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Abstract: Semi-supervised consensus clustering is a promising strategy to compensate for the

subjectivity of clustering and its sensitivity to design factors, with various techniques being recently

proposed to integrate domain knowledge and multiple clustering partitions. In this article we present

a new approach that makes double use of domain knowledge, namely to build the initial partitions

as well as to combine them. In particular, we show how to model and integrate must-link and

cannot-link constraints into the objective function of a generic consensus clustering (CC) framework

that maximizes the similarity between the consensus partition and the input partitions, which have,

in turn, been enriched with the same constraints. In addition, borrowing from the theory of functional

dependencies, the integrated framework exploits the notions of deductive closure and minimal cover

to take full advantage of the logical implication between constraints. Using standard UCI benchmarks,

we found that the resulting algorithm, termed CCC (double-Constrained Consensus Clustering),

was more effective than plain CC at combining base constrained partitions. We then argue that

CCC is especially well-suited to profiling counterfeit e-commerce websites, because constraints can

be acquired by leveraging specific domain features, and demonstrate its potential for detecting

affiliate marketing programs. Taken together, our experiments suggest that CCC makes the process of

clustering more robust and able to withstand changes in clustering algorithms, datasets, and features,

with a remarkable improvement of average performance.

Keywords: semi-supervised consensus clustering; ensemble clustering; constrained clustering;

analysis of clustering constraints; online anti-counterfeiting; clustering fraudulent websites; detection

of counterfeit affiliate programs

1. Introduction

Today, after many years of research, there are specialized clustering algorithms that can find

groupings with complex contiguous shapes in data that were previously impossible to identify.

However, it is well known that no single algorithm is suitable for all datasets because the groups may

be similar or dissimilar for very different reasons. The diversity of approaches reflects the difficulty of

providing a formal definition of clustering ([1], [2]). This phenomenon has been concisely described

with the expression ‘clustering is in the eye of the beholder’. The subjectivity issue is compounded

by sensitivity to design factors. When clustering a dataset, we are confronted with a number of

choices: the clustering algorithm family (e.g., hierarchical agglomerative clustering, k-means, spectral,

density-based), the clustering family instance (e.g., the linkage method for hierarchical agglomerative

clustering), the setting of clustering instance parameters (e.g., cutoff threshold), and the data features

used for clustering. A change in any of these factors often results in large overall performance variations.

The user must thus grupple with the dilemma of selecting appropriate techniques, parameters, and

features, given the dataset to be investigated.

These inherent limitations have spurred explorations of ways to add other sources of evidence to

the clustering process, beyond the paradigm of a single unsupervised algorithm. One line of research,

termed ensemble clustering (or consensus clustering), has focused on merging multiple clustering

partitions into a consensus partition that shares their common characteristics and is more robust than
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individual methods to changes and errors [3]. Another area of research, termed semi-supervised

clustering, has investigated the use of a limited amount of domain knowledge such as cannot-link and

must-link constraints in the clustering process, to find a solution that is more aligned with the user’s

preferences (e.g., [4], with a focus on semi-supervised k-means algorithms, and [5], covering several

clustering families ). While the two lines of research arose independently, in recent years we have seen

several attempts to combine them, in an effort to retain the main advantages of each.

The semi-supervised ensemble clustering algorithms that have been proposed so far, reviewed

in [6], exploit various combination strategies. Constraints have been used to create or select better

ensemble members prior to their merging, or to find a better consensus partition from unenhanced

given partitions, or to refine the consensus partition after its generation. However, constraints are

usually employed to improve only one of the steps involved in the semi-supervised ensemble clustering

process. Moreover, most approaches use constraints as is, without trying to infer more knowledge

from them.

Our work was inspired by a desire to make the most of constraints, extending their use and

understanding in the semi-supervised ensemble clustering process. In the proposed framework, the

role played by constraints is twofold. First, they are used to enhance the generation of the base

partitions. Second, the same constraints are used again to combine the enhanced base partitions. This

combination strategy is depicted in Figure 1.
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Figure 1. Overview of the architecture of double-constrained consensus clustering.

In this article we do not dwell on the generation of constrained base partitions. We assume that

the base clustering algorithm or algorithms are equipped with a constraint-enhanced version and that

their results are provided as an input. Our focus is on the merging of such results, aided by constraints,

and on the benefits of the double use of constraints.

Building on the consensus clustering framework introduced in [7], which maximizes the similarity

(based on the Probabilistic Rand Index) between a consensus partition and a set of given partitions,1

we modify its objective function to incorporate must-link and cannot-link constraints. Compliance

with the given constraints is expressed in terms of the percentage of constraints that are satisfied by

the consensus partition, modeling the logical implication between constraints by means of a deductive

closure concept derived from the theory of functional dependencies. The resulting optimization

problem is solved using a simple stochastic hill-climbing strategy, preceded by an ad hoc procedure

for computing the deductive closure of the input constraints. The overall algorithm is termed CCC,

which stands for (double-)Constrained Consensus Clustering. We also define a procedure to build a

minimal cover for a set of constraints, useful for evaluation purposes.

We then present two experimental studies. In the first, conducted with standard UCI datasets,

we found that using CCC was a marked improvement over merging the constrained base partitions

with plain consensus clustering (CC). We also observed that the performance of CCC, measured as a

function of the main clustering factors, was not only clearly better than the average performance of

the base constrained partitions but also almost on par with their best performance, achievable for a

specific combination of clustering feature and constrained base clustering algorithm on each dataset.

1 The terms partition and clustering will be used interchangeably throughout the paper.
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The second experimental study looked at web anti-counterfeiting. We applied CCC to the problem

of detecting affiliate marketing programs behind fraudulent e-commerce websites. We argue that the

interesting feature of this application domain is that constraints can be partly acquired in an automatic

manner, thus making the overall approach more appealing and useful. The potential of CCC for

discovering affiliate programs is demonstrated using a new test collection made available for re-use.

The main contributions of this article are the following.

• We define a novel framework for semi-supervised consensus clustering that exploits constraints

both to build the base partitions and to combine them through an optimization-based constrained

consensus clustering algorithm. The framework has been implemented into a system named

CCC.
• We offer an analysis of the logical implications between constraints that helps optimize their use

not only in CCC but in any clustering algorithm making use of must- and cannot-links constraints.
• We present an experimental evaluation with the UCI datasets showing that the re-utilization

of constraints within the consensus function that combines base constrained partitions is more

effective than using unenhanced consensus clustering.
• We demonstrate the potential of using CCC to analyze counterfeit web shops and detect affiliate

programs. This is done through a comprehensive approach starting from raw data and including

the automatic generation of constraints and experimentation with a new test collection made

available for use.

The remainder of the paper is organized as follows. We first introduce the double-constrained

consensus clustering framework: after providing some notation and background information, we

formalize it as an optimization problem that exploits the logical implications between constraints,

and provide a heuristic solution. In the next section, we describe the study conducted with UCI

datasets, detailing its design, preparation, and findings. We then present the application of CCC

to anti-counterfeiting activities on the web, involving experimental goals, the construction of the

ground truth dataset, the selection of clustering features and base clustering algorithms, the automatic

acquisition of constraints, and an analysis of findings. Next, we discuss related work, splitted into

two main themes: semi-supervised ensemble clustering and clustering fraudulent websites. In the last

section, we offer some conclusions.

