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Article 

Application of Shannon Entropy in Assessing 
Changes in Precipitation Conditions and 
Temperature Based on Long-Term Sequences Using 
the Bootstrap Method 
Bernard TWARÓG 

Cracow University of Technology, 31-155 Cracow, Warszawska Str. 24, Poland; bernard.twarog@pk.edu.pl 

Abstract: In this article, the Shannon entropy measure was used to evaluate the change in precipitation and 

temperature conditions. Due to the short, low-volume sequences of analyzed precipitation and temperature 

data, a bootstrap method was used in the procedure for calculating Shannon entropy. The analysis used 

minimum and maximum values of monthly precipitation totals and average monthly temperatures for 377 

catchments distributed across the globe. 110-year data sequences from 1901 to 2010 were analyzed. Entropy 

values for the estimated parameters of the generalized extreme value distribution (GEV) were calculated for 

the accepted data. Entropy value calculations were performed for the left-hand constraint, based on minimum 

values, and for the right-hand constraint, based on maximum values. Based on the analysis of precipitation 

and temperature sequences, trend forms were identified for the left and right Shannon entropy values. This 

made it possible to obtain information on the directions of changes occurring in the area of minimum and 

maximum values in the field of monthly precipitation and average temperatures in the analyzed catchments. 

The study showed the existence of Shannon entropy trends. Evaluation of entropy trends for precipitation and 

temperature sequences was performed using non-parametric tests. Mann -Kendall tests at the 5% significance 

level were used in the trend analyses. The Pettitt test was performed to determine the point of change in trend 

for precipitation and temperature data. The analysis performed was supported by graphical presentations. 

Keywords: shannon entropy; bootstrap method; GPCC data; NOAA data; monthly precipitation; 

average temperature; climate trends; mann kendall test; pettitt test 

 

1. Introduction 

Climate extremes such as droughts, floods, extreme temperatures or storms have the potential 

to have a significant impact on economic sectors that are closely linked to climate, such as water 

management, agriculture, food security, energy security, forestry, health and tourism. Changes in 

these sectors could have far-reaching consequences for countries whose economies rely more heavily 

on these sectors [1–3]. Most previous research work on climate change, unfortunately, overlooks or 

downplays the importance of the variability of extreme climatic conditions. The variability of these 

characteristics is an important aspect of climate change risk assessment, as it affects the intensity and 

frequency of extreme events. The IPCC report points out [4–6] that expected changes in the variability 

of precipitation and temperature in the future will be characterized by a high degree of uncertainty. 

In light of these facts, there is a need to develop methods and algorithms that can improve the 

efficiency of predicting and estimating the intensity of climate hazards [3,7]. The Earth's atmospheric 

system is too complex to be described deterministically. This means that predicting its future state is 

difficult or impossible [8]. It is an open system and driven mainly by the continuous influx of solar 

radiation and the Earth's rotation. The system is too large to solve deterministically due to: the 

number of data needed to describe its state, incomplete instrumentation to monitor its state, the lack 

of a correct way to spatially partition the system for long-term analysis, and the lack of accurate 

historical data before 1900. Therefore, stochastic analyses can be useful in assessing the variability of 

climate conditions [8]. Analyses of entropy directions show that if global warming were to continue, 

a decrease in thermodynamic entropy would mean more free energy driving the weather; an increase 
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in informational entropy would mean difficulty in predicting which way the process would go [8]. 

One potential tool to help with this is the Shannon entropy trend assessment. Entropy analysis can 

provide information on the degree of irregularity, unpredictability and variability in climate systems, 

which can be valuable for developing more accurate forecasts and strategies for managing risks 

associated with extreme climate events. 

Climate change is a phenomenon that leads to significant spatial and temporal heterogeneity in 

the impact of these changes on biological systems, health and sectors of economies [9]. Studies show 

that global increases in average temperature mask significant differences in temperature increases 

between land and sea, and small areas and large regions [10–12]. Climate change also inevitably 

results in changes in the frequency, intensity, spatial extent, duration and timing of extreme weather 

and climate events [1–3]. One can analyze extreme values in the context of changes in the types and 

parameters of probability distributions, trends in statistical characteristics (e.g., minimum, maximum 

values) [13]. One can also look at the variation of extreme values through the characteristics of the 

tails of extreme distributions [14–16]. It is also possible to monitor the change in Shannon entropy 

and its trends as a measure of climate variability and the extremes following this variability.  

Shannon entropy is a measure of the degree of disorder or unpredictability in a system, and an 

increase in entropy can indicate greater climate variability. Analysis of Shannon entropy and other 

measures of a statistical nature can be useful for assessing climate variability and extremes. This will 

enable a better understanding of the effects of climate change on different systems and take 

appropriate measures to adapt and reduce its negative consequences. Shannon entropy trend 

analysis of the climate system, taking into account the interaction between precipitation and 

temperature [2,17–19], is extremely important for several reasons. Positive feedback in the climate 

system can lead to an increase in entropy due to complex changes in precipitation and temperature. 

For example, an increase in temperature can increase the intensity of rainfall, which in turn leads to 

extreme flooding events. This phenomenon is amplified because more precipitation can also 

influence further increases in temperature, resulting in more rainfall. 

Precipitation and temperature play a key role in the global energy and water cycle [17,20–23] 

and their variability can lead to floods, droughts and other natural disasters. Analysis of the 

variability of temperature and precipitation extremes is necessary because of their impact on many 

aspects of the natural and human environment. In the article, based on long-term sequences of 

precipitation and temperature, it is shown that the process of variability of minimum and maximum 

values, can lead to significant changes in the local environment. Such changes can affect the 

distribution of plant and animal species, weather patterns, agriculture and the economy, and many 

other aspects of the environment and life. Knowledge of the nature of the changes and the time scales 

of these phenomena is used to reduce the risks of all types of hazards, including floods and drought. 

Proper understanding of the nature of variability in extreme phenomena is key to developing 

strategies related to mitigation [12,24,25] and minimizing the impact of anthropogenic factors [25–
27].  

Projections indicate that as the planet warms, climate and weather variability will increase. 

Changes in the frequency and intensity of extreme climatic events and in the instability of weather 

patterns will have significant consequences for both human and natural systems. By the end of this 

century, the frequency of extreme conditions, such as heat stress, droughts and floods, is expected to 

increase, with numerous negative impacts beyond those resulting from changes in average values 

alone [1–3]. Given the uncertainty associated with forecasts of changes in extremes and the limited 

confidence in these forecasts, it is important to conduct trend analyses and extreme value analyses 

based on the longest possible measurement sequences. Both the low certainty of forecasts and the 

high confidence in them do not exclude the possibility of extreme changes. In the context of 

limitations in understanding climate processes in different regions, there is a possibility of extreme 

changes with low probability, however with significant impact. Changes in extremes are observed, 

and there is evidence that some of these changes are due to anthropogenic influences [1–3]. Analysis 

of historical observations of climate variables indicates anthropogenic changes in climate [28–30]. The 

study of changes in the amount of precipitation and temperature variability [16,31–35], depending 
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on the observed period, show changes in trends and allow us to assess the form of the directions of 

these occurring changes [36–39]. However, attributing individual extreme events to these influences 

remains a challenge. An example of this is the analysis performed as part of the work on climate 

variability at different periods and scales in a given region (e.g., in the rhythm of multi-decadal 

oscillations) [40,41]. It has been noted that precipitation variability in Europe is mainly influenced by 

the ocean-atmosphere circulation, especially the North Atlantic Oscillation (NAO). Consequently, the 

complexity of ocean-atmosphere interactions makes it difficult to detect the main driving forces of 

the oscillation and their influence on the variability of extreme events in the region [42]. Finally, the 

observed changes in the magnitude, frequency and timing of extreme events obtained represent one 

of the first analyses of this under-researched phenomenon where patterns have been shown to be 

complex and not always consistent with previous studies [6,19,28,43]. 

Despite the existence of limitations and uncertainties regarding climate variability projections 

and their impact on biological systems, health and sectors of economies, the need for adaptation 

measures cannot be underestimated. There is a pessimistic forecast of future weather and climate 

variability on short time scales and large spatial scales [44]. There is an increase in the frequency and 

intensity of climate hazards. Phenomena resulting from climate variability are not only becoming 

more common, but also their intensity is increasing by shortening the duration of these phenomena. 

