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Abstract: Supply chain networks have emerged as the back bones of economic activities in the modern world.
Most of the literature on the optimization problem of transportation in supply chain networks (SCN)
considered fixed costs (FC). However, in the practical applications of this problem it is important to study the
effect of FC. This paper examines the impact of fixed cost increase as well as the variable cost on the
optimization of a Two-Stage SCN. To do so, two mathematical models for mixed-integer nonlinear
programming are developed. The first model optimizes fixed and variable costs in addition to the opening cost,
whereas the second model only optimizes variable and opening costs. To evaluate the effect of considering FC
on the optimization supply chain problem, four groups of instances are randomly generated, and solved using
Lingo. The results of the two models are compared utilizing the average percentage deviation. In addition,
sensitivity analysis is performed to determine the impact of changes in opening and variable costs on the
considered optimization problem. The computational results and the sensitivity analysis show that the first
model with minimized FC outperforms the second model, which does not consider the FC in minimization
and FC affect the optimization.

Keywords: supply chain; network design; two-stage; fixed cost; sensitivity analysis

1. Introduction

The supply chain network design (SCND) problem can be classified into three types namely:
forward type of supply chain network, reverse type of supply chain network and closed loop type of
supply chain network. In this study, we deal with forward type of SCND that is the material flows
from supplier to plant and then reaches the customer. There are many stages in this model, (multi-
stage), that may include warehouse and distributors. The supply chain is a network of suppliers,
manufacturers, and distribution centers that transforms raw materials into usable products through
several stages and distributes them to retailers in one or more stages. In the traditional transportation
problem, the objective is to minimize total transportation costs by minimizing shipping costs
proportional to the volume of items moved. Nevertheless, in practice, a fixed cost is incurred anytime
a transportation route is established between a factory and a retailer. The Fixed Cost Transportation
Problem (FCTP) occurs when both fixed and variable costs exist simultaneously. The variable cost
varies linearly with the amount carried from supply to destination, and the fixed cost is incurred
anytime a product is transferred between the supply and destination points. The preceding evidence
demonstrates that problems involving fixed costs are more challenging to resolve than those
involving variable costs.

Typically, the FCTP problem is formulated as a mixed-integer programming problem and is
tackled utilizing methods comparable to those described in the literature. Several reports on the
single-stage FCTP emphasize minimizing total transportation costs [1-3]. Molla-Alizadeh-Zavardehi
et al. [4] extended the FCTP to a two-stage supply chain problem, which considers possible
distribution centers with fixed capacity for each distribution center to be opened. The model
optimizes overall costs by establishing the optimal number of distribution centers to meet customer
demands. Panicker et al. [5] proposed a two-stage FCTP in which several plants serve products to a

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.


mailto:amatya@eng.zu.edu.eg
mailto:kamostafa@eng.zu.edu.eg
https://doi.org/10.20944/preprints202308.0282.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2023 doi:10.20944/preprints202308.0282.v1

number of retailers via a set of unlimited-capacity distribution centers. However, the model only
dealt with a single product and a single period. Similarly, Hong et al. [6] considered the FCTP problem
in a two-stage supply chain with fixed costs for transportation routes.

In practice, it is more challenging to solve the FCTP problem than to solve a linear one.
Numerous techniques have been proposed in the literature to solve the FCTP, such as the genetic
algorithm [7,8], simulated annealing algorithm [9], artificial immune and genetic algorithm [10],
Simplex-based simulated annealing [5,11], ant colony optimization for various optimization
problems such as the traveling salesman problem [12]. Jawahar and Balaji [13] considered a two-
stage supply chain distribution problem associated with a fixed cost. Stiitzle and Dorigo [14] applied
ant colony optimization in solving complex cases of FCTP. Panicker et al. [5] conducted a comparative
analysis of an ant colony optimization and a genetic algorithm heuristic technique, revealing the
effectiveness in solving a two-stage FCTP problem. Sanei et al. [15] proposed a Lagrangian relaxation
heuristic for solving the problem of transporting products from sources to destinations using
different transportation modes with variable and fixed costs. Lotfi and Tavakkoli-Moghaddam [16]
proposed a genetic algorithm to solve FCTP. Shen and Zhu [17] examined a two-stage FCTP under
uncertainty, they proposed genetic algorithm and particle swarm optimization to solve the problem.
Kowalski et al. [18] developed a simple algorithm for getting the global solution to a small-scale FCTP
by decomposing the problem into a series of smaller subproblems. In the real world, FCTP is a
complicated problem, particularly in supply chain management and distribution systems. Sadeghi-
Moghaddam et al. [19] presented variable and fixed costs as fuzzy numbers. Panicker and Sarin [20]
and Wang et al. [21] formulated a multi-stage multi-period FCTP for multi-product which is solved
using ant colony optimization. In our previous paper, Mostafa and Elshaer [22] solved the two-stage
FCTP problem utilizing three ant colony optimization algorithms compared by Lingo optimum
solution.