2. Double-constrained consensus clustering framework

2.1. Notation and background

Given a set O of n objects O = {o1, ...on}, a partition Π = {π1, ...πm} of O is a grouping of the

elements of O into m non-empty subsets (or clusters), in such a way that every element is included in

one and only one of the subsets; i.e,
⋃m

i=1 πi = O and πi ∩ πj = ∅, for 1 ≤ i 6= j ≤ m.

The similarity between two different partitions is key to consensus clustering. One of the

best-known similarity strategies is the Rand index [8], which measures the agreement among the

decisions made by the two partitions on individual pairs of objects. Given two partitions of O to

compare, Π1 = {π1,1, ...π1,m1
} and Π2 = {π2,1, ...π2,m2

}, the Rand index (RI) is defined as:

RI =
n11 + n00

n00 + n01 + n10 + n11
=

n11 + n00
(

n

2

) (1)

where

• n11: number of pairs of objects that are in the same cluster in both Π1 and Π2,
• n00: number of pairs of objects that are in different clusters in both Π1 and Π2,
• n10: number of pairs of objects that are in the same cluster in Π1 but in different clusters in Π2,
• n01: number of pairs of objects that are in different clusters in Π1 but in the same cluster in Π2.
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Intuitively, one can think of n11 + n00 as the number of agreements between Π1 and Π2, and

n10 + n01 as the number of disagreements between Π1 and Π2. The Rand index has a value between 0

(i.e., no agreement on any pair of objects, which happens only when one partition consists of a single

cluster while the other consists only of clusters containing single objects) and 1 (i.e., when the two

partitions coincide).

The problem with Rand and other pair counting-based indices such as the Adjusted Rand Index

[9] is that the individual contribution of the different types of agreements and disagreements to the

overall similarity is the same, even when there is a high probability that they occurred by chance. The

Probabilistic Rand Index (PRI), introduced in [7], further analyzed in [10], and recently made available

for use at https://github.com/gianniromano8/Probabilistic-Rand-Index is based on the observation

that as the number of cluster grows, the likelihood for a pair of objects being placed in the same cluster

decreases, while at the same time the likelihood of being placed in different clusters increases. Using

the PRI, agreements and disagreements are inversely weighted with the probability of their occurring

by chance:

PRI =
w11 · n11 + w00 · n00

w00 · n00 + w01 · n01 + w10 · n10 + w11 · n11
(2)

In Equation 2, the weights are estimated with the self information (i.e., w11 = − log2 p11, w00 =

− log2 p00, ...) and the probabilities are expressed as a function of the number of clusters in each

partition:

• p11 = 1
m1

· 1
m2

,

• p00 = m1−1
m1

· m2−1
m2

,

• p10 = 1
m1

· m2−1
m2

,

• p01 = m1−1
m1

· 1
m2

.

2.2. Constrained consensus clustering as an optimization problem

A very common and general approach to consensus clustering consists of casting it as an

optimization problem, where the objective is to find a consensus partition Πopt such that the similarity

Ψ between Πopt and q base partitions Π1, Π2, ..., Πq built by q base clustering algorithms is maximal:

Πopt = arg max
Π

Ψ(Π, Π1, ..., Πq) (3)

The objective function Ψ can be defined in terms of a pairwise similarity measure:

Ψ(Π, Π1, Π2, ..., Πq) =
1

q

q

∑
r=1

PRI (Π, Πr) (4)

Here we use the PRI because it is more reliable than the RI, especially when, as in many domains

of interest including online anti-counterfeiting, the number of clusters to find may be high. Following

[11], we now assume that background knowledge is given in the form of pairwise constraints that

indicate whether two objects should be in the same cluster or not. This form of supervision is more

realistic than providing class labels in many applications, and is also more general: a set of classified

points implies an equivalent set of pairwise constraints, but not vice versa [12]. Specifically, we assume

that we are given a set of must-link constraints ML, where (i, j) ∈ ML indicates that objects oi and

oj should be in the same cluster. Similarly, we are given a set of cannot-link constraints CL, where

(i, j) ∈ CL indicates that objects oi and oj should be in different clusters. By Π(i) = k and Π(i) /∈ k, we

denote, respectively, that in partition Π object oi is, or is not, an element of cluster πk. The two sets of

constraints may be exploited by the base clustering algorithms to generate constrained base partitions

as an input. This is our reference scenario, but the consensus clustering framework can also be applied

to unconstrained base partitions.
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We can then use the provided constraints to modify our objective function. One possibility is to

require that the consensus partition should strictly respect the constraints, which would lead to the

following optimization problem:

Maximize 1
q ∑

q
r=1 PRI (Π, Πr)

subject to Π(i) = Π(j), ∀(i, j) ∈ ML;

Π(i) 6= Π(j), ∀(i, j) ∈ CL

(5)

However, this formulation does not allow for exceptions: all the constraints must be satisfied.

Such a requirement is, in general, not the best choice [13], and in our case it may further complicate the

search for an admissible consensus partition because the input partitions do not necessarily satisfy the

given constraints. It seems more convenient to use soft constraints, where compliance is rewarded but

violation is still allowed. Maximizing both the similarity to the input partitions and the compliance

with constraints naturally leads to the following form of objective function, where the second addend

is the percentage of the given constraints that are satisfied by the (constrained) consensus partition :

1

q

q

∑
r=1

PRI (Π, Πr) +
∑(i,j)∈ML I [Π(i) = Π(j)] +∑(i,j)∈CL I [Π(i) 6= Π(j)]

|ML|+ |CL|
(6)

In the above expression, I is an indicator function having the value 1 if the enclosed expression is

true and 0 otherwise, while ML and CL refer to the constraints provided as an input. We now have to

consider the fact that constraints are not independent. In a set of given constraints, some of them may

be logically implied by others, while there may also be constraints not in the set that can be derived

from those in the set. This issue affects the actual compliance of the consensus partition with the

initial constraints, extending their usefulness in the clustering process through implicit constraints.

In the next section we will see how to refine the second addend in expression 6, based on the logical

properties of constraints.

2.3. Analysis of constraints

First of all, consider the number of constraints associated with n objects and m partitions. There

may be at most
n(n−1)

2 constraints, one for each possible pair of objects (this bound is independent of

m). Let us denote this set with C. By analogy with the theory of functional dependencies, the logical

implication between constraints can be characterized by two axioms (or inference rules):

transitivity

if Π(i) = Π(j) and Π(j) = Π(l), then Π(i) = Π(l)

composition

if Π(i) = Π(j) and Π(j) 6= Π(l), then Π(i) 6= Π(l)

The deductive closure of a set of constraints is then the complete set of all possible constraints that

can be derived from the given set using the inference rules. We can now modify the second addend in

expression 6 to take into account all the constraints provided as an input, whether explicitly or implicitly.

It suffices to compute the deductive closure of the input constraints, denoted by Ded({ML} ∪ {CL}),

and then use all the constraints in it to compute the numerator and the denominator in expression 6.

The objective function to be maximized becomes:
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Ψc(Π, Π1, ..., Πq, ML, CL) =
1

q

q

∑
r=1

PRI (Π, Πr) +

∑(i,j)∈ML∗ I [Π(i) = Π(j)] +∑(i,j)∈CL∗ I [Π(i) 6= Π(j)]

|Ded({ML} ∪ {CL})|

(7)

where by ML∗ and CL∗ we indicate, respectively, the set of must-link and cannot-link constraints

in Ded({ML} ∪ {CL}).

