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Abstract: In this article, the Shannon entropy measure was used to evaluate the change in precipitation and
temperature conditions. Due to the short, low-volume sequences of analyzed precipitation and temperature
data, a bootstrap method was used in the procedure for calculating Shannon entropy. The analysis used
minimum and maximum values of monthly precipitation totals and average monthly temperatures for 377
catchments distributed across the globe. 110-year data sequences from 1901 to 2010 were analyzed. Entropy
values for the estimated parameters of the generalized extreme value distribution (GEV) were calculated for
the accepted data. Entropy value calculations were performed for the left-hand constraint, based on minimum
values, and for the right-hand constraint, based on maximum values. Based on the analysis of precipitation
and temperature sequences, trend forms were identified for the left and right Shannon entropy values. This
made it possible to obtain information on the directions of changes occurring in the area of minimum and
maximum values in the field of monthly precipitation and average temperatures in the analyzed catchments.
The study showed the existence of Shannon entropy trends. Evaluation of entropy trends for precipitation and
temperature sequences was performed using non-parametric tests. Mann -Kendall tests at the 5% significance
level were used in the trend analyses. The Pettitt test was performed to determine the point of change in trend
for precipitation and temperature data. The analysis performed was supported by graphical presentations.

Keywords: shannon entropy; bootstrap method; GPCC data; NOAA data; monthly precipitation;
average temperature; climate trends; mann kendall test; pettitt test

1. Introduction

Climate extremes such as droughts, floods, extreme temperatures or storms have the potential
to have a significant impact on economic sectors that are closely linked to climate, such as water
management, agriculture, food security, energy security, forestry, health and tourism. Changes in
these sectors could have far-reaching consequences for countries whose economies rely more heavily
on these sectors [1-3]. Most previous research work on climate change, unfortunately, overlooks or
downplays the importance of the variability of extreme climatic conditions. The variability of these
characteristics is an important aspect of climate change risk assessment, as it affects the intensity and
frequency of extreme events. The IPCC report points out [4-6] that expected changes in the variability
of precipitation and temperature in the future will be characterized by a high degree of uncertainty.
In light of these facts, there is a need to develop methods and algorithms that can improve the
efficiency of predicting and estimating the intensity of climate hazards [3,7]. The Earth's atmospheric
system is too complex to be described deterministically. This means that predicting its future state is
difficult or impossible [8]. It is an open system and driven mainly by the continuous influx of solar
radiation and the Earth's rotation. The system is too large to solve deterministically due to: the
number of data needed to describe its state, incomplete instrumentation to monitor its state, the lack
of a correct way to spatially partition the system for long-term analysis, and the lack of accurate
historical data before 1900. Therefore, stochastic analyses can be useful in assessing the variability of
climate conditions [8]. Analyses of entropy directions show that if global warming were to continue,
a decrease in thermodynamic entropy would mean more free energy driving the weather; an increase

© 2023 by the author(s). Distributed under a Creative Commons CC BY license.



https://doi.org/10.20944/preprints202308.0260.v1
http://creativecommons.org/licenses/by/4.0/

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2023 doi:10.20944/preprints202308.0260.v1

in informational entropy would mean difficulty in predicting which way the process would go [8].
One potential tool to help with this is the Shannon entropy trend assessment. Entropy analysis can
provide information on the degree of irregularity, unpredictability and variability in climate systems,
which can be valuable for developing more accurate forecasts and strategies for managing risks
associated with extreme climate events.

Climate change is a phenomenon that leads to significant spatial and temporal heterogeneity in
the impact of these changes on biological systems, health and sectors of economies [9]. Studies show
that global increases in average temperature mask significant differences in temperature increases
between land and sea, and small areas and large regions [10-12]. Climate change also inevitably
results in changes in the frequency, intensity, spatial extent, duration and timing of extreme weather
and climate events [1-3]. One can analyze extreme values in the context of changes in the types and
parameters of probability distributions, trends in statistical characteristics (e.g., minimum, maximum
values) [13]. One can also look at the variation of extreme values through the characteristics of the
tails of extreme distributions [14-16]. It is also possible to monitor the change in Shannon entropy
and its trends as a measure of climate variability and the extremes following this variability.

Shannon entropy is a measure of the degree of disorder or unpredictability in a system, and an
increase in entropy can indicate greater climate variability. Analysis of Shannon entropy and other
measures of a statistical nature can be useful for assessing climate variability and extremes. This will
enable a better understanding of the effects of climate change on different systems and take
appropriate measures to adapt and reduce its negative consequences. Shannon entropy trend
analysis of the climate system, taking into account the interaction between precipitation and
temperature [2,17-19], is extremely important for several reasons. Positive feedback in the climate
system can lead to an increase in entropy due to complex changes in precipitation and temperature.
For example, an increase in temperature can increase the intensity of rainfall, which in turn leads to
extreme flooding events. This phenomenon is amplified because more precipitation can also
influence further increases in temperature, resulting in more rainfall.

Precipitation and temperature play a key role in the global energy and water cycle [17,20-23]
and their variability can lead to floods, droughts and other natural disasters. Analysis of the
variability of temperature and precipitation extremes is necessary because of their impact on many
aspects of the natural and human environment. In the article, based on long-term sequences of
precipitation and temperature, it is shown that the process of variability of minimum and maximum
values, can lead to significant changes in the local environment. Such changes can affect the
distribution of plant and animal species, weather patterns, agriculture and the economy, and many
other aspects of the environment and life. Knowledge of the nature of the changes and the time scales
of these phenomena is used to reduce the risks of all types of hazards, including floods and drought.
Proper understanding of the nature of variability in extreme phenomena is key to developing
strategies related to mitigation [12,24,25] and minimizing the impact of anthropogenic factors [25-
27].

Projections indicate that as the planet warms, climate and weather variability will increase.
Changes in the frequency and intensity of extreme climatic events and in the instability of weather
patterns will have significant consequences for both human and natural systems. By the end of this
century, the frequency of extreme conditions, such as heat stress, droughts and floods, is expected to
increase, with numerous negative impacts beyond those resulting from changes in average values
alone [1-3]. Given the uncertainty associated with forecasts of changes in extremes and the limited
confidence in these forecasts, it is important to conduct trend analyses and extreme value analyses
based on the longest possible measurement sequences. Both the low certainty of forecasts and the
high confidence in them do not exclude the possibility of extreme changes. In the context of
limitations in understanding climate processes in different regions, there is a possibility of extreme
changes with low probability, however with significant impact. Changes in extremes are observed,
and there is evidence that some of these changes are due to anthropogenic influences [1-3]. Analysis
of historical observations of climate variables indicates anthropogenic changes in climate [28-30]. The
study of changes in the amount of precipitation and temperature variability [16,31-35], depending
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on the observed period, show changes in trends and allow us to assess the form of the directions of
these occurring changes [36-39]. However, attributing individual extreme events to these influences
remains a challenge. An example of this is the analysis performed as part of the work on climate
variability at different periods and scales in a given region (e.g., in the rhythm of multi-decadal
oscillations) [40,41]. It has been noted that precipitation variability in Europe is mainly influenced by
the ocean-atmosphere circulation, especially the North Atlantic Oscillation (NAO). Consequently, the
complexity of ocean-atmosphere interactions makes it difficult to detect the main driving forces of
the oscillation and their influence on the variability of extreme events in the region [42]. Finally, the
observed changes in the magnitude, frequency and timing of extreme events obtained represent one
of the first analyses of this under-researched phenomenon where patterns have been shown to be
complex and not always consistent with previous studies [6,19,28,43].

