter-CCV imbalance amplitude
c

where in the inner loop, the output variables to control are the amplitudes of the input and output
cluster currents I;,_ € #2*! and I,,;_o € R?*!, and the instantaneous circulating current ic;, . €
R4*1. Here, the input variables are the amplitudes of the input and output voltages V;,_, € R2*!
and V,,;_ € R?2*1, and the instantaneous cluster voltage v, € R**!. The parameter is the coupling
inductors inductance L. Finally, the time-varying and bounded disturbance terms for the input are
Ain—ci (t) = %ein (t)Vin_rated € ®¥! and Aout—ci (t) = = %Etmtu) Vout_mted e R>*! for the output
currents, where €;,(t) and €,,¢(t) are rated voltages fluctuations.

For the outer loop, the output variables are the ACV V¢4, € %, the intra-CCV imbalance
Veintra € 41, and the inter-CCV imbalance Vijy, € R**!. The input variables are the amplitudes
of the cluster input direct component I;, . 4 € R, and the circulating currents I;,; € R**! and
Liyp € R**1. There are also time-varying bounded disturbance terms Anpg(t) € R, Ai”thD (t) € R,

and Ajyzer(t) € R Finally, the fixed parameters are the cells capacitor capacitance C and required
capacitor voltage Vi € R; while the time-varying parameters are the cluster voltages amplitudes
Vintra(t) € RYY, Vipger () € RYY, Viog (t) € R, and the capacitor voltage fluctuations e(#).

The inner-outer interface links the direct component of the line input cluster current Ir;,_.; 4 with
the input cluster current I;;, ;. Moreover, it relates the circulating current amplitudes I.;,; and I ;»
with the instantaneous circulating current i;,_, after using the auxiliary transformation matrix Cp
[25] and the Park transformation matrix P [24] with the corresponding input 6;, and output 8,,; angles
dependence. Please see Appendix A and Figure 2 for details.

Regarding the operating points in this 2a 5y coordinate, the outer loops consider an ACV setpoint
of Ve = 3V¢ [22, Definition given bellow Equation (26)], working at zero intra-CCV Imbalance

VC*inthD = 0 and zero inter-CCV Imbalance V(... = 0 [18]. Moreover, the output current reference
wouldbe I, , = sqr;(S) Iout for applications of energy transference between the power supply and

the load [6, Equation (24)].
The following section describes the PI controllers design for the M3C converter.

2.2. Basic Control Based PI Controllers

PI controllers design starts by assuming that plant parameters are constant, thus €;,,(t) = €,ut(t) =
€(t) = 1. Later, the method splits every equation (1) to (3) in scalar subsystems having each one the
general form y(f) = b-u(t) + 6(t). Here, y(t) € R is the output variable, u(t) € R is the input, b
represents the fixed subsystems parameter, and J(t) is the disturbance.

Then, Laplace transform is applied obtaining Y (S) = (%) (U(S) +b~1A(S), not including the
circulating current working in alternating current. Here, the corresponding open-loop transfer function
is FTp4(S) = g, after neglecting the disturbance term, i.e., A(S) = 0.

After considering the PI transfer function (K, + %) acting in series with the FT 4, the feed
forward transfer functionis G(S) = (K, + %) (%) Later, considering the feedback transfer function
H(S), you may obtain the following closed-loop transfer function as [38]:

G(S) Kpb - S+ Kib 28w, S + wi

FTic = = = 4
KCTTYG(S)H(S)  SP+Kyb-S+K b S2+2FwaS+wl’ @

where ¢ is the damping coefficient, and wj, is the natural frequencies in rad/s.
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The feedback sensor transfer function H(S) is often considered a unitary gain. Moreover, we can
identify in (4) the equivalence terms 2{w;, = K,b and w2 = K;b, between the general second-order
equation of the right side and the obtained result of the center side. It allows adjusting the PI controllers
as follows:

K,,:Z“fl‘:’”, K= 2. ®)
To tune all PI controllers based on (5), ¢ = g is usually considered [38, Section (5-3)]. However,

there are different values of b, w;,, and PI quantities for the distinct controlled variables, as Table 1
shows. Two (2) identical PI regulates the input and output current amplitude components d and g

with b = —?, as described in (1) and (A7). One (1) PI controls the ACV with b = ;g;’f as can be

=
C

T
seen in (3) and (A14). Four (4) PIs control the intra-CCV imbalance, where Vj,, = Vi, [1 1 1 1}

T

. V.
from (A14); thus, all components of the vector Vj,;,, of are equal V;;, , having the same b = \[ég%'

Finally, also four (4) PI controls the inter-CCV imbalance. However, these have different values of b as

T
described in Table 1, due to Vj,;, = [_Vout,x Vouts  Vin, Vina} from (A14).

Table 1. Values of b and w,, for each controller.

Controller b Wy PI Quantity
Input Current — ? 27( fin) 2
Amplitude Control dq
ACV Control d 3‘2—% 27 (1 Hz) 1
Ving
Intra-CCV Imbalance Jecve 27t (5 Hz) 4
Control
Vou o
Inter-CCV Imbalance 7 Ctv* 27 (5 Hz) 1
Control ay ¢
Vouta
Inter-CCV Imbalance J3CVE 27t (5 Hz) 1
Control By
Inter-CCV Imbalance \/‘g‘(’;;* 27t (5 Hz) 2
Control yaB ¢

The alternating circulating current controller often considers four (4) P controllers adjusted as in
(5) buta k; = 0[23], and our case b = —% and wy, = 271(10fout).

Finally, for applications of energy transference between the power supply and the load [6,17,22,
29], the output current amplitude control dg would have two PI controllers adjusted as in (5) and
considering b = f% and wy, = 27(fout)-

Remark 1. It is imperative to know the plant parameters value to adjust the PI controllers, as can be seen
in equation (5) and Table 1. This knowledge is usually obtained through extensive testing, which can be
time-consuming. It's also crucial for the controllers to handle plant changes without compromising their
effectiveness.
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Finally, the output controller must be adjusted as we study pumping applications. Thus, the
following P controller called scalar control scheme (V/ f) is commonly used for a two-level voltage
source inverter feeding PMSD-driven centrifugal pumps [32, Equation (1)]:

0 for 0 < wy < Wy min
. V. d Vi
Vo*utfcl_d = q Py + \[Vboostr with P, = \ﬁ( ws,jzt;d - cgiiit) for wy_yin < wr < wy . (6)
v,
Pw}, with P, = /2 2 e Zté‘; for wy ¢ < wr < Wy yated

Here, V; ;414 is the rated phase voltage from the motor data plate. w, .44 is the motor-rated rotor
speed in rad/s. The Vj,g is a controller bias or offset (with a value up to 50% of V; 44 allowing the
PMSM to deliver a certain amount of starting torque. The V.5 operates from minimum frequency
Wy min (With a value up to 6% of w, ,44 to the cut-frequency w; . (with a value up to 50% of w; ,44e4)
[32].

Remark 2. In order to attain the desired rotor angular frequency w; with a ramp-up, a two-level voltage source
inverter necessitates a phase stator voltage amplitude of V! ., = [V, 4 0]". However, the output voltage
required for the M3C is in double a7y coordinates, utilizing a Power invariant transformation in lieu of Clarke’s
transformation that preserves the amplitude [39]. This paper proposes utilizing equation (6) [32, Equation (1)]
in conjunction with the subsequent equation:

o*utfcl = \@[Vo*utfcl_d O]T (7)

The following section will give an overview of an adaptive controller that can maintain optimal
performance while adapting to plant changes without requiring knowledge of plant parameters.

