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Abstract: Supply chain networks have emerged as the back bones of economic activities in the modern world. 

Most of the literature on the optimization problem of transportation in supply chain networks (SCN) 

considered fixed costs (FC). However, in the practical applications of this problem it is important to study the 

effect of FC. This paper examines the impact of fixed cost increase as well as the variable cost on the 

optimization of a Two-Stage SCN. To do so, two mathematical models for mixed-integer nonlinear 

programming are developed. The first model optimizes fixed and variable costs in addition to the opening cost, 

whereas the second model only optimizes variable and opening costs. To evaluate the effect of considering FC 

on the optimization supply chain problem, four groups of instances are randomly generated, and solved using 

Lingo. The results of the two models are compared utilizing the average percentage deviation. In addition, 

sensitivity analysis is performed to determine the impact of changes in opening and variable costs on the 

considered optimization problem. The computational results and the sensitivity analysis show that the first 

model with minimized FC outperforms the second model, which does not consider the FC in minimization 

and FC affect the optimization. 

Keywords: supply chain; network design; two-stage; fixed cost; sensitivity analysis 

 

1. Introduction 

The supply chain network design (SCND) problem can be classified into three types namely: 

forward type of supply chain network, reverse type of supply chain network and closed loop type of 

supply chain network. In this study, we deal with forward type of SCND that is the material flows 

from supplier to plant and then reaches the customer. There are many stages in this model, (multi-

stage), that may include warehouse and distributors. The supply chain is a network of suppliers, 

manufacturers, and distribution centers that transforms raw materials into usable products through 

several stages and distributes them to retailers in one or more stages. In the traditional transportation 

problem, the objective is to minimize total transportation costs by minimizing shipping costs 

proportional to the volume of items moved. Nevertheless, in practice, a fixed cost is incurred anytime 

a transportation route is established between a factory and a retailer. The Fixed Cost Transportation 

Problem (FCTP) occurs when both fixed and variable costs exist simultaneously. The variable cost 

varies linearly with the amount carried from supply to destination, and the fixed cost is incurred 

anytime a product is transferred between the supply and destination points. The preceding evidence 

demonstrates that problems involving fixed costs are more challenging to resolve than those 

involving variable costs. 

Typically, the FCTP problem is formulated as a mixed-integer programming problem and is 

tackled utilizing methods comparable to those described in the literature. Several reports on the 

single-stage FCTP emphasize minimizing total transportation costs [1–3]. Molla-Alizadeh-Zavardehi 

et al. [4] extended the FCTP to a two-stage supply chain problem, which considers possible 

distribution centers with fixed capacity for each distribution center to be opened. The model 

optimizes overall costs by establishing the optimal number of distribution centers to meet customer 

demands. Panicker et al. [5] proposed a two-stage FCTP in which several plants serve products to a 
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number of retailers via a set of unlimited-capacity distribution centers. However, the model only 

dealt with a single product and a single period. Similarly, Hong et al. [6] considered the FCTP problem 

in a two-stage supply chain with fixed costs for transportation routes.  

In practice, it is more challenging to solve the FCTP problem than to solve a linear one. 

Numerous techniques have been proposed in the literature to solve the FCTP, such as the genetic 

algorithm [7,8], simulated annealing algorithm [9], artificial immune and genetic algorithm [10], 

Simplex-based simulated annealing [5,11], ant colony optimization for various optimization 

problems such as the traveling salesman problem [12]. Jawahar and Balaji  [13] considered a two-

stage supply chain distribution problem associated with a fixed cost. Stützle and Dorigo [14] applied 

ant colony optimization in solving complex cases of FCTP. Panicker et al. [5] conducted a comparative 

analysis of an ant colony optimization and a genetic algorithm heuristic technique, revealing the 

effectiveness in solving a two-stage FCTP problem. Sanei et al. [15] proposed a Lagrangian relaxation 

heuristic for solving the problem of transporting products from sources to destinations using 

different transportation modes with variable and fixed costs. Lotfi and Tavakkoli-Moghaddam [16] 

proposed a genetic algorithm to solve FCTP. Shen and Zhu [17] examined a two-stage FCTP under 

uncertainty, they proposed genetic algorithm and particle swarm optimization to solve the problem. 

Kowalski et al. [18] developed a simple algorithm for getting the global solution to a small-scale FCTP 

by decomposing the problem into a series of smaller subproblems. In the real world, FCTP is a 

complicated problem, particularly in supply chain management and distribution systems. Sadeghi-

Moghaddam et al. [19] presented variable and fixed costs as fuzzy numbers. Panicker and Sarin [20] 

and Wang et al. [21] formulated a multi-stage multi-period FCTP for multi-product which is solved 

using ant colony optimization. In our previous paper, Mostafa and Elshaer [22] solved the two-stage 

FCTP problem utilizing three ant colony optimization algorithms compared by Lingo optimum 

solution.  