Despite the existence of limitations and uncertainties regarding climate variability projections
and their impact on biological systems, health and sectors of economies, the need for adaptation
measures cannot be underestimated. There is a pessimistic forecast of future weather and climate
variability on short time scales and large spatial scales [44]. There is an increase in the frequency and
intensity of climate hazards. Phenomena resulting from climate variability are not only becoming
more common, but also their intensity is increasing by shortening the duration of these phenomena.
In addition, it is possible to observe a change in the direction of the phenomena in the short term and
the dynamics of extreme values [45]. Minimizing the impact of increasing climate risks requires a
combination of climate-influencing actions and adaptive capacity in the planning process [44].
Assessments indicate an increased likelihood of future critical events, partly due to positive feedbacks
in the climate system [46]. The impacts of these events are estimated to be large, making the risks
significant [47]. Therefore, despite current limitations and uncertainties, there is an urgent need for
adaptation measures to minimize the impact of increasing climate risks on various economic sectors,
health, security and biological systems.

The increase in entropy affects the unpredictability of the weather and makes it difficult to plan
adaptation activities. There can be a sudden transition from one extreme state to another in a short
period of time. An increase in entropy in the climate system increases the degree of chaos and
unpredictability. This, in turn, leads to greater weather variability, more frequent occurrence of
extreme climatic events and difficulty in predicting long-term trends. Increased entropy can
negatively affect economic sectors, such as agriculture, which need stable weather conditions for
efficient production. However, increased entropy can also lead to greater biodiversity, as organisms
must adapt to more variable environmental conditions. In the climate system, there is a complex
interaction between polarization feedback [45] and increased entropy. Polarization feedback refers to
the change in direction and intensity of climate phenomena over a short period of time. Abrupt jumps
between weather extremes, such as sudden changes from drought to torrential rains or from extreme
cold to heat, are examples of polarization feedback. The feedback of polarization and entropy increase
is that the phenomena reinforce each other. Rapid changes in weather, characteristic of polarization,
can contribute to greater weather variability and an increase in entropy. In turn, an increase in
entropy can affect larger jumps between extreme weather states, further intensifying polarization.
Therefore, understanding positive feedbacks in the climate system, polarization and entropy in the
climate system can be important to better understand climate change and develop effective
management and adaptation strategies. The interactions of climate variables can affect the occurrence
of hurricanes, tornadoes and droughts. In addition, these interactions can affect a measure of risk that
includes threats to life, livelihoods, health, well-being, ecosystems, species, economic, social and
cultural resources, as well as services (including ecosystem services) and infrastructure. Risk results
from the interaction between system vulnerability and exposure, and between system exposure and
forcing [10,18,48]. As a result, one phenomenon can amplify or weaken another, complicating the
process of understanding the scale of climate change. Anthropogenic factors, such as industrial
activity, deforestation, land use transformation, pollutant emissions and greenhouse gas emissions
[17,26,27,49,50], can affect the variability of extreme values and polarization of climate factors
[10,45,51-53].
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Shannon entropy finds application in climate change analysis by enabling the measurement of
the degree of disorder and complexity of climate change distributions. It can help identify trends,
cyclicality, fluctuations and anomalies in climate data, as well as forecast future changes based on
historical data. It can be used to analyze various aspects of climate, such as variability in temperature,
precipitation, wind variability, water levels, etc. The application of Shannon entropy can also help
evaluate the effectiveness of measures to reduce human impact on climate, such as reducing
greenhouse gas emissions, changing land use and crop types, changing agri-food production and its
spatial distribution, types of industrial infrastructure, and developing renewable energy sources. In
this way, Shannon entropy can be useful in scientific research, climate policy and planning for
environmental protection.

2. Methodology

Today, there is a growing body of scientific evidence confirming that human activities are
influencing climate change, contributing to shorter durations of high-intensity precipitation and
longer periods of high temperature and low precipitation. The variability of extreme events, such as
floods and droughts, is increasingly apparent and can be attributed to the erratic nature and intensity
of human activities. Therefore, the study of climate variability factors related to monthly precipitation
and average monthly temperatures is key to understanding climate change at the regional level and
developing strategies to manage water resources and reduce the risk of floods and droughts.

The minimum and maximum values of monthly precipitation and the minimum and maximum
values of average monthly temperatures during the year were adopted for the analysis. In view of
the purpose of the analysis, i.e. assessing long-term climate variability, it is better to perform analyses
on averages rather than on extreme values for several reasons. Such analyses have greater statistical
stability. Averages have less variability than extreme values, which means that for the same data we
will get a smaller standard error of the average estimator than of the extreme value estimator.
Statistical stability is particularly important for long-term analyses, since variability in values can
affect the interpretation of results and decision-making. Another argument is the larger number of
observations, since analysis on averages can be performed for a larger number of observations than
analysis on extreme values, allowing for more representative results. It should be noted that analyses
on averages are a better reflection of reality, allowing to obtain information on typical values, which
are more representative of long-term changes than extreme values. In addition, extreme values can
be the result of random factors or unpredictable events that do not reflect typical conditions. In
summary, for the search for long-term changes, analysis on averages is more statistically stable,
allows for a larger number of observations, and better reflects typical values, which is important for
decision-making and action planning.

Calculations of Shannon entropy variability were made for the "left tail" based on the following,
respectively: minimum values of monthly precipitation and minimum values of average monthly
temperature. For the "right tail," calculations of Shannon entropy variability were made for,
respectively, on the basis of maximum values of monthly precipitation and maximum values of
average monthly temperature. Due to the small-volume dataset, a bootstrap technique [54-58] was
used to evaluate the distributions of extreme values of minimum and maximum values of Shannon
entropy variability. It should be noted that for the evaluation of the "left tail" parameters, distribution
parameters estimated based on minimum values were taken, while for the "right tail" distribution
parameters were estimated based on maximum values.

3. Bootstrap Resampling Technique

In the present study, a bootstrap resampling technique was used to estimate the parameters of
the distribution of extreme precipitation and temperature values.. The main idea of bootstrap is to
generate large samples with replacement by resampling the original samples based on the
assumption that the samples are independent and identically distributed. This method is
recommended not only for its computational efficiency, but as an easy-to-implement approach that
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generates bootstrap replications without relying on the assumption of true distribution [58]. It can be
implemented by relying only on the information obtained from the sample value.