The structure of this paper is as follows: section 2 presents a literature review. In section 3, the
problem formulation is presented. In section 4, the results and computational study are illustrated.
Sensitivity analysis is described in section 5. Section 6 provides conclusions and suggestions for
future work.

2. Literature Review

The design of a supply chain network is one of the most complex topics in supply chain
management, including decisions at the operational, tactical, and strategic levels. This problem
entails identifying the number, location, and capacity of facilities, as well as establishing distribution
channels and flows of materials and products that will be manufactured and transported to suppliers
at each consumption layer. Molla-Alizadeh-Zavardehi et al. [4] considered two stages of the supply
chain network: distribution centers (DCs) and customers. Customers with specific needs exist, as do
prospective locations for warehouses. Each of the possible DCs can ship to any of the clients. Two
different types of costs are considered: the opening cost, which is expected for opening a possible DC,
and the shipping cost per unit from the DC to the clients. The proposed model picks several viable
locations as distribution centers in order to meet the needs of all clients. Two algorithms, genetic
algorithm and artificial immune algorithm, are created to address the given problem. The Taguchi
experimental design approach is used to identify the best parameters with the fewest number of
experiments. Different problem sizes are used, and the computational output of the algorithms is
compared to one another for the aim of performance evaluation of the suggested algorithms.

Hong et al. [6] focused on a problem of distribution allocation in a supply chain with two stages
and fixed costs. His challenge was to identify a distribution network's manufacturing facilities,
wholesalers, and retailers' supply chain arrangement. The issue is modeled using an integer-
programming approach. The mathematical model includes fixed costs for facilities opening and fixed
costs for transportation routes as well as unit transportation costs between entities. The model's goal
is to reduce the overall expenses of supply chain management associated with assigning retailers to
distribution centers and distribution centers to production facilities. For the purpose of solving the
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model, an Ant Colony Optimization (ACO)-based heuristic is created. On a range of produced
problem sizes, the heuristic is tested.

Panicker et al. [5] focused on an issue of distribution allocation in a supply chain with two stages
and fixed costs. To handle the problem with a fixed transportation cost for a route, an algorithm based
on ant colony optimization is suggested. A numerical analysis of examples of benchmark problems
has been done. The proposed algorithm's outcomes have been contrasted with those of the genetic
algorithm-based heuristic. The design and management of supply chains is the key concern for
managers of industrial and service organizations in today's fiercely competitive business
environment. Allocating customers to a manufacturing company's various supply chain partners is
a crucial choice that influences value addition, degree of customer service, and prices.

Sanei et al. [15] introduced the step fixed-charge solid transportation problem, in which products
are transported using a combination of unit and step fixed-charges from sources to destinations. Offer
a dual decomposition method that can handle larger cases and relies on a Lagrangian relaxation. Lotfi
and Tavakkoli-Moghaddam [16] proposed a priority-based genetic algorithm to solve both linear and
nonlinear FCTP that includes novel crossover and mutation operators. Shen and Zhu [17] examined
the two-stage fixed cost transportation problem in an unpredictable environment. Demands, supply,
availability, fixed costs, and transported amounts are all regarded as uncertain factors because there
are so many unknowns. The goal is to maximize overall profit in unpredictable circumstances. Based
on the structure of the problem, the genetic algorithm and particle swarm optimization were
suggested to solve the equivalent forms of the models.

Kowalski et al. [18] presented a simple method to find the overall solution to a fixed charge
transportation problem (FCIP) of small scale. By breaking the problem down into a number of
smaller sub-problems, the suggested approach solves FCTP. To solve the small-scale fixed-charge
transportation problem, suggest a straightforward and quick branching approach. Up until a perfect
solution is found, the sub problems can be divided into even smaller sub problems. This approach
offers a substitute for quickly using computer tools to solve small-scale problems. As a result, it can
be utilized as a pedagogical tool in a classroom setting for educational objectives. Sadeghi-
Moghaddam et al. [19] presented variable and fixed costs as fuzzy numbers. They used both priority-
based representation and Priifer numbers based on spanning trees to propose novel techniques in
solution algorithms. Additionally, the Taguchi method is employed to ensure the accurate calibration
of parameters and the proper operation of algorithms. Additionally, a number of instances of various
sizes are produced to evaluate the effectiveness of the algorithms and available software in the
context of real-world cases.