The structure of this paper is as follows: section 2 presents a literature review. In section 3, the 

problem formulation is presented. In section 4, the results and computational study are illustrated. 

Sensitivity analysis is described in section 5.  Section 6 provides conclusions and suggestions for 

future work. 

2. Literature Review  

The design of a supply chain network is one of the most complex topics in supply chain 

management, including decisions at the operational, tactical, and strategic levels. This problem 

entails identifying the number, location, and capacity of facilities, as well as establishing distribution 

channels and flows of materials and products that will be manufactured and transported to suppliers 

at each consumption layer. Molla-Alizadeh-Zavardehi et al. [4] considered two stages of the supply 

chain network: distribution centers (DCs) and customers. Customers with specific needs exist, as do 

prospective locations for warehouses. Each of the possible DCs can ship to any of the clients. Two 

different types of costs are considered: the opening cost, which is expected for opening a possible DC, 

and the shipping cost per unit from the DC to the clients. The proposed model picks several viable 

locations as distribution centers in order to meet the needs of all clients. Two algorithms, genetic 

algorithm and artificial immune algorithm, are created to address the given problem. The Taguchi 

experimental design approach is used to identify the best parameters with the fewest number of 

experiments. Different problem sizes are used, and the computational output of the algorithms is 

compared to one another for the aim of performance evaluation of the suggested algorithms. 

Hong et al. [6] focused on a problem of distribution allocation in a supply chain with two stages 

and fixed costs. His challenge was to identify a distribution network's manufacturing facilities, 

wholesalers, and retailers' supply chain arrangement. The issue is modeled using an integer-

programming approach. The mathematical model includes fixed costs for facilities opening and fixed 

costs for transportation routes as well as unit transportation costs between entities. The model's goal 

is to reduce the overall expenses of supply chain management associated with assigning retailers to 

distribution centers and distribution centers to production facilities. For the purpose of solving the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 August 2023                   doi:10.20944/preprints202308.0282.v1

https://doi.org/10.20944/preprints202308.0282.v1


 3 

 

model, an Ant Colony Optimization (ACO)-based heuristic is created. On a range of produced 

problem sizes, the heuristic is tested. 

Panicker et al. [5] focused on an issue of distribution allocation in a supply chain with two stages 

and fixed costs. To handle the problem with a fixed transportation cost for a route, an algorithm based 

on ant colony optimization is suggested. A numerical analysis of examples of benchmark problems 

has been done. The proposed algorithm's outcomes have been contrasted with those of the genetic 

algorithm-based heuristic. The design and management of supply chains is the key concern for 

managers of industrial and service organizations in today's fiercely competitive business 

environment. Allocating customers to a manufacturing company's various supply chain partners is 

a crucial choice that influences value addition, degree of customer service, and prices.  

Sanei et al. [15] introduced the step fixed-charge solid transportation problem, in which products 

are transported using a combination of unit and step fixed-charges from sources to destinations. Offer 

a dual decomposition method that can handle larger cases and relies on a Lagrangian relaxation. Lotfi 

and Tavakkoli-Moghaddam [16] proposed a priority-based genetic algorithm to solve both linear and 

nonlinear FCTP that includes novel crossover and mutation operators. Shen and Zhu [17] examined 

the two-stage fixed cost transportation problem in an unpredictable environment. Demands, supply, 

availability, fixed costs, and transported amounts are all regarded as uncertain factors because there 

are so many unknowns. The goal is to maximize overall profit in unpredictable circumstances. Based 

on the structure of the problem, the genetic algorithm and particle swarm optimization were 

suggested to solve the equivalent forms of the models. 
Kowalski et al. [18] presented a simple method to find the overall solution to a fixed charge 

transportation problem (FCTP) of small scale. By breaking the problem down into a number of 

smaller sub-problems, the suggested approach solves FCTP. To solve the small-scale fixed-charge 

transportation problem, suggest a straightforward and quick branching approach. Up until a perfect 

solution is found, the sub problems can be divided into even smaller sub problems. This approach 

offers a substitute for quickly using computer tools to solve small-scale problems. As a result, it can 

be utilized as a pedagogical tool in a classroom setting for educational objectives. Sadeghi-

Moghaddam et al. [19] presented variable and fixed costs as fuzzy numbers. They used both priority-

based representation and Prüfer numbers based on spanning trees to propose novel techniques in 

solution algorithms. Additionally, the Taguchi method is employed to ensure the accurate calibration 

of parameters and the proper operation of algorithms. Additionally, a number of instances of various 

sizes are produced to evaluate the effectiveness of the algorithms and available software in the 

context of real-world cases. 