2.3. Cascade Adaptive Control Background

M3C modeled as (1) to (3) needs a cascade control system and the following cascade MRAC [36,
Equations (14) - (22)] ensures the outputs i, and y; tracks the references y; and y;:

Yro(t) = —amym( )+ broya (t), Outer reference model
up(t) = —0,(t) wo(t), Outer adaptive control law
wy(t) = {yo( ) fo(u; Ly;) yj(t)r, MRAC outer information vector 8)
0o(t)T = —(sign(by)eo(t)wo(t)T + 08, (t)T)T,,  Outer adaptive law for MRAC
0:(t)T = [bo’l(t)am by (t)a, —bo’l(t)bm} , Ideal outer MRAC parameter
yi(t) = fi(uo(t)), Inner-outer loop interface )
Yri(t) = —Auy,i(t) + Byyi(t), Inner reference model
ui(t) = —0;()Tw;(t), Inner adaptive control law
w;(t) = {yi(t)T 1L it )T} MRAC inner information vector (10)
0;(t)T = —(sign(B;)e;(t ) {(HT +0:0;(1)T)I;,  Inner adaptive law for MRAC
0; ()T = {Bi_lAri B 'Ai(t) —B; 1Br1-} . Ideal inner MRAC parameter

Here, the outer tracking error is e,(f) = y(t) — yo(t) € R and the inner tracking error is
ei(t) = yyi(t) — yi(t) € R™. The variables y,(t) € R, y,;(t) € R™ are the outer and inner reference
model outputs. The set point are y;(t) € R and y;(t) € R"™. The reference model parameters are
aro, by € Rand A,;, B,; € R (m>xm—Diagonal) pyade equal (4,0 = by, and A,; = B,;) for an exact set point
tracking without scaling. The adaptive external and internal controllers u,(t) €  and u;(t) € R™
depends on their adaptive parameters 6,(t) € R° and 6;(t) € R("*3 and their corresponding
information vectors w, (t) € N3 and w;(t) € N3 The ideal adaptive parameters are 0} (t) € %> and
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0 (t) € R(mx3m) The term 1,, € R™ refers to a vector with all its components equal to one. Besides the
model reference parameters, the cascade MRAC has the following tuning parameters: adaptive law
fixed-gains T, € R(G*3-Diagonal) and T; ¢ RGmx3m-Diagonal) and adaptive law modification factors
0, € Rando; € S (3mx3m—Diagonal)

Cascade MRAC (8)-(10) applies to time-varying cascade systems of the following form [36,
Equations (11)-(13)]:

Yi(t) = Ai(t) + Bi(t) - ui(t), Inner loop
yi(t) = fr(uo(t)), Inner-outer interface (11)
Yo(t) = ao(t) fo(u; Lyi) + bo(t) - uo(t), Outer loop

where y,(t) € R and y;(t) € R™ are the outer and inner output variables, respectively. The inputs
are u,(t) € R for the outer loop and u;(t) € R™ for the inner loop. Moreover, a,(t),b,(f) € R
and A;(t), B;(t) € R™*™ are time-varying plant parameters, where B;(t) = |B;(t)|Sign(B;(t)) and
bo(t) = |bo(t)|Sign(by(t)) with |B;(t)| and |by(t)| the modulus of each element of B;(t) and by (t).

Remark 3. It is important to note that the cascade MRAC (8)-(10) uses an outer SISO controller, whereas the
M3C outer loop (3) requires a MIMO controller. Additionally, Figure 2 shows that M3C has zero or constant
outer references, eliminating the need for the outer reference model of (8), which would slow down the outer loop’s
time response. Finally, the inner control loop receives noisy reference input signals with certain switching noise
periods. Although the inner referenice model of (10) could filter these signals, it would disregard the required
inner loop response time, failing to ensure both needs.

These issues are solved by the controller proposed in the following section.

3. Proposal

This section proposes an adaptive controller for the following system that encompasses the M3C
state-space model (1)-(3):

yi(t) = Bi(t)u;(t) + Ai(t), Inner loop
yi(t) = fi(uo(t)), Inner-outer interface (12)
Yo(t) = Bo(t)uo(t) + Do(t), Outer loop

where y,(t) € R" and y;(t) € R™ are the outer and inner output variables, respectively. The
outer control input is u,(t) € R" and the inner is u;(f) € R™. Moreover, By(t) € R"" and
B;(t) € R™*"™ are time-varying and unknown plant parameters, where B;(t) = |B;(t)|Sign(B;(t)) and
By(t) = |Bo(t)|Sign(By(t)). Here, the matrix |B;(t)| and |By(t)| are compose by the modulus of each
element of B;(t) and By(t) and are unknown. Furthermore, the matrix Sign(B;(t)) and Sign(By(t)) are
compose by the sign of each element of B;(t) and By(t) and are known. The known interface nonlinear
function is f; € R™*". Finally, A;(t) and A,(t) are the inner and outer bounded and unknown
disturbances, respectively.

The following Theorem describes the proposal:

Theorem 1. For systems of the form (12), the following adaptive controller ensures the outputs y, and y; tends
to the constant references y; and y7 , respectively:

uo(t) = =0, (1) Two(t), Outer control law
wy(f) = {Ag_b t)T] ' with ul) (t) = K,V'V,,(t), APBC outer information vector 13)
6o ()T = —(sign(bo) V' Ve, (t)wo ()T + 006, (£)T)T,, APBC outer adaptive law
0:()T = |By1(t) By l(t )} Ideal outer APBC parameter
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yi(t) = fi(uo(t)), Inner-outer loop interface (14)
Uri(t) = —Ayiyyi(t) + By (t), Inner reference model
ui(t) = —0;()Tw;(t), Inner control law based

T
wi(t) = { OEHG Az‘T_b uf (t)T} , PBMRAC inner inform. vector (15)
with u P(t) = KiV Ve (1),

0:()T = —(sign(B;)VV,.(Hw;(H)T + o:0;() 1T, PBMRAC inner adaptive law
0: ()T = {B;lAm' —B;lB,i Bi’l} . Ideal inner PBMRAC parameter

Here, the outer tracking error is e,(t) = yro(t) — yo(t) € R" and the inner tracking error is e;(t) =
Yyi(t) —yi(t) € R™. The variables y,,(t) € R" and y,;(t) € R™ are the outer and inner reference model
outputs, respectively. The set points are y;(t) € R" and y*(t) € R"™. The inner and outer controllers
uo(t) € R" and u;(t) € R™ depends on their adaptive parameters 0,(t) € R"*2" and 9;(t) € R(m*3m)
and their corresponding information vectors w,(t) € R*" and w;(t) € R¥". The unknown ideal adaptive
parameters are defined as 07 (t) € R"*>" and 0; (t) € ROmx3m) - Moreover, Ve, (t) and Ve, (t) are Lyapunov-type
energy terms.

Following, the adaptive controller tuning parameters settings are described. The outer APBC loop tunes
the outer PB gain as K, = 5%551" I, € R{nxn—Diagonal) yphere 5T is the process required stabilization time [32].
The adaptive law modification term is 0, = 8301, € RU*1=Disgenal) depending on the identity matrix I, of
order n. The adaptive law fixed-gain is T, € R(Z1*21=Diagonal) - Moreover, the fine-tuning scalar factors are
0 < wp1p, o1 < 10and 0 < d1y, 620 < 10, withl =1,2,3,...,n [36, Theorem 1]. Finally, APBC adjusts the
adaptive law fixed-gain [32, Equation (11)] as follows:

P P
. App Ao1nBon_p %21ty p &oanthy, p
I'O:Dla 01170 vl 7 e T — (16
g 1-"_Aol b 1+Aon b 1+u017b2 1+u0n?b2 )

The inner PBMRAC loop adjusts the model reference parameter as A,; = f"%@‘s“ln € R(nxn—Diagonal),
The PB gain K; is computed as (A,; + K;) = 15K, (over fifteen times faster than the outer loop), and the
adaptive law modification terms o; = 0p;I;, € g (mxm—Diagonal) Hope () < §y;,8,; < 10 are fine-tuning scalar
adjusting factors, toguether with 0 < a1y, ajpy, K31, ®igy < 10 where | = 1,2,3, ..., n. Finally, the adaptive law
fixed-gain T; € R(@mx2m=Diagonal) js adjysted via the following equation [36, Theorem 1]:

I: = Dia q Xi11Yi1 b XnYinp %21V p XY} b
= S, AR . 5
I+yinp +Yin_p ) +yy , 14y, (17)
a;31841 AjzpDin p  Ris1My YidnUiy p
3 .. 3 — L
1487, LAz, T (T

Following is the Theorem Proof.