In addition to the variable cost, the majority of practical applications of a transportation network
have a fixed cost. For a scenario involving multiple products, the problem is described as a Multi-
Stage Multi-Period Fixed Charge Transportation Problem. Panicker and Sarin [20] modeled the
problem with the use of an optimization modeling tool named "A Mathematical Programming
Language,” and the BONMIN solver provides the answer. Finding the best solution for a huge
problem size that is seen in practice typically requires more precise algorithms and longer
computation times. A heuristic based on Ant Colony Optimization is suggested for these operational
problems where process speed is just as crucial as solution quality. Using data sets created at random,
the solution produced by the suggested heuristic is contrasted with that of accurate approaches. For
a scenario involving many products, a simple MPFCTP model is created. The computational analysis
shows that even though the solution reached using exact methods is best, the computational time
required to solve a mathematical model is substantial. The Ant Colony Optimization approach is
suggested to solve the model since the exact methods become less effective as the problem size
increases. Both approaches are the subject of a computational investigation, and the outcomes of the
precise method and ACO are compared. It is known that ACO provides a solution that is close to
optimal in a lot less time than exact approaches.

A market area receives a variety of products from the supply chain over time. The model takes
into account where manufacturers and retailers are located and makes the assumption that customer
behavior is probabilistic and based on an attraction function that is affected by both the location and
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the quality of the retailers. In order to maximize supply chain profit in a competitive economy, Wang
etal. [21] studied a model of a supply chain network with pricing competition. They build the supply
chain with capacity constraints. A model of mixed integer nonlinear programming is used to
formulate the issue. Simulated Annealing Search (SA) and Particle Swarm Optimization (PSO) are
the two heuristic techniques they suggested. The results based of solving designed data sets
demonstrate that simulated annealing is more effective than particle swarm optimization in terms of
both solution quality and CPU times.

In our previous work to develop two-stage supply chain networks, FCTP, Mostafa and Elshaer
[22] proposed three ant colony-based algorithms, ACO1, ACO2, and ACO3. ACO2 and ACO3 are
based on the development of two new pheromone trails and one heuristic trail. The proposed
algorithms are tested on produced problems instances, with the results compared to those achieved
using LINGO.

The literature demonstrates that the researchers consider FC when developing supply chains
without study of its impact on the optimization. The main objective of this paper is twofold, first, we
investigate the impact of fixed costs on the optimal design of two-stage FCTP. Second, sensitivity
analysis is employed to determine the effect of changes in variable cost and opening cost on
optimization models.

3. Problem Formulation

Our two-stage SC problem can be described as a node-connected graph (plants to distributors,
1st stage and distributors to retailers, 2" stage) and edges (routes) to connecting these nodes as shown
in Figure 1. As shown in the figure, there are a set of m plants, I = {1,2,...,i,..,m}, a set of d
distributors, | = {1,2,...,j,...,d}, and a set of r retailers, K = {1, 2, ...,k,...,r}. In each route, both
variable and fixed transportation costs are included. And a fixed opening cost for each distributor is
also incurred. The manufacturing plant is where the products are produced. The distribution centers
are the warehouses of different capacities that store the products before they are delivered to retailers
through use of vehicles. Depending on the capacity permitted, final produced are produced in any
one of the manufacturing facilities, and distribution centers then ship the finished goods to the
retailers.  Distribution  centers are defined as facilities maintaining inventory.
The problem contains information on potential locations for intermediate distribution centers.
There is an initial cost for establishing the distribution center at each location. In addition, the
shipping costs are known throughout. Retailer demands have deterministic values and are
predetermined for the subsequent planning horizon. It is assumed that the final products have to be
delivered through one of the distribution centers to the retailers. The manufacturing capacity of the
plant and the distribution center capacity are designed in a reasonable size to absorb the total
demand. The objective of the problem is to allocate the retailers to the distribution center and
distribution centers to the manufacturing plant, minimizing the total costs of supply chain operation.
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Figure 1. Graphical representation of the proposed network diagram (Hong et al., 2018).