In addition to the variable cost, the majority of practical applications of a transportation network 

have a fixed cost. For a scenario involving multiple products, the problem is described as a Multi-

Stage Multi-Period Fixed Charge Transportation Problem. Panicker and Sarin [20] modeled the 

problem with the use of an optimization modeling tool named "A Mathematical Programming 

Language," and the BONMIN solver provides the answer. Finding the best solution for a huge 

problem size that is seen in practice typically requires more precise algorithms and longer 

computation times. A heuristic based on Ant Colony Optimization is suggested for these operational 

problems where process speed is just as crucial as solution quality. Using data sets created at random, 

the solution produced by the suggested heuristic is contrasted with that of accurate approaches. For 

a scenario involving many products, a simple MPFCTP model is created. The computational analysis 

shows that even though the solution reached using exact methods is best, the computational time 

required to solve a mathematical model is substantial. The Ant Colony Optimization approach is 

suggested to solve the model since the exact methods become less effective as the problem size 

increases. Both approaches are the subject of a computational investigation, and the outcomes of the 

precise method and ACO are compared. It is known that ACO provides a solution that is close to 

optimal in a lot less time than exact approaches. 

A market area receives a variety of products from the supply chain over time. The model takes 

into account where manufacturers and retailers are located and makes the assumption that customer 

behavior is probabilistic and based on an attraction function that is affected by both the location and 
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the quality of the retailers. In order to maximize supply chain profit in a competitive economy, Wang 

et al. [21] studied a model of a supply chain network with pricing competition. They build the supply 

chain with capacity constraints. A model of mixed integer nonlinear programming is used to 

formulate the issue. Simulated Annealing Search (SA) and Particle Swarm Optimization (PSO) are 

the two heuristic techniques they suggested. The results based of solving designed data sets 

demonstrate that simulated annealing is more effective than particle swarm optimization in terms of 

both solution quality and CPU times.  

In our previous work to develop two-stage supply chain networks, FCTP, Mostafa and Elshaer 

[22] proposed three ant colony-based algorithms, ACO1, ACO2, and ACO3. ACO2 and ACO3 are 

based on the development of two new pheromone trails and one heuristic trail. The proposed 

algorithms are tested on produced problems instances, with the results compared to those achieved 

using LINGO. 

The literature demonstrates that the researchers consider FC when developing supply chains 

without study of its impact on the optimization. The main objective of this paper is twofold, first, we 

investigate the impact of fixed costs on the optimal design of two-stage FCTP. Second, sensitivity 

analysis is employed to determine the effect of changes in variable cost and opening cost on 

optimization models.  

3. Problem Formulation 

Our two-stage SC problem can be described as a node-connected graph (plants to distributors, 

1st stage and distributors to retailers, 2nd stage) and edges (routes) to connecting these nodes as shown 

in Figure 1. As shown in the figure, there are a set of m plants, 𝐼 =  {1, 2, . . . , 𝑖, … , 𝑚}, a set of d 

distributors, 𝐽 =  {1, 2, … , 𝑗, . . . , 𝑑}, and a set of r retailers, 𝐾 = {1, 2, … , 𝑘, . . . , 𝑟}.  In each route, both 

variable and fixed transportation costs are included. And a fixed opening cost for each distributor is 

also incurred. The manufacturing plant is where the products are produced. The distribution centers 

are the warehouses of different capacities that store the products before they are delivered to retailers 

through use of vehicles. Depending on the capacity permitted, final produced are produced in any 

one of the manufacturing facilities, and distribution centers then ship the finished goods to the 

retailers. Distribution centers are defined as facilities maintaining inventory. 

The problem contains information on potential locations for intermediate distribution centers. 

There is an initial cost for establishing the distribution center at each location. In addition, the 

shipping costs are known throughout. Retailer demands have deterministic values and are 

predetermined for the subsequent planning horizon. It is assumed that the final products have to be 

delivered through one of the distribution centers to the retailers. The manufacturing capacity of the 

plant and the distribution center capacity are designed in a reasonable size to absorb the total 

demand. The objective of the problem is to allocate the retailers to the distribution center and 

distribution centers to the manufacturing plant, minimizing the total costs of supply chain operation.  
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Figure 1. Graphical representation of the proposed network diagram (Hong et al., 2018). 