Proof of Theorem 1. As a result of applying the adaptive controllers (13) and (15) to the corresponding
dynamical equation of (11), we obtain the closed-loop dynamical error equations whose require
verification of their stability.

In detail, the term u} (t) is added and subtracted to the right side of the outer loop equation of (11).
The outer control law of (13) is then applied, the outer tracking error definition e, (t) = i (¢) — y;(t)
considered, and the terms regrouped conveniently. In regards to the inner loop, we subtract the
inner reference model of (15) from the inner loop equation of (11). Later, we add and subtract the

term A,;y;(t) to the right side and consider the inner tracking error definition e;(t) = y,;(t) — y;(t).
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Moreover, we apply the inner control law of (15) and regroup terms. As a result, the following control
error dynamical equations is obtained:

éo(t) = ”g(t) - BO(t)pr(t)T‘UO(t)r

6i(t) = —Aner(t) + () — Bi(B)gr () Twi (1), (18)

where ¢o(1)T = 6,(t)T — 0;(1)T and ¢;(t)T = 6;(t)T — 07 (t)T are the adaptive parameters errors.
Obtaining now the first-time derivative of ¢,(t)” and ¢;(t)”, considering the definitions given in
Theorem 1 for 6,(t)T, 0 ()T, 6;(t)T, and 6; ()T, these errors dynamical equations give:

¢0(t)T = —(sign(B,) V'V, (t)wo(t)T + UOQO(t)T)Fo - ég(t)T/

¢i(t)T = —(sign(B;)VV,,(H)w;(t)T 4+ 0:6;(t)T)T; — 07 (1) 7. (19)

These closed-loop dynamical error equations (18) and (19) have the following associated Lyapunov
function:

V(e e0, i, do) = Ve, + Vey + Trace(L|Bi|oTT  7) + L[bo|¢I Ty ho. (20)

Taking the first-time derivative of (20), considering the derivative property of the product in the trace,
and replacing the control errors dynamical equations (18), we obtain:

V(ei, ey, i, ¢70) = *VVET;A,’{EZ' — VV(IM:] + VV(};BI¢I»TCUI‘ — VVeZug + VVeZB(,(poTwo

. . 21

FTrace([BIG T} 90) + [Bal6] T3 9o @

Moreover, using the vector property a’b = Trace(ab’), we can rewrite the following
term (VV[]B,)(¢plw,) = Trace((BIVV,,)(wl¢o)). Moreover, we can also re express the term

(VVIB) (9] w;) = Trace((B] VV,,)(w]¢;)). Finally, considering that B, = |B,|Sign(By) and B; =
BT = |B;(t)|Sign(B;(t)) (due to B; is diagonal), it gives the following expression:
V(ei/ €o, ¢i/ 470) - VVEI{A”‘EI' — Vve?uf — vajl;ug
+Trace(|Bi[sign(B;) V'Ve, ) (] ;) + |Bi|6] T ¢) )
+Trace(|Bo |sign(Bo)V Ve, ) (wl¢o)) + |Bo |9 Ty 1po).

Here, replacing the control parameters errors dynamical equation (19), canceling terms, and taking
into account the expressions 0,(t)T = ¢, ()T +6;(t)T and 6;()T = ¢;(t)T + 07 (+)T, the Lyapunov
function first-time derivative becomes:

V(Ei, ey, i, (Po,) = —vngriei — VVETMZP — VVefug
—Trace(|B;|oip] i) — Trace(|Bo|oody go)
—Trace(|B;|oi6F" ¢;) — Tmce(|Bi|9'l’-"T1“i_1
—Trace(|Bo|006;‘T4>o) - Tmce(!Bo|9(’,‘TF0’1.

(23)

Here, we have that A,;, |B;|, 0;, |B,|, and 0, are positives; therefore the first five terms of (23) are
negatives. However, although the terms I'; and I', are also positives, there is nothing we can say about
the sign of the last fourth terms of (23) at first sight. Therefore, we re-express equation (23) using some
modulus and norm properties.

Using the Frobenius norm definition and the Cauchy-Schwarz inequality, we have that
|Trace(ABC)| < ||A|lel|BllElIC|lF [40, Section 11.2.2]. Moreover, considering a positive A,
Trace(ABTB) = |Trace(ABTB)| < ||Allp||B||3. Therefore, the following terms become
—Trace((|Biloy) ¢ ¢1) < —[|(|Bilev)[lell¢ill} ~ and —Trace((|Boloo) s o) < —II(|Boloo) £
|| Also, the last fourth terms fulfill —Trace(|Bi|c30; ¢;) < — || (|Biloy) | 1167 1|l il .
—Trace(|Bolood;' go) < —|[(1Bolw) 165" IFlIgollr,  —Trace(|Bil6; T s) < —|I(1B)lle

. _ .. T _ . _ . .
167 1 llpill T I, and —Trace(|Bol6; Ty o) < —[[(IBo|)IIE 165 11E I ¢ollElIT || Finally, using the
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property 2ab < a® + b? [40, Section 11.2.2], and conveniently adding the term 2 to the right side of
equation (23), the Lyapunov function first-time derivative (23) becomes:

V(ei,e0, 9, o, ) = =V VI Avie; = VYV u] = VV[]ug
+r? — ||(|TBi|(Tz')||FH<Pi||12r - ||(|Bo|¢To)HF||<PToH12:
— 31 (IBilei) lE 107 117 + IillF) — 311 (1Boloo) E11(6; 17 + llgollF)
=3 IABDIEE; 12 + 1o I IT E = 31 UBDIEE5 17 + o B ITS I E,

(24)

where the plant parameters and their first-time derivatives are bounded. Therefore, V < —VVelTuf -
VVefug and closed-loop dynamical error equations (18) and (19) are passive outside the region ). This
last, is the following instability hyper elliptical paraboloid that is compact, closed, and includes the
origin:

Q= [I(Bilo)llelleillz  + 1 (Boleo)llE ol
+3 1 (Bilen) el (67 117 + U@II%) + 311 (1Boloo) 111 (6 17 + liol|7) (25)
2N UBDIENOFIE + Mol DIT I + 2B N6511F + o IE)ITS ] < 72

Furthermore, substituting into (25), the terms u}, (t) = K,V'V,, (t) and u! (t) = K;VV,,(t) defined
in (13) and (15), and using Lyapunov’s second method, we can conclude that the closed-loop dynamical
error equations (18) and (19) are bounded outside (). Suppose the errors are as minor as possible,
resulting in V > 0 within the instability compact and closed region ), including the origin. In that
case, they will be pushed back to a stable boundary. In practice, the values of ¢;,0,, I';, and I', are
chosen so the permanent errors are the possible lowest.