An optimal constrained consensus partition Π
opt
c is then given by:

Π
opt
c = arg max

Π

Ψc (8)

The dependencies between constraints also naturally leads to the definition of minimal cover,

which will be useful to characterize the behavior of clustering algorithms as the number of constraints

varies. A minimal cover M of C is a set of constraints such that: (i) M is equivalent to C (i.e., it is

possible to generate C from M by means of repeatedly applying the axioms to constraints in M), and

(ii) we cannot remove any constraint from M and still have a set of constraints that are equivalent to C.

A minimal cover of the whole set of constraints associated with n objects partitioned into m

clusters can be easily constructed using the following procedure. For each cluster in the partition, we

need to express two properties. The first is that all objects in the cluster are coclustered (this requires

by transitivity as many must-link constraints as the number of objects in the cluster minus one). The

second is that the objects in the cluster cannot be coclustered with the objects in each of the remaining

clusters (this requires, by composition, as many cannot links as all the possible pairs of m clusters).

This minimal cover has thus a size of n − m + m(m−1)
2 = n + m(m−3)

2 . Different minimal covers of the

same size can be constructed by choosing the objects involved in the n − m must-link and
m(m−1)

2

cannot-link constraints in alternative ways. These are the smallest minimal covers associated with n

objects partitioned into m clusters.

As an illustration, consider a set of five objects {o1, o2, o3, o4, o5} with three input constraints:

Π(1) = Π(2), Π(2) = Π(3), and Π(3) 6= Π(4). We can derive three logically implied constraints:

Π(1) = Π(3), by transitivity, and Π(1) 6= Π(4), Π(2) 6= Π(4), by composition. This situation is

depicted in Table 1, where the symbols 1 and -1 indicate, respectively, must-link and cannot-link

constraints, and the implied constraints are shown in bold. The six constraints are the deductive

closure of the three input constraints. Now we turn to the minimal cover associated with a partition.

There are two possible partitions of the five objects consistent with the given constraints: Π1 =

{(o1, o2, o3), (o4), (o5)}, Π2 = {(o1, o2, o3), (o4, o5)}. According to the constructive procedure described

above, a (smallest) minimal cover for Π1 is given by two must-link constraints associated with its

first cluster (e.g., Π(1) = Π(2), Π(2) = Π(3)) and by one cannot-link constraint for any pair of the

three clusters in the partition; e.g., Π(1) 6= Π(4) for clusters one and two, Π(1) 6= Π(5) for clusters

one and three, and Π(4) 6= Π(5) for clusters two and three. In all, we get 5 constraints. A different

minimal cover for Π1, among many others, is given for instance by {Π(1) = Π(2), Π(1) = Π(3),

Π(2) 6= Π(4), Π(2) 6= Π(5)}. As for Π2, a minimal cover can be produced by taking, in addition to

two must-link constraints associated with its first cluster, one must-link constraint associated with its

second cluster and one cannot-link constraint for the (sole) pair of clusters in the partition. In this case,

we get a minimal cover of size 4. One possible minimal cover for P2 is Π(1) = Π(2), Π(2) = Π(3),

Π(4) = Π(5), Π(1) 6= Π(4).
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Table 1. Example database with explicit and implicit (in bold) constraints.

o1 o2 o3 o4 o5

o1

o2 1
o3 1 1
o4 -1 -1 -1
o5

We would like to highlight that these remarks on the logical implication of constraints are not

limited to the CCC framework: they hold true for any clustering algorithm making use of must-link

and cannot-link constraints. Finding a minimal cover has also a practical importance for designing

well-founded performance evaluation of constrained clustering algorithms, as will be seen later,

because it allows us to experiment with a small set of constraints encoding all the available information,

while at the same time ensuring that there are no implicit redundancies with constraints already seen.

To our knowledge, this aspect has been neglected so far in experimental studies involving constraints.

Finally, it is worth noting that in the experiments described later we ended up generating a (larger)

minimal cover of C in a more realistic manner than the deterministic selection of constraints, namely

by incrementally adding new randomly chosen constraints that are non-redundant to the set of current

constraints.

2.4. A heuristic solution

The input of the algorithm is a set of objects, a set of constrained partitions of the objects, and two

sets of constraints (must-links and cannot-links). Its output is an optimal double-constrained consensus

partition of the objects. Note that, unlike most semi-supervised ensemble clustering algorithms, the

input partitions may have a different number of clusters and CCC does not require the number of

clusters in the consensus partition as an input parameter.

The first step of the algorithm is the computation of the deductive closure of the input constraints,

based on the inference rules introduced in section 2.3. We examine one constraint at a time and

incrementally update the current set of holding constraints. If the new constraint is a must-link

between objects i and j, then we create a new must-link between any object coclustered with i and any

object coclustered with j and, in addition, we create a cannot-link between any object that cannot be

coclustered with i and any object that cannot be coclustered with j. If the new constraint is a cannot-link

between objects i and j, then we create a cannot-link between any object co-clustered with i and any

object coclustered with j. With the deductive closure, it is possible to calculate the value of the objective

function (expression 7) for any set of partitions and constraints. The next step is to find an optimal

partition.

We used a simple, efficient stochastic hill-climbing strategy, as done in [14] and [7] for similar

objective functions not enriched with constraints. It consists of starting with a partition and iteratively

moving a single object to a different (possibly empty) cluster until the objective function (expression

7) associated with the newly created partition and with the given set of constraints increases. This

procedure is very efficient and experimentally generates good approximate solutions. We checked that

using alternative meta-heuristic optimization strategies [15] that are, in principle, more powerful to

avoid local optima, such as simulated and quantum annealing, did not produce better results. These

findings are analogous to those reported in [14] and [7].

In the implementation made for the CCC algorithm, the seed (initial) partition is the input partition

with the highest similarity value with the given partitions, successors are selected randomly, and the

computation is halted after testing all possible nm successors for the current partition. These choices

were made after extensive experimentation with other possible ways of choosing the seed partition,

such as emphasizing its compliance with constraints, as well as with different termination criteria,

such as random-restart hill climbing. The full algorithm is described in Table 2.
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Table 2. The (double-)Constrained Consensus Clustering (CCC) algorithm.

Input:
A set O of n objects
A set SP of q (constrained) partitions {Π1, ..., Πq} o f O
A set ML of must-link constraints
A set CL of cannot-link constraints
Output:
A partition Πc of O

1. Find Ded({ML} ∪ {CL}).
2. Set Πc to the input partition with the highest Ψc similarity with SP.
3. Assign an object in Πc to a different (possibly empty) cluster such that
the newly created partition Π′ has a higher Ψc similarity with SP than Πc.
4. Update Πc to Π′.
5. Iterate between (3) and (4) until no partition with a higher Ψc has been found.
6. Return Πc.

3. Experimenting with UCI datasets

3.1. Design and preparation

The goal of the first experimental study was to evaluate the performance of CC and CCC when

applied to a set of constrained clustering algorithms, in comparison to the performance of the single

constrained clustering algorithms. We use standard algorithms and datasets. For the choice of

algorithms, we relied on the k-means family, partly because it is well understood and commonly used,

and partly because the constrained versions of its members have been made available online. We

selected three semi-supervised k-means algorithms in the conclust R package:2 lcvqe [16], mpckm [12],

and ccls [17]. All of them accept a list of objects, the number of clusters, and two lists of must-link and

cannot-link constraints as input, and they output a partition of the objects using specific clustering

models. The package contains a fourth algorithm, ckmeans [11], but we did not include it in the set of

base algorithms because it could not process the UCI datasets used for the experiments and described

below.