As mentioned above, the main goal of this article is to investigate the impact of FC increase on
the optimization. Therefore, the problem is formulated as mixed-integer nonlinear programming [22]
by two models. The two models considers the minimization of two different objective functions to
determine the optimum solution. The first model objective function is the sum of three types of cost;
namely, fixed, opening and flow costs. The second model objective function, on the other hand, is the
sum of the fixed cost to the minimum of the sum of the flow and opening cost. The first model’s
objective, Z;, is the minimization of three types of costs (fixed, opening, and flow), defined
mathematically in Eq. (1). While the second model objective, Z,, is the summation of fixed cost to the
minimized sum of opening and flow costs, defined mathematically in Eq.(2). The objective of the two
models is to minimize the total cost involved in running supply chain. It is clear that the fixed cost is
considered on the minimization in Eq. (1), but in Eq. (2) is not considered.
The parameters, decision variables, models” objectives, and the models’ constraints considered
in the present work are defined and explained as follows:
Indices
I Plantsset, i = 1,2,...,m
J Distributorsset, j = 1,2,...,d
K Retailers set, k = 1,2,...,r
Parameters of capacity and demand
S; Plant i capacity
SC; Distributor j Storage capacity
D, Retailer k demand
Decision variables
fIPD;; Transported units in 1¢ stage
fIDCj, Transported units in 274 stage
xPD;; Binary (specifies whether the units are transported in
1+t stage)
xDCj, Binary (specifies whether the units are transported in
2nd stage)
xD; Binary (specifies whether a new distributor is open)
Cost parameters
cPD;; Unit transportation cost in 1% stage
¢DCjj. Unit transportation cost in 24 stage
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fxPD;; Fixed cost of transportation in 1+ stage
fxDCj, Fixed cost of transportation in 2d stage
fxD; Fixed opening cost for a new distributor
Z; = Min (Fixed Cost + Flow Cost + Opening Cost) (1)
Z, = Fixed Cost + Min (Flow Cost + Opening Cost ) (2)
The fixed, flow, and opening cost of Eq. (1) and (2) are defined as follows:
m d d r
Fixed Cost = ZZ(foDU X xPDy;) + Z Z(fxDCjk X xDCj ) (3)
i=1 j=1 j=1k=1
m d d r
Flow Cost = Z Z( cPDy; X fIPD;) + Z Z( eDCy X fIDC;. ) )
i=1 j=1 j=1k=1
d
Opening Cost = foDj X xD; )
j=1
Subject to
d
Z fIPD; <5, (i=12..,m) %)
j=1
m r
ZflPDij < wac,-k (=12 ..,d) ®)
i=1 k=1
d
Z fIDC;, = Dy (k=12 ..,7) )
j=1
r
Z D, = SC, (j=12..,d) (10)
k=1
T
wacjk < SCxxD;  (j=12,...d) (11)
k=1
fIPD;; , fIDCj, = 0 Vijk (6)
1,  fIPD; >0
PD;; = J
oy {0, otherwise @)
1, fIDCy, >0
DGy, = J
Rl {0, otherwise 8)
(1, if distributor center j is open
*Dy = { 0, otherwis ©)

The constraints (7) denote that the quantity transported in the first stage is less than the plant
capacity. The constraints (8) represent the balance of material in the two stages. The constraints (9)
sets the quantity transferred to the retailer from the distributor equals to the retailer's demand. The
constraints (10) keep the capacity of the distributor. The constraints (11) set that the quantity
transported from distributor less than or equal to its storage capacity. The constraints (12) enforces


https://doi.org/10.20944/preprints202308.0282.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2023 doi:10.20944/preprints202308.0282.v1

that the decision variables fIPD;; and fIDCj; must be positive. The binary variables xPD;;, xDCj

and xD; are presented in the constraints (13), (14), and (15).

4. Computational Study

In this study, the optimal solution is obtained by minimizing Z;, and Z, and compared, subject
to the same constraints in [22]. The numerical instances are generated and simulated in section 3.1.
In section 3.2, the computational results of solving the test instances using Lingo software are graphed
and discussed.

4.1. Numerical Simulation

In order to investigate the effect of FC increase on the proposed model, 1040 problems are
generated randomly and classified into four groups (260 instances x 4 groups), as shown in Table 1.
Each group has the same number of plants, distributors, and retailers. The generated demand of the
retailers follows the uniform distribution U [50, 500], and U [10000, 20000] is used for generating the
distributors’ opening cost. Table 2 illustrates the fixed and variable cost ranges in the testing problems
Mostafa and Elshaer [22]. In each instance of the generated problems, [3 routs are selected for
changing their FC with = 0%, 10%,..., 50%. The number of routs, 3, are randomly selected by 10%,
20%, 30%, 40%, and 50% from the total number of routes.

Table 1. Problem instance size.

Problem Numberof Numberof Number of Number of
Groups Instances Plants Distributors Retailers
G_1 260 2 5 10
G2 260 4 8 15
G_3 260 6 10 20
G_4 260 10 20 30

Table 2. Fixed and variable cost Ranges Mostafa and Elshaer [22].