Thus, e;(t), e, (t), ¢i(t), and ¢, (t) are bounded outside (), i.e., e;(t), e, (t), ¢i(t), Po(t) € L* outside
Q. Since ¢;(t) = y;(t) — vy and eo(t) = yo(t) — yro are bounded, it implies that y;(t) and y,(t) are
bounded, as y,;,y; and y,, y;; are bounded references. Moreover, ¢;(t) and ¢,(t) are bounded, and
we have bounded plant parameters, then the adaptive parameters 6;(t) and 6, (t) are bounded, since
0:(t)T = ¢; ()T + 0 ()T and 0,(t)T = ¢o(t)T + 05 (#)T. Having all these bounded signals outside Q,
and that V, e(t), ¢(t) € L, from (18) and (19), we have that é;(t), é,(t), ¢i(t), po(t) € L. Integrating
both sides of V (e;, eg, ¢i, ¢o, ) in the interval (0, o0), it gives

V(e0) =V (0) = [57(=VV[I Asje; = VVIK;VV,, (t) = VVIK,VV,,(t)
+r2 = ||(|TBi|‘7i)||FH4’i||% - ||(|Bo|ao>\|p||¢Toll%
=3l (Bilon) I (65 117 + 19il12) — 311(1Bolow) 11 (65 (17 + liollZ)
=3B IS IF + NI e = 311 (BoD IO 117 + igoIF)ITS M E) dr.

As V is bounded outside (), from the right-hand side of this last equation; we have that e(t) € L2
outside Q). Furthermore, as e;(t),é;(t) € L* and ¢;(t) € L?, and e,(t),é,(t) € L™ and eg(t) € L?,
all outside (), using Barbalat’'s Lemma [34, Section 4.5.2] we have that ¢;(t) and ¢,(t), both tend
asymptotically to zero outside Q). Hence, y;(t) — y; and y,(t) — y; outside Q). We do not ensure
parameter convergence. This concludes the proof. O

(26)

The following section applies the proposed controller to the M3C converter and describes the
obtained results.

4. Simulation Results

This section applies the proposed control system shown in Figure 2 to the power topology of
Figure 1 with three cells per cluster. It runs on a personal computer, in PLECS 4.7.2. The modeling
settings are solver RADAU with variable-step, using a relative tolerance of 1 x 1073.

The M3C load corresponds to four equal PMSMs electrically connected in parallel and moving a
centrifugal pump each. Table 2 shows the motor-pump parameters.
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Table 2. Motor-pump parameters.
Parameter Value Parameter Value
Prated 644 [W] Trated 4.1 [N-m]
%jated 165 [V] Is?rated 2.65 [A]
fe 75 [Hz] fr 0.95
P 3 (O] 0.305 [Wb]
wy 157.08[rad /s] T 0.0036 [Nms?]
R, 6.2 [Q] J1oad 0.0108 [Nms?]
Ly 25.025 [mH] Kiond 93.053 -10~° [Kg m?]
Lg 40.17 [mH] Ty 0.41 [N-m]

Here, V; ;4teq and Is 4404 are the rated stator voltage and current of the PMSM, respectively. The
power factor is f, and f, is the electric required frequency of the PMSM for it to run at rated speed. P
is the number of pole pairs and w, is the PMSM rated speed. The PMSM-rated torque and power are
Trated and Prgy4, respectively. Moreover, R, Ly and L, are the resistance and inductance of the motor,
@ is the magnetic flux induced by the motor magnets, J,; is the motor inertia, Jj ;4 is the inertia of
the load. On the other hand, the load parameters are the initial load torque Ty are zero speed and the
constant Kj,,4, characterizing the pump model equation Tr,,7 = Kjpaq - w? + Ty.

The M3C is designed to power these PMSMs-driven centrifugal pumps, having the same P, ;4.
Table 3 presents the plate data and parameters value of the M3C.

Table 3. Plate data and parameters value of the M3C.

Parameter Value Parameter Value
Prated 644 [W] Ve 1500 [V]
Vin_mted 220 [V] Vout_mted 165 [V]
fin 50 [Hz] fout 75 [Hz]
Li, 1.5 [mH] L 1.0 [mH]
fsw 10 [KHz] C 3.3 [mF]

The reference capacitor voltage mean value V* is defined based on the M3C input and output rated
voltages Vi, rateq and Voys rareq and the number of cells. Here, V& > 1.2 V2 (Vin_rated + Vout rated),
been divisible by 3 (number of cells per cluster). Therefore, Vs > 1.2 V2 (Vin rated + Vout _rated) =
3-500[V] = 1500[V] > 1.2v/2 - (220[V] +400[V]) > 1052[V].

Moreover, the Power supply has the rated voltage V;;, 4104, the input frequency f;,, and an input
inductance L;;,. The load has the rated voltage V,,; ,4.q4 equals the rated motor voltage V;_rated, and
an output frequency f,,+ equals rated motor frequency f,. Finally, we have the cells with switching
frequency fs, and a capacitance capacitor C. The cluster coupling inductance is L.

The following two control systems are applied to the M3C-based variable speed drive for multiple
PMSM-driven centrifugal pumps for comparison purposes:

Basic Control System [23].

The basic control includes sixteen (16) PI controllers, whose settings are calculated based on the
definitions provided in equation (5) and Table 1:

¢ Input Control:

- One (1) PIs for the 2a 3y ACV Control:

8.485CV % 12m2CV:
Kp_Veag = # = 04241, K;i_Vcgg = @avg C — 1.8843,
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where the constant cluster voltage amplitude is Viyg = Vin, = V2Viy_satea- The output of the ACV
controller is the input cluster line current amplitude direct component reference I}, ;- Here,
the input cluster line current amplitude referenceis I}, ; = [Irin—ci a O] T and is controlled by
the following controllers.

—  Two (2) PIs for the 2a 5y input cluster line current I;;, ., amplitude direct and quadrature
components:

Kp_Tiycta = Kp_lin_e1 o = —% — —81.657L = —0.2567,
_ _ (27rfin)2L _ 27 _
Ki—Iinfcl_d = Ki—linfcl_q = —T = —577351°L = —56.98.
. CCV Imbalance Control.

—  Four (4) PIs for the 2a 57y Intra-CCV Imbalance Control [23, Outer controller of Figure 3]:

14.14271V/6CVE

Kp_Vein = Kp_Verp = Kp_ Voo = Kp_Vegp = =7 = = 11541,
100712y/6CV
Ki_Vcie = Ki_Veip = Ki_Veay = Ki_Veop = % = 25.642.

d

—  Four (4) PIs for the 2a Inter-CCV Imbalance Control [23, Figure 4]:

14.14271/3CV2 14.14271/3CV2

Kp_Veay = — o€ = 06348, Kp_Vep, = ——ytrC = 0.6348,
Kp_Vera = Ky Vg = VIV _ 8161,
lVld
2 *
Ki_Vewy = —% — 141031, K;_Vcp, = M —14.1031,
Ki_Veya = Ki_Veyp = 7100”%‘% = 18.1316,

with the constant voltage Vou, = V2Vyut rated- Both of these controllers are in cascade with the
following controller:

—  Four (4) PIs controllers for the 2a 57 circulating current, considering only a P action [23,
Inner controller of Figure 3]:

Kp_icircfcl_mx = Kp_icircfcl_uc/% = Kp_icircfcl_ﬁrx = Kp_icircfcl_ﬁﬁ
= —V/2V/3(2710 o) = —4242,647TL = —13.3266,
Ki—icircfcl_rm = Ki—icircfcl_aﬁ = Kl‘—iCl'TC7Cl_‘BﬂC = Ki—icircfcl_ﬁﬁ =0.

e Output control.
One (1) P for the 2aBy output voltage amplitude V
% 4 of equation (6) [32, Equation (1)] with (7).

out—cl_

[Voutfclfd O]T, with the

out cl

Adaptive Control System.