For the datasets, the aim was to experiment with a varying number of objects, attributes,

and classes. However, our choice of data was also determined by the characteristics of the three

base clustering algorithms, which require integer or real attributes and do not support extensive

experimentation with a large number of objects and attributes, due to their inherent computational

complexity. We selected four classical UCI datasets (Glass Identification, Seeds , User Knowledge Modeling,

and Vertebral Column). Each dataset was then enriched with an ordered set of pairs of constraints, as

detailed below. Each pair in the set contains a must-link and a cannot-link constraint, such that they

cannot be deduced from the links in the preceding pairs. The set of constraints was built incrementally:

at each step we added a pair not implied by the current set of constraints, through iterative random

selection of must-links and cannot-links from the dataset. The procedure halts when it is not possible to

find new non-redundant links, eventually producing a cover of the whole set of constraints associated

with the dataset. It is worth noting that implication rules rarely apply at the beginning of this process.

For instance, during the construction of the cover for the User Knowledge Modeling dataset, the first

implied must-link constraint occurred in position 15.

Table 3 shows the main features of each dataset and also reports the number of must-links and

cannot-links in the cover, as well as the total number of must-links and cannot-links generated by the

cover. Note that the sum of the total number of must-links and cannot-links is equal to the total number

of constraints given by all possible pairs of objects in the dataset. For instance, the cover of Glass

2 https://cran.r-project.org/web/packages/conclust/index.htm
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Identification contains 208 must-links and 208 cannot-links (in this case there are as many must-links as

cannot-links, but the number of must-links and cannot-links present in a cover will, in general, not

coincide), from which it is possible to generate 5921 must-links and 16870 cannot-links. Their sum

(i.e., 22791) is equal to the total number of constraints associated with the objects in the dataset (i.e.,
214(214−1)

2 ), while the size of the smallest minimal cover (see Section 2.3) is 214 + 6(6−3)
2 = 223.

Table 3. Features and constraints of the four UCI datasets: Glass Identification (GI), Seeds (S), User

Knowledge Modeking (UKM), Vertebral Column (VC).

Dataset objects attributes classes must-links cannot-links must-links cannot-links

in the cover in the cover (total no.) (total no.)

GI 214 10 6 208 208 5921 16870
S 210 7 3 207 207 7245 14700
UKM 258 5 4 254 282 9460 23693
VC 310 6 3 307 340 17895 30000

In order to assess how good the five clustering algorithms (i.e., the three base algorithms plus

CC and CCC) were at recovering the classes of the UCI datasets, we used the well-known F measure,

thoroughly discussed in [18] together with related cluster validity metrics. The F measure is the

harmonic mean of precision and recall:

F = 2
PxR

P + R
(9)

with

P =
TP

TP + FP
, R =

TP

TP + FN
(10)

where TP, FP, and FN are, respectively, the number of true-positives (i.e., two objects of the same

class assigned to the same cluster), false-positives (i.e., two objects of different classes assigned to the

same cluster), and false-negatives (i.e., two objects of the same class assigned to different clusters).

3.2. Results

We first studied the behavior of the single base clustering algorithms with respect to the number

of constraints. For each dataset, we ran the three algorithms using the set of constraint pairs associated

with the dataset (produced as described in the preceding section). More specifically, growing subsets of

pairs were provided as an input to each algorithm, by taking the pairs in their order until the last pair

in the set. We consider the full spectrum of constraints rather than only a small percentage, as usually

reported in earlier studies, because this results in a better understanding of potential and limitations of

constraints to aid in the clustering process. Clustering effectiveness was measured with the F measure.

The results are shown in Figure 2. There are four charts, one for each dataset. Each point on the x

axis of a chart refers to a set of constraint pairs, from the set with one pair (containing one must-link

and one cannot-link) to the set that is as large as the cover of the specific dataset of the chart, as detailed

in Table 3. The four charts thus have different X-axis scales. It is worth noting that the point with zero

constraints is not depicted because the three clustering algorithms used were not run with an empty

set of constraints.

Figure 2 suggests that, in general, performance increases as more constraints are seen, although

with frequent ample oscillations and with modest overall gains in performance for some combinations

of clustering algorithms and datasets. These findings are consistent with those reported in [19] for a

restricted percentage of constraints. However, rather surprisingly, even applying 100% of constraints,

only one algorithm achieves the maximum performance in all datasets, with the other two algorithms

not performing particularly well on some datasets. The likely explanation is that at least some of these

algorithms disregard the implication issue, thus not taking full advantage of constraints.
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Figure 2. Performance of base clustering algorithms as a function of the number of constraints.

Aside from absolute results, we are interested in the relative performance of the three algorithms.

Figure 2 shows that it is deeply affected by the specific dataset and by the number of constraints used.

In detail, mpckm generally performed best with a very large number of constraints, while with fewer

constraints it achieved the worst results for many data points on Seeds and Vertebral Column due to

its ample oscillations. Also, lcvqe got very good results (without dropping spikes) on Seeds and, for a

more limited range of constraints, on Vertebral Column, but it performed badly for most data points

on User Knowledge Modeling and Glass Identification. Finally, ccls struck a better balance between good

and bad results due to its greater stability, although it got the best results only for some data points on

Glass Identification.

Having seen that there is no single best algorithm across different datasets and sets of constraints,

the question arises as to whether it is possible to mitigate the inherent lack of robustness of individual

algorithms and to improve their average effectiveness through consensus clustering techniques. We

will now address this issue.

For each dataset and for each set of constraint pairs associated with it, we computed the three

(constrained) partitions generated by the clustering algorithms, then used them as an input to both CC

and, together again with constraints, to CCC. In all, we computed 5x(208 + 207 + 282 + 340) = 5, 185

partitions. Figure 3 shows the performance of CC and CCC as a function of the number of constraints.

To make the results across datasets with different constraint sizes comparable, the X axis is the number

of constraints expressed as a percentage.

Our first observation is that CC is between the mean and the maximum of the base algorithms.

It outperformed the base algorithm mean (except for one data point, with 20% of constraints), often

by a clear margin, but it did noticeably worse than the maximum performance of base algorithms no

matter the set of constraints, especially for a large number of them. This is consistent with the findings

reported in [7], because in this case we have, at least for a large number of constraints, two similar

base clusterings (according to PRI) with lower effectiveness (i.e., ccls and lcvqe) and one dissimilar base

clustering with higher effectiveness (i.e., mpckm).
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Figure 3. Mean performance of CC and CCC (averaged over the four datasets) as a function of the

number of constraints, compared to minimum, average, and maximum performance of base algorithms.

Apart from the behavior of CC, the main finding indicated in Figure 3 is the superior performance

of CCC. Not only did it consistently outperform CC (and thus than the mean performance of base

algorithms), with spectacular improvements on almost all data points, but it was also almost on par

with the maximum performance of the base algorithms. In particular, it achieved very similar results to

that of the best base algorithm for most data points, while it was worse for 20% and 50% and (slightly)

better for 40%. We also conducted a paired-t-test to see the statistical significance of the difference of

the means for each of the 40 entries (i.e., 10 constraint sizes by 4 datasets) that had values from the

five algorithms. This analysis confirmed that the difference between CCC and CC was statistically

significant, while the difference between the maximum performance of the base algorithms and CCC

was not statistically significant.