Fixed cost range Variable cost range in Variable cost range in 2nd
1st stage stage
(30 - 50) x Avg. variable 10-30 10-50
cost

4.2. Results and Discussion

The two models are solved using Lingo software, with the first model Z; considering the FC in
the optimization (See Appendix A), and the second model Z, does not considers FC in the
optimization (See Appendix B). The results are compared using the average percentage deviation in
Eq. (16), as demonstrated in Figures (2 — 5). According to the figures, the optimal solutions are
improved when considering FC in the optimization and the following is observed: (1) the average
percentage of the total cost is enhanced by increasing the number of routes 3 whose FC increased. (2)
For any specific change in the number of routes (x-axis) whose fixed costs will change, the percentage
of improvement is directly proportional to the percentage change in FC. Therefore, computational
results shown in Figures (2 — 5) reveal that the optimal solutions of the first model Z; outperforms
the other optimal solutions of the second model Z,, and FC increase affect the optimality.

Z,— 7,

% improvement = —7 x 100% (10)
2
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Avg. Percentage relative change on totlal cost

1.70%

1.60%

1.50%

1.40%

1.30%

1.20%

——10% ——20% —4&—30% 40% —%—50%

0% 10% 20% 30% 40% 50%

Percentage change of route fixed cost

Avg. Percentage relative change on totlal cost

2.90%

2.80%

2.70%

2.60%

2.50%

2.40%

2.30%

2.20%

2.10%

Figure 2. % improvement for the 1+t group G_1 (2-5-10).

0% 10% 20% 30% 40% 50%

Percentage change of route fixed cost

——10% ——20% —A—30% 40% —*—50%

Figure 3. % improvement for the 27 group G_2 (4-8-15).
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0.75%

0.70%

0.65%

0.60%

0.55%

0.50%

0.45%

0.40%

Avg. Percentage relative change on totlal cost

0.35%

0% 10% 20% 30% 40% 50%
Percentage change of route fixed cost
—o— 10% ——20% 30% 40% —k—50%

Figure 4. % improvement for the 3 group G_3 (6-10-20).

1.10%
1.00%
0.90%
0.80%
0.70%
0.60%
0.50%

0.40%

Avg. Percentage relative change on totlal cost

0.30%

0% 10% 20% 30% 40% 50%
Percentage change of route fixed cost

——10% ——20% 30% 40% —*—50%

Figure 5. % improvement for the 4% group G_4 (10-20-30).

5. Sensitivity Analysis

The sensitivity analysis technique is used to investigate the impact of variable changes. This is
the process by which it is determined how changes in variables (output) are caused by parameter
changes. A significant result of sensitivity analysis refers to the factors that have the most significant
impact on the design. In this paper, we investigate the impact of changes in opening and variable
costs on the optimization of a two-stage supply chain network design problem. Therefore, two
experiments are designed, as shown in the following two subsections.

5.1. Opening Costs

In order to investigate the impact of opening cost change on the two optimization models,
problem instances with size (6 plants, 10 distributors, 15 retailers) are generated uniformly from the
ranges shown in Table 3. In the table, the opening cost is generated from the range [10000(1+ «),
20000(1+ a)]. Where a takes the values from -40% to 40%, with 10% steps. Thirty problem instances
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are generated for each a and solved optimally using the two models (Z; and Z,) by lingo. The
average results of opening, fixed, flow, and total costs for the instances are depicted in Figure 6. The
figure shows that model Z, which disregards FC in minimization, performs better on flow costs
alone. However, model Z;outperforms model Z, in the opening, fixed and total costs.

Table 3. Opening cost sensitivity analysis.

Parameter Range
Retailer demand 50 500
Opening cost of the distribution center. 10000(1 + @) 200001 + )
Fixed cost =30 -50 * average variable cost 30 50
Variable cost =10 -30 in stage 1 10 30
Variable cost =10 -50 in stage 2 10 50
OPTIMUM OPENING COST
43000 —a&— Open Cost Z1
41000 —@— Open Cost Z2
39000
+ 37000
w
3
0 35000
£
g 33000
o
O 31000
29000
27000
25000
EN X X EN xR X X EN x
o o o o o o o o o
Percentage change in opening cost (a)
OPTIMUM FIXED COST
25500
—a&— Fixed Cost Z1
25000 —@— Fixed Cost 72
24500
% 24000
el
1
.E 23500

——

R

23000

22500

22000

EN x

0%

40%
30
20%
10
10
20%
30%
40%

Percentage change in opening cost (@)
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OPTIMUM FLOW COST

140000
—@— Flow Cost 71

135000 —@— Flow Cost 72

130000

@
o 125000
o
2
© 120000
w
115000
110000
105000
ES x x x X ES X X ES
o o o o o o o o o
< om o~ - - o~ (32] <
Percentage change in opening cost (a)
OPTIMUM TOTAL COST
205000
—a&— Total Z1
200000 —@— Total 22
195000
-
& 190000
o
=
o 185000
L

180000

175000

170000

0%

40%
30%
20%
10%
10%
20%
30%
40%

Percentage change in opening cost (a)

Figure 6. Impact of opening cost change on the output of the two models.