The adaptive control system consists of the following six (6) controllers, which are configured
according to the definitions given in equations (13)-(15). These controllers utilize the Lyapunov-type
energy terms V, (t) = lele, and V,,(t) = Lele;. Moreover, all base disturbances A, , and A; j are
computed based on the equations (1) and (3) in a stable state (zero first-time-derivatives), considering

rated values from Table 3 and unitary parameter values (taking the known disturbance portion).
¢ Input Control.
- One (1) APBC (13) for the 2a5y ACV Control, with:

K in—_ci
O—Vthg = 15 0 67
= Diag[0.9649 0.0099], 7, v, =

_4Ppeq
Ao,b,Vcavg 9‘53 = —0.19, K

r Dzag[(

1 1
0_Veag — 1+0.19%) (1+102) ]
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The output of this ACV controller is the input cluster line current amplitude direct component
reference I}, ;. Therefore the inner loop input cluster line current amplitude reference is
I = ULin—cia 0] T, having the following controller:

—  One (1) PBMRAC (15) for the 2a B input cluster line current, and filtering a 2 KHz reference
input noise:

Aviin = Briiin = 20001 = 10015,
Ki_in = Ki_1, 4 (27Tfm)lz Ayi in = (3141.6 — 100) I, = —3041.61,
AI b_in — 3\/>‘/m rated[l 1]T - 9336[1 1}T, O in = 12,

T; i = Diag] 16 16 16 933.6 933.6 16 16 ]
i_in 8 (1+162) (1+162) (1+162) (1+162) (1+933.62) (14+933.62) (1+162) (1+162)

= Diag[0.0623 0.0623 0.0623 0.0623 0.001 0.001 0.099 0.099].

U CCV Imbalance Control.

-  One (1) APBC (13) for the 2a7 intra-CCV imbalance.

AO_b_VCintm = W[l 1 1 1] = —4.23[1 1 1 1] T/
K.
KO—VCintm = MI = 06714/ U-O_VCavg = I4r
1 1 1 Iy
Lo Ve = Dinglirsiey i) (rrazs Grazy) = Dingl0.001 0.001 0.053 0.053).

-  One (1) APBC (13) for the 2aS7y inter-CCV imbalance.

A — _[_ \/ivuutjatedlcirjuted \/Evuutjutedlcirjated \/Evinjatedlcirjated \[zvinjatedlcirjuted]T
0_b_Vcinter V3V V3VE V3V V3V
=77 -77 -6 -6,
Ki
_— = 1
K = #14 =0. 6714, () Vthg 14,
r Dlag[(

7

0_VCinter

= Diag[0.016 0.016 0.027 0.027].

1 1
0_Veinter — 147.72) (147.72) (1+62) (1+62)]

The inner controller is designed as follows

—  One (1) PBMRAC (15) for the 2ap+y circulating cluster current, and filtering a 3.0 KHz
reference input noise:

Arz _circ—cl = Brz _circ—cl = 2773000 Iy = 942514,
Ki cire—ct = Ki_lje_ (Zn(zfout)lzt Ai cire— o = (9424 7 —942.5)I, = —8482.31,,
Ai_b_circfcl =0 Oi_circ—cl = 0, 1qi_circfcl (1+102) = 0.09914.

e Output control.
One (1) P for the output voltage amplitude V¥, , = [Vou—aa 0]7, using the
Vo ol d of equation (6) [32, Equation (1)] joined to (7).

0

The following sections present the comparative results of the M3C feeding the four PMSMs,
each moving a centrifugal pump. The results were obtained with a simulation time of 8 s, under the
following situations are described: normal operation, input phase imbalance, a cluster cell short-circuit,
and an opened cluster cell.

For all cases, the set points in this 2a 7y coordinate are: Vc*ng = 3VC = 4500V, VC*mtm =0, and
D

V& r = 0. Moreover, the reference rotor angular speed w,_rated” =is 0 rad/s between 0 s and 1 s,

Cinter —
having a ramp up reaching w; 4.4 at 5 s and kept constant the remaining time.

4.1. Results Under a Normal Operation

Figure 3 shows the comparative results under a normal operation. Here, we operate with the
rated input and output voltages.
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Figure 3. Comparative results under normal operation, (a) Phase a4 input current, (b) Branch ar CCV,
(c) Controlled 2aBy ACV, (d) Controlled d component of the input current amplitude in 2aB7, (e)
Controlled intra and inter CCV imbalance in 245, (f) Controlled ax component of the circulating
current in 227, (g) Phase r output current, (h) PMSM angular rotor speed.

Figure 3 (a) and (g) demonstrate that the M3C adaptive proposal results in 25 % lower input and
output current consumption (with a reduction of 5 A) compared to the basis control that utilizes PI
controllers. Moreover, the adaptive controllers also exhibit less input current overshoot than the PI
controllers.

Figure 3 (b) shows that the proposed M3C adaptive control has a 64 % less CCV overshoot (with a
70 V reduction) than the basic solution. Both adaptive and basic solutions ensure that the rotor speed
follows the reference, as shown in Figure 3 (h).
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Regarding the directly controlled variables in double-a 3y coordinates, both adaptive and basic
solution also follow the reference. However, the adaptive solution has lower overshoots of ACV in
Figure 3 (c), input current amplitude in Figure 3 (d), intra and inter CCV Imbalance in Figure 3 (e),
circulating current in Figure 3 (f). Moreover the adaptive proposal consumes less input and circulation
currents. As for the basic solution, the adaptive one has a 5 KHz noisy input amplitude in double-a .

4.2. Results Under an Input Phase Imbalance

Figure 4 displays the comparative results under an input phase imbalance. This first fault
considers a drop of 10% of the “a” phase voltage, starting at 3 seconds.

Figure 4 (a) and (g) illustrates that prior to the fault, the M3C adaptive proposal results in 25 %
lower input and output current consumption, with a reduction of 5 A compared to the basis control.
The adaptive controllers also show less input current overshoot than the PI controllers. However,
during the first second after the fault, the basic solution deteriorated while the adaptive approach
recover its better performance faster.

Figure 4 (b) shows that the proposed M3C adaptive control has a 64 % less CCV overshoot (with a
70 V reduction) than the basic solution, similar to Figure 3 (b). However, the basic solution deteriorated
after the fault while the adaptive approach tend to recover its performance.

Figure 4 (h) demonstrates that both the proposal and basic M3C controllers maintain the rotor
speed in line with the reference, similar to Figure 3 (d). This is evident even when a fault occurs at the
second 3, as it does not affect the pumping speed response.

Regarding the variables in double-avy coordinates; again, the adaptive solution has lower
overshoots of ACV in Figure 3 (c), input current amplitude in Figure 3 (d), intra and inter CCV
Imbalance in Figure 3 (e), circulating current in Figure 3 (f). Moreover, the adaptive proposal consumes
less input and circulation currents before the fault. After the fault, the adaptive proposal completely
recover its performance within 2 s in contrast to the basic solution.
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Figure 4. Comparative results under an input voltage imbalance, with a 10% voltage drop in phase a
at 3 seconds, (a) Phase a input current, (b) Branch ar CCV, (c) Controlled 2x5y ACV, (d) Controlled d
component of the input current amplitude in 2a7, (e) Controlled intra and inter CCV imbalance in
2a 7, (f) Controlled ax component of the circulating current in 2a 3+, (g) Phase r output current, (h)
PMSM angular rotor speed.

4.3. Results Under a Cluster Cell Short Circuit

Figure 5 exhibits the comparative results under a cluster cell short circuit. This fault happens in
cell one of the cluster ar at 3 seconds.
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Figure 5. Comparative results under a cluster ar short circuit at 3 seconds, (a) Phase a input current, (b)
Branch ar CCV, (c) Controlled 2a8y ACV, (d) Controlled d component of the input current amplitude
in 2aB, (e) Controlled intra and inter CCV imbalance in 2a7, (f) Controlled aax component of the
circulating current in 2a 7, (g) Phase r output current, (h) PMSM angular rotor speed.