The steps of the bootstrap method used in this study are described as follows:
1. population sequences of annual minimum and maximum values from monthly precipitation

and annual minimum and maximum values from monthly average temperatures were created:
- for the left tail:

P, = min Py dia k = 1,..,12;y = 1901, ...,2010

TR, = minT,, dla k= 1,...,12;y = 1901, .. 2010
- for the right tail:

Py, = max Py dla k =1,..,12;y = 1901, ...,2010

Ty, = max Ty, dla k = 1,..,12;y = 1901, ...,2010

The number of elements in both the precipitation and temperature sequence does not reliably
assess the value of the probabilities of events classified in the left and right tails. A 1000-fold number
of draws from the 70-element sequence was assumed. Since the possibility of assessing Shannon
entropy trends was assumed, it was assumed that the 70 element strings would be created in the
following recursive manner:

for the left tail

XPl' = Pmin1901+i,..,Pmin1970+i dla i= 1, ...,40
XTi = Tmln1901+l', ey Tmln1970+i dla i = 1, ,40
- for the right tail:
P _ -
X i = Pmax1901+i,..,Pmax1970+i dla i = 1, ,40
XTi = Tmax1901+l', ey Tmax1970+i dla i = 1, ,40
Thus, forty 70-element strings were arbitrarily obtained. These strings constituted a resource for
1000-fold bootstrap drawing. In this way, 40 sequences 1000 times drawn by the bootstrap method
were created on the basis of which Shannon entropy was calculated for both precipitation and
temperature for minimum and maximum values.

2. it was assumed that the series of annual minimum and maximum monthly precipitation and
average temperature were original samples, the total length of multi-year records.

3. bootstrap samples of the minimum and maximum series of precipitation and temperature were
drawn using the bootstrapping process, which involves randomly selecting values to replace the
original sample.

4. the above analysis was carried out on all analyzed catchments.

For each, drawn string, the Anderson-Darling test (ADT) was performed to confirm the
possibility of describing the drawn string with the generalized extreme value distribution (GEV)
distribution at the 5% significance level. Otherwise, the results of such an experiment were not taken
into account, proceeding to the next draw. For the estimation of the parameters of the "left tail" of the
GEV, the compliance of the ADT test at the 5% significance level was achieved at 91%, for the "right
tail" at 99.6%. In the next step, the parameters of the generalized distribution of extreme values were
estimated using the maximum likelihood method [57,59-61].The ADT test was adopted because of
the priority given to values from the tails of the distribution, which is important for extreme
distributions. In subsequent steps, the value of Shannon's entropy estimator was calculated at a
significance level of 5% [55]. The above methodology was applied to each of the 377 catchments
analyzed. The analysis code was developed in Matlab software.
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4. Fitting the GEV Distribution

Modeling the variability of climate extremes requires accounting for extremes in such
phenomena as precipitation, temperature, evaporation, atmospheric pressure and others [62]. In
modeling extreme values, an approach that uses a sequence of observations extracted from equal
periods, such as a maximum from monthly totals or a minimum from monthly precipitation totals
for a given year, is widely used. Similarly, for a maximum from average temperatures or a minimum
from average temperatures for a given year, it assumes that the set of extremes is independent and
identically distributed, being fitted to a probability distribution model such as the generalized
extreme value distribution (GEV). As the impact of climate change has become an important issue,
many efforts have been made to account for non-stationarity in hydrological applications. One
popular approach is to apply various non-stationary models to non-stationary data and select an
appropriate model based on model diagnostics. Due to its adaptability to changes in the data
structure, non-stationary model parameter estimation based on maximum likelihood is usually used
for this purpose [57,60,61,63]. To date, this approach has been widely studied and can be described
as a "user-friendly" method. However, from a statistical point of view, there is a problem regarding
ergodicity in non-stationary extreme value modeling [55,64].

The ergodicity assumption is often used in time series analysis because it allows the use of
statistical methods that require independence of samples. Thus, it is possible to infer the properties
of time series from a single realization. However, it is important to note that the ergodicity
assumption can be a simplification that is not always met in practice. Time series can be composed of
various factors, such as trends, seasonality, cyclicality or jumps, which can violate ergodicity [65,66].
To account for these non-standard properties of time series, other approaches such as autocorrelation
analysis, power spectral density analysis [43,67], or spatial temporal dependence analysis are also
used in practice. Although the assumption of ergodicity is often used in the statistical analysis of time
series, caution should be exercised and other methods should be considered, which can take into
account the specific properties of the series under study [57,64],

The aforementioned approach, for non-stationary hydrological data, based on the estimation of
parameters of a non-stationary model, based on the highest reliability, is one of the most commonly
used in practice. However, when dealing with extreme values, the problem of ergodicity can
introduce additional difficulties in data analysis. Ergodicity refers to the property of a stochastic
process that is equivalent in its behavior in a statistical sense, no matter what time points are
observed. In the case of non-stationary processes, such as climate change, it cannot be assumed that
extreme values will have the same statistical properties over time. This is why with non-stationary
processes, including climate change, ergodicity-based approaches can lead to incorrect statistical
conclusions. One solution is to use non-stationary models that take into account the non-stationarity
of the process. It is also necessary to use appropriate statistical tools, such as hypothesis tests, that
account for nonstationarity in the data. Despite the fact that nonstationarity is already widely taken
into account in climate change research, the problem of ergodicity in extreme data analysis still needs
research attention [55,57,64].

The generalized extreme value distribution (GEV) was used in the calculations [6,58,64,68,69].
( 1 1

G)exp —<1+kw>7 <1+k@)_ F ork £ 0

o
F(x) =4 1

L (%)exp —(x;—'u)—exp<—(x;—#)>7 ,fork =20

The parameters k, o, u refer to the shape parameter, scale and position [68].
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5. Shannon Entropy

Shannon's entropy measures the indeterminacy and unpredictability of information. In the case
of climate change, entropy can help analyze the various factors influencing climate change and
predictits effects in the future. It can help identify changes in atmospheric conditions, such as changes
in temperature, precipitation and pressure, that may affect climate change. Entropy can also help
analyze complex interactions between different climate factors, such as atmospheric circulation,
ocean circulation and the amount of solar radiation. It can also be used to assess the risk of climate
change, in evaluating the probability of different climate change scenarios and in determining the
degree of uncertainty associated with these scenarios. In addition, entropy can help identify different
patterns of climate change, such as climate cycles in which periodic changes in solar radiation and
ocean circulation affect climate change. Entropy can also be used to determine the complexity of the
climate and its systems, which can help understand how different factors affect climate change.
Finally, entropy analysis can help develop strategies to manage the risks associated with climate
change, which is particularly important as the number of climate change-related disasters such as
hurricanes, floods and droughts increases. Shannon entropy finds application in climate change
analysis by enabling the measurement of the degree of disorder and complexity of climate change
distributions. It can help identify trends, cyclicality, fluctuations and anomalies in climate data, as
well as forecast future changes based on historical data. It can be used to analyze various climate
factors and evaluate the effectiveness of measures to reduce the impact of human activities on climate.

The groundbreaking work of C.E. Shannon, considered the founder of mathematical information
theory, stating that the most representative of information processes, as processes that reduce
uncertainty, is the expected amount of information understood as the entropy of the source [8,55,70].
The concept of entropy has been used in the study of physical systems, and was defined on the
occasion of the second law of thermodynamics. The measure of entropy defined by C.E. Shannon on
the basis of information theory has been applied in subsequent years in many scientific fields,
including statistics and computer science. Today, information theory is still mainly concerned with
communication systems, but applications of the concept of entropy in the analysis of the behavior of
a variety of systems, including economic and social systems, financial systems, climate systems are
emerging, and subsequent years have brought numerous generalizations of Shannon's measure of
entropy [8].