In addition, it is possible to observe a change in the direction of the phenomena in the short term and 

the dynamics of extreme values [45]. Minimizing the impact of increasing climate risks requires a 

combination of climate-influencing actions and adaptive capacity in the planning process [44]. 

Assessments indicate an increased likelihood of future critical events, partly due to positive feedbacks 

in the climate system [46]. The impacts of these events are estimated to be large, making the risks 

significant [47]. Therefore, despite current limitations and uncertainties, there is an urgent need for 

adaptation measures to minimize the impact of increasing climate risks on various economic sectors, 

health, security and biological systems. 

The increase in entropy affects the unpredictability of the weather and makes it difficult to plan 

adaptation activities. There can be a sudden transition from one extreme state to another in a short 

period of time. An increase in entropy in the climate system increases the degree of chaos and 

unpredictability. This, in turn, leads to greater weather variability, more frequent occurrence of 

extreme climatic events and difficulty in predicting long-term trends. Increased entropy can 

negatively affect economic sectors, such as agriculture, which need stable weather conditions for 

efficient production. However, increased entropy can also lead to greater biodiversity, as organisms 

must adapt to more variable environmental conditions. In the climate system, there is a complex 

interaction between polarization feedback [45] and increased entropy. Polarization feedback refers to 

the change in direction and intensity of climate phenomena over a short period of time. Abrupt jumps 

between weather extremes, such as sudden changes from drought to torrential rains or from extreme 

cold to heat, are examples of polarization feedback. The feedback of polarization and entropy increase 

is that the phenomena reinforce each other. Rapid changes in weather, characteristic of polarization, 

can contribute to greater weather variability and an increase in entropy. In turn, an increase in 

entropy can affect larger jumps between extreme weather states, further intensifying polarization. 

Therefore, understanding positive feedbacks in the climate system, polarization and entropy in the 

climate system can be important to better understand climate change and develop effective 

management and adaptation strategies. The interactions of climate variables can affect the occurrence 

of hurricanes, tornadoes and droughts. In addition, these interactions can affect a measure of risk that 

includes threats to life, livelihoods, health, well-being, ecosystems, species, economic, social and 

cultural resources, as well as services (including ecosystem services) and infrastructure. Risk results 

from the interaction between system vulnerability and exposure, and between system exposure and 

forcing [10,18,48]. As a result, one phenomenon can amplify or weaken another, complicating the 

process of understanding the scale of climate change. Anthropogenic factors, such as industrial 

activity, deforestation, land use transformation, pollutant emissions and greenhouse gas emissions 

[17,26,27,49,50], can affect the variability of extreme values and polarization of climate factors 

[10,45,51–53]. 
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Shannon entropy finds application in climate change analysis by enabling the measurement of 

the degree of disorder and complexity of climate change distributions. It can help identify trends, 

cyclicality, fluctuations and anomalies in climate data, as well as forecast future changes based on 

historical data. It can be used to analyze various aspects of climate, such as variability in temperature, 

precipitation, wind variability, water levels, etc. The application of Shannon entropy can also help 

evaluate the effectiveness of measures to reduce human impact on climate, such as reducing 

greenhouse gas emissions, changing land use and crop types, changing agri-food production and its 

spatial distribution, types of industrial infrastructure, and developing renewable energy sources. In 

this way, Shannon entropy can be useful in scientific research, climate policy and planning for 

environmental protection. 

2. Methodology 

Today, there is a growing body of scientific evidence confirming that human activities are 

influencing climate change, contributing to shorter durations of high-intensity precipitation and 

longer periods of high temperature and low precipitation. The variability of extreme events, such as 

floods and droughts, is increasingly apparent and can be attributed to the erratic nature and intensity 

of human activities. Therefore, the study of climate variability factors related to monthly precipitation 

and average monthly temperatures is key to understanding climate change at the regional level and 

developing strategies to manage water resources and reduce the risk of floods and droughts. 

The minimum and maximum values of monthly precipitation and the minimum and maximum 

values of average monthly temperatures during the year were adopted for the analysis. In view of 

the purpose of the analysis, i.e. assessing long-term climate variability, it is better to perform analyses 

on averages rather than on extreme values for several reasons. Such analyses have greater statistical 

stability. Averages have less variability than extreme values, which means that for the same data we 

will get a smaller standard error of the average estimator than of the extreme value estimator. 

Statistical stability is particularly important for long-term analyses, since variability in values can 

affect the interpretation of results and decision-making. Another argument is the larger number of 

observations, since analysis on averages can be performed for a larger number of observations than 

analysis on extreme values, allowing for more representative results. It should be noted that analyses 

on averages are a better reflection of reality, allowing to obtain information on typical values, which 

are more representative of long-term changes than extreme values. In addition, extreme values can 

be the result of random factors or unpredictable events that do not reflect typical conditions. In 

summary, for the search for long-term changes, analysis on averages is more statistically stable, 

allows for a larger number of observations, and better reflects typical values, which is important for 

decision-making and action planning.  

Calculations of Shannon entropy variability were made for the "left tail" based on the following, 

respectively: minimum values of monthly precipitation and minimum values of average monthly 

temperature. For the "right tail," calculations of Shannon entropy variability were made for, 

respectively, on the basis of maximum values of monthly precipitation and maximum values of 

average monthly temperature. Due to the small-volume dataset, a bootstrap technique [54–58] was 

used to evaluate the distributions of extreme values of minimum and maximum values of Shannon 

entropy variability. It should be noted that for the evaluation of the "left tail" parameters, distribution 

parameters estimated based on minimum values were taken, while for the "right tail" distribution 

parameters were estimated based on maximum values. 

3. Bootstrap Resampling Technique 

In the present study, a bootstrap resampling technique was used to estimate the parameters of 

the distribution of extreme precipitation and temperature values.. The main idea of bootstrap is to 

generate large samples with replacement by resampling the original samples based on the 

assumption that the samples are independent and identically distributed. This method is 

recommended not only for its computational efficiency, but as an easy-to-implement approach that 
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generates bootstrap replications without relying on the assumption of true distribution [58]. It can be 

implemented by relying only on the information obtained from the sample value. 

The steps of the bootstrap method used in this study are described as follows: 

1. population sequences of annual minimum and maximum values from monthly precipitation 

and annual minimum and maximum values from monthly average temperatures were created: 

- for the left tail: 𝑃𝑚𝑖𝑛𝑦 = min𝑘 𝑃𝑦,𝑘 ⁡dla 𝑘 = 1,… ,12; 𝑦 = 1901,… ,2010 𝑇𝑚𝑖𝑛𝑦 = min𝑘 𝑇𝑦,𝑘 ⁡dla 𝑘 = 1,… ,12; 𝑦 = 1901,… ,2010 

- for the right tail: 𝑃𝑚𝑎𝑥𝑦 = max𝑘 𝑃𝑦,𝑘 ⁡dla 𝑘 = 1,… ,12; 𝑦 = 1901,… ,2010 𝑇𝑚𝑎𝑥𝑦 = max𝑘 𝑇𝑦,𝑘 ⁡dla 𝑘 = 1,… ,12; 𝑦 = 1901,… ,2010 

The number of elements in both the precipitation and temperature sequence does not reliably 

assess the value of the probabilities of events classified in the left and right tails. A 1000-fold number 

of draws from the 70-element sequence was assumed. Since the possibility of assessing Shannon 

entropy trends was assumed, it was assumed that the 70 element strings would be created in the 

following recursive manner: 

for the left tail 𝑋𝑃𝑖 = 𝑃𝑚𝑖𝑛1901+𝑖, . . , 𝑃𝑚𝑖𝑛1970+𝑖⁡ dla 𝑖 = 1,… ,40 𝑋𝑇𝑖 = 𝑇𝑚𝑖𝑛1901+𝑖, . . , 𝑇𝑚𝑖𝑛1970+𝑖 dla 𝑖 = 1,… ,40 

- for the right tail: 𝑋𝑃𝑖 = 𝑃𝑚𝑎𝑥1901+𝑖, . . , 𝑃𝑚𝑎𝑥1970+𝑖⁡ dla 𝑖 = 1,… ,40 𝑋𝑇𝑖 = 𝑇𝑚𝑎𝑥1901+𝑖, . . , 𝑇𝑚𝑎𝑥1970+𝑖 dla 𝑖 = 1,… ,40 

Thus, forty 70-element strings were arbitrarily obtained. These strings constituted a resource for 

1000-fold bootstrap drawing. In this way, 40 sequences 1000 times drawn by the bootstrap method 

were created on the basis of which Shannon entropy was calculated for both precipitation and 

temperature for minimum and maximum values. 