 

As mentioned above, the main goal of this article is to investigate the impact of FC increase on 

the optimization. Therefore, the problem is formulated as mixed-integer nonlinear programming [22] 

by two models. The two models considers the minimization of two different objective functions to 

determine the optimum solution. The first model objective function is the sum of three types of cost; 

namely, fixed, opening and flow costs. The second model objective function, on the other hand, is the 

sum of the fixed cost to the minimum of the sum of the flow and opening cost. The first model’s 
objective, 𝑍1 , is the minimization of three types of costs (fixed, opening, and flow), defined 

mathematically in Eq. (1). While the second model objective, 𝑍2, is the summation of fixed cost to the 

minimized sum of opening and flow costs, defined mathematically in Eq.(2). The objective of the two 

models is to minimize the total cost involved in running supply chain. It is clear that the fixed cost is 

considered on the minimization in Eq. (1), but in Eq. (2) is not considered. 

The parameters, decision variables, models’ objectives, and the models’ constraints considered 

in the present work are defined and explained as follows: 

Indices 𝐼    Plants set, 𝑖 =  1,2, . . . , 𝑚 𝐽    Distributors set, 𝑗 =  1,2, . . . , 𝑑 𝐾    Retailers set, 𝑘 =  1,2, . . . , 𝑟 

Parameters of capacity and demand 𝑆𝑖   Plant 𝑖 capacity 𝑆𝐶𝑗  Distributor 𝑗 Storage capacity 𝐷𝑘  Retailer 𝑘 demand 

Decision variables 𝑓𝑙𝑃𝐷𝑖𝑗  Transported units in 1st stage 𝑓𝑙𝐷𝐶𝑗𝑘  Transported units in 2nd stage 𝑥𝑃𝐷𝑖𝑗   Binary (specifies whether the units are transported in 

1st stage) 𝑥𝐷𝐶𝑗𝑘   Binary (specifies whether the units are transported in 

2nd stage) 𝑥𝐷𝑗  Binary (specifies whether a new distributor is open)  

Cost parameters 𝑐𝑃𝐷𝑖𝑗  Unit transportation cost in 1st stage 𝑐𝐷𝐶𝑗𝑘  Unit transportation cost in 2nd stage 
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𝑓𝑥𝑃𝐷𝑖𝑗  Fixed cost of transportation in 1st stage 𝑓𝑥𝐷𝐶𝑗𝑘   Fixed cost of transportation in 2nd stage 𝑓𝑥𝐷𝑗  Fixed opening cost for a new distributor 𝑍1 = 𝑀𝑖𝑛 (𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡 + 𝐹𝑙𝑜𝑤 𝐶𝑜𝑠𝑡 + 𝑂𝑝𝑒𝑛𝑖𝑛𝑔 𝐶𝑜𝑠𝑡) (1) 𝑍2  =     𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡 +    𝑀𝑖𝑛 (𝐹𝑙𝑜𝑤 𝐶𝑜𝑠𝑡 + 𝑂𝑝𝑒𝑛𝑖𝑛𝑔 𝐶𝑜𝑠𝑡  ) (2) 

The fixed, flow, and opening cost of Eq. (1) and (2) are defined as follows: 

𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡 = ∑ ∑( 𝑓𝑥𝑃𝐷𝑖𝑗 × 𝑥𝑃𝐷𝑖𝑗𝑑
𝑗=1 )𝑚

𝑖=1 + ∑ ∑( 𝑓𝑥𝐷𝐶𝑗𝑘 × 𝑥𝐷𝐶𝑗𝑘𝑟
𝑘=1

𝑑
𝑗=1   )  (3) 

𝐹𝑙𝑜𝑤 𝐶𝑜𝑠𝑡 = ∑ ∑( 𝑐𝑃𝐷𝑖𝑗  × 𝑓𝑙𝑃𝐷𝑖𝑗)𝑑
𝑗=1

𝑚
𝑖=1 + ∑ ∑( 𝑟

𝑘=1
𝑑

𝑗=1 𝑐𝐷𝐶𝑗𝑘 ×  𝑓𝑙𝐷𝐶𝑗𝑘  ) (4) 

𝑂𝑝𝑒𝑛𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 = ∑ 𝑓𝑥𝐷𝑗 ×  𝑥𝐷𝑗𝑑
𝑗=1  (5) 

Subject to 

∑ 𝑓𝑙𝑃𝐷𝑖𝑗  𝑑
𝑗=1  ≤ 𝑆𝑖                         (𝑖 = 1,2, … , 𝑚) (7) 

∑ 𝑓𝑙𝑃𝐷𝑖𝑗  𝑚
𝑖=1  ≤ ∑ 𝑓𝑙𝐷𝐶𝑗𝑘𝑟

𝑘=1        ( 𝑗 = 1,2, … , 𝑑) (8) 

∑ 𝑓𝑙𝐷𝐶𝑗𝑘 = 𝐷𝑘𝑑
𝑗=1                        ( 𝑘 = 1,2, … , 𝑟) (9) 

∑ 𝐷𝑘𝑟
𝑘=1 = 𝑆𝐶𝑗                                 ( 𝑗 = 1,2, … , 𝑑) (10) 