In information theory, the definition of the entropy measure of a random variable X with a
discrete distribution {{ p(x; ), p(x; ),...,p(x;, )} is preceded by the formulation of conditions for the
entropy function:

HS(X) = HS(p(xl )' p(xZ )' ] p(xn ))
The conditioning system proposed by Shannon assumed that entropy should satisfy the
following conditions:

1. the function Hg(X) should be continuous with respect to all probabilities p(x; )(i = 1,2, ...,n)
which means that small changes in probabilities should correspond to a small change in entropy.

2. if all n events of random variable X are equally likely

(pC) = pG2) =, = P ) =)

then the function Hs(X) should grow monotonically as n increases.
3. Thefunction Hg(X) should be symmetric, which means that the entropy value is invariant to the

permutation of the probabilities p(x; )(i = 1,2, ...,n)

4. 4Thefunction Hg(X) should be coherent, which means that if the realization of events takes place
in two consecutive stages, the initial entropy should be a weighted sum of the entropies of each
stage. There is exactly one [71], with constant k, n-variable Hs(X) function satisfying the above

conditions, and it is given by the formula:
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p(x;)

where: r > 0, probabilities p(x; ) satisfy the normalization and unit sum conditions:

0<plx)<1

ip(xi) =1

The constant k determines the unit of entropy. If k = log;z the unit of entropy is the bit and the
T

c 1
Hs(X) = Hs (@G ),p 062 )evn DG )) =k ) p(i) logr ——

entropy function takes the form:

p(x;)

Entropy Hs(X) is a measure of the uncertainty associated with the probability distribution
{p(x1),p(x3),...,p(x, )} with which the values {x;,x,,...,x,} of the discrete variable X occur.

The probabilistic entropy measure Hg(X) described by the formula has the following
properties:

Hs() = Hs(p(),p(x2 )0 p (6 )) = k ) p(xi) g

e  Shannon entropy takes non-negative values Hg(X) =0,

e Shannon's entropy takes the value zero when one of the values {x;,x,,...,x,} of the discrete
random variable X occurs with probability equal to unity, and the others with probabilities equal
to zero,

e Shannon entropy takes the largest value equal to Hg(X) = log,n when all probabilities are equal

to each other (p(xl )=pl)=...,=plx,) = %)/

e  Shannon's entropy is concave,
e  Shannon entropy satisfies the additivity property for a pair of discrete independent random
variables X and Y:
Hs(X,Y) = Hs(X) + Hs(Y)
In the present study, Shannon entropy values were calculated for the values of extreme monthly

precipitation totals and extreme monthly mean temperatures. The sequences thus created provided
data for further analyses related to the evaluation of entropy dynamics.

6. Variability of entropy

In the paper, entropy was calculated separately for minimum values and maximum values. A
measure was proposed to take into account the variability of distributions describing extreme values.
The evaluation of the variability of Shannon entropy was made on the basis of the values of calculated
trends. A measure of the Euclidean norm was proposed here [72-76].

The Euclidean norm can be written as:

vector = {a, b};

|vector|| = Norm[vector] = +/a? + b?
| | v

where:
a, b - coordinates of the vector
In this study, the variability was determined based on Shannon entropy trends separately in the

form of distributions describing minimum values and distributions describing maximum values.
Finally, it also allowed calculating the resultant variability of Shannon's entropy by taking the

doi:10.20944/preprints202308.0260.v1
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entropy trends for precipitation phenomena and temperature phenomena separately as vector
coordinates. Finally, a measure was proposed that takes into account the variability of both
precipitation and temperature extremes.

||dynH5P|| = \/trend(HSP (min))?2 + trend (Hs" (max))?

||dynH5T|| = \/trend(HST(min))z + trend(Hs" (max))?

|| dynH;|| = \/dynHSPZ + alynHST2

where:

trend (Hs" (min)) — Shannon entropy trend for minimum rainfall values,

trend (Hs" (max)) — Shannon's entropy trend for maximum rainfall values,

trend (Hs" (min)) — Shannon's entropy trend for minimum temperature values,

trend(Hs" (max)) — Shannon's entropy trend for maximum temperature values,

dynHg" — variation of Shannon's entropy for extreme precipitation values,

dynHg" - variation of Shannon's entropy for extreme temperature values,

dynHg" - variation of Shannon's entropy for extreme values of precipitation and temperature.

The Euclidean norm is one of many ways to measure the dynamics of climate variability, and its
calculation based on Shannon entropy trends for temperature and precipitation extremes can help
understand climate variability. It can be used to compare different time periods and geographic
regions to assess whether the dynamics of climate variability are increasing, decreasing, or remaining
constant. However, the Euclidean norm itself does not provide insight into the causes of these
changes, but only informs about the degree of variability itself. It is worth noting that calculating the
Euclidean norm from Shannon's entropy trends for minimum and maximum temperature and
precipitation values is one of many possible ways to analyze climate entropy variability, and should
be considered as a complement to other research methods, not as the only method of analysis.

7. Data Preparation for Analysis

The paper relies on grid data of monthly precipitation totals from the Global Precipitation
Climatology Center (GPCC) released products and grid data of monthly mean temperatures from
National Oceanic and Atmospheric Administration (NOAA) products. The data correspond to a
spatial resolution of 0.5°x 0.5° and are consistent in spatial and temporal extent. Products from both
GPCC and NOAA are made available via the Internet [77-80]. These data are not made available in
real time.

This paper examines global Shannon entropy trends of monthly precipitation totals and monthly
mean temperatures from an area of 377 river basins distributed over all continents. Assuming 509.9
million square kilometers of land area, 12.76% of the land area is included in the analysis. Table 1
shows the areas covered by the analysis.

Table 1. Areas covered in the WMO regions analysis [45].

Region Continent Lands area Area catchment Coverage of the continents
WMO mlnkm2  mln km2 %

1 Africa 30.3 8.43 27.83%

2 Asia 44.3 20.3 45.86%

3 South America 17.8 12.6 70.57%

4 North America 242 13.0 53.87%

5 Australia and Oceania 8.5 1.1 13.07%

6 Europe 10.5 6.7 64.10%

Antarctica 13.1 0.0 0.00%

Lands together 148.7 65.1 43.77%
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Earth, total 509.9 65.1 12.76%

GPCC and NOAA data, were converted to catchment areas. This yielded a sequence of monthly
precipitation and temperatures, which became the subject of the analyses presented in this article.
The analyses covered the years 1901 to 2010.

8. Statistical Tests Used

In evaluating the form of entropy trends for both precipitation and temperature, a bootstrap
resampling technique was used to create sequences for calculating Shannon entropy and estimating
GEV distribution parameters. The form of the trends was verified with the Mann-Kendall test (MKT)
at the 5% significance level. In addition, entropy trend change points were determined using the
Pettitt change point test (PCPT) at the 5% significance level. If the change point was positively verified
at the 5% level of significance, a new trend form was determined for the new sub-series using the
MKT test. The possibility of using the GEV distribution, for each, analyzed sequence of extreme
values, the AD test was carried out at the 5% level of significance.

To examine the trend in a given time series, the MKT test was used [81,82]. This test is
independent of the type of distribution and we do not need to assume any special form of data
distribution function [83]. This test has been widely recommended by the World Meteorological
Organization for public use, moreover, it has been used in many scientific papers to evaluate the
trend of water resources data [13,29,82]. The magnitude of the trend is estimated using a
nonparametric median-based slope estimator proposed by Sen [84] and extended by Hirsch [85]. In
this study, this test was used to examine the Shannon entropy trend.