2. it was assumed that the series of annual minimum and maximum monthly precipitation and 

average temperature were original samples, the total length of multi-year records. 

3. bootstrap samples of the minimum and maximum series of precipitation and temperature were 

drawn using the bootstrapping process, which involves randomly selecting values to replace the 

original sample. 

4. the above analysis was carried out on all analyzed catchments. 

For each, drawn string, the Anderson-Darling test (ADT) was performed to confirm the 

possibility of describing the drawn string with the generalized extreme value distribution (GEV) 

distribution at the 5% significance level. Otherwise, the results of such an experiment were not taken 

into account, proceeding to the next draw. For the estimation of the parameters of the "left tail" of the 

GEV, the compliance of the ADT test at the 5% significance level was achieved at 91%, for the "right 

tail" at 99.6%. In the next step, the parameters of the generalized distribution of extreme values were 

estimated using the maximum likelihood method [57,59–61].The ADT test was adopted because of 

the priority given to values from the tails of the distribution, which is important for extreme 

distributions. In subsequent steps, the value of Shannon's entropy estimator was calculated at a 

significance level of 5% [55]. The above methodology was applied to each of the 377 catchments 

analyzed. The analysis code was developed in Matlab software. 
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4. Fitting the GEV Distribution 

Modeling the variability of climate extremes requires accounting for extremes in such 

phenomena as precipitation, temperature, evaporation, atmospheric pressure and others [62]. In 

modeling extreme values, an approach that uses a sequence of observations extracted from equal 

periods, such as a maximum from monthly totals or a minimum from monthly precipitation totals 

for a given year, is widely used. Similarly, for a maximum from average temperatures or a minimum 

from average temperatures for a given year, it assumes that the set of extremes is independent and 

identically distributed, being fitted to a probability distribution model such as the generalized 

extreme value distribution (GEV). As the impact of climate change has become an important issue, 

many efforts have been made to account for non-stationarity in hydrological applications. One 

popular approach is to apply various non-stationary models to non-stationary data and select an 

appropriate model based on model diagnostics. Due to its adaptability to changes in the data 

structure, non-stationary model parameter estimation based on maximum likelihood is usually used 

for this purpose [57,60,61,63]. To date, this approach has been widely studied and can be described 

as a "user-friendly" method. However, from a statistical point of view, there is a problem regarding 

ergodicity in non-stationary extreme value modeling [55,64].  

The ergodicity assumption is often used in time series analysis because it allows the use of 

statistical methods that require independence of samples. Thus, it is possible to infer the properties 

of time series from a single realization. However, it is important to note that the ergodicity 

assumption can be a simplification that is not always met in practice. Time series can be composed of 

various factors, such as trends, seasonality, cyclicality or jumps, which can violate ergodicity [65,66]. 

To account for these non-standard properties of time series, other approaches such as autocorrelation 

analysis, power spectral density analysis [43,67], or spatial temporal dependence analysis are also 

used in practice. Although the assumption of ergodicity is often used in the statistical analysis of time 

series, caution should be exercised and other methods should be considered, which can take into 

account the specific properties of the series under study [57,64], 

The aforementioned approach, for non-stationary hydrological data, based on the estimation of 

parameters of a non-stationary model, based on the highest reliability, is one of the most commonly 

used in practice. However, when dealing with extreme values, the problem of ergodicity can 

introduce additional difficulties in data analysis. Ergodicity refers to the property of a stochastic 

process that is equivalent in its behavior in a statistical sense, no matter what time points are 

observed. In the case of non-stationary processes, such as climate change, it cannot be assumed that 

extreme values will have the same statistical properties over time. This is why with non-stationary 

processes, including climate change, ergodicity-based approaches can lead to incorrect statistical 

conclusions. One solution is to use non-stationary models that take into account the non-stationarity 

of the process. It is also necessary to use appropriate statistical tools, such as hypothesis tests, that 

account for nonstationarity in the data. Despite the fact that nonstationarity is already widely taken 

into account in climate change research, the problem of ergodicity in extreme data analysis still needs 

research attention [55,57,64]. 

The generalized extreme value distribution (GEV) was used in the calculations [6,58,64,68,69]. 

𝐹(𝑥) =
{   
   (1𝜎) exp(−(1 + 𝑘 (𝑥 − 𝜇)𝜎 )−1𝑘)(1 + 𝑘 (𝑥 − 𝜇)𝜎 )−1−1𝑘 , 𝑓𝑜𝑟⁡𝑘 ≠ 0

(1𝜎) exp(− (𝑥 − 𝜇)𝜎 − 𝑒𝑥𝑝 (− (𝑥 − 𝜇)𝜎 )−1𝑘) , 𝑓𝑜𝑟⁡𝑘 = 0  

The parameters 𝑘, 𝜎, 𝜇 refer to the shape parameter, scale and position [68]. 

  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 August 2023                   doi:10.20944/preprints202308.0260.v1

https://doi.org/10.20944/preprints202308.0260.v1


 7 

 

5. Shannon Entropy 

Shannon's entropy measures the indeterminacy and unpredictability of information. In the case 

of climate change, entropy can help analyze the various factors influencing climate change and 

predict its effects in the future. It can help identify changes in atmospheric conditions, such as changes 

in temperature, precipitation and pressure, that may affect climate change. Entropy can also help 

analyze complex interactions between different climate factors, such as atmospheric circulation, 

ocean circulation and the amount of solar radiation. It can also be used to assess the risk of climate 

change, in evaluating the probability of different climate change scenarios and in determining the 

degree of uncertainty associated with these scenarios. In addition, entropy can help identify different 

patterns of climate change, such as climate cycles in which periodic changes in solar radiation and 

ocean circulation affect climate change. Entropy can also be used to determine the complexity of the 

climate and its systems, which can help understand how different factors affect climate change. 

Finally, entropy analysis can help develop strategies to manage the risks associated with climate 

change, which is particularly important as the number of climate change-related disasters such as 

hurricanes, floods and droughts increases. Shannon entropy finds application in climate change 

analysis by enabling the measurement of the degree of disorder and complexity of climate change 

distributions. It can help identify trends, cyclicality, fluctuations and anomalies in climate data, as 

well as forecast future changes based on historical data. It can be used to analyze various climate 

factors and evaluate the effectiveness of measures to reduce the impact of human activities on climate. 

The groundbreaking work of C.E. Shannon, considered the founder of mathematical information 

theory, stating that the most representative of information processes, as processes that reduce 

uncertainty, is the expected amount of information understood as the entropy of the source [8,55,70]. 

The concept of entropy has been used in the study of physical systems, and was defined on the 

occasion of the second law of thermodynamics. The measure of entropy defined by C.E. Shannon on 

the basis of information theory has been applied in subsequent years in many scientific fields, 

including statistics and computer science. Today, information theory is still mainly concerned with 

communication systems, but applications of the concept of entropy in the analysis of the behavior of 

a variety of systems, including economic and social systems, financial systems, climate systems are 

emerging, and subsequent years have brought numerous generalizations of Shannon's measure of 

entropy [8]. 

In information theory, the definition of the entropy measure of a random variable 𝑋 with a 

discrete distribution {{⁡𝑝(𝑥1⁡), 𝑝(𝑥2⁡), . . . , 𝑝(𝑥𝑛⁡)}  is preceded by the formulation of conditions for the 

entropy function: 𝐻𝑆(𝑋) = ⁡𝐻𝑆(𝑝(𝑥1⁡), 𝑝(𝑥2⁡), . . . , 𝑝(𝑥𝑛⁡)) 
The conditioning system proposed by Shannon assumed that entropy should satisfy the 

following conditions: 

1. the function 𝐻𝑆(𝑋) should be continuous with respect to all probabilities 𝑝(𝑥𝑖 ⁡)(𝑖 = 1,2, … , 𝑛) 
which means that small changes in probabilities should correspond to a small change in entropy. 