These findings suggest that CCC performs similarly, on average, to that obtained by choosing

the best algorithm for each data point individually (characterized by a specific dataset and number

of constraints), without advance knowledge of the relative performance of the available clustering

algorithms in each experimental setting. CCC was thus an effective way of increasing the robustness

of constrained clustering with respect to the choice of clustering algorithms and datasets, across the

full spectrum of input constraint sizes. It is also important to highlight that the gains achieved by CCC

were obtained from a strong baseline with semi-supervised base algorithms, thus yielding a notable

absolute performance of the overall constrained clustering process.

If we look at the improvement of CCC over CC, we see that the use of constraints made it possible

to overcome one main limitation of CC, namely its inability to properly handle a set of base algorithms

in which there is one very effective algorithm that is dissimilar to the other base algorithms. Consider

the objective function of expression 7 in this situation: as more and more constraints are seen, the

small-valued inter-similarity addend of a candidate partition similar to the spurious base clustering

can be counterbalanced by its large-valued performance addend, thus promoting the partition. This

is yet another advantage of using the constraints in the consensus clustering function, beyond their

utilization in the base algorithms.
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4. Experimenting with counterfeit web shops

4.1. Motivation and approach overview

Counterfeiting occurs in several channels of online sales, including marketplaces and social media.

One widespread illegal activity consists of selling unauthorized goods on specialized fake websites,

luring customers with cheap, inferior versions of brand-name products. To increase visibility, such

websites are often optimized to appear among the results returned by web search engines in response

to a query containing the brand name. Also, for reasons of scale and economy, multiple fake websites

are often managed by a single criminal entity. The research on automating web anti-counterfeiting

efforts has thus a twofold aim: (i) detecting fake web shops, especially among web search results, and

(ii) identifying the affiliate marketing programs behind fake web shops.

The latter problem is conceptually different from the former because it is addressed by clustering

techniques, as opposed to classification techniques, and relies on different types of learning features.

Whereas classification features are common characteristics of illicit web shops that are generally not

shared by legitimate web shops (e.g., large discounts, a lack of contact information, and the use of

untraceable payment methods), clustering features need to model the process by which multiple

counterfeit websites are created and managed by the same entity. The assumption is that web shops

belonging to the same network share similarities in terms of their structure, content, and network,

since making truly unique versions of each site does not scale well. However, web shops under the

same criminal entity may render very differently, especially if they sell entirely different products,

while there may be seemingly similar web shops that are actually unrelated, posing a challenge to

clustering algorithms.

While the ability to automatically distinguish between fake and genuine web shops has been well

studied (e.g., [20], [21]) and continues to be actively investigated ([22], [23], [24]), the subsequent task

of recognizing affiliate programs among the detected fake web shops has been less researched to date,

although it allows enforcement at scale and brings long-lasting results. One notable exception is [25],

where the authors make use of a conventional clustering algorithm together with a few clustering

features, mainly extracted from the HTML and the URLs of the websites. However, they reported

limited success. Single or combined clustering algorithms have also been recently applied to find

networks of malicious websites in several other domains leveraging similar or novel clustering features

(e.g., [26], [27], [28], [29], [30], [31]. Our work expands on previous research by integrating constraints

and multiple clustering algorithms in the process of grouping fraudulent websites into connected

networks and by showing how such constraints can be partly acquired in an automatic manner.

One practical difficulty of clustering fraudulent websites is that there are no available datasets

with associated feature matrices and therefore base partitions must be constructed from raw data.

In addition, the features of interest are heterogeneous and must be treated individually. Assuming

the use of distance-based clustering algorithms (although other choices would be possible, such

as density-based or spectral), this task can be addressed through a three-step pipeline consisting of

feature selection, construction of a similarity matrix, and application of several clustering algorithms (or

multiple variants of the same clustering algorithm, or the same variant with multiple features). For the

last step, we will use both multiple algorithms and multiple features, thus extending the experimental

setting commonly adopted in earlier studies. In this way, we will be able to consider a wider range

of variables when measuring the performance of double-constrained consensus clustering for web

anti-counterfeiting efforts. The specialized double-constrained consensus clustering architecture is

shown in Figure 4. The partitions are generated from each of the p clustering features by q base

clustering algorithms, and they are next merged through the CCC framework. Compared to Figure 1,

we have highlighted the generation of the base partitions and the automatic acquisition of constraints

from the input dataset and external data.
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Figure 4. A specialized double-constrained consensus clustering architecture for web anti-counterfeiting,

including generation of base constrained partitions and automatic acquisition of constraints.

4.2. Experiment design and preparation

In this section, we will describe, in turn, the goals of our experiment, the construction of a ground

truth dataset, the choice of clustering features and corresponding distance matrices, the selection of

base clustering algorithms, and the acquisition of constraints.

4.2.1. Goals

The experiments that we have conducted on grouping illicit web shops had two main objectives.

The first was to gain a deeper understanding of the combined effect of features and algorithms on

the overall clustering effectiveness, because little work has been done in this domain on evaluating

the relative performance of clustering algorithms and features. Most studies use a specific clustering

algorithm with a specific combination of features. By contrast, we have analyzed and compared the

behavior of individual features across a range of algorithms, and, dually, the behavior of individual

algorithms across a range of features. The second goal was to evaluate the effectiveness of plain

consensus clustering and constrained consensus clustering for web anti-counterfeiting, which has not

been explored so far. This requires computing the base clusterings from the raw set of counterfeit web

shops, instead of assuming that the clustering features are known (as in the UCI experiments).

4.2.2. Construction of the ground truth dataset

To the best of our knowledge, there are no available test collections of this kind. The first step was

to generate a suitable set of counterfeit websites that holds potential for revealing affiliate programs.

We relied on RI.SI.CO. [23], a machine learning system that can detect fake web shops in search engine

results generated in response to brand search queries. The procedure was as follows. We first selected

20 famous luxury brands that are known to be targeted by counterfeiters [23]. The corresponding

(‘complicit’) queries, formed by adding ‘replica’ and ‘cheap’ to the brand name, were given as an

input to RI.SI.CO., which submitted them to three web search engines, collected 6,043 search results

(about 100 for each query), and then identified 1,076 suspicious e-commerce webpages in the set of

results. These 1,076 webpages were hosted on 302 distinct websites, We next selected one webpage per

website as a representative, removing the redundant items. We also deleted the webpages that were

no longer accessible (e.g., due to trademark infringement), with 217 items remaining. The automatic

classification performed by RI.SI.CO. is mostly accurate but there may be false positives in the set of

webpages labeled as fake. To increase the reliability of the results, we had a few web anti-counterfeiting

experts manually remove from the remaining webpages those that had been misclassified by RI.SI.CO.,

eventually ending up with a set of truly illegitimate webpages containing 203 items.

The next step was to group the 203 webpages (websites) in homogeneous clusters, which was

performed by the same experts. Their task was facilitated by extracting a set of unique features

associated with each counterfeit network (see Section 4.2.5), which were used to form initial seeds,

prior to manual inspection. Given the limited number of items, this effort required on the whole a

non negligible but reasonable amount of time. Other strategies to complement manual inspection

in the identification of affiliate programs from a larger set of fake web shops have been proposed,
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such as the heuristic pattern-matching of html content in [32], and the formulation of the problem as a

classification task (with labeled data) in [25]. The clusters with one or very few elements were then

removed by our experts, thus resulting in a set of 121 websites partitioned in six clusters.

A few clusters accounting for the majority of items is a confirmation of the presence of affiliate

fake web shops in brand search results, at least for heavily targeted brands and complicit queries.

We checked that affiliate web shops were both mono-brand and multi-brand for a specific type of

product (e.g., shoes) or even for different types of products (e.g., shoes and jackets). As an illustration,

Figure 5 shows the homepages of two fake web shops with top-selling shoe brands (i.e., Louboutin

and Valentino) that were grouped together.