A number of methods [13,43,82,86,87], can be used to determine time series change points. In
this analysis, the nonparametric Pettitt change point test [88] was used to detect the occurrence of
change. The Pettitt change point test (PCPT) is a nonparametric abrupt change test in a time sequence.
It is used to detect the turning point at which a sudden change occurred, the so-called "spike" in the
time sequence. The TP involves comparing the sum of the ranks of two subsets of data, which are
divided by a threshold value, to determine whether there is a statistically significant change in the
time sequence. This test can be used to analyze data with any distribution, and the test result does
not depend on the assumption of normality of the data. The result of the Pettitt test is the value of the
test statistic, which is compared with the critical value for the significance level to determine whether
the null hypothesis of no abrupt change in the time sequence can be rejected.

PCPT is widely used to detect changes in observed climatic as well as hydrological time series
[13,89-91]. In the present study, the existence of change points in the Shannon entropy time series for
extreme values of monthly precipitation totals and monthly mean temperatures was checked. For
time series showing a significant change point, the trend test was applied to the sub-series, and if the
change point is not significant, the trend test will be applied to the entire time series [13].

9. Analysis of Shannon’s Entropy Trend Variation

The study of Shannon entropy trends of extreme precipitation and temperature values is an
important tool in the study of climate variability, which has important implications for hydrology
and water resources [15,28,30,33,92]. Analysis of historical observations makes it possible to
accurately assess the variability of precipitation and temperature according to the observed period
and allows us to determine the form of the directions of these ongoing changes. Shannon entropy
trends allow detection of trends and changes in these trends in extreme data. This makes it possible
to accurately determine the impact of climate change on the environment and water resources.
Studies of the variability of extreme values of precipitation and temperature are particularly
important in the context of predicting the effects of hydrological floods and droughts, which can have
serious consequences for humanity and the environment [28-30,51]. The use of statistical techniques,
such as Shannon entropy trend analysis, makes it possible to more accurately predict these effects
and take appropriate preventive measures. Finally, the use of statistical techniques in the study of
climate variability is particularly important in the context of predicting the variability of extreme
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events [14,28,56,93-97]. Shannon entropy trends allow for a more accurate analysis of these
phenomena and allow for an understanding of their causes and effects. This allows more effective
action to protect the environment and water resources. They are important measures of climate
variability, and their analysis makes it possible to understand the complex relationships between
these two variables. Knowledge of entropy variability and the relationship between precipitation and
temperature can allow us to understand the magnitude of atmospheric phenomena such as El Nifio
and La Nifia cycles. In addition, the analysis of the interrelationships between these variables is
important for assessing the polarization of climate phenomena and enables measures to be taken to
reduce the negative effects of climate change.

The Intergovernmental Panel on Climate Change (IPCC) predicts that increased greenhouse gas
emissions following the industrialization of the world, due to large-scale burning of fossil fuels,
human interference and land use change, will increase global temperatures [18,27,30,98]. Natural
forces and human activities contribute significantly to changing climate patterns, i.e., increasing land
and ocean surface temperatures, changing spatial and temporal patterns of precipitation, increasing
the frequency of extreme events, rising sea levels and intensifying El Nifo [12,15,30,31,79]. Rapid
changes, both in mean and variance, can be associated with both climate (e.g., shifts in climate
regimes) and anthropogenic effects (e.g., construction of dams and reservoir systems, changes in land
use/land cover and agricultural practices, relocation of measurement points) [10,99]. Statistical
analyses must be interpreted in conjunction with observed physical [30,100,101], social and economic
phenomena [30,34,102,103]. Therefore, the study and prediction of temporal trends in the entropy of
extreme precipitation and temperature values is very useful in social and urban planning [104].

Analysis of the variability of Shannon entropy for GEV distributions of minimum and maximum
values of precipitation and temperature can provide important information on the temporal
variability and occurrence of extreme events caused by climate change [39]. Shannon's entropy is a
measure of uncertainty or variability in the data distribution, meaning that the higher the entropy
value, the greater the variability in the data distribution. In the case of climate change, an increase in
Shannon entropy can indicate increasing variability in climatic conditions and more extreme events.
In addition, a comparison of Shannon entropy values for minimum and maximum values of
precipitation and temperature can provide information on the variability and polarization of extreme
events.

This paper focuses on the variability of Shannon entropy in long-term sequences of precipitation
and temperature to assess the polarization of climate phenomena. Shannon's entropy was used as a
measure of the indeterminacy and unpredictability of climate phenomena: precipitation and
temperature, which made it possible to study the degree of variability of these sequences over time.
An increase in Shannon entropy in precipitation sequences indicates increased variability in
precipitation and potentially extreme weather events, such as intense rains or droughts. Conversely,
an increase in Shannon entropy in temperature sequences signals increased temperature variability
and the potential for extreme events such as heat waves or extreme cold. Analysis of the variability
of Shannon entropy makes it possible to identify areas where the climate is becoming more polarized.
Higher entropy values indicate greater climate variability and unpredictability, which can lead to
significant changes in the local environment. These changes include shifts in the distribution of plant
and animal species, changes in weather patterns and changes in sea level [24]. Shannon entropy
calculations of long-term precipitation and temperature sequences are extremely important in
studying climate variability and assessing the polarization of climate phenomena. They allow a better
understanding of climate dynamics and identify areas of greater variability and unpredictability.

The variability of entropy trends is one of the key indicators of climate change, and its analysis
can help understand future changes in precipitation and temperature. A decrease in entropy trends
for precipitation may suggest that the region is experiencing periods of drought or extreme
precipitation, which could result in flooding. An increase in entropy trends for precipitation can
indicate greater variability in the amount and timing of precipitation, which can lead to difficulties
in managing water resources. Variability in temperature entropy trends can affect plant
development, biological processes and animal migration [105,106]. A decrease in temperature
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entropy trends may suggest a more stable climate, but at the same time may lead to a lack of

adaptation of organisms to changing conditions. An increase in temperature entropy trends can

indicate increasingly unstable climate conditions, which can lead to the risk of extreme weather
events such as heat waves or storms.

The study of the entropy trend change point, that is, a change in the direction or nature of
precipitation and temperature trends, can be the result of various atmospheric factors and
phenomena. This study does not analyze the causes of changes in the direction or nature of trends.
On the other hand, it is possible to note in general terms what causes may cause this change:

e climate cycles: multi-year and decadal climate cycles, such as El Nifio and La Nifia, the North
Atlantic Oscillation (NAO) or the South-North Pacific Oscillation (ENSO), affect regional and
global precipitation patterns; changes in these cycles can cause a switch in precipitation trends
[22,67,107],

e  changes in atmospheric circulation: changes in atmospheric circulation, such as changes in winds,
atmospheric currents or high and low pressure systems, can affect local precipitation patterns
[108],

e  changes in ocean surface temperature: ocean surface temperature is an important factor affecting
regional precipitation patterns, ocean temperature anomalies such as El Nifio and La Nifia can
affect precipitation changes [109],

e  urbanization: urban development and land use changes can affect local precipitation patterns
through the so-called "heat island effect" and changes in air circulation [52],

e global climate change: climate changes related to human activities, such as greenhouse gas
emissions and global warming, can affect changes in precipitation patterns on global and regional
scales [52],