2. if all n events of random variable X are equally likely  (𝑝(𝑥1⁡) = ⁡𝑝(𝑥2⁡) =, . . . , = 𝑝(𝑥𝑛⁡) = 1𝑛) 

then the function 𝐻𝑆(𝑋)  should grow monotonically as n increases. 

3. The function 𝐻𝑆(𝑋)  should be symmetric, which means that the entropy value is invariant to the 

permutation of the probabilities 𝑝(𝑥𝑖 ⁡)(𝑖 = 1,2, … , 𝑛) 
4. 4 The function 𝐻𝑆(𝑋)  should be coherent, which means that if the realization of events takes place 

in two consecutive stages, the initial entropy should be a weighted sum of the entropies of each 

stage. There is exactly one [71], with constant 𝑘, 𝑛-variable 𝐻𝑆(𝑋)  function satisfying the above 

conditions, and it is given by the formula: 
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𝐻𝑆(𝑋) = ⁡𝐻𝑆(𝑝(𝑥1⁡), 𝑝(𝑥2⁡), . . . , 𝑝(𝑥𝑛⁡)) = 𝑘∑𝑝(𝑥𝑖⁡) log𝑟 1𝑝(𝑥𝑖⁡)𝑛
𝑖=1  

where: 𝑟 > 0, probabilities 𝑝(𝑥𝑖 ⁡)  satisfy the normalization and unit sum conditions: 0 ≤ 𝑝(𝑥𝑖⁡) ≤ 1 ∑𝑝(𝑥𝑖 ⁡) = 1𝑛
𝑖=1  

The constant 𝑘 determines the unit of entropy. If 𝑘 = 1log𝑟 2 the unit of entropy is the bit and the 

entropy function takes the form: 𝐻𝑆(𝑋) = ⁡𝐻𝑆(𝑝(𝑥1⁡), 𝑝(𝑥2⁡), . . . , 𝑝(𝑥𝑛⁡)) = 𝑘∑𝑝(𝑥𝑖⁡) log2 1𝑝(𝑥𝑖⁡)𝑛
𝑖=1  

Entropy 𝐻𝑆(𝑋)  is a measure of the uncertainty associated with the probability distribution {⁡𝑝(𝑥1⁡), 𝑝(𝑥2⁡), . . . , 𝑝(𝑥𝑛 ⁡)} with which the values {𝑥1, 𝑥2, … , 𝑥𝑛}  of the discrete variable X occur. 

The probabilistic entropy measure 𝐻𝑆(𝑋)    described by the formula has the following 

properties: 

• Shannon entropy takes non-negative values 𝐻𝑆(𝑋) ≥ 0,  

• Shannon's entropy takes the value zero when one of the values {𝑥1, 𝑥2, … , 𝑥𝑛} of the discrete 

random variable 𝑋 occurs with probability equal to unity, and the others with probabilities equal 

to zero,  

• Shannon entropy takes the largest value equal to 𝐻𝑆(𝑋) = log2 𝑛  when all probabilities are equal 

to each other (𝑝(𝑥1⁡) = ⁡𝑝(𝑥2⁡) =, . . . , = 𝑝(𝑥𝑛⁡) = 1𝑛),  

• Shannon's entropy is concave,  

• Shannon entropy satisfies the additivity property for a pair of discrete independent random 

variables 𝑋 and 𝑌: 𝐻𝑆(𝑋, 𝑌) = 𝐻𝑆(𝑋) + 𝐻𝑆(𝑌) 
In the present study, Shannon entropy values were calculated for the values of extreme monthly 

precipitation totals and extreme monthly mean temperatures. The sequences thus created provided 

data for further analyses related to the evaluation of entropy dynamics. 

6. Variability of entropy 

In the paper, entropy was calculated separately for minimum values and maximum values. A 

measure was proposed to take into account the variability of distributions describing extreme values.  

The evaluation of the variability of Shannon entropy was made on the basis of the values of calculated 

trends. A measure of the Euclidean norm was proposed here [72–76]. 

The Euclidean norm can be written as: 𝑣𝑒𝑐𝑡𝑜𝑟 = {𝑎, 𝑏}⁡; ||𝑣𝑒𝑐𝑡𝑜𝑟|| = 𝑁𝑜𝑟𝑚[𝑣𝑒𝑐𝑡𝑜𝑟] = √𝑎2 + 𝑏2 
where: 𝑎, 𝑏 - coordinates of the vector 

In this study, the variability was determined based on Shannon entropy trends separately in the 

form of distributions describing minimum values and distributions describing maximum values. 

Finally, it also allowed calculating the resultant variability of Shannon's entropy by taking the 
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entropy trends for precipitation phenomena and temperature phenomena separately as vector 

coordinates. Finally, a measure was proposed that takes into account the variability of both 

precipitation and temperature extremes. ||𝑑𝑦𝑛𝐻𝑆𝑃|| = √𝑡𝑟𝑒𝑛𝑑(𝐻𝑆𝑃(𝑚𝑖𝑛))2 + 𝑡𝑟𝑒𝑛𝑑(𝐻𝑆𝑃(𝑚𝑎𝑥))2 ||𝑑𝑦𝑛𝐻𝑆𝑇|| = √𝑡𝑟𝑒𝑛𝑑(𝐻𝑆𝑇(𝑚𝑖𝑛))2 + 𝑡𝑟𝑒𝑛𝑑(𝐻𝑆𝑇(𝑚𝑎𝑥))2 

||𝑑𝑦𝑛𝐻𝑆|| = √𝑑𝑦𝑛𝐻𝑆𝑃2 + 𝑑𝑦𝑛𝐻𝑆𝑇2 

where: 𝑡𝑟𝑒𝑛𝑑(𝐻𝑆𝑃(𝑚𝑖𝑛)) – Shannon entropy trend for minimum rainfall values, 𝑡𝑟𝑒𝑛𝑑(𝐻𝑆𝑃(𝑚𝑎𝑥)) – Shannon's entropy trend for maximum rainfall values, 𝑡𝑟𝑒𝑛𝑑(𝐻𝑆𝑇(𝑚𝑖𝑛)) – Shannon's entropy trend for minimum temperature values, 𝑡𝑟𝑒𝑛𝑑(𝐻𝑆𝑇(𝑚𝑎𝑥)) – Shannon's entropy trend for maximum temperature values, 𝑑𝑦𝑛𝐻𝑆𝑃 – variation of Shannon's entropy for extreme precipitation values, 𝑑𝑦𝑛𝐻𝑆𝑇 – variation of Shannon's entropy for extreme temperature values, 𝑑𝑦𝑛𝐻𝑆𝑇 – variation of Shannon's entropy for extreme values of precipitation and temperature. 

The Euclidean norm is one of many ways to measure the dynamics of climate variability, and its 

calculation based on Shannon entropy trends for temperature and precipitation extremes can help 

understand climate variability. It can be used to compare different time periods and geographic 

regions to assess whether the dynamics of climate variability are increasing, decreasing, or remaining 

constant. However, the Euclidean norm itself does not provide insight into the causes of these 

changes, but only informs about the degree of variability itself. It is worth noting that calculating the 

Euclidean norm from Shannon's entropy trends for minimum and maximum temperature and 

precipitation values is one of many possible ways to analyze climate entropy variability, and should 

be considered as a complement to other research methods, not as the only method of analysis. 

7. Data Preparation for Analysis 

The paper relies on grid data of monthly precipitation totals from the Global Precipitation 

Climatology Center (GPCC) released products and grid data of monthly mean temperatures from 

National Oceanic and Atmospheric Administration (NOAA) products. The data correspond to a 

spatial resolution of 0.5°x 0.5° and are consistent in spatial and temporal extent. Products from both 

GPCC and NOAA are made available via the Internet [77–80]. These data are not made available in 

real time. 

This paper examines global Shannon entropy trends of monthly precipitation totals and monthly 

mean temperatures from an area of 377 river basins distributed over all continents. Assuming 509.9 

million square kilometers of land area, 12.76% of the land area is included in the analysis. Table 1 

shows the areas covered by the analysis. 

Table 1. Areas covered in the WMO regions analysis [45]. 