5.2. Variable Costs

In order to investigate the impact of variable costs on the two optimization models, another
thirty problem instances with the same size are generated uniformly for each a by changing the
variable cost from the ranges shown in Table 4. In the table, the variable cost is generated from the
range [10*(1+a) to 30*(1+a)] for the first stage and [10*(1+ax) to 50*(1+a)] for the second stage. Where
a takes the same values (from -40% to 40%). The fixed cost generation is affected by changing the
variable cost, where the fixed cost value is multiplied by the average of variable cost, and the
generated problems are solved optimally using the two models.,

Table 4. Variable cost sensitivity analysis.

Parameter Range

Retailer demand 50 500
Opening cost of the distribution center. 10000 20000
Fixed cost =30 -50 * average variable cost 30 50
Variable cost =10 -30 in stage 1 101+ a) 301 + )

Variable cost = 10 -50 in stage 2 101+ a) 501+ a)
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5.3. Discussion

Figure 6 shows that model Z, which disregards FC in minimization, performs better on flow
costs alone. However, model Z;outperforms model Z, in the opening, fixed and total costs. Figure
7 shows the average results of opening, fixed, flow, and total costs when changing variable costs;
from the figure, Z, gives better performance on the opening and fixed costs, but it has no effect on
flow and total cost output. The percentage improvement of Z; over Z, is shown in Figure 8. We
can notice from the figure that as ot increases, the relative percentage deviation of the two models will
increase by increasing variable cost, which affects FC, and decreased by increasing opening cost.
Consequently, it can be concluded that fixed costs significantly impact supply chain network design.
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Figure 7. Impact of variable cost change on the output of the two models.
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6. Conclusions and Future Work

This paper examines the impact of fixed cost increase as well as the variable cost on the
optimization of the Two-Stage Supply Chain Network Design. A numerical study on two models, Z;
and Z,, has been designed and used to solve the considered group of instances. The first model, Z;,
considers both fixed and variable costs besides the opening cost in minimization, whereas the second
one, Z,, considers only variable costs and opening costs in minimization. The problem is formulated
as a mixed-integer nonlinear programming model and coded using Lingo19 to achieve the global
optimum. In order to demonstrate the impact of the fixed cost increase on the proposed models, four
groups of network characteristics with different sizes are designed, and 260 instances are randomly
generated for each network. Lingo is used to solve the 1040 instances dataset for the first and second
model. The results of the two models are compared utilizing average percentage relative deviation.
In addition, a sensitivity analysis is conducted to determine the effect of varying opening and variable
costs on the optimization. Computational results reveal that the optimal solutions of the first model
Z; (when considering FC in optimization) outperforms the other optimal solution of the second
model Z, (when not considering FC in optimization).

For future studies, the single-product model in the current study has two stages, which can be
developed into a multi-product and/or multi-stage network. In contrast, the uncertainty included in
capacity, demand, and cost could be considered for practical applications.
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Appendix A

The Lingo code of the first Model, Z1. This code is applied to the generated data instances of
group G_1 (2-5-10). The code of the other groups and all results are provided in the
article/Supplementary Materials.

MODEL:

SETS:

PLANT:PLANTCAPACITY;

DISTRIBUTOR:DISTRIBUTORCAPACITY,OPINNINGCOST, U;

RETAILER:DEMAND;

LINK1(PLANT,DISTRIBUTOR):FIJ, Y1J,CIJ, X1J;

LINK2(DISTRIBUTOR,RETAILER):FJK, YJK,CJK,XJK;

ENDSETS

DATA:

PLANT=P1, P2;


https://drive.google.com/drive/folders/17cQ8m1wxQCk7hIvHunPNAN70MBs5gNeg?usp=sharing
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DISTRIBUTOR=D1, D2, D3, D4 D5

RETAILER = R1, R, R3, R4 R5, R6 R/ R8 R9  RIO;
PLANTCAPACITY = @file('PDR_2-5-10_1.txt');

DEMAND = @file(PDR_2-5-10_1.TXT');

OPINNINGCOST = @file('PDR_2-5-10_1.TXT);