e  topography: landforms such as mountains and valleys can affect local precipitation patterns
through the so-called "orographic effect" [35,52],

e  ocean-atmosphere interactions: changes in ocean-atmosphere interactions, such as ocean currents
and the phenomenon of deep ocean upwelling, can affect regional precipitation patterns [52],

e industrial development: the growth of industrial activities, particularly greenhouse gas emissions
and air pollution associated with industrial activities, can affect climate change and precipitation
patterns. Emissions of greenhouse gases such as carbon dioxide (COz) and methane (CHs) cause
global warming, which can affect regional precipitation patterns, in addition, air pollutants
emitted by industry can affect cloud formation and rain [53],

e  agricultural development in particular changes in land use, can affect local precipitation patterns,
excessive deforestation and changes in soil use can affect air circulation and moisture, which can
affect local precipitation patterns, in addition, fertilization and irrigation practices in agriculture
[52,53],

e  melting of glaciers and ice caps: a reduction in the Earth's glaciers and ice caps affects albedo, or
the ability of the surface to reflect solar radiation, a smaller ice cap leads to greater heat absorption
by the Earth, which contributes to global warming [52,53,110],

e changes in solar activity: fluctuations in solar activity can affect the amount of solar radiation
reaching the Earth, which affects climate and surface temperatures [52,53,111],

e  volcanism: volcanic eruptions introduce large amounts of dust and gases into the atmosphere,
which can affect global short-term temperature changes [66,110],

e  other natural factors: in some cases, changes in temperature trends can be the result of natural
climate changes, such as solar-magnetic cycles, changes in ocean circulation [21].

10. Results of the Analyses and Discussion

In the present study, Shannon entropy trends were examined on the basis of long-term
sequences of monthly precipitation totals and monthly mean temperatures for 377 catchments from
the area of 6 WMO regions. From the analyzed data, sequences of minimum and maximum values
of precipitation and temperatures were selected. In evaluating the form of entropy trends for both
precipitation and temperature, the bootstrap resampling technique was used to create Shannon
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entropy sequences and estimate GEV distribution parameters. The form of the trends was verified
with the MKT test at the 5% significance level. In addition, the change points of the entropy trends
were determined using the PCPT test at the 5% significance level. If the change point was positively
verified at the 5% significance level, a new trend form was determined for the new sub-series using
the MKT test. The applicability of the GEV distribution, for each, analyzed sequence of extreme
values was evaluated using the ADT test at the 5% significance level. The results of the analyses were
presented graphically. Graphical presentations of each aspect of the analysis performed allow easier

and more precise observation of the trend of changes.
Figure 1 shows the Shannon entropy trends for the values of minimum monthly precipitation

totals. The least negative values of entropy trends for minimum monthly precipitation values
occurred in the river catchments shown in Table 2. It should be emphasized that in the catchment of
the Daule River: Ecuador, the decreasing trend worsens, almost doubling from a value of (-0.040) to
(-0.074). The turn of 1980/1990 is a period of changing trends.
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Figure 1. Shannon entropy trends for values of minimum monthly precipitation totals.

Fewer extreme drought or intense rainfall events can be expected in these catchments, which can
have a positive impact on agriculture and water resources. Lower entropy for minimum precipitation
may indicate more predictable precipitation patterns, which facilitates water resources planning and

management.

Table 2. River basins in which the smallest decreasing values of Shannon entropy trends were found

for minimum monthly precipitation values at the 5% level of significance.

Area Slope of Year of change of Slope of Shannon
Name of Name of Shannon K
. catchment . slope of Shannon  entropy, min
river country entropy, min . .
entropy min values values -subseries
values
[km2] [bit/year] [bit/year]
Daly Australia 47000 -0.049 1990 -0.025
Daule Ecuador 8690 -0.040 1988 -0.074
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Mahanadi— 1 4ia 132000  -0.036 1986 -0.006
River

Canete Peru 4900 -0.033 1990 -0.017
Fuerte Mexico 34247 -0.026 1990 -0.009
Vinces Ecuador 4400 -0.023 1990 -0.014
Little

Mecatina Canada 19100 -0.017 1989

River

Kouilou Congo 55010 -0.015 1984

Biobio Chile 24029 -0.014 1989 -0.012
Esmeraldas  Ecuador 18800 -0.014 1991 -0.010

The largest values of entropy trends for the minimum values of monthly precipitation occurred
in the river catchments shown in Table 3. It should be noted that in the catchment of the Anyuy River:
Russian Federation there is a decrease of more than 4 times the Shannon entropy from the value of
0.036 to 0.008 in 1990. The beginning of the 1990s is a period of changing trends. In the case of the
catchment area of the Khatanga River: Russian Federation, there is a trend reversal from a value of
0.033 to a value of (-0.002). The trend collapse occurred in 1990.

In these catchments, the increase in entropy for minimum precipitation means greater variability
and instability of atmospheric conditions, which can lead to longer periods of drought. This is
particularly unfavorable for agriculture, as it causes a decrease in crop yields and worsens the food
situation.

Figure 2 shows Shannon entropy trends for the values of maximum monthly precipitation totals.
The lowest values of entropy trends for the maximum values of monthly precipitation occurred in
the river catchments shown in Table 4. In the case of the catchment of the St. Johns River: United
States, a twofold deepening of the trend is shown, from a value of (-0.010) to (-0.020) in 1994. In the
catchment of the Santa Cruz River: Argentina, there is a deepening of the trend almost fourfold, from
a value of (-0.008) to a value of (-0.022) in 1997.

Table 3. River catchments in which the largest increasing values of Shannon entropy trends were
found for minimum monthly precipitation values at the 5% level of significance.

Year of Slope of
Slope of change of P
Area Shannon
. Shannon slope of .
Name of river Name of country catchmen . entropy, min
entropy, min  Shannon
t . values-
values entropy min .
subseries
values
[km?2] [bit/year] [bit/year]
Sittang River Myanmar 14660 0.044 1990 0.031
Quoich River Canada 30100 0.040 1990 0.016
Macarthur River Australia 10400 0.039 1990 0.032
Bol. Anyuy Russian Feder. 49600 0.038 1990 0.011
Ellice River Canada 16900 0.037 1989 0.019
Anyuy Russian Feder. 30000 0.036 1990 0.008
Baleine, Grande River Canada 29800 0.035 1990 0.014
Khatanga Russian Feder. 275000 0.033 1990 -0.002
Tapti River India 61575 0.030 1991 0.006
Narmada India 89345 0.029 1992 0.001
Ferguson River Canada 12400 0.029 1990 0.031
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Figure 2. Shannon entropy trends for values of maximum monthly precipitation totals.

The following can be expected in these catchments: a reduction in variability in rainfall intensity,
which can affect water cycles and natural processes that are important for ecosystem health.
However, an increase in the stability of high-intensity precipitation may at the same time lead to
flooding, which can have serious consequences for infrastructure and human life and health.

Table 4. River basins in which the smallest decreasing values of Shannon entropy trends were found

for maximum monthly precipitation values at the 5% level of significance.