∑ 𝑓𝑙𝐷𝐶𝑗𝑘  ≤  𝑆𝐶𝑗 × 𝑥𝐷𝑗  𝑟
𝑘=1       ( 𝑗 = 1,2, … , 𝑑) (11) 

𝑓𝑙𝑃𝐷𝑖𝑗  , 𝑓𝑙𝐷𝐶𝑗𝑘 ≥ 0           ∀ 𝑖, 𝑗, 𝑘 (6) 

𝑥𝑃𝐷𝑖𝑗 = {1, 𝑓𝑙𝑃𝐷𝑖𝑗 > 00, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (7) 

𝑥𝐷𝐶𝑗𝑘 = {1, 𝑓𝑙𝐷𝐶𝑗𝑘 > 00, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (8) 

        𝑥𝐷𝑗 = {1,                 𝑖𝑓  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑜𝑟 𝑐𝑒𝑛𝑡𝑒𝑟 𝑗 𝑖𝑠 𝑜𝑝𝑒𝑛0,                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠   (9) 

The constraints (7) denote that the quantity transported in the first stage is less than the plant 

capacity. The constraints (8) represent the balance of material in the two stages. The constraints (9) 

sets the quantity transferred to the retailer from the distributor equals to the retailer's demand. The 

constraints (10) keep the capacity of the distributor. The constraints (11) set that the quantity 

transported from distributor less than or equal to its storage capacity. The constraints (12) enforces 
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that the decision variables 𝑓𝑙𝑃𝐷𝑖𝑗  and 𝑓𝑙𝐷𝐶𝑗𝑘   must be positive. The binary variables 𝑥𝑃𝐷𝑖𝑗 , 𝑥𝐷𝐶𝑗𝑘 

and  𝑥𝐷𝑗  are presented in the constraints (13), (14), and (15). 

4. Computational Study 

In this study, the optimal solution is obtained by minimizing 𝑍1, and 𝑍2 and compared, subject 

to the same constraints in [22]. The numerical instances are generated and simulated in section 3.1. 

In section 3.2, the computational results of solving the test instances using Lingo software are graphed 

and discussed. 

4.1. Numerical Simulation 

In order to investigate the effect of FC increase on the proposed model, 1040 problems are 

generated randomly and classified into four groups (260 instances × 4 groups), as shown in Table 1. 

Each group has the same number of plants, distributors, and retailers. The generated demand of the 

retailers follows the uniform distribution U [50, 500], and U [10000, 20000] is used for generating the 

distributors’ opening cost. Table 2 illustrates the fixed and variable cost ranges in the testing problems 

Mostafa and Elshaer [22]. In each instance of the generated problems, β routs are selected for 
changing their FC with δ= 0%, 10%,…, 50%. The number of routs, β, are randomly selected by 10%, 
20%, 30%, 40%, and 50% from the total number of routes. 

Table 1. Problem instance size. 

Problem 

Groups 

Number of 

Instances  

Number of 

Plants 

Number of 

Distributors 

Number of 

Retailers 

G_1 260 2 5 10 

G_2 260 4 8 15 

G_3 

G_4 

260 

260 

6 

10 

10 

20 

20 

30 

Table 2. Fixed and variable cost Ranges Mostafa and Elshaer [22]. 

 Fixed cost range Variable cost range in 

1st stage 

Variable cost range in 2nd 

stage 

(30 - 50) x Avg. variable 

cost 

10 - 30 10 - 50 

4.2. Results and Discussion 

The two models are solved using Lingo software, with the first model 𝑍1 considering the FC in 

the optimization (See Appendix A), and the second model 𝑍2  does not considers FC in the 

optimization (See Appendix B). The results are compared using the average percentage deviation in 

Eq. (16), as demonstrated in Figures  (2 – 5). According to the figures, the optimal solutions are 

improved when considering FC in the optimization and the following is observed: (1) the average 

percentage of the total cost is enhanced by increasing the number of routes β whose FC increased. (2) 
For any specific change in the number of routes (x-axis) whose fixed costs will change, the percentage 

of improvement is directly proportional to the percentage change in FC. Therefore, computational 

results shown in Figures  (2 – 5) reveal that the optimal solutions of the first model 𝑍1 outperforms 

the other optimal solutions of the second model  𝑍2, and FC increase affect the optimality. % 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = 𝑍2 − 𝑍1𝑍2    × 100%  (10) 
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Figure 2. % improvement for the 1st group G_1 (2-5-10). 

 

Figure 3. % improvement for the 2nd group G_2 (4-8-15). 
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Figure 4. % improvement for the 3rd group G_3 (6-10-20). 