Figure 5 (a) and (g) show that prior to the fault, the M3C adaptive proposal results in 25% lower
input and output current consumption, with a reduction of 5 A compared to the basis control. However,
during the first two seconds after the fault, the basic solution deteriorated and had a 70% increase in
input current consumption, increasing by 35 A compared to the adaptive approach.

Figure 5 (b) shows that the M3C adaptive control method has a 64% reduction in CCV overshoot
compared to the basic solution, reducing 70V. This reduction is similar to the one shown in Figure 3 (b).
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However, the basic solution demonstrates a quicker CCV to recovery after the fault tending towards
the CCV reference of 1500V'.

Figure 5 (h) demonstrates that both the proposal and basic M3C controllers maintain the rotor
speed in line with the reference, similar to Figures 3 (d) and 4 (d). Again. this is observed even after
the fault happens at the second 3, which does not have an impact on the pumping speed’s response.

Regarding the variables in double-ay coordinates; a similar behaviour than shown in 3 is
obtained. The adaptive solution has lower overshoots of ACV in Figure 5 (c), input current amplitude
in Figure 5 (d), intra and inter CCV Imbalance in Figure 5 (e), and circulating current in Figure 5 (f).
After the fault, the adaptive solution completely recover its performance within 2 s; while the basic
solution does not.

4.4. Results Under an Opened Cluster Cell

Figure 6 exhibits the comparative results under an opened cluster cell. This fault occurs in cell
one of the cluster ar at 3 seconds.
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Figure 6. Comparative results under a cluster ar open circuit at 3 seconds, (a) Phase a input current, (b)
Branch ar CCV, (c) Controlled 2a8y ACV, (d) Controlled d component of the input current amplitude
in 2aB, (e) Controlled intra and inter CCV imbalance in 2a7, (f) Controlled aax component of the
circulating current in 2a 7, (g) Phase r output current, (h) PMSM angular rotor speed.

Figure 6 describes a similar behaviour than in previously described faulty situations. However,
both solutions have a lower degradation under this fault.

5. Conclusions

In this study, an adaptive control for an M3C-based variable speed drive powering multiple
PMSM-driven centrifugal pumps was proposed. he study found that the adaptive proposal offers
better performance and fault tolerance compared to the non-adaptive solution. The first step was
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to obtain the multivariable M3C state-space model for control, which allowed for the design and
implementation of novel MIMO adaptive controllers.

Notably, the paper proposed and applied a novel cascade APBC-PBMRAC to the M3C. Simulation
results demonstrate that the proposal and basic M3C controllers ensure the rotor speed follows the
reference, even when a fault occurs. However, the proposal has several advantages over the basic
solution:

1. It reduces the number of non-adaptive PI controllers from thirteen (16) to five (5) MIMO adaptive
controllers.

2. Itis a more straightforward solution that does not require plant parameters knowledge, reducing

commissioning time.

The proposed adaptive control has less overshoots than the basic solution.

4. Additionally, it shows a more stable CCV response (less noisy), as expected due to the
APBC-PBMRAC design.

5. Finally, the basic solution tends to remain degraded after a fault, while the adaptive approach
tends to recover quickly from any studied fault.
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Appendix A

This section starts by describing the M3C state-space dynamical model obtaining.

Appendix A.1. Inner control Loop M3C Dynamical model

The M3C inner loop dynamical model involves the following equation, obtained after applying
Kirchhoff’s voltage law to the power system of Figure 1 [22, Figure 2], [25] and rearranging terms in a
matrix form (for details, please see Appendix A.3):

x-y Voltage-current model [6, Equation (9)]

Uin—xy = Liclfxy + Vel—xy + Yout—xy + UnN—xy, (A1)
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where L is the coupling inductor inductance shown in Figure 1. Moreover, the instantaneous input
phase voltage v;;,, cluster phase current i)y, cluster phase voltage v, output phase voltage
Uout—xy, and neutral voltage v,y - xy are defined as follows:

OUa Up Uc gy iy ey Oar  Opr  Ocr
Uin—xy = |%a Up Uc|, lel—xy = |[las s les| s Ucl—xy = |Vas Ups Ucs| ,
Ua Up Uc lat  dpt et Uat  Upt  Oct

- (A2)

Uy Uy Uy

1 11
Vout—xy = |[Us Us Us|, UuN—xy = |1 1 1},
Ot 0O Ut 1 11

where v, vp, v are the instantaneous phase voltages of the power supply. The instantaneous phase
cluster currents and voltages are i4r, iy, icr, las, Ips, ics, lat, ipts Gt aNd Var, Upy, Ver, Vas, Vps, Ves, Vats Vpts Vet
respectively. Finally, v;, vs, v; are the instantaneous load phase voltages.

For independent control, a double-a B transformation CXCT [22] is applied to (A1). It consists
in multiplying (A1) by the aBy transform C [22] from the left and the right side, with matrix X
representing each phase variable v, vy, ic)—xy, Vel xy, Vout—xy, and vnN_yy. As a result, we have:

Double-x 3y Voltage-current model [6, Equation (18)]

\/gvinfbcﬁ'y = Liél—Za‘By + Ucl—2aBy + \/gvoutfzxﬁ’y + 3UnN721xﬁ7/ (A3)

where the af+y transform C [22], the input phase voltage v;, _24p,, the cluster phase current i¢; 44, the
cluster phase voltage v _24p,, the output phase voltage vo,;—24py, and the neutral voltage v,N—24p,
are following defined:

=
5

V3 23 23 o 0 0 i ipa iy
C=10 2 =2 Vinoapy=1]0 0 0|, igoupy= |lap ipp iop|.
_@ ? @ Ying Ving Uin, loy 18y lyy (A4)
Vs Upy Uy 0 0 vout, 0 0 O
OUcl—208y = |Pap VBB UyB| s Yout—2apy = 00 Youtg | » UnN—2apy = 000
| Vay  Upy Uy 0 0 vout, 0 0 1

Here, vy, Ving, 0in, are the phase voltages of the power supply in double-afy coordinates. The
cluster phase currents and phase voltages in double-a 8y coordinates are i, i Bas lya, iy Bs i BB i,y/g;, ineys
i/;nr, iy and Uy, UBr Vs Vs VpBs VyBr Varys UBrys Vpys respectively. Moreover, vout,, Douty, Vout,, are the
load phase voltages in double-a 57y coordinates.

Based on previous equations (A3) and (A4), the obtained decoupled state-space model for the
input port, circulating currents, and output port is [25, Figure 2], [6, Figure 5]:

Double-x 5y State-space model of instantaneous voltage-current [6, Equations (19)-(21)]

fin—el = — 10in_cl + @vm, Input phase current
fcir—o] = — %vcl, Circulating phase current (A5)
fout—cl = —%Uout—cl — %vout, Output phase current

with the instantaneous input phase voltage v;, having an input frequency w;,;, and the instantaneous
output phase voltage v,,; having an output frequency wy,;. These variables, joined the instantaneous
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cluster phase currents i;,_ ., icjr—ci, lout—c1, and the instantaneous cluster voltages v;,, 1, Ucr, Uout—cls

are defined as:
. in Oing [
Lin—cl = | . 7 s Oin = v: 1 Vin—a = 7 ’
|18y ing OBy

. i i v v
Leip—cl = ilx; iZ;‘| ;7 Ocl = lva; U§Z‘| ’ (A6)
14 4

. i TVout v
|y . ou o o
Lout—cl = i ;;| s Oout = lv ta] » Oout—cl = [U ﬁ‘| .
L Y, ou ﬂ' v,

Finally, multiplying the Park Transformation P [24] from the left by the input and output phase
current equations of (A5), these are converted to their dq coordinates to allow their amplitudes control.
The circulating phase current equation of (A5) remains the same for the control of this instantaneous
variable. Moreover, we consider the input cluster line current control, related to the phase current as
Itin—ci = V3Ii,_g. As a result, the previous model (A5) takes the form:

Double-a 3y Voltage-current state-space model

Iin_q = — ?Vin_d + %Vin/ Input phase current amplitude
icir—e1 = —TVel, Circulating phase current (A7)
Iout—c1 = —%Vout—cl — ? Vout, Output phase current amplitude

where the Park Transformation P, the amplitudes of the input phase voltage V;,,, output phase voltage
Vout, cluster input line current Iy ;, ., cluster output phase current 1,,; ., and cluster phase voltages
Vin—ct, Vout—e1, all in d-q coordinates, are defined as:

P= COS<6) sin(G) I _ ILin—cl_d Ve — Vinfd
—sin(@) COS(G) o hin=d ILin—ch T Vin_q ’ (A8)
Vi_ I,,— V, Voui—
Vinfcl _ ‘;n cla[| rloutfcl _ |}0ut cl d Vout = Vout?d , Voutfcl _ Vout cld] ,
in—cl_gq out—cl_q out_q out—cl_q

where Iy, g and I1 ;4 are the amplitude components of the input coordinates of the cluster line
currents. Vj, 4 and Vj,, , are the amplitude components of the power supply phase voltage. Vi, _¢_4
and Vj,__4 are the amplitude components of the input coordinates of the cluster phase voltages.
Lout—c1_d and Ipy; o are the amplitude components of the output cluster phase currents. V;,;; 4 and
Vout_q are the amplitude components of the power supply phase voltage. Finally, V,,;—¢_g and Vot 4
are the amplitude components of the output cluster phase voltages. The Park transformation uses
0=6;, = f wi,dT for the input signals and 6 = 6y, = f woutdT for the output signals.
The following section describes the outer-loop M3C dynamical model obtaining.

Appendix A.2. Outer control Loop M3C Dynamical model

The outer loop M3C dynamical model considers the formula I = C VCijk of an ideal capacitor
instantaneous current I¢, depending on the capacitance C and the capacitor voltage variation Vi
of a cell shown in Figure 1. Then, this last expression is re-expressed to obtain the variation rate
of the cluster capacitor voltage V¢;; = Z£:1(VCijk) in terms of the power through a cluster P, as
V(';Z-]- = Civcpcl [22, Equation (8)]. Finally, applying this concept to the M3C, assuming the clusters have
three cells (summing their voltage variation expressions), are balanced, and all capacitors are the same,
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and that the average cluster capacitor voltage fluctuates e(t) times around its required value V{, the
following matrix expression is obtained:

x-y Cluster capacitor voltage-power state-space model

1

Ve yy = =P . A
C—xy Ce(t)Vé‘ cl—xy ( 9)

The reference cluster capacitor voltage mean value is V& > 1.2 - V2. (Vin_rated + Vout_ratea), where V2
is a multiple of 3 (number of cells per cluster). Moreover, the instantaneous cluster capacitor voltage
Vc—xy and cluster power P, are defined as follows:

VCar VCbr VCcr Py Pbr Py
VCfxy = |Veas Vebs Vees| s Pcl—xy = |Pas Pps Pes|, (A10)
Vear Ve Ve Pat Py Pt

where the cluster capacitor instantaneous voltages are Ve, Viewr, Vieer, Veass Vews, Veess Veats Ve Veer-

Again, for independent control, a double-afy transformation CXCT [22] is applied to (A9).
Thus, (A9) is multiplied by the a~ transform C [22] from the left and the right side, with matrix X
representing the instantaneous cluster capacitor voltage V¢, and the cluster instantaneous power
Py (A10). Then, re-expressing the obtained result in a state space form, we have:

Double-x 7 state-space model of instantaneous voltage-power

y _ 1
VCng = Wpavg/ ACV
Vicintra = Wpintm/ Intra-CCV imbalance (A11)

Viinter = Wpinter/ Inter-CCV imbalance

having the following variables definitions:

VCm}g :Vny'y/ Paz;g = P'm/
T T
VCintm = [VCMX VC/X/S VCﬁa VC'ya] /Pintru = [sz Pacﬁ Pﬂtx P’ytx] ’ (A12)
T T
Veinter = |:VCIX’}’ VC;S'y VC'y:x VC7‘B } s Pinter = |:sz7 Pﬂfy Pylx P%B ] .

Here, in double-aBy coordinates are vcy,, the cluster capacitor instantaneous voltages
components, Ucpy, Ucyar UCups UCpps VCypr UCuys UCBys UCyy and the instantaneous cluster power
components are Puy, Pga, Pya, Pap, Pps Poyps Pays Py Py, which are clearly defined in [6, Equations
(26)-(33)]. However, there is an issue with the intra-CCV and inter-CCV imbalance control. Every
power component could be controlled by controlling certain component of the circulating current i;,_
(A6) but Py, [6, Equations (32)] that would be controlled by iy, as Py [6, Equations (30)]. Therefore,
an extra auxiliary transformation is made after multiplying from the left the intra-CCV imbalance
equation of (A11) by the matrix Cp [25] as a solution to allow control. Moreover, the power formulas
are re-expressed as a function of the phase voltages and phase currents as detailed in [6, Equations
(38)-(45)] separating the control terms from the rest, which are considered as a disturbance. Finally, the
state-space form for control takes the following form:

Double-x 3 voltage-power state-space model
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17 Vaog (t) + Daog (1), ACV
Cavg — 3Ce(t)V* Lin—cl_d avg
VCintmD %Trlczrl + Amtruc (t)/ Intra-CCV imbalance (A13)
. T
Veinter = \["g‘;’ ((t))v* Leiro + Ajpger (1), Inter-CCV imbalance

where the auxiliary transformation matrix Cp [25], capacitor voltage Vcintra, Vcinter, Vcavg, the cluster
voltage Viutra, Vinter, Vavg, the cluster current 1.1, Liir2, lavg, and the disturbances Ajyira, Ainter, Davg,
are following defined:

1 0 O 1 0 010
1{0 1 -1 0 0 0 0 1
=311 0 0 -1|'"=|1 0 0 0|’
01 1 0 01 0 0
T
Vavg = Vine,  Veintrap =CpVeintra = [ch Ve Veow ch,s} ,

T
Vintra:[vin,x Vina Vin,x Vin,x] s

T Al4
‘/inter: |:_V0ut1x Voutlx Vin,x Vina] 7 ( )
T
Icirlz[hal Lip, Dy 12’31} ,
T
IcirZZ[Ilaz Lip, I, 12;32} ,
T
Aavg = Doy, AintraCD:[AZa ALY AN Alﬁ} ,

T
Ainter = [Azx'y A‘B«y Aya A'le:| ’

where the disturbance terms are obtained from the power expressions [6, Equations (38)-(45)], [22,
Equations (17)-(25)], after separating the control terms components. The result gives:

1
Y Vouta Iouttx + Voutﬁ Ioutﬂ)~ (A15)

1
A'T')/ = g(‘/m'glln/g) - 3(

1
Aloc = 6[(Vm"‘ Iout,x - Vouta Iin,x) + (Vznﬁ Ioutﬁ - Voutﬁ Iinﬁ”
1
+%[(_Vinﬁ12/5> + (= Vouty loa + Vouty I2p)] — Vil
1
Alﬁ = 8[(‘/1'% Ioutﬁ - Voutﬁlin,l) - (Vinﬁlout,x - Vout,x Iinﬁ>]

+7[(Vinﬁ121x) + (Vout,,c 12/8 + VoutﬁIth)] - anlﬁr
(A16)

S}_\
— O\

Ny = 7[(‘/1',% Ioutzx — Vgutalinﬁ) - (‘/inﬁloutﬁ - Voutﬁlinﬁ)]