Area Slope of Year of change of Slope of Shannon
. Name of Shannon slope of Shannon
Name of river catchment entropy, max
country entropy, max entropy max .
values -subseries
values values
[km?2] [bit/year] [bit/year]
Sakarya Turkey 55322 -0.015 1987 -0.025
Stikine River 14 51593 -0.014 1987
States
Brahmaputra Bangladesh 636130 -0.010 1988 -0.005
St. Johns River —ited 22921 -0.010 1994 -0.020
States
Juba Somalia 179520 -0.009 1994 -0.004
Loa Chile 33570 -0.009 1990
Tana (No, Fi)  Norway 14165 -0.009 1992 -0.013
Ashburton )\ \tralia 70200 -0.008 1995
River
Tranh (NFThU (i Nam 9153 -0.008 1994 -0.020

Bon)
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Santa Cruz Argentina 15550 -0.008 1997 -0.022

The largest entropy trend values for maximum monthly precipitation values occurred in the
river catchments presented in Table 5. In the catchment of the Volta River: Ghana, a twofold decrease
in trend values from 0.014 to 0.008 in 1990 was shown, and similarly in the Anyuy Russian Federation
river catchment from 0.025 to 0.013 in 1990.

The processes in these catchments indicate an increase in rainfall variability. This can affect
water cycles and natural processes that are important for ecosystem health. On the one hand, an
increase in maximum precipitation can benefit the ecosystems of dry regions, which need more water.
On the other hand, increased maximum precipitation can lead to flooding and soil erosion. In that
case, reducing the variability of maximum precipitation would be beneficial to the health of
ecosystems. In the context of climate change, increased maximum precipitation is one of the expected
effects of global warming.

Figure 3 shows the Shannon entropy trends for the values of minimum monthly average
temperatures. The lowest values of entropy trends for minimum monthly average temperatures
occurred in the catchments shown in Table 6. The Churchill River: Canada catchment showed a
twofold increase in trend from a value of (-0.007) to (-0.003) in 1987.

In these catchments, the direction of the change in temperature entropy may suggest that
temperature variability is less compared to the past, so the climate is becoming more stable.

Table 5. River catchments in which the largest increasing values of Shannon entropy trends were
found for monthly precipitation maxima at the 5% significance level.

Y f
Slope of lf a; © ¢ Slope of
Area Shannon © '8¢° Shannon
Name of river Name of count catchmen entro slope of entro
Y PY" Shannon P
t max max values
entropy max .
values -subseries
values
[km?2] [bit/year] [bit/year]
Anyuy Russian Feder. 30000 0.025 1990 0.013
Rio Maicuru Brazil 17072 0.018 1984
Bol. Anyuy Russian Feder. 49600 0.018 1990
San Pedro Mexico 25800 0.017 1995
Brahmani River India 39033 0.016 1990 0.017
Anadyr Russian Feder. 156000 0.016 1990 0.007
Sassandra Cote D'ivoire 62000 0.016 1990 0.005
Kinabatangan Malaysia 10800 0.016 1988
Ponoy Russian Feder. 15200 0.016 1989 0.010
Volta Ghana 394100 0.014 1990 0.008
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Figure 3. Shannon entropy trends for minimum values of monthly average temperatures.

Table 6. River catchments in which the smallest decreasing values of Shannon entropy trends were

found for minimum monthly average temperatures at the 5% level of significance.

Slope of
Name of Name of Area Shannon Year of change of  Slope of Sl"lannon
. . slope of Shannon  entropy, min
river country catchment entropy, min . .
entropy min values values -subseries
values
[km?2] [bit/year] [bit/year]
RioRibelra  p ol 12450 0.012 1990
Dolgu
Chubut Argentina 16400 -0.010 1987
Ellice River Canada 16900 -0.008 1994
Orange South Africa 850530 -0.008 1986 -0.011
Gilbert  \ustralia 11800 0,008 1998 0010
River
P?nobscot United 19464 0008 1991
River States
Loa Chile 33570 -0.008 1997 -0.009
SyrDarya  Kazakhstan 402760 -0.007 1989 -0.009
Churchill ¢ ada 287000 0,007 1987 10003
River
Mono Benin 21575 -0.007 1987 -0.010

The largest entropy trend values for minimum monthly average temperatures occurred in the
catchments presented in Table 7. The three catchments of Svarta, Skagafiroi: Iceland, Thjorsa: Iceland
and Joekulsa A Fjoellu: Iceland showed the largest trend values of 0.016 to 0.019. For the first two
catchments, there was a threefold decrease in trend values to a magnitude of 0.006 to 0.005. For the
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third catchment, a year of trend change of 1988 was shown, while the value of the new trend at the
5% significance level was not determined.

An increase in temperature entropy can increase extreme weather conditions such as droughts,
heat waves, hurricanes and storms, which can have negative effects on human, animal and
environmental health. Increasing the entropy of minimum temperatures may be beneficial for
agriculture and vegetation growth. However, more research is needed to better understand the
effects of changes in temperature entropy and develop strategies to adapt to climate change.

Figure 4 shows Shannon entropy trends for the values of maximum monthly average
temperatures. The lowest values of entropy trends for maximum monthly average temperatures
occurred in the catchments presented in Table 8. In the case of the catchment of the Nadym River:
Russian Federation, a doubling of the trend from a value of (-0.011) to a value of (-0.021) in 1991 is
shown. In the catchment of the Loa River: Chile, there is a reversal of the weather pattern and a
change in the direction of the trend from a value of (-0.011) to a value of 0.003 in 1983.

In these catchments, the trend of maximum temperature entropy is decreasing, this means that
the variability in high temperatures is decreasing, which may suggest that extreme heat becomes less
common. This could have a beneficial effect on human health, but could also affect ecosystems,
including plants, animals and microorganisms that are adapted to certain temperatures.

Table 7. River basins in which the largest increasing values of Shannon entropy trends were found
for minimum monthly average temperatures at the 5% level of significance.

Slope of
Year of change of Slope of Shannon
Name of Name of Area Shannon .
] . slope of Shannon  entropy, min
river country catchment entropy, min ) X
entropy min values values -subseries
values
[km?2] [bit/year] [bit/year]

Svarta,

Iceland 393 0.019 1990 0.006
Skagafiroi
Thjorsa Iceland 7380 0.016 1988 0.005
Joekulsa A

Iceland 7074 0.016 1988
Fjoellu
Lempa El Salvador 18176 0.013 1989 0.011
Pra Ghana 22714 0.013 1987 0.010

United
Thames 9948 0.010 1991 0.007

Kingdo
Grande De

Nicaragua 14646 0.009 1990 0.011
Matagalp

Cote
Comoe 69900 0.009 1990 0.012

D'ivoire
Grisalva Mexico 37702 0.009 1988

United
Sabine River 24162 0.009 1991 0.007

States
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Figure 4. Shannon entropy trends for maximum values of monthly average temperatures.

Table 8. River basins in which the smallest decreasing values of Shannon entropy trends were found

for maximum monthly average temperatures at the 5% level of significance.