 

Figure 5. % improvement for the 4th group G_4 (10-20-30). 
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are generated for each α and solved optimally using the two models (𝑍1  and 𝑍2) by lingo.  The 

average results of opening, fixed, flow, and total costs for the instances are depicted in Figure 6. The 

figure shows that model 𝑍2  which disregards FC in minimization, performs better on flow costs 

alone. However, model 𝑍1outperforms model 𝑍2 in the opening, fixed and total costs. 

Table 3. Opening cost sensitivity analysis. 

Parameter Range  

Retailer demand  50 500 

Opening cost of the distribution center. 10000(1 + 𝛼) 20000(1 + 𝛼) 

Fixed cost = 30 -50 * average variable cost 30 50 

Variable cost = 10 -30 in stage 1 10 30 

Variable cost = 10 -50 in stage 2 10 50 
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Figure 6. Impact of opening cost change on the output of the two models. 
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5.3. Discussion 

Figure 6 shows that model 𝑍2 which disregards FC in minimization, performs better on flow 

costs alone. However, model 𝑍1outperforms model 𝑍2 in the opening, fixed and total costs. Figure 

7 shows the average results of opening, fixed, flow, and total costs when changing variable costs; 

from the figure, 𝑍2 gives better performance on the opening and fixed costs, but it has no effect on 

flow and total cost output. The percentage improvement of 𝑍1 over 𝑍2  is shown in Figure 8. We 

can notice from the figure that as α increases, the relative percentage deviation of the two models will 
increase by increasing variable cost, which affects FC, and decreased by increasing opening cost. 
Consequently, it can be concluded that fixed costs significantly impact supply chain network design. 
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Figure 7. Impact of variable cost change on the output of the two models. 

 

Figure 8. Impact of opening and variable costs on the output of the two models. 
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6. Conclusions and Future Work 

This paper examines the impact of fixed cost increase as well as the variable cost on the 

optimization of the Two-Stage Supply Chain Network Design. A numerical study on two models, 𝑍1  

and 𝑍2, has been designed and used to solve the considered group of instances. The first model, 𝑍1, 

considers both fixed and variable costs besides the opening cost in minimization, whereas the second 

one, 𝑍2, considers only variable costs and opening costs in minimization. The problem is formulated 

as a mixed-integer nonlinear programming model and coded using Lingo19 to achieve the global 

optimum. In order to demonstrate the impact of the fixed cost increase on the proposed models, four 

groups of network characteristics with different sizes are designed, and 260 instances are randomly 

generated for each network. Lingo is used to solve the 1040 instances dataset for the first and second 

model. The results of the two models are compared utilizing average percentage relative deviation. 

In addition, a sensitivity analysis is conducted to determine the effect of varying opening and variable 

costs on the optimization. Computational results reveal that the optimal solutions of the first model 𝑍1  (when considering FC in optimization) outperforms the other optimal solution of the second 

model 𝑍2 (when not considering FC in optimization).  

For future studies, the single-product model in the current study has two stages, which can be 

developed into a multi-product and/or multi-stage network. In contrast, the uncertainty included in 

capacity, demand, and cost could be considered for practical applications. 
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Appendix A 

The Lingo code of the first Model, Z1. This code is applied to the generated data instances of 

group G_1 (2-5-10). The code of the other groups and all results are provided in the 

article/Supplementary Materials.  

MODEL: 

SETS: 

PLANT:PLANTCAPACITY; 

DISTRIBUTOR:DISTRIBUTORCAPACITY,OPINNINGCOST,U; 

RETAILER:DEMAND; 

LINK1(PLANT,DISTRIBUTOR):FIJ,YIJ,CIJ,XIJ; 

LINK2(DISTRIBUTOR,RETAILER):FJK,YJK,CJK,XJK; 

ENDSETS 

 

DATA: 

PLANT = P1,  P2; 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 August 2023                   doi:10.20944/preprints202308.0282.v1

https://drive.google.com/drive/folders/17cQ8m1wxQCk7hIvHunPNAN70MBs5gNeg?usp=sharing
https://doi.org/10.20944/preprints202308.0282.v1


 15 

 

DISTRIBUTOR = D1, D2, D3, D4 D5; 

RETAILER = R1, R2, R3, R4, R5, R6 R7 R8 R9 R10; 

PLANTCAPACITY = @file('PDR_2-5-10_1.txt'); 

DEMAND  = @file('PDR_2-5-10_1.TXT'); 

OPINNINGCOST = @file('PDR_2-5-10_1.TXT'); 

FIJ  = @file('PDR_2-5-10_1.TXT'); 

CIJ  = @file('PDR_2-5-10_1.TXT'); 

FJK  = @file('PDR_2-5-10_1.TXT'); 

CJK  = @file('PDR_2-5-10_1.TXT'); 

 