Given the limited lifespan of counterfeit websites, it is essential to get a snapshot of all the

relevant information associated with them when they are still functional. In the final step, a set of

clustering features (see Section 4.2.3) was extracted for each domain. The set of 121 domain names

with associated clustering features and group information form a ground truth dataset termed CAP

(Counterfeit Affiliate Programs).3 We believe that CAP, although small in size, fills a gap in the research

on online anti-counterfeiting.

Figure 5. An example of two fake webshops grouped in a same cluster.

4.2.3. Clustering features and distance matrices

Various clustering features have been proposed for this or related tasks, usually associated with

the structure ([25], [27], [33], [28]), content ([26], [30], [29], [31]), and visual appearance of malicious

websites ([26], [34]), or with information about their registration or network infrastructure ([25],

[26], [31]). We followed two main criteria to select the features for the experiments: that they were

representative of main feature categories, and that they were present and easily acquirable for almost

all web shops in CAP. For instance, we did not use any feature related to website registration because

the WHOIS service available to us covered only a small fraction of the sample. Also, unlike [25], we

did not include network features such as name servers or autonomous system numbers because we

found that they were very weak clustering signals, while the IP address can be regarded as a very

strong signal and used to acquire constraints, as is discussed in Section 4.2.5. The selected raw features,

3 CAP is available at https://www.kaggle.com/datasets/claudiocarpineto/counterfeit-affiliate-programs/code.
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along with the actual clustering features extracted from them and the similarity function associated

with each, are described below.

As a structural feature, we relied on the DOM tree associated with each of the webpages. Following

[33], we encoded the structure of each DOM tree in CAP as a bit string through SimHash fingerprinting,

and then computed the pairwise similarities with the Hamming distance. As a visual feature, we chose

the website header of the web shops. We created five visual clustering features from the homepage

screenshot, corresponding to website headers with a variable number of rows (from 30 to 150, with a

step of 30). The similarity matrix for a selected header was found by first extracting, for each website

in CAP, an image tensor containing the HSV value of the pixels in the region of interest associated with

that header, and by successively computing the Chi-Square distance between the HSV histograms

of any pair of elements in CAP. We finally used two novel clustering features related to the specific

content items of web shops, namely privacy policy and shipping policy. The rationale is that policies

between affiliated fake web shops can be reused to reduce the effort involved in website authorship,

often with only minor adjustments, e.g., the name of the site owner. We did not use other possible, and

probably relevant, policies (e.g., ‘payment methods’ and ‘returns and refunds’) because these pieces of

information were not provided in the majority of the elements in CAP. For both features, we extracted

the textual content of the policies from each website in CAP, and then measured the pairwise similarity

based on the number of shared sentences.

4.2.4. Base clustering algorithms

Moving on to the selection of base clusterings, first of all we would like to note that constrained

clustering algorithms available online that accept a user-defined similarity matrix are very rare. As this

was an essential prerequisite in the domain at hand, we decided to use base clustering algorithms that

cannot take advantage of constraints (unlike former experiments with UCI datasets). On the other hand,

it should be noted that the potentially unfair use of constraints in the consensus clustering framework

(for the purpose of performance comparison to clustering without constraints) is mitigated by the fact

that, as we shall see, in web anti-counterfeiting constraints can be partly acquired automatically.

We relied on the hclust package in the R statistical programming language. It provides a set of

eight distinct agglomerative hierarchical clustering algorithms, with the additional facility that users

can define their own similarity matrix (which is, in fact, a ‘dissimilarity structure’ and requires a a

suitable transformation of the format of the similarity matrix). The algorithms differ in the procedure

used to select which clusters are to be merged at each step, and will in general produce very different

results. The algorithms, described in more detail in the package documentation,4 are: Average, Centroid,

Complete, Mcquitty, Median, Single, Ward.D, and Ward.02. The output of these algorithms in R is a

dendrogram. To find the corresponding partition, we then cut each dendrogram into six disjoint

subtrees (as the number of clusters in CAP).

4.2.5. Automatic acquisition of constraints

We now turn to the acquisition of constraints. While the clustering features introduced above

are only indicative of membership (i.e., two domains sharing a same feature may or may not belong

to an affiliate program), in the web anti-counterfeiting field it is sometimes possible to state that two

different web domains are in fact linked to the same entity by leveraging certain registration and

network information as well as specific content on their websites. The latter type of information can

be seen as high-confidence but infrequent features, as opposed to the frequent yet lower-confidence

features used as proper clustering features in Section 4.2.3. In particular, a must-link constraint between

two domain names can be created with some certainty when one of the following properties is satisfied.

4 https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/hclust
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- Redirection. Some fake websites redirect the visitor from the initial web domain to one or more

additional sites, ultimately resolving the final web page [32]. This is done either by URL redirection,

whereby a fake web page is made available in parallel under more than one URL address, or by

search-redirection, in which fake websites hack high ranking websites to redirect to their store based

on the user’s search query [35]. If two fake websites share the same final domain after redirection, they

almost certainly belong to one affiliate marketing network.

- Same IP address. Multiple websites can be hosted on one web server. If two fake websites have

the same resolved IP address for their domain names, then it is very likely that they were created by

the same entity [36].

- Same WHOIS Registrant data. Although domain name registrant information (name, email,

address) as provided by databases like WHOIS are largely incomplete due to several issues (including

privacy regulations), shared registrant data is a clear indication that two fake websites should be linked

together because it means that they have been registered by the same legal person (juridical or natural).

- Same website contact information. Fake websites try to resembles genuine websites to increase

visitor trust. This includes providing reassuring contact information such as an email address or

telephone number, but also a physical address and links to the web pages of physical stores. If two

fake websites share that data then they probably belong to one affiliate marketing program.

- Same Google analytics ID. Third-party analytics services are used by many ecommerce websites

to better understand their customers. If two fake websites contain the same analytics ID within their

source code, it means that they are reporting to the same analytics account and presumably are part of

one affiliation program. Finding matching Google analytics IDs has been used to group illicit websites

into connected campaigns [37].

We automatically acquired the features necessary to assess the abovementioned properties (when

available) for any of the 121 websites in CAP, and then, through pairwise comparison, we generated 53

must-links, 32 of which were non-redundant. This is a small fraction of the total number of must-links,

but it may be enough to drive the process of constrained consensus clustering and significantly improve

performance improvement, as is shown in the next section.

4.3. Results

We tested 64 combinations of clustering methods and features (8x8), and measured the

performance of each by F measure. For the ease of interpretation, the results are shown in two

distinct charts, rather than a table. Figure 6 reports the performance of each of the eight clustering

methods across the eight clustering features. We also included the performance of a random partition

(independent of feature), for the sake of comparison. The figure clearly suggests that the result of

individual methods may change to a great extent as features vary, and that there is no best method

across all features, consistent with the observation that any clustering method is not inherently better

or worse than another one. More specifically, Complete had the largest performance range (from 0.36 to

0.76), while Centroid, Average, Single, Median, and Mcquitty were relatively more stable with change

of features (except for feature DOM), with Ward.D and Ward.02 exhibiting intermediate behavior.

Looking at the relative performance of clustering methods, Centroid, Average, Single, Median, and

Mcquitty obtained more comparable and higher results than Complete, Ward.02, and Ward.D (in that

order). Finally, any clustering method was markedly better than the random partition for any clustering

feature.