Region Continent Lands area Area catchment Coverage of the continents 
WMO  mln km2 mln km2 % 
1 Africa 30.3 8.43 27.83% 

2 Asia 44.3 20.3 45.86% 

3 South America 17.8 12.6 70.57% 

4 North America 24.2 13.0 53.87% 

5 Australia and Oceania 8.5 1.1 13.07% 

6 Europe 10.5 6.7 64.10% 

 Antarctica 13.1 0.0 0.00% 

 Lands together 148.7 65.1 43.77% 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 August 2023                   doi:10.20944/preprints202308.0260.v1

https://doi.org/10.20944/preprints202308.0260.v1


 10 

 

 Earth, total 509.9 65.1 12.76% 

GPCC and NOAA data, were converted to catchment areas. This yielded a sequence of monthly 

precipitation and temperatures, which became the subject of the analyses presented in this article. 

The analyses covered the years 1901 to 2010. 

8. Statistical Tests Used 

In evaluating the form of entropy trends for both precipitation and temperature, a bootstrap 

resampling technique was used to create sequences for calculating Shannon entropy and estimating 

GEV distribution parameters. The form of the trends was verified with the Mann-Kendall test (MKT) 

at the 5% significance level. In addition, entropy trend change points were determined using the 

Pettitt change point test (PCPT) at the 5% significance level. If the change point was positively verified 
at the 5% level of significance, a new trend form was determined for the new sub-series using the 

MKT test. The possibility of using the GEV distribution, for each, analyzed sequence of extreme 

values, the AD test was carried out at the 5% level of significance. 

To examine the trend in a given time series, the MKT test was used [81,82]. This test is 

independent of the type of distribution and we do not need to assume any special form of data 

distribution function [83]. This test has been widely recommended by the World Meteorological 

Organization for public use, moreover, it has been used in many scientific papers to evaluate the 

trend of water resources data [13,29,82]. The magnitude of the trend is estimated using a 

nonparametric median-based slope estimator proposed by Sen [84] and extended by Hirsch [85]. In 

this study, this test was used to examine the Shannon entropy trend. 

A number of methods [13,43,82,86,87], can be used to determine time series change points. In 

this analysis, the nonparametric Pettitt change point test [88] was used to detect the occurrence of 

change. The Pettitt change point test (PCPT) is a nonparametric abrupt change test in a time sequence. 

It is used to detect the turning point at which a sudden change occurred, the so-called "spike" in the 

time sequence. The TP involves comparing the sum of the ranks of two subsets of data, which are 

divided by a threshold value, to determine whether there is a statistically significant change in the 

time sequence. This test can be used to analyze data with any distribution, and the test result does 

not depend on the assumption of normality of the data. The result of the Pettitt test is the value of the 

test statistic, which is compared with the critical value for the significance level to determine whether 

the null hypothesis of no abrupt change in the time sequence can be rejected.  

PCPT is widely used to detect changes in observed climatic as well as hydrological time series 

[13,89–91]. In the present study, the existence of change points in the Shannon entropy time series for 

extreme values of monthly precipitation totals and monthly mean temperatures was checked. For 

time series showing a significant change point, the trend test was applied to the sub-series, and if the 

change point is not significant, the trend test will be applied to the entire time series [13]. 

9. Analysis of Shannon’s Entropy Trend Variation 

The study of Shannon entropy trends of extreme precipitation and temperature values is an 

important tool in the study of climate variability, which has important implications for hydrology 

and water resources [15,28,30,33,92]. Analysis of historical observations makes it possible to 

accurately assess the variability of precipitation and temperature according to the observed period 

and allows us to determine the form of the directions of these ongoing changes. Shannon entropy 

trends allow detection of trends and changes in these trends in extreme data. This makes it possible 

to accurately determine the impact of climate change on the environment and water resources. 

Studies of the variability of extreme values of precipitation and temperature are particularly 

important in the context of predicting the effects of hydrological floods and droughts, which can have 

serious consequences for humanity and the environment [28–30,51]. The use of statistical techniques, 

such as Shannon entropy trend analysis, makes it possible to more accurately predict these effects 

and take appropriate preventive measures. Finally, the use of statistical techniques in the study of 

climate variability is particularly important in the context of predicting the variability of extreme 
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events [14,28,56,93–97]. Shannon entropy trends allow for a more accurate analysis of these 

phenomena and allow for an understanding of their causes and effects. This allows more effective 

action to protect the environment and water resources. They are important measures of climate 

variability, and their analysis makes it possible to understand the complex relationships between 

these two variables. Knowledge of entropy variability and the relationship between precipitation and 

temperature can allow us to understand the magnitude of atmospheric phenomena such as El Niño 

and La Niña cycles. In addition, the analysis of the interrelationships between these variables is 

important for assessing the polarization of climate phenomena and enables measures to be taken to 

reduce the negative effects of climate change.  

The Intergovernmental Panel on Climate Change (IPCC) predicts that increased greenhouse gas 

emissions following the industrialization of the world, due to large-scale burning of fossil fuels, 

human interference and land use change, will increase global temperatures [18,27,30,98]. Natural 

forces and human activities contribute significantly to changing climate patterns, i.e., increasing land 

and ocean surface temperatures, changing spatial and temporal patterns of precipitation, increasing 

the frequency of extreme events, rising sea levels and intensifying El Niño [12,15,30,31,79]. Rapid 

changes, both in mean and variance, can be associated with both climate (e.g., shifts in climate 

regimes) and anthropogenic effects (e.g., construction of dams and reservoir systems, changes in land 

use/land cover and agricultural practices, relocation of measurement points) [10,99]. Statistical 

analyses must be interpreted in conjunction with observed physical [30,100,101], social and economic 

phenomena [30,34,102,103]. Therefore, the study and prediction of temporal trends in the entropy of 

extreme precipitation and temperature values is very useful in social and urban planning [104].  

Analysis of the variability of Shannon entropy for GEV distributions of minimum and maximum 

values of precipitation and temperature can provide important information on the temporal 

variability and occurrence of extreme events caused by climate change [39]. Shannon's entropy is a 

measure of uncertainty or variability in the data distribution, meaning that the higher the entropy 

value, the greater the variability in the data distribution. In the case of climate change, an increase in 

Shannon entropy can indicate increasing variability in climatic conditions and more extreme events. 

In addition, a comparison of Shannon entropy values for minimum and maximum values of 

precipitation and temperature can provide information on the variability and polarization of extreme 

events.  

This paper focuses on the variability of Shannon entropy in long-term sequences of precipitation 

and temperature to assess the polarization of climate phenomena. Shannon's entropy was used as a 

measure of the indeterminacy and unpredictability of climate phenomena: precipitation and 

temperature, which made it possible to study the degree of variability of these sequences over time. 

An increase in Shannon entropy in precipitation sequences indicates increased variability in 

precipitation and potentially extreme weather events, such as intense rains or droughts. Conversely, 

an increase in Shannon entropy in temperature sequences signals increased temperature variability 

and the potential for extreme events such as heat waves or extreme cold. Analysis of the variability 

of Shannon entropy makes it possible to identify areas where the climate is becoming more polarized. 

Higher entropy values indicate greater climate variability and unpredictability, which can lead to 

significant changes in the local environment. These changes include shifts in the distribution of plant 

and animal species, changes in weather patterns and changes in sea level [24]. Shannon entropy 

calculations of long-term precipitation and temperature sequences are extremely important in 

studying climate variability and assessing the polarization of climate phenomena. They allow a better 

understanding of climate dynamics and identify areas of greater variability and unpredictability. 

The variability of entropy trends is one of the key indicators of climate change, and its analysis 

can help understand future changes in precipitation and temperature. A decrease in entropy trends 

for precipitation may suggest that the region is experiencing periods of drought or extreme 

precipitation, which could result in flooding. An increase in entropy trends for precipitation can 

indicate greater variability in the amount and timing of precipitation, which can lead to difficulties 

in managing water resources. Variability in temperature entropy trends can affect plant 

development, biological processes and animal migration [105,106]. A decrease in temperature 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 August 2023                   doi:10.20944/preprints202308.0260.v1

https://doi.org/10.20944/preprints202308.0260.v1


 12 

 

entropy trends may suggest a more stable climate, but at the same time may lead to a lack of 

adaptation of organisms to changing conditions. An increase in temperature entropy trends can 

indicate increasingly unstable climate conditions, which can lead to the risk of extreme weather 

events such as heat waves or storms. 