@TEXT('OUT1.TXT')  = @WRITE( '    PLANT       DISTRIBUTOR      QUANTITY', @NEWLINE( 1)); 

@TEXT('OUT1.TXT')  = @WRITE( '    ----------------------------------', @NEWLINE( 1)); 

@TEXT('OUT1.TXT')  = @WRITEFOR( LINK1( I, J) | XIJ( I, J) #GT# 0:8*' ', PLANT( I), 8*' ',DISTRIBUTOR( J), 

8*' ', @FORMAT( XIJ( I, J), '8.0f'), @NEWLINE( 1)); 

@TEXT('OUT1.TXT')  = @WRITE( '   -----------------------------------', @NEWLINE( 2)); 

@TEXT('OUT1.TXT')  = @WRITE( '    DISTRIBUTOR   RETAILER      QUANTITY', @NEWLINE( 1)); 

@TEXT('OUT1.TXT')  = @WRITE( '   ----------------------------------', @NEWLINE( 1)); 

 

 

@TEXT('OUT1.TXT')  = @WRITEFOR( LINK2( J,K) | XJK( J,K) #GT# 0:8*' ', DISTRIBUTOR( J), 8*' ', RETAILER( 

K), 8*' ', @FORMAT( XJK( J,K), '8.0f'), @NEWLINE( 1)); 

@TEXT('OUT1.TXT')  = @WRITE( '   ----------------------------------', @NEWLINE( 1)); 

 

ENDDATA 

 

[TCOST]  MIN  = FixedCost  + FlowCost + OpeningCost ; 

  FixedCost = @SUM(LINK1(I,J):FIJ(I,J)*YIJ(I,J)) + @SUM(LINK2(J,K):FJK(J,K)*YJK(J,K)) ; 

     FlowCost  = @SUM(LINK1(I,J):CIJ(I,J)*XIJ(I,J)) + @SUM(LINK2(J,K):CJK(J,K)*XJK(J,K)) ; 

     OpeningCost = @SUM(DISTRIBUTOR(J):OPINNINGCOST(J)*U(J)); 

 

@FOR(PLANT(I): @SUM(DISTRIBUTOR(J):XIJ(I,J))< PLANTCAPACITY(I)); 

@FOR(DISTRIBUTOR(J):@SUM(RETAILER(K):XJK(J,K))< =  DISTRIBUTORCAPACITY(J)*U(J)); 

@FOR(RETAILER(K):@SUM(DISTRIBUTOR(J):XJK(J,K))=  DEMAND(K)); 

@FOR(DISTRIBUTOR(J):@SUM(RETAILER(K):DEMAND(K))= DISTRIBUTORCAPACITY(J)); 

! DC balance constraints; 

@FOR(DISTRIBUTOR(J):@SUM(PLANT(I):XIJ(I,J)) = @SUM(RETAILER(K):XJK(J,K))); 

 

@FOR(LINK1:XIJ> 0); 

@FOR(LINK2:XJK> 0); 

@FOR(LINK1:YIJ = @IF(XIJ#GT#0,1,0)); 

@FOR(LINK2:YJK = @IF(XJK#GT#0,1,0)); 

@FOR(DISTRIBUTOR:@BIN(U)); 

 

!TOTAL COST OUTPUT; 

CALC: 

  @SOLVE(); 

  @TEXT('CostandTime_2-5-10-Z1-Obj.TXT', 'a') = @WRITE( 'PDR_2-5-10_1.TXT',6*' ',  OpeningCost,6*' ', 

FixedCost ,6*' ', FlowCost ,6*' ,TCOST, 6*' ','CPU = ',6*' ', @Time(), @NEWLINE( 1)); 

ENDCALC 

 

END 

 

ALTER ALL '1.txt'3_%10-%-50.txt' 

GO 
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ALTER ALL '3_%10-%-50.txt'3_%10-%-40.txt' 

GO 

ALTER ALL '3_%10-%-40.txt'3_%10-%-30.txt' 

GO 

ALTER ALL '3_%10-%-30.txt'3_%10-%-20.txt' 

GO 

… 

Appendix B 

The Lingo code of the second Model, Z2. This code is applied to the generated data instances of 

group G_1 (2-5-10). The code of the other groups and all results are provided in the 

article/Supplementary Materials.   