Figure 7 reports the performance of each of the eight clustering features across the eight clustering

methods, including the random partition again. Analogous to the behavior of clustering methods, the

result of individual features changes as clustering methods vary, and there is no best feature across

all methods. Feature Header120 has the largest performance range, from 0.30 a 0.69, with the other

visual features exhibiting similar variations. DOM was also very unstable, while the two features

pertaining to textual content were relatively more stable across clustering methods. In terms of feature

comparison, Privacy and Shipping usually achieved good results. By contrast, visual features were
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in general less effective (although Header90 performed well for some methods), while DOM was

comparatively inferior for some methods but it also achieved the best overall results for three methods.

Figure 6. Performance of clustering algorithms as a function of clustering features.

Figure 7. Performance of clustering features as a function of clustering algorithms.

Figures 6 and 7 show that the performance of all possible combinations of methods and features

varies across a very wide interval, from a minimum of 0.30 to a maximum of 0.85. As there is no way

to know in advance which combination will perform better, it is important to find ways to improve the

average expected behavior for the set of methods and features at hand. Using consensus clustering

and constrained consensus clustering may be an effective strategy, as we will now expound on.

To evaluate CC and CCC, the procedure was as follows. For each clustering feature, we used

the partitions generated by the eight clustering algorithms as base partitions and computed the CC

partition. We then added the constraints and computed the corresponding CCC partitions. We used

a growing set of constraints, from 10 to 80 (with a step of 10). The full set of 80 constraints used in

the experiments was obtained by completing the constraints acquired automatically as described in

Section 4.2.5 with those extracted from CAP using the same method as with UCI datasets. In all, we

generated 8x8x8 = 512 partitions. Finally, we evaluated the performanceof each with F measure.

The results are reported in Table 4. For each clustering feature (listed in the first column), we

first show the minimum, maximum, and average performance value obtained by the eight hclust

algorithms for that feature. In the subsequent columns, we report the performance of CCC using the

eight hclust algorithms (with that feature) as an input to CCC, as the number of constraints grows

from 0 to 80. In particular, CCC with zero constraints is equivalent to using unconstrained consensus

clustering (i.e., CC). We also show, in parenthesis, the percentage of improvement of CCC over the

average performance of the eight base methods (for each single feature). Finally, the last row reports

the mean performance value (averaged over the set of features) of minimum, maximum, average (and
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thus means of means), and CCC (relative to the eight basis algorithms and for any set of constraints,

including unconstrained CC).

The are two main findings. The first is that CC works well, with improved performance over the

average result of basis clustering methods ranging from 8% to 26%, depending on which clustering

feature we consider. The average improvement over all methods and features was 17% (last row, CC

column). Not only are the CC results better than the average results of the basis methods for all the

features, but very often they are also equal or close to those obtained by the the best basis method. In

particular, CC matches the best result for the Header30, Header90, Privacy, and Shipping features, while

it is very slightly inferior to the best method for Header60, Header120, Header150. These observations

confirm the effectiveness of CC for the domain at hand.

The second main finding is that the use of constraints within CC was very effective. Table 4 shows

that the results of CCC were better than the average performance of the eight basis algorithms for any

set of constraints and for any feature, with a peak of 59% improvement over a single feature and 45%

improvement over average performance, reached with 80 constraints. Also, and more importantly,

CCC soon outperformed the best basis method. For instance, with 30 constraints, CCC performed

better than the best basis method seven times out of eight. Comparing CCC to CC, we see that with a

small number of constraints, CCC was slightly worse than CC, while with 30+ constraints on CCC was

systematically better than CC both on average and for individual features. In this range of constraints,

the improvement of CCC over CC grew monotonically, gaining up to 24% with 80 constraints (from 0.7

to 0.87).

Before concluding this section, we would like to note that, besides using clustering algorithms

with individual features, we also tried to combine the single features into one overall feature, by

normalizing the distance matrices and taking their mean, as was done in [38], for instance. The results

were unsatisfying, probably due to the different distribution of the values produced by each feature.

Table 4. Performance of CCC on the eight hclust algorithms for each clustering feature (first column) as

the number of constraints grows from 0 to 80.

feature min max avg 0 (CC) 10 20 30 40 50 60 70 80

Dom 0.47 0.85 0.65 0.70 0.65 0.72 0.72 0.77 0.78 0.79 0.79 0.91
(8%) (0%) (11%) (11%) (18%) (20%) (22%) (22%) (40%)

Header30 0.30 0.69 0.55 0.69 0.68 0.62 0.71 0.72 0.76 0.81 0.82 0.87
(25%) (24%) (13%) (29%) (31%) (38%) (47%) (49%) (58%)

Header60 0.30 0.69 0.54 0.68 0.68 0.68 0.71 0.72 0.75 0.80 0.81 0.86
(26%) (26%) (26%) (31%) (33%) (39%) (48%) (50%) (59%)

Header90 0.30 0.69 0.58 0.69 0.73 0.71 0.70 0.72 0.75 0.81 0.82 0.85
(19%) (26%) (22%) (21%) (24%) (29%) (40%) (41%) (47%)

Header120 0.29 0.69 0.56 0.66 0.67 0.65 0.72 0.70 0.73 0.79 0.81 0.85
(18%) (20%) (16%) (29%) (25%) (30%) (41%) (45%) (52%)

Header150 0.33 0.69 0.57 0.68 0.66 0.62 0.72 0.72 0.75 0.80 0.81 0.86
(19%) (16%) (9%) (26%) (26%) (32%) (40%) (42%) (51%)

Privacy 0.61 0.76 0.72 0.76 0.74 0.76 0.80 0.80 0.80 0.84 0.85 0.87
(6%) (3%) (6%) (11%) (11%) (11%) (17%) (18%) (21%)

Shipping 0.47 0.72 0.65 0.72 0.72 0.73 0.75 0.77 0.76 0.79 0.80 0.87
(11%) (11%) (12%) (15%) (18%) (17%) (22%) (23%) (34%)

avg 0.38 0.72 0.60 0.70 0.69 0.69 0.73 0.74 0.76 0.80 0.81 0.87
(17%) (15%) (15%) (22%) (23%) (27%) (33%) (35%) (45%)
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5. Related work

In this section we review two main related areas, namely the earlier approaches to semi-supervised

ensemble clustering and the application of clustering techniques to detect connected networks behind

fraudulent websites of various types with varied content.

5.1. Semi-supervised ensemble clustering

In their survey on ensemble learning [6] which includes semi-supervised ensemble clustering the

authors point out that existing semi-supervised ensemble clustering algorithms make an unsatisfying

use of constraint information and encourage more research on this issue. We have addressed it from

two perspectives, as described below.

Previous work on semi-supervised ensemble clustering can be described according to the strategy

used for combining constraints and consensus clustering. The most common approach consists of using

constraints prior to ensemble clustering to identify better base partitions. Yu et al. [39] use constraints

to eliminate redundant ensemble members from a larger set generated by the random subspace method

[40], where member selection is driven by an objective function that incorporates constraints and

similarity of attributes in the subspaces. Selection of ensemble members is also pursued in [41] and [42],

building again on the the random subspace method. In [41], constraints are used to transform features

after their random generation, while in [42] constraints are projected onto the subspaces and weighted.

Two other different example of the first combination strategy are [43] and [44]. In [43], constraints

are used within a specific clustering algorithm (i.e., semi-supervised spectral clustering [45]) to build

constrained base partitions before their merging by an unconstrained consensus algorithm. This is

similar to the first step of our double-constrained framework. In [44], confidence scores are assigned to

each ensemble member based on its compliance with constraints, and the weighted partitions are then

merged through a consensus matrix.