FIJ = @file(PDR_2-5-10_1.TXT');

CI] = @file(PDR_2-5-10_1.TXT");

FJK = @file('PDR_2-5-10_1.TXT");

CJK = a@file(PDR_2-5-10_1.TXT');

@TEXT(OUTLTXT) =@WRITE(' PLANT DISTRIBUTOR QUANTITY', @NEWLINE( 1));

@TEXT(OUTLTXT) =@WRITE('  -werememememememememememememeeeee ', @NEWLINE( 1));
@TEXT(OUTL.TXT') = @WRITEFOR( LINKI1(1, J) | XIJ(1, J) #GT# 0:8* ', PLANT( I), 8 , DISTRIBUTOR( J),
8* ', @FORMAT( XIJ(1, J), '8.0f), @NEWLINE( 1));

@TEXT(OUTLTXT) =@WRITE('  ---rmrermrmmemmmmmmmmeeeeeen-', @NEWLINE( 2));

@TEXT(OUTLTXT') =@WRITE(' DISTRIBUTOR RETAILER QUANTITY', @NEWLINE( 1));

@TEXT(OUTLTXT) =@WRITE(' ~ ---rmremrmmmmmemmmeemmeo', @GNEWLINE( 1));

@TEXT('OUTL.TXT') =@WRITEFOR( LINK2(J,K) | XJK(],K) #GT# 0:8*' ', DISTRIBUTOR(J), 8*' ', RETAILER(

K), 8*' ', @FORMAT( XJK( ], K), '8.0f), @NEWLINE( 1));

@TEXT(OUTLTXT) =@WRITE(' ----r-mmmermmmmmemmmceeeeeeee, @NEWLINE( 1));
ENDDATA
[TCOST] MIN = FixedCost + FlowCost + OpeningCost ;

FixedCost = @SUM(LINK1(L]):FIJ(L])*YIJ(L])) + @SUM(LINK2(J, K):FJK(,K)*YJK(,K)) ;
FlowCost = @SUM(LINK1(LJ):CIJ(L])*XIJ(L,])) + @SUM(LINK2(J, K):CJK(J, K)*XJK(J,K)) ;
OpeningCost = @SUM(DISTRIBUTOR(J):OPINNINGCOST())*U()));

@FOR(PLANT(I): @SUM(DISTRIBUTOR(J):XIJ(L]))< PLANTCAPACITY(I));
@FOR(DISTRIBUTOR(J):@SUM(RETAILER(K):XJK(J,K))<= DISTRIBUTORCAPACITY(J)*U(]));
@FOR(RETAILER(K):@SUM(DISTRIBUTOR(J):XJK(J,K))=  DEMAND(K));
@FOR(DISTRIBUTOR(J):@SUM(RETAILER(K):DEMAND(K))= DISTRIBUTORCAPACITY(])));

! DC balance constraints;

@FOR(DISTRIBUTOR(J):@SUM(PLANT(I):XIJ(1,])) = @SUM(RETAILER(K):XJK(],K)));

@FOR(LINKI:XIJ> 0);
@FOR(LINK2:XJK> 0);

@FOR(LINKI:YIJ = @IF(XIJ#GT#0,1,0));
@FOR(LINK2:YJK = @IF(XJK#GT#0,1,0));

@FOR(DISTRIBUTOR:@BIN(U));

ITOTAL COST OUTPUT;
CALC:
@SOLVE();
@TEXT('CostandTime_2-5-10-Z1-Obj. TXT', 'a’) = @WRITE( 'PDR_2-5-10_1.TXT',6* ', OpeningCost,6*' ',
FixedCost ,6*' ', FlowCost ,6* , TCOST, 6*'','CPU =",6*' ', @Time(), @NEWLINE( 1));
ENDCALC
END

ALTER ALL '1.txt'3_%10-%-50.txt'

GO
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ALTER ALL '3_%10-%-50.txt'3_%10-%-40.txt'
GO
ALTER ALL '3_%10-%-40.txt'3_%10-%-30.txt'
GO
ALTER ALL '3_%10-%-30.txt'3_%10-%-20.txt'
GO

Appendix B

The Lingo code of the second Model, Z2. This code is applied to the generated data instances of
group G_1 (2-5-10). The code of the other groups and all results are provided in the
article/Supplementary Materials.