Slope of
Year of change of Slope of Shannon
Name of Nameof Area Shannon
. slope of Shannon entropy, max
river country catchment entropy, max ]
entropy max values  values -subseries
values
[km?2] [bit/year] [bit/year]
Russian
Nadym 48000 -0.011 1991 -0.021
Feder.
Loa Chile 33570 -0.011 1983 0.003
Ferguson
. Canada 12400 -0.011 1983
River
Kouilou  Congo 55010 -0.011 1986 -0.018
Pahang Malaysia 19000 -0.009 1993
Kelantan =~ Malaysia 11900 -0.009 1998
Iran,
Karun 60769 -0.009 1984
Islamic
San Pedro Mexico 25800 -0.008 1987 -0.006
Nelson
) Canada 1060000 -0.008 1992
River
Rhone France 95590 -0.008 1989 -0.003
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The largest entropy trend values for maximum monthly average temperatures occurred in the
catchments presented in Table 9. The catchment of the Juba River: Somalia has a twofold decrease in
trend values from 0.010 to a value of 0.005 in 1990.

An increase in temperature entropy can increase extreme weather conditions such as droughts,
heat waves, hurricanes and storms, which can have negative effects on human, animal and
environmental health.

Figure 5 shows the spatial location of catchments in which the greatest dynamics of Shannon
entropy trends for minimum and maximum precipitation values were recognized at the 5%
significance level.

Figure 6 shows the spatial location of the catchments in which the greatest dynamics of Shannon
entropy trends for minimum and maximum temperature values were recognized at the 5%
significance level.

Figure 7 shows the spatial location of the catchments in which the greatest dynamics of Shannon
entropy trends for minimum and maximum values of precipitation and temperature were recognized
at the 5% significance level. The maximum values of the norm take the magnitude of 0.049 [bit/year]
for the DALY: AUSTRALIA river catchment, the smallest 4e-16 [bit/year] for the KOVDA: RUSSION
FEDERATION river catchment, Table 10.

Note that the dynamics of Shannon entropy for minimum and maximum monthly average
precipitation compared to the dynamics of Shannon entropy for minimum and maximum monthly
average temperatures is greater than 1 and takes values from 2.0 to 19.8, Table 10. The almost 20 times
greater dynamics in the Anyuy: Russian Federation river catchment in the area of precipitation
compared to the dynamics of temperature, means that the variability of extreme precipitation values
in this catchment is much greater than the variability of extreme temperature values. In other words,
extreme precipitation events are more varied and extreme than extreme temperature events. This
may indicate that the area experiences more extreme and varied precipitation-related weather
conditions, such as floods, storms, heavy rains, droughts, etc., than temperature-related ones, such
as heat waves and freezing temperatures.

Table 9. River basins in which the largest increasing values of Shannon entropy trends were found
for maximum monthly average temperatures at the 5% level of significance.

Slope of
Year of change of Slope of Shannon
Name of Name of  Area Shannon
] slope of Shannon  entropy, max
river country catchment entropy, max .
entropy max values values -subseries
values
[km2] [bit/year] [bit/year]

Godavari India 299320 0.018 1991 0.014
Tapti River  India 61575 0.014 1988 0.008
Mahi River  India 33670 0.013 1990 0.016
Lempa El Salvador 18176 0.013 1990
Rio Ribeira

Brazil 12450 0.012 1992 0.012
Dolgu
Narmada India 89345 0.011 1987
Sacramento  United

60885.7 0.010 1991 0.017

River States
Juba Somalia 179520 0.010 1990 0.005
Nottaway Canada 57500 0.010 1991 0.008

Moldova,
Dniestr 66100 0.009 1990 0.014

Repu
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Figure 6. Catchments in which the highest dynamics of Shannon entropy trends for minimum and
maximum temperature values were recognized at the 5% significance level.
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Figure 7. Catchments in which the greatest dynamics of Shannon entropy trends for extremes of

precipitation and temperature were recognized at the 5% significance level.

Table 10. River basins with the highest dynamics calculated from Shannon entropy trend values for
minimum and maximum monthly average precipitation and minimum and maximum monthly

average temperatures at the 5% significance level.

. . Multiplicity of  Total
Dynamic of Dynamic of )
entropy dynamic
Name of Nameof Area Shannon Shannon .
) dynamics of of
river country catchment entropy of entropy of .
o precipitation to Shannon
precipitation  temperature
temperature entropy
[km?2] [bit/year] [bit/year] [bit/year]
Daly Australia 47000 0.049 0.008 5.8 0.049
Anyuy .
Russian
(Trib. 30000 0.044 0.002 19.8 0.044
Feder.
Kolym
Quoich
i Canada 30100 0.041 0.007 5.7 0.041
River
Macarthur )
. Australia 10400 0.039 0.008 4.8 0.040
River
Ellice River Canada 16900 0.037 0.010 39 0.039



https://doi.org/10.20944/preprints202308.0260.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 August 2023 doi:10.20944/preprints202308.0260.v1

23

Mahanadi

India 132090 0.036 0.006 6.4 0.037
River (Ma

Russian
Khatanga 275000 0.034 0.006 5.7 0.034

Feder.
Tapti River India 61575 0.030 0.015 20 0.033
Narmada India 89345 0.029 0.011 27 0.031
Santa Cruz Argentina 15550 0.026 0.007 3.8 0.027
11. Summary

The study evaluated Shannon entropy values for minimum and maximum monthly
precipitation values and minimum and maximum monthly average temperature values from 1901 to
2010. The bootstrap method was used to evaluate entropy trends. As a result, Shannon's entropy
trend values were obtained to assess the variability of climatic conditions in the area of 377
catchments. The analysis presented here was based on annual minimum and maximum values
calculated from mean values. Analysis on averages is more statistically stable, allows for a larger
number of observations and better reflects typical values, which is important for detecting persistent
trends and ongoing changes.

The relationships of Shannon's entropy trends in extreme precipitation and extreme temperature
defined in this paper can be briefly characterized as follows:

e anincrease in the entropy of extreme precipitation can be associated with greater variability in the
occurrence and intensity of precipitation, which can affect extreme weather events such as
downpours, floods or droughts,

e a decrease in the entropy of extreme precipitation may indicate reduced variability in the
occurrence of extreme precipitation, which could mean more stable precipitation patterns in an
area,

e anincrease in the entropy of extreme temperature may reflect greater variability in temperature
extremes, such as heat waves or sudden temperature drops,

e a decrease in the entropy of extreme temperature may indicate less variability in extreme
temperatures, which may suggest more stable thermal conditions in an area,

e  a positive correlation between the entropy of extreme precipitation and the entropy of extreme
temperature may indicate that changes in precipitation and temperature are occurring in similar
patterns, which may be due to the influence of the same climatic factors,

e  anegative correlation between the entropy of extreme precipitation and the entropy of extreme
temperature may indicate that variations in these two variables occur in opposite directions, which
may be due to different factors affecting precipitation and temperature,

e an increase in the entropy of extreme precipitation with a decrease in the entropy of extreme
temperature may indicate variability in the occurrence of precipitation without much change in
extreme temperature,

e adecrease in the entropy of extreme precipitation with a simultaneous increase in the entropy of
extreme temperature may indicate less variability in precipitation with greater variability in
temperature,

o  the lack of a relationship between trends in the entropy of extreme precipitation and trends in the
entropy of extreme temperature may suggest that the variability in these two variables is

independent of each other and due to different factors.
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Understanding the relationships between the entropy trends of minimum and maximum
precipitation and temperature can help analyze climate change and forecast extreme weather events.
The analyses carried out richly documented the conditions of climate variability in the areas of
precipitation and temperature, key factors affecting the environment and water resources, which is
particularly important for predicting the effects of floods and hydrological droughts, which have
serious consequences for humanity and the environment.
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