(o)}

1
%[(Vmﬁhﬁ) (—Vout Iia + Voury hhp)] — Vi low,
1
AZ/S = g[(Vznﬁ Ioutﬁ, - Voutﬂ Iinﬁ) + (Vinﬁ Iouta - Vout,x Iinﬁ)]
1
+ \/8[( Vmﬁllrx) + (Voutallﬁ + Voutﬁlla)] - VnIZ/S-
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1 1
Atx’y = m[(vin,xlina - Vinﬁlinﬁ)] - %[Vouta(ba) + Voutﬁ(llﬁ + 12,5) - anin,x]/
1 1
Aﬁ'y = _ﬁKVina Iinﬁ + Vinﬁlin,Y)] - %[Vouta(bﬁ) + Voutﬁ(Ila - IZoc) - VnIinﬁ]/
f . (A17)
A“ﬂx = _ﬁ[(vouta Iouta - Vautﬁloutﬁ)] + \ﬁ[vina (Ilac) + Vinﬁ(_llﬂ + 12[5) - VnIouta]/
1 1
A’Yﬁ = m[(vouta Iout/g + Voutﬁ,louta)] + %[Vina(hﬁ) + Vinﬁ,(Il/x - IZa) - VnIoutﬁ]-

The following section details the different vector and matrix transformations made in the previous
state-space model obtaining.

Appendix A.3. Vector and Matrix Transformation Details

This section details the vector and matrix used transformations, starting from the managing
feedback signals block located at the right lower side of Figure 2. First, the vector of the cluster
capacitor voltages V(;; is obtained after summing the capacitor voltages Y (Vijx) per cell k inside
each cluster as follows:

Veijk Yoy Vi Veij
—_—N—
[Veart Vearn Veawrs) (Y31 Vear] [ Vear |
Vevr Ve Vewrs o1 Ve Veur
VCcrl VCch VCcr3 213(:1 VCcrk VCcr
VCasl VCusZ VCas3 3 Z%:] VCask VC/zs
Vewst Vewe Vewsa| = Y (Vi) = | Spe1 Vewsk | = | Vews | - (A18)
VCcsl VCcsZ VCcsS k=1 Z}%:] VCcsk VCcs
Vean Vearz Vears Yo 1 Veark Veat
Vevrn Vere Ve Y1 Ve Vewe
| Veen Veerz Veers |53 Vet | Vet |

Then, the following rearrangements R are made to convert vectors to the matrix form to allow
implementation. It applies to the measurement vectors of the cluster currents i;; and the cluster
capacitor voltage Vc;j:

iij Veij
—~= ——

_lar_ _VCar-

pr ixy Vb Vexy

ley e e VCcr

ias iar Z'br cr VCas VCar VCbr VCcr
ips éR(iij): lgs dps lcs |, Vs éR(VCij): Veas Veos Vees | - (A19)
ics iat ibt lct VCcs VCat VCbt VCct
iat VCut

Tpt Vbt

et _VCct
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The matrix X previously obtained results are double-a 37 transformed CXCT [22]. The right lower
side of Figure 2 shows these operations, multiplying X by the af~y transform C [22] from the left and
right sides. Following, for X = i;; and X = V;;, it gives:

C ixy ¢ iclfztxﬁ'y
—_—— V2 V3 —_——
2 —V2 —V2 . . . V< Vo . . .
% % 2;\/2 Lar  lpr  ler \/\5[ \O[ \3[ o Iga Iya
0 2 =2\l ks ds||5m F F| = |l igs el (A20)
? ? @ iat ibt lct ;7\\}3 *T\/E ? ia’y i‘By i77
c Vexy c Ve—2upy
V2 V3 -2 V2 V3
V3 2v3 2V3 Vear  Vewr  Veer V3 0 3 Vean VCﬁzx VC'ya
Vi Iy S S
0 2 2| |Vas Ve Ves| |55 27 3| = |Veap Veps Voup |- (A2D)
? @ @ VCat VCbt VCct %\g _T‘/i @ VCa'y VCﬁ'y VC'y'y

Moreover, there are other rearrangements R made to convert the matrix obtained in (A20) and
(A21) to their vector form to allow implementation. The resulting vectors are demultiplexed in
managing feedback signals block of Figure 2. It delivers the cluster instantaneous phase currents
and capacitor voltages defined in (A6) and (A14) (ij—c1, icire—cls fout—ct, @A Veintra, Veinters Veavg) as

follows:
_ilX’)/_ -VCDUX_
) 1'57 VCtxﬁ
Lel—2a, 17 Ve-2a
/_]/L\ Lyw il VCﬁa
low  lpa Iy ing | |Vewa Vepa  Veqa | Veps |
inp ipp iyp| = Rlici—oapy) = |ipa |, |Veap Veps Veyp| = R(Ve-aupy) = |Vewy | - (A22)
by gy iy |igs| [Vear Vepy Ve Vepy
Lya VC'yzx
|| | Vere |
Liyyd Ve

Additionally, the cluster instantaneous capacitor voltage intra-components are multiplied by the
matrix Cp [25]:

ch Veintra Veintrac,, Veintrac,,
—_—
1.0 0 1] (Ve Ve + Vepp Veia
1101 1 0| | Veap| _ |Veap— Vepa| _ | Veip| (A23)
2010 0 —1| |Vep Vewn — Vepg Vo
01 1 0 VCﬁﬁ Vc,x/; + VCﬁa VCZﬁ

The outer signals of the Intra-CCV imbalance control are located at the left-center side of Figure 2.
These are multiplied by the T,” 1 matrix to obtain i.;,1 to be sumed with i.;,. The result is multiplied by
the inverse matrix CBl to obtain the circulating current i;, _ ; as follows:

. . . . i
in T, 1 D i i Cintracy,
—N— — e N —N— A~ —N—
a1 0 0 1 0f |bwm a1 a2 Ha
11| _ 261 | (2| | "ip (A24)
sk - o 7 o o) — o 7
a1 1.0 0 0] |ign Loal a2 L
g1 01 00 11 g1 g2 g
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i?ir—cl ClSl i:ir—cID i:ir—cl
~ —
iy, + i3, 1 0 1 ol [, Lyg
g + 158 0 1 0 1| | _ -iﬁ ' (A25)
7k $k K
—ijp t iy 0 -1 0 1 |i3 Lga
Zix - l;a 1 0 1.0 12.5 1.55
Later, the output signal of the controllers (V;; _ ;, V7, V> . ) are multiplexed, considering Ui‘w =0,
and the obtained vector is rearrangement R in the following matrix form:
on
,U*
By o
1T % i cl—2uaBy
Vna
vy B Un vga vi‘w
Ugy | = R= |v3g vgg Vgl - (A26)
* * * *
%88 Uy Upy Uyy
*
e
%
Y8
*
_U'y'y_

The obtained matrix X = 0%, _,, By 18 then multiplied by the inverse a3+ transformation matrix

C~1[22] from the left and right sides, obtaining the required cluster voltage as follows:

-1 * T
c vc172v¢ﬁ7 C_l v;y
—_——~

Q O ﬁ ,0* U* 'U* ﬁ *\ﬁ *\ﬁ * * *
V3 3 ae Tpy Tk V3 23 23 Uar  Upp  Ugr
S SV [ e T TS (R N I (A27)
23 2 3 ap “BB TP 2 2 as. Tbs Ces |
;g %ﬁ ? Vay Upy Uyy @ @ @ Uat  Opr et

A final rearrangement R is made to convert the obtained matrix to the required voltage vector

form as follows:

~—

Var

Vxy Zé”

—_—— cr

% % % %,
Vs Ups Ui | = R(vyy) = |vg| - (A28)

Vot Up Ut Vs

Uat

Up

Ko
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