The study of the entropy trend change point, that is, a change in the direction or nature of 

precipitation and temperature trends, can be the result of various atmospheric factors and 

phenomena. This study does not analyze the causes of changes in the direction or nature of trends. 

On the other hand, it is possible to note in general terms what causes may cause this change: 

• climate cycles: multi-year and decadal climate cycles, such as El Niño and La Niña, the North 

Atlantic Oscillation (NAO) or the South-North Pacific Oscillation (ENSO), affect regional and 

global precipitation patterns; changes in these cycles can cause a switch in precipitation trends 

[22,67,107],  

• changes in atmospheric circulation: changes in atmospheric circulation, such as changes in winds, 

atmospheric currents or high and low pressure systems, can affect local precipitation patterns 

[108], 

• changes in ocean surface temperature: ocean surface temperature is an important factor affecting 

regional precipitation patterns, ocean temperature anomalies such as El Niño and La Niña can 

affect precipitation changes [109], 

• urbanization: urban development and land use changes can affect local precipitation patterns 

through the so-called "heat island effect" and changes in air circulation [52], 

• global climate change: climate changes related to human activities, such as greenhouse gas 

emissions and global warming, can affect changes in precipitation patterns on global and regional 

scales [52],  

• topography: landforms such as mountains and valleys can affect local precipitation patterns 

through the so-called "orographic effect" [35,52], 

• ocean-atmosphere interactions: changes in ocean-atmosphere interactions, such as ocean currents 

and the phenomenon of deep ocean upwelling, can affect regional precipitation patterns [52], 

• industrial development: the growth of industrial activities, particularly greenhouse gas emissions 

and air pollution associated with industrial activities, can affect climate change and precipitation 

patterns. Emissions of greenhouse gases such as carbon dioxide (CO2) and methane (CH4) cause 

global warming, which can affect regional precipitation patterns, in addition, air pollutants 

emitted by industry can affect cloud formation and rain [53], 

• agricultural development in particular changes in land use, can affect local precipitation patterns, 

excessive deforestation and changes in soil use can affect air circulation and moisture, which can 

affect local precipitation patterns, in addition, fertilization and irrigation practices in agriculture 

[52,53], 

• melting of glaciers and ice caps: a reduction in the Earth's glaciers and ice caps affects albedo, or 

the ability of the surface to reflect solar radiation, a smaller ice cap leads to greater heat absorption 

by the Earth, which contributes to global warming [52,53,110], 

• changes in solar activity: fluctuations in solar activity can affect the amount of solar radiation 

reaching the Earth, which affects climate and surface temperatures [52,53,111], 

• volcanism: volcanic eruptions introduce large amounts of dust and gases into the atmosphere, 

which can affect global short-term temperature changes [66,110], 

• other natural factors: in some cases, changes in temperature trends can be the result of natural 

climate changes, such as solar-magnetic cycles, changes in ocean circulation [21]. 

10. Results of the Analyses and Discussion 

In the present study, Shannon entropy trends were examined on the basis of long-term 

sequences of monthly precipitation totals and monthly mean temperatures for 377 catchments from 

the area of 6 WMO regions. From the analyzed data, sequences of minimum and maximum values 

of precipitation and temperatures were selected. In evaluating the form of entropy trends for both 

precipitation and temperature, the bootstrap resampling technique was used to create Shannon 
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entropy sequences and estimate GEV distribution parameters. The form of the trends was verified 

with the MKT test at the 5% significance level. In addition, the change points of the entropy trends 

were determined using the PCPT test at the 5% significance level. If the change point was positively 

verified at the 5% significance level, a new trend form was determined for the new sub-series using 

the MKT test. The applicability of the GEV distribution, for each, analyzed sequence of extreme 

values was evaluated using the ADT test at the 5% significance level. The results of the analyses were 

presented graphically. Graphical presentations of each aspect of the analysis performed allow easier 

and more precise observation of the trend of changes. 

Figure 1 shows the Shannon entropy trends for the values of minimum monthly precipitation 

totals. The least negative values of entropy trends for minimum monthly precipitation values 

occurred in the river catchments shown in Table 2. It should be emphasized that in the catchment of 

the Daule River: Ecuador, the decreasing trend worsens, almost doubling from a value of (-0.040) to 

(-0.074). The turn of 1980/1990 is a period of changing trends.  

 

Figure 1. Shannon entropy trends for values of minimum monthly precipitation totals. 

Fewer extreme drought or intense rainfall events can be expected in these catchments, which can 

have a positive impact on agriculture and water resources. Lower entropy for minimum precipitation 

may indicate more predictable precipitation patterns, which facilitates water resources planning and 

management. 

Table 2. River basins in which the smallest decreasing values of Shannon entropy trends were found 

for minimum monthly precipitation values at the 5% level of significance. 

Name of 
river 

Name of 
country 

Area 
catchment 
 

Slope of 
Shannon 
entropy, min 
values 

Year of change of 
slope of Shannon 
entropy min values 

Slope of Shannon 
entropy, min 
values -subseries 

  [km2] [bit/year]  [bit/year] 
Daly Australia 47000 -0.049 1990 -0.025 

Daule Ecuador 8690 -0.040 1988 -0.074 
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Mahanadi 

River  
India 132090 -0.036 1986 -0.006 

Canete Peru 4900 -0.033 1990 -0.017 

Fuerte Mexico 34247 -0.026 1990 -0.009 

Vinces Ecuador 4400 -0.023 1990 -0.014 

Little 

Mecatina 

River 

Canada 19100 -0.017 1989  

Kouilou Congo 55010 -0.015 1984  

Biobio Chile 24029 -0.014 1989 -0.012 

Esmeraldas Ecuador 18800 -0.014 1991 -0.010 

The largest values of entropy trends for the minimum values of monthly precipitation occurred 

in the river catchments shown in Table 3. It should be noted that in the catchment of the Anyuy River: 

Russian Federation there is a decrease of more than 4 times the Shannon entropy from the value of 

0.036 to 0.008 in 1990. The beginning of the 1990s is a period of changing trends. In the case of the 

catchment area of the Khatanga River: Russian Federation, there is a trend reversal from a value of 

0.033 to a value of (-0.002). The trend collapse occurred in 1990.  

In these catchments, the increase in entropy for minimum precipitation means greater variability 

and instability of atmospheric conditions, which can lead to longer periods of drought. This is 

particularly unfavorable for agriculture, as it causes a decrease in crop yields and worsens the food 

situation. 

Figure 2 shows Shannon entropy trends for the values of maximum monthly precipitation totals. 

The lowest values of entropy trends for the maximum values of monthly precipitation occurred in 

the river catchments shown in Table 4. In the case of the catchment of the St. Johns River: United 

States, a twofold deepening of the trend is shown, from a value of (-0.010) to (-0.020) in 1994. In the 

catchment of the Santa Cruz River: Argentina, there is a deepening of the trend almost fourfold, from 

a value of (-0.008) to a value of (-0.022) in 1997.  

Table 3. River catchments in which the largest increasing values of Shannon entropy trends were 

found for minimum monthly precipitation values at the 5% level of significance. 

Name of river Name of country 
Area 
catchmen
t 

Slope of 
Shannon 
entropy, min 
values 

Year of 
change of 
slope of 
Shannon 
entropy min 
values 

Slope of 
Shannon 
entropy, min 
values -
subseries 

  [km2] [bit/year]  [bit/year] 
Sittang River Myanmar 14660 0.044 1990 0.031 

Quoich River Canada 30100 0.040 1990 0.016 

Macarthur River Australia 10400 0.039 1990 0.032 

Bol. Anyuy Russian Feder. 49600 0.038 1990 0.011 

Ellice River Canada 16900 0.037 1989 0.019 

Anyuy Russian Feder. 30000 0.036 1990 0.008 

Baleine, Grande River Canada 29800 0.035 1990 0.014 

Khatanga Russian Feder. 275000 0.033 1990 -0.002 

Tapti River India 61575 0.030 1991 0.006 

Narmada India 89345 0.029 1992 0.001 

Ferguson River Canada 12400 0.029 1990 0.031 
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Figure 2. Shannon entropy trends for values of maximum monthly precipitation totals. 