MODEL: 

SETS: 

PLANT:PLANTCAPACITY; 

DISTRIBUTOR:DISTRIBUTORCAPACITY,OPINNINGCOST,U; 

RETAILER:DEMAND; 

LINK1(PLANT,DISTRIBUTOR):FIJ,YIJ,CIJ,XIJ; 

LINK2(DISTRIBUTOR,RETAILER):FJK,YJK,CJK,XJK; 

ENDSETS 

 

DATA: 

PLANT = P1,  P2; 

DISTRIBUTOR = D1, D2, D3, D4 D5; 

RETAILER = R1, R2, R3, R4, R5, R6 R7 R8 R9 R10; 

PLANTCAPACITY = @file('PDR_2-5-10_1.txt'); 

DEMAND  = @file('PDR_2-5-10_1.TXT'); 

OPINNINGCOST = @file('PDR_2-5-10_1.TXT'); 

FIJ  = @file('PDR_2-5-10_1.TXT'); 

CIJ  = @file('PDR_2-5-10_1.TXT'); 

FJK = @file('PDR_2-5-10_1.TXT'); 

CJK  = @file('PDR_2-5-10_1.TXT'); 

 

@TEXT('OUT1.TXT') = @WRITE( '    PLANT       DISTRIBUTOR      QUANTITY', @NEWLINE( 1)); 

@TEXT('OUT1.TXT')  = @WRITE( '    ----------------------------------', @NEWLINE( 1)); 

@TEXT('OUT1.TXT')  = @WRITEFOR( LINK1( I, J) | XIJ( I, J) #GT# 0:8*' ', PLANT( I), 8*' ',DISTRIBUTOR( J), 

8*' ', @FORMAT( XIJ( I, J), '8.0f'), @NEWLINE( 1)); 

@TEXT('OUT1.TXT')  = @WRITE( '   -----------------------------------', @NEWLINE( 2)); 

@TEXT('OUT1.TXT') = @WRITE( '    DISTRIBUTOR   RETAILER      QUANTITY', @NEWLINE( 1)); 

@TEXT('OUT1.TXT')  = @WRITE( '   ----------------------------------', @NEWLINE( 1)); 

 

 

@TEXT('OUT1.TXT')  = @WRITEFOR( LINK2( J,K) | XJK( J,K) #GT# 0:8*' ', DISTRIBUTOR( J), 8*' ', RETAILER( 

K), 8*' ', @FORMAT( XJK( J,K), '8.0f'), @NEWLINE( 1)); 

@TEXT('OUT1.TXT')  = @WRITE( '   ----------------------------------', @NEWLINE( 1)); 

 

ENDDATA 

 

[TCOST]  MIN  = FlowCost + OpeningCost ; 

  FixedCost = @SUM(LINK1(I,J):FIJ(I,J)*YIJ(I,J)) + @SUM(LINK2(J,K):FJK(J,K)*YJK(J,K)) ; 

     FlowCost  = @SUM(LINK1(I,J):CIJ(I,J)*XIJ(I,J)) + @SUM(LINK2(J,K):CJK(J,K)*XJK(J,K)) ;; 

     OpeningCost = @SUM(DISTRIBUTOR(J):OPINNINGCOST(J)*U(J)); 

 

@FOR(PLANT(I): @SUM(DISTRIBUTOR(J):XIJ(I,J))< PLANTCAPACITY(I)); 
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@FOR(DISTRIBUTOR(J):@SUM(RETAILER(K):XJK(J,K))< =  DISTRIBUTORCAPACITY(J)*U(J)); 

@FOR(RETAILER(K):@SUM(DISTRIBUTOR(J):XJK(J,K))=  DEMAND(K)); 

@FOR(DISTRIBUTOR(J):@SUM(RETAILER(K):DEMAND(K))= DISTRIBUTORCAPACITY(J)); 

! DC balance constraints; 

@FOR(DISTRIBUTOR(J):@SUM(PLANT(I):XIJ(I,J)) = @SUM(RETAILER(K):XJK(J,K))); 

 

@FOR(LINK1:XIJ> 0); 

@FOR(LINK2:XJK> 0); 

@FOR(LINK1:YIJ = @IF(XIJ#GT#0,1,0)); 

@FOR(LINK2:YJK = @IF(XJK#GT#0,1,0)); 

@FOR(DISTRIBUTOR:@BIN(U)); 

 

!TOTAL COST OUTPUT; 

CALC: 

  @SOLVE(); 

@TEXT('CostandTime_2-5-10-Z2-Obj.TXT', 'a') = @WRITE('PDR_2-5-10_1.TXT' ,6*' ',   OpeningCost,6*' ', 

FixedCost ,6*' ', FlowCost ,6*' ',FixedCost  + TCOST, 6*' ','CPU = ',6*' ',@Time(),  @NEWLINE( 1)); 

 

ENDCALC 

END 

ALTER ALL '1.txt'3_%10-%-50.txt' 

GO 

ALTER ALL '3_%10-%-50.txt'3_%10-%-40.txt' 

GO 

ALTER ALL '3_%10-%-40.txt'3_%10-%-30.txt' 

GO 

ALTER ALL '3_%10-%-30.txt'3_%10-%-20.txt' 

GO 

… 
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