MODEL:

SETS:

PLANT:PLANTCAPACITY;

DISTRIBUTOR:DISTRIBUTORCAPACITY,OPINNINGCOST, U;

RETAILER:DEMAND;

LINK1(PLANT,DISTRIBUTOR):FI], YIJ,CIJ,XTJ;

LINK2(DISTRIBUTOR,RETAILER):FJK, YJK,CJK,XJK;

ENDSETS

DATA:

PLANT=P1, P2;

DISTRIBUTOR=D1, D2, D3, D4 D5;
RETAILER =R1, R2, R3, R4, R5, R6 R7 R8 R9 R10;
PLANTCAPACITY = @file(PDR_2-5-10_1.txt');
DEMAND = @file(PDR_2-5-10_1.TXT");
OPINNINGCOST = @file('PDR_2-5-10_1.TXT");

FIJ = efile(PDR_2-5-10_1.TXT');

CIJ = efile(PDR_2-5-10_1.TXT');

FJK = e@file(PDR_2-5-10_1.TXT');

CJK =e@file(PDR_2-5-10_1.TXT');

@TEXT(OUTLTXT) =@WRITE(' ~ PLANT DISTRIBUTOR  QUANTITY', @NEWLINE( 1);

@TEXT(OUTLTXT) =@WRITE('  --oememeemmmeermmeenmeeeences, @NEWLINE( 1));
@TEXT(OUTLTXT) =@WRITEFOR( LINKI(T,J) | XIJ(1,J) #GT# 0:8**, PLANT(T), 8 ', DISTRIBUTOR(J),
8 ', @FORMAT( XIJ(T, J), '8.0f), @NEWLINE( 1);

@TEXT(OUTLTXT) =@WRITE('  -eemeemmeemmeemmemeemmeemeeeeee " @NEWLINE(2));

@TEXT(OUTLTXT) =@WRITE(' ~ DISTRIBUTOR RETAILER ~ QUANTITY', e@NEWLINE( 1));

@TEXT(OUTLTXT) =@WRITE('  ---rermmrmmmmememmm e, @NEWLINE( 1));

@TEXT(OUTLTXT) =@WRITEFOR( LINK2(J,K) | XJK(J,K) #GT# 0:8* ', DISTRIBUTOR(J), 8*' ', RETAILER(
K), 8* ', @FORMAT( XJK( J,K), '8.0f), @NEWLINE( 1));

@TEXT(OUTLTXT) =@WRITE(' ---rmememmrmememmmememeeeeeme', @NEWLINE( 1));
ENDDATA
[TCOST] MIN = FlowCost + OpeningCost ;

FixedCost = @UM(LINK1(L]):FIJ(L))*YIJ(L])) + @UM(LINK2(J,K):FJK(J, K)*YJK(,K)) ;
FlowCost = @SUM(LINK1(LJ):CIJ(LJ)*XIJ(L,})) + @SUM(LINK2(J, K):CJK(J, K)*XJK(J, K)) ;
OpeningCost = @SUM(DISTRIBUTOR(J):OPINNINGCOST())*U()));

@FOR(PLANT(I): @UM(DISTRIBUTOR(J):XIJ(L]))< PLANTCAPACITY(I));
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@FOR(DISTRIBUTOR(J):@SUM(RETAILER(K):XJK(J,K))<= DISTRIBUTORCAPACITY(J)*U(J));
@FOR(RETAILER(K):@SUM(DISTRIBUTOR(J):XJK(J,K))=  DEMAND(K));
@FOR(DISTRIBUTOR(]):@SUM(RETAILER(K):DEMAND(K))= DISTRIBUTORCAPACITY(])));

! DC balance constraints;

@FOR(DISTRIBUTOR(J):@SUM(PLANT(I):XIJ(I,])) = @SUM(RETAILER(K):XJK(J,K)));

@FOR(LINK1:XIJ> 0);
@FOR(LINK2:XJK> 0);

@FOR(LINK1:YIJ = @IF(XIJ#GT#0,1,0));
@FOR(LINK2:YJK = @IF(XJK#GT4#0,1,0));

@FOR(DISTRIBUTOR:@BIN(U));

ITOTAL COST OUTPUT;
CALC:
@SOLVE();
@TEXT('CostandTime_2-5-10-Z2-Obj.TXT', 'a) = @WRITE(PDR_2-5-10_1.TXT' ,6* ',  OpeningCost,6*' ',

FixedCost ,6*' ', FlowCost ,6*' ', FixedCost +TCOST, 6*'','CPU =",6* ', @Time(), @NEWLINE( 1));

ENDCALC

END

ALTER ALL '1.txt'3_%10-%-50.txt'

GO

ALTER ALL '3_%10-%-50.txt'3_%10-%-40.txt'
GO

ALTER ALL '3_%10-%-40.txt'3_%10-%-30.txt'
GO

ALTER ALL '3_%10-%-30.txt'3_%10-%-20.txt'
GO
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