The second main strategy is to incorporate domain knowledge directly within the construction

of the clustering ensemble, rather than using it as a pre-processing technique. In [46] and [47],

constraints are used to modify the graph-based consensus function of Chameleon [48], to make more

informed decisions when merging or splitting subgraphs. In [49], constraints are integrated into a

consensus function based on frequent closed itemset mining; similar to CCC, the number of clusters

in the consensus partition does not need to be specified. In [50], constraints are used to compute the

similarity matrix associated with the ant colony clusterings, modifying the pick-up and drop-down

probabilities.

A third, little explored combination strategy is to refine the clustering ensemble by constraints

after its generation. In [51], an initial consensus partition is modified to strictly satisfy the constraints

while changing as little as possible. The cluster similarity is modeled through anchors, (i.e., sets of

data points that are representative of clusters) and the optimization framework is cast as an integer

linear programming problem.

Compared to earlier works, our combination strategy is different because constraints are used

in two distinct phases of the semi-supervised ensemble clustering process, namely for generating

ensemble members and for merging them. To our knowledge, this is novel. While it can be argued that

other existing (single) constrained consensus clustering algorithms may, in principle, be applied to

constraint-enhanced rather than unconstrained base partitions (thus turning into double-constrained

approaches), so far this hypothesis has neither been explicitly considered nor been experimentally

evaluated.

Aside from combination strategy, a few earlier works have focused on the treatment of constraints,

in an attempt to extract additional knowledge from them. Building on [52], Yu et al. [39] generate a

constraint matrix in which supervised information is propagated from labeled to unlabeled pairs of

objects by means of q-nearest neighbor graphs. Another approach consists of propagating pairwise

information to logically implied constraints through transitive closure. The basic idea of the latter

study is the same as in our work, but Yu et al. [53] in their formulation fail to make an explicit link to
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the theory of functional dependencies. In addition, more importantly, we introduce a novel notion of

minimal cover of the set of constraints associated with a partition, providing constructive procedures

and showing its usefulness to evaluate the performance of semi-supervised consensus clustering

algorithms.

Another research issue is based on the observation that not all constraints are equally informative

or useful for a given dataset. Indeed, constraints may even affect the results negatively, as is also

highlighted in our experiments. Yu et al. [42] weigh constraints according to their importance in

each random subspace of features. It would also be possible to weigh constraints according to the

probability of their occurring by chance, analogous to PRI. In this article we have not explored this

approach, leaving it for future research work.

Finally, some works have focused on the use of other types of information sources, beyond

pairwise constraints. A uniform representation of pairwise constraints and label constraints is provided

in [54] These two types of constraints have been used to build hybrid enhanced base partitions through

specific clustering algorithms that use either constraint [43]. Another type of constraint, termed triplet

constraints, is defined in [51], namely ‘object A is closer to object B than to object C’.

5.2. Clustering fraudulent websites

Although counterfeit web shops are perhaps the best-known category of fraudulent websites,

there have been very few works on clustering them. The approach proposed in [25] relies on two types

of features: HTML features, encoded as a bag-of-word in which each word is a tag-attribute-value

triplet, and network features, extracted from the address and name server records of web shops. The

authors then used the k-means algorithm with these features on a large dataset containing 44 affiliate

programs. They reported that the resulting partitions were useful to identifying the largest affiliate

programs but exhibited a high error rate for the other programs, because large programs tended to

swallow up the smaller ones. Their somewhat disappointing results highlighted the difficulty of this

task, although they may have been influenced by the characteristics of the specific clustering algorithm

used, given that k-means has trouble clustering data when the clusters are of varying sizes.

In our paper, we use a more comprehensive set of features and, more importantly, a much

more sophisticated clustering algorithm – semi-supervised ensemble clustering – with the additional

desirable property that the background knowledge in this domain can be acquired automatically. We

believe that this is a step ahead towards the timely and accurate identification of large-scale counterfeit

networks, which is key to effective enforcement efforts yet still largely unsolved. Furthermore, in

contrast to previous work, we study the behavior of algorithms and features when intersected rather

than experimenting with a specific clustering method on a whole fixed set of features, and we also

ensure the results are replicable by sharing the ground truth dataset.

The use of clustering techniques to analyze the content and the infrastructure of fraudulent

websites has been recently investigated to combat other malicious online activities carried out across

a variety of website categories. A few examples are the following: acquisition of cryptocurrency

funds from unsuspecting investors with the false promise of gaining more cryptocurrency or accessing

to a service [30], sale and delivery of fictitious pets through scam websites [29], monetization of

parked domain names through hosting ads [27], distribution of exploit kits through malicious websites

[28], fake escrow services and high-yield investment programs [26], video piracy [31], and phishing

websites [34]. Analogous to anti-counterfeiting, studies in these fields report that a limited number

of entities are running multiple instances of similar scams. All these studies were conducted using a

particular clustering algorithm on a whole (domain-specific) set of features. One partial exception is

[26], where a hierarchical agglomerative clustering algorithm was run on all possible combinations of

individual features. However, this approach requires labelled training data to select the top performing

combination. Previous work on clustering fraudulent websites did not explore the use of consensus

clustering or constrained clustering, let alone of constrained consensus clustering. Since the automatic
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acquisition of constraints seems possible even in the abovementioned domains, the application of CCC

to other types of fraudulent websites is an avenue for future research.

6. Conclusions and future work

We have presented a novel approach to semi-supervised ensemble clustering that makes double

use of pairwise constraints, on the ground that they can be exploited both to generate better base

partitions and to improve the combination of such partitions. The first step is carried out through

constraint-enriched single clustering algorithms, while the merging is achieved by incorporating

compliance with constraints into an objective function that maximizes the PRI similarity between the

consensus partition and the constrained base partitions. The compliance with constraints also takes

into account their logical properties, thus helping optimize their use. The effectiveness of the proposed

framework is suggested by the fact that re-using the constraints in the consensus function produced

much better results than combining the constrained base partitions with the unenhanced consensus

function.

We have also argued that the proposed framework can be used to combat web counterfeiting,

because constraints can be partly acquired in an automatic manner, and have shown its utility for

detecting affiliate marketing programs behind fraudulent e-commerce websites present in search

engine results. From a practical point of view, our research confirms that semi-supervised ensemble

clustering is generally a viable strategy to address the inherent limitations of single unsupervised

clustering algorithms, while offering new insights into the increased robustness that can be achieved

when changing the dataset to be clustered, the clustering technique, and the clustering features.

There are two main directions for future research. Methodologically, we plan to extend the

objective function from constraint counting to constraint weighting, as hinted at in the article. In

addition, we would like to explore different optimization methods to compute the constrained

consensus partition. The second research direction concerns applications. One goal is to apply

CCC to the sector of counterfeit auto and moto parts, which we are currently investigating with the

support of industrial and institutional partners. Also, we plan to experiment with types of fraudulent

websites that support illicit activities other than counterfeiting, as reported in the article. We believe

that our approach has great potential because it goes beyond the paradigm of the single unconstrained

clustering algorithm, adopted so far, and also because the constraints can potentially be acquired

automatically, similar to the web anti-counterfeiting scenario.

Acknowledgments: We would like to thank Andrea Bernardini and Federica Mangiatordi for their help in
assembling the CAP test collection and extracting the DOM and visual features used by the website clustering
algorithms.
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