The following can be expected in these catchments: a reduction in variability in rainfall intensity, 

which can affect water cycles and natural processes that are important for ecosystem health. 

However, an increase in the stability of high-intensity precipitation may at the same time lead to 

flooding, which can have serious consequences for infrastructure and human life and health.  

Table 4. River basins in which the smallest decreasing values of Shannon entropy trends were found 

for maximum monthly precipitation values at the 5% level of significance. 

Name of river 
Name of 
country 

Area 
catchment 
 

Slope of 
Shannon 
entropy, max 
values 

Year of change of 
slope of Shannon 
entropy max 
values 

Slope of Shannon 
entropy, max 
values -subseries 

  [km2] [bit/year]  [bit/year] 
Sakarya Turkey 55322 -0.015 1987 -0.025 

Stikine River 
United 

States 
51593 -0.014 1987  

Brahmaputra Bangladesh 636130 -0.010 1988 -0.005 

St. Johns River 
United 

States 
22921 -0.010 1994 -0.020 

Juba Somalia 179520 -0.009 1994 -0.004 

Loa Chile 33570 -0.009 1990  

Tana (No, Fi) Norway 14165 -0.009 1992 -0.013 

Ashburton 

River 
Australia 70200 -0.008 1995  

Tranh (Nr Thu 

Bon) 
Viet Nam 9153 -0.008 1994 -0.020 
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Santa Cruz Argentina 15550 -0.008 1997 -0.022 

The largest entropy trend values for maximum monthly precipitation values occurred in the 

river catchments presented in Table 5. In the catchment of the Volta River: Ghana, a twofold decrease 

in trend values from 0.014 to 0.008 in 1990 was shown, and similarly in the Anyuy Russian Federation 

river catchment from 0.025 to 0.013 in 1990. 

The processes in these catchments indicate an increase in rainfall variability. This can affect 

water cycles and natural processes that are important for ecosystem health. On the one hand, an 

increase in maximum precipitation can benefit the ecosystems of dry regions, which need more water. 

On the other hand, increased maximum precipitation can lead to flooding and soil erosion. In that 

case, reducing the variability of maximum precipitation would be beneficial to the health of 

ecosystems. In the context of climate change, increased maximum precipitation is one of the expected 

effects of global warming. 

Figure 3 shows the Shannon entropy trends for the values of minimum monthly average 

temperatures. The lowest values of entropy trends for minimum monthly average temperatures 

occurred in the catchments shown in Table 6. The Churchill River: Canada catchment showed a 

twofold increase in trend from a value of (-0.007) to (-0.003) in 1987. 

In these catchments, the direction of the change in temperature entropy may suggest that 

temperature variability is less compared to the past, so the climate is becoming more stable. 

Table 5. River catchments in which the largest increasing values of Shannon entropy trends were 

found for monthly precipitation maxima at the 5% significance level. 

Name of river Name of country 
Area 
catchmen
t 

Slope of 
Shannon 
entropy, 
max 
values 

Year of 
change of 
slope of 
Shannon 
entropy max 
values 

Slope of 
Shannon 
entropy, 
max values 
-subseries 

  [km2] [bit/year]  [bit/year] 
Anyuy Russian Feder. 30000 0.025 1990 0.013 

Rio Maicuru Brazil 17072 0.018 1984  

Bol. Anyuy Russian Feder. 49600 0.018 1990  

San Pedro Mexico 25800 0.017 1995  

Brahmani River India 39033 0.016 1990 0.017 

Anadyr Russian Feder. 156000 0.016 1990 0.007 

Sassandra Cote D'ivoire 62000 0.016 1990 0.005 

Kinabatangan Malaysia 10800 0.016 1988  

Ponoy Russian Feder. 15200 0.016 1989 0.010 

Volta Ghana 394100 0.014 1990 0.008 
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Figure 3. Shannon entropy trends for minimum values of monthly average temperatures. 

Table 6. River catchments in which the smallest decreasing values of Shannon entropy trends were 

found for minimum monthly average temperatures at the 5% level of significance. 

Name of 
river 

Name of 
country 

Area 
catchment 

Slope of 
Shannon 
entropy, min 
values 

Year of change of 
slope of Shannon 
entropy min values 

Slope of Shannon 
entropy, min 
values -subseries 

  [km2] [bit/year]  [bit/year] 
Rio Ribeira 

Do Igu 
Brazil 12450 -0.012 1990  

Chubut Argentina 16400 -0.010 1987  

Ellice River Canada 16900 -0.008 1994  

Orange South Africa 850530 -0.008 1986 -0.011 

Gilbert 

River 
Australia 11800 -0.008 1998 -0.010 

Penobscot 

River 

United 

States 
19464 -0.008 1991  

Loa Chile 33570 -0.008 1997 -0.009 

Syr Darya Kazakhstan 402760 -0.007 1989 -0.009 

Churchill 

River 
Canada 287000 -0.007 1987 -0.003 

Mono Benin 21575 -0.007 1987 -0.010 

The largest entropy trend values for minimum monthly average temperatures occurred in the 

catchments presented in Table 7. The three catchments of Svarta, Skagafiroi: Iceland, Thjorsa: Iceland 

and Joekulsa A Fjoellu: Iceland showed the largest trend values of 0.016 to 0.019. For the first two 

catchments, there was a threefold decrease in trend values to a magnitude of 0.006 to 0.005. For the 
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third catchment, a year of trend change of 1988 was shown, while the value of the new trend at the 

5% significance level was not determined.  

An increase in temperature entropy can increase extreme weather conditions such as droughts, 

heat waves, hurricanes and storms, which can have negative effects on human, animal and 

environmental health. Increasing the entropy of minimum temperatures may be beneficial for 

agriculture and vegetation growth. However, more research is needed to better understand the 

effects of changes in temperature entropy and develop strategies to adapt to climate change. 

Figure 4 shows Shannon entropy trends for the values of maximum monthly average 

temperatures. The lowest values of entropy trends for maximum monthly average temperatures 

occurred in the catchments presented in Table 8. In the case of the catchment of the Nadym River: 

Russian Federation, a doubling of the trend from a value of (-0.011) to a value of (-0.021) in 1991 is 

shown. In the catchment of the Loa River: Chile, there is a reversal of the weather pattern and a 

change in the direction of the trend from a value of (-0.011) to a value of 0.003 in 1983. 

In these catchments, the trend of maximum temperature entropy is decreasing, this means that 

the variability in high temperatures is decreasing, which may suggest that extreme heat becomes less 

common. This could have a beneficial effect on human health, but could also affect ecosystems, 

including plants, animals and microorganisms that are adapted to certain temperatures. 

Table 7. River basins in which the largest increasing values of Shannon entropy trends were found 

for minimum monthly average temperatures at the 5% level of significance. 

Name of 

river 

Name of 

country 

Area 

catchment 

Slope of 

Shannon 

entropy, min 

values 

Year of change of 

slope of Shannon 

entropy min values 

Slope of Shannon 

entropy, min 

values -subseries 

  [km2] [bit/year]  [bit/year] 

Svarta, 

Skagafiroi 
Iceland 393 0.019 1990 0.006 

Thjorsa Iceland 7380 0.016 1988 0.005 

Joekulsa A 

Fjoellu 
Iceland 7074 0.016 1988  

Lempa El Salvador 18176 0.013 1989 0.011 

Pra Ghana 22714 0.013 1987 0.010 

Thames 
United 

Kingdo 
9948 0.010 1991 0.007 

Grande De 

Matagalp 
Nicaragua 14646 0.009 1990 0.011 

Comoe 
Cote 

D'ivoire 
69900 0.009 1990 0.012 

Grisalva Mexico 37702 0.009 1988  

Sabine River 
United 

States 
24162 0.009 1991 0.007 
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Figure 4. Shannon entropy trends for maximum values of monthly average temperatures. 

Table 8. River basins in which the smallest decreasing values of Shannon entropy trends were found 

for maximum monthly average temperatures at the 5% level of significance. 

Name of 

river 

Name of 

country 

Area 

catchment 

Slope of 

Shannon 

entropy, max 

values 

Year of change of 

slope of Shannon 

entropy max values 

Slope of Shannon 

entropy, max 

values -subseries 

  [km2] [bit/year]  [bit/year] 

Nadym 
Russian 

Feder. 
48000 -0.011 1991 -0.021 

Loa Chile 33570 -0.011 1983 0.003 

Ferguson 

River 
Canada 12400 -0.011 1983  

Kouilou Congo 55010 -0.011 1986 -0.018 

Pahang Malaysia 19000 -0.009 1993  

Kelantan Malaysia 11900 -0.009 1998  

Karun 
Iran, 

Islamic 
60769 -0.009 1984  

San Pedro Mexico 25800 -0.008 1987 -0.006 

Nelson 

River 
Canada 1060000 -0.008 1992  

Rhone France 95590 -0.008 1989 -0.003 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 August 2023                   doi:10.20944/preprints202308.0260.v1

https://doi.org/10.20944/preprints202308.0260.v1


 20 

 

The largest entropy trend values for maximum monthly average temperatures occurred in the 

catchments presented in Table 9. The catchment of the Juba River: Somalia has a twofold decrease in 

trend values from 0.010 to a value of 0.005 in 1990. 

An increase in temperature entropy can increase extreme weather conditions such as droughts, 

heat waves, hurricanes and storms, which can have negative effects on human, animal and 

environmental health. 

Figure 5 shows the spatial location of catchments in which the greatest dynamics of Shannon 

entropy trends for minimum and maximum precipitation values were recognized at the 5% 

significance level. 

Figure 6 shows the spatial location of the catchments in which the greatest dynamics of Shannon 

entropy trends for minimum and maximum temperature values were recognized at the 5% 

significance level. 

Figure 7 shows the spatial location of the catchments in which the greatest dynamics of Shannon 

entropy trends for minimum and maximum values of precipitation and temperature were recognized 

at the 5% significance level. The maximum values of the norm take the magnitude of 0.049 [bit/year] 

for the DALY: AUSTRALIA river catchment, the smallest 4e-16 [bit/year] for the KOVDA: RUSSION 

FEDERATION river catchment, Table 10. 

Note that the dynamics of Shannon entropy for minimum and maximum monthly average 

precipitation compared to the dynamics of Shannon entropy for minimum and maximum monthly 

average temperatures is greater than 1 and takes values from 2.0 to 19.8, Table 10. The almost 20 times 

greater dynamics in the Anyuy: Russian Federation river catchment in the area of precipitation 

compared to the dynamics of temperature, means that the variability of extreme precipitation values 

in this catchment is much greater than the variability of extreme temperature values. In other words, 

extreme precipitation events are more varied and extreme than extreme temperature events. This 

may indicate that the area experiences more extreme and varied precipitation-related weather 

conditions, such as floods, storms, heavy rains, droughts, etc., than temperature-related ones, such 

as heat waves and freezing temperatures. 

Table 9. River basins in which the largest increasing values of Shannon entropy trends were found 

for maximum monthly average temperatures at the 5% level of significance. 

Name of 

river 

Name of 

country 

Area 

catchment 

Slope of 

Shannon 

entropy, max 

values 

Year of change of 

slope of Shannon 

entropy max values 

Slope of Shannon 

entropy, max 

values -subseries 

  [km2] [bit/year]  [bit/year] 

Godavari India 299320 0.018 1991 0.014 

Tapti River India 61575 0.014 1988 0.008 

Mahi River India 33670 0.013 1990 0.016 

Lempa El Salvador 18176 0.013 1990  

Rio Ribeira 

Do Igu 
Brazil 12450 0.012 1992 0.012 

Narmada India 89345 0.011 1987  

Sacramento 

River 

United 

States 
60885.7 0.010 1991 0.017 

Juba Somalia 179520 0.010 1990 0.005 

Nottaway Canada 57500 0.010 1991 0.008 

Dniestr 
Moldova, 

Repu 
66100 0.009 1990 0.014 
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Figure 5. Catchments in which the highest dynamics of Shannon entropy trends for minimum and 

maximum precipitation values were recognized at the 5% significance level. 
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Figure 6. Catchments in which the highest dynamics of Shannon entropy trends for minimum and 

maximum temperature values were recognized at the 5% significance level. 

 

Figure 7. Catchments in which the greatest dynamics of Shannon entropy trends for extremes of 

precipitation and temperature were recognized at the 5% significance level. 

Table 10. River basins with the highest dynamics calculated from Shannon entropy trend values for 

minimum and maximum monthly average precipitation and minimum and maximum monthly 

average temperatures at the 5% significance level. 

Name of 

river 

Name of 

country 

Area 

catchment 

Dynamic of 

Shannon 

entropy of 

precipitation 

Dynamic of 

Shannon 

entropy of 

temperature 

Multiplicity of 

entropy 

dynamics of 

precipitation to 

temperature 

Total 

dynamic 

of 

Shannon 

entropy  

  [km2] [bit/year] [bit/year]  [bit/year] 

Daly Australia 47000 0.049 0.008 5.8 0.049 

Anyuy 

(Trib. 

Kolym 

Russian 

Feder. 
30000 0.044 0.002 19.8 0.044 

Quoich 

River 
Canada 30100 0.041 0.007 5.7 0.041 

Macarthur 

River 
Australia 10400 0.039 0.008 4.8 0.040 

Ellice River Canada 16900 0.037 0.010 3.9 0.039 
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Mahanadi 

River (Ma 
India 132090 0.036 0.006 6.4 0.037 

Khatanga 
Russian 

Feder. 
275000 0.034 0.006 5.7 0.034 

Tapti River India 61575 0.030 0.015 2.0 0.033 

Narmada India 89345 0.029 0.011 2.7 0.031 

Santa Cruz Argentina 15550 0.026 0.007 3.8 0.027 

11. Summary  

The study evaluated Shannon entropy values for minimum and maximum monthly 

precipitation values and minimum and maximum monthly average temperature values from 1901 to 

2010. The bootstrap method was used to evaluate entropy trends. As a result, Shannon's entropy 

trend values were obtained to assess the variability of climatic conditions in the area of 377 

catchments. The analysis presented here was based on annual minimum and maximum values 

calculated from mean values. Analysis on averages is more statistically stable, allows for a larger 

number of observations and better reflects typical values, which is important for detecting persistent 

trends and ongoing changes. 

The relationships of Shannon's entropy trends in extreme precipitation and extreme temperature 

defined in this paper can be briefly characterized as follows: 

• an increase in the entropy of extreme precipitation can be associated with greater variability in the 

occurrence and intensity of precipitation, which can affect extreme weather events such as 

downpours, floods or droughts, 

• a decrease in the entropy of extreme precipitation may indicate reduced variability in the 

occurrence of extreme precipitation, which could mean more stable precipitation patterns in an 

area,  

• an increase in the entropy of extreme temperature may reflect greater variability in temperature 

extremes, such as heat waves or sudden temperature drops,  

• a decrease in the entropy of extreme temperature may indicate less variability in extreme 

temperatures, which may suggest more stable thermal conditions in an area,  

• a positive correlation between the entropy of extreme precipitation and the entropy of extreme 

temperature may indicate that changes in precipitation and temperature are occurring in similar 

patterns, which may be due to the influence of the same climatic factors,  

• a negative correlation between the entropy of extreme precipitation and the entropy of extreme 

temperature may indicate that variations in these two variables occur in opposite directions, which 

may be due to different factors affecting precipitation and temperature, 

• an increase in the entropy of extreme precipitation with a decrease in the entropy of extreme 

temperature may indicate variability in the occurrence of precipitation without much change in 

extreme temperature, 

• a decrease in the entropy of extreme precipitation with a simultaneous increase in the entropy of 

extreme temperature may indicate less variability in precipitation with greater variability in 

temperature, 

• the lack of a relationship between trends in the entropy of extreme precipitation and trends in the 

entropy of extreme temperature may suggest that the variability in these two variables is 

independent of each other and due to different factors. 
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Understanding the relationships between the entropy trends of minimum and maximum 

precipitation and temperature can help analyze climate change and forecast extreme weather events. 

The analyses carried out richly documented the conditions of climate variability in the areas of 

precipitation and temperature, key factors affecting the environment and water resources, which is 

particularly important for predicting the effects of floods and hydrological droughts, which have 

serious consequences for humanity and the environment. 
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