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Article  

Machine Learning to Predict Apical Lesions: A  
Cross-Sectional and Model Development Study 

Sascha Rudolf Herbst, Vinay Pitchika, Joachim Krois, Aleksander Krasowski  

and Falk Schwendicke * 

Department of Oral Diagnostics, Digital Health and Health Services Research, Charité - Universitätsmedizin 

Berlin, Aßmannshauser Str. 4-6, 14197 Berlin, Germany 

* Correspondence: falk.schwendicke@charite.de; Tel: 0049-30-450662556 

Abstract: (1) Background: We aimed to identify factors associated with the presence of apical lesions (AL) on 

panoramic radiographs and to evaluate the predictive value of the identified factors. (2) Methodology: 

Panoramic radiographs from 1071 patients (age: 11-93 a, mean: 50.6 a ± 19.7 a) with 27532 teeth were included. 

Each radiograph was independently assessed by five experienced dentists for AL. A range of shallow machine 

learning algorithms (logistic regression, k-nearest neighbor, decision tree, random forest, support vector 

machine, adaptive and gradient boosting) were employed to identify factors on patient and tooth level 

associated with AL and to predict AL. (3) Results: AL were detected in 522 patients (48.7%) and 1133 teeth 

(4.1%), whereas males showed a significantly higher prevalence than females (52.5%/44.8%; p<0.05). Logistic 

regression found that an existing root canal treatment was the most important risk factor (adjusted Odds Ratio 

16.89; 95% CI: 13.98-20.41), followed by the tooth type ‘molar’ (2.54; 2.1-3.08) and the restoration with a crown 

(2.1; 1.67-2.63). Associations between factors and AL were stronger and accuracy higher when using less 

complex models like decision tree (F1 score: 0.9 (0.89-0.9)). (4) Conclusions: The presence of AL was higher in 

root-canal treated teeth, those with crowns and molars. More complex machine learning models did not 

outperform less complex ones. 

Keywords: cross-sectional study; epidemiology; panoramic radiography; periapical lesions; 

prevalence  

 

1. Introduction 

Apical lesions (AL) are a radiographic sign of a dental condition, mainly an endodontic infection 

[1,2]. These infections are discussed to have an impact on systemic health [3] and can compromise 

the survival of affected teeth, which is why clinicians should detect and manage such lesions 

appropriately.  

To optimize the diagnostics and treatment planning of AL, a priori knowledge on the baseline 

risk of a tooth or a patient suffering from AL is helpful, allowing to tailor diagnostic efforts and 

therapy. Cross-sectional studies based on different types of radiographs like panoramic radiographs 

(OPG), cone beam tomography (CBCT)) or periapical radiographs (PR) provide valuable information 

about the prevalence and the associated risk factors of AL.  

In general, there is a broad variation in the reported prevalence of AL, from 0.6% in Norway [4] 

to 13.6% in Greece [5] on tooth level. A recent systematic review and meta-analysis revealed a global 

prevalence of 5% on tooth- and 52% on patient-level [1].  

The reasons for this variability are assumingly complex and manifold, for example depending 

on the characteristics, accessibility and education to dental care of each population. For example, 

Tiburcio-Machado et al. 2021 found that patients in developing countries had 2% more AL on tooth 

level compared to patients of developed countries [1]. 

Factors concerning the prevalence of AL were identified by several studies. Lopez-Lopez, et al. 

[6] and Sunay, et al. [7] found that root-filled teeth had a significantly increased risk of AL compared 

with untreated teeth.  
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Also, an association between sex and AL has been controversially discussed in the literature, 

Lopez-Lopez et al. 2012 found a significant more AL in male than in female (42.3% vs. 26.1%, OR = 

2.4; 95% CI (1.5, 3.7)) whereby Bürklein et al. 2020 indicated no statically significant difference (47.6% 

vs. 39.8%, p>0.05).   

Maxillary and more posterior teeth also showed a higher risk of AL compared to mandibular 

and more anterior teeth, respectively [8,9].  

Additionally, Tiburcio-Machado et al. 2021 demonstrated that patients with a systemic health 

condition had a higher prevalence on AL compared to healthy patients (48% (95% CI 43%–53%; I2 = 

98.3% vs. 63%; 95% CI 56%–69%; I2 = 89.7%). 

Most of these prevalence studies used conventional statistics and logistic regression to analyze 

and explain datasets and provide valuable associations between distinct variables within the 

respective dataset/cohort. In recent years, machine learning algorithms (ML) are gaining strongly 

more popularity in the field of oral medicine [10]. With their focus on prediction rather on 

explanation, ML learn intrinsic statistical structures within datasets to eventually perform predictions 

on unseen data.   

So far, little is known about the predictive capacity, and, in consequence, the clinical relevance 

of the reported associations identified by conventional statistics and association analyses. Those 

predictors may help clinicians to identify important risk factors and assist the diagnostic process. 

Additionally, it is crucial whether the found associations were relevant and generalizable for clinical 

practice or if they are constrained to the internal pattern of the restricted dataset. 

Therefore, we first aimed to estimate the prevalence of AL in a cohort of a German university 

hospital and to identify associations with a range of variables on patient and tooth level, respectively, 

using conventional statistics, logistic regression and more sophisticated ML (k-nearest neighbor, 

decision tree, random forest, support vector machine as well as adaptive and gradient boosting). 

Second, we yielded to utilize logistic regression and the aforementioned ML for evaluating the 

predictive capacity of the found associations on the occurrence of AL on panoramic views. Hence we 

tested the following hypotheses:  

1) Different ML show no statistically significant differences with regards to their predictive 

performance. 

2) There is no statistically significant difference between using ML and simply guessing the 

majority class of the dependent variable. 

2. Material and Methods 

2.1. Study design and source of data 

Reporting of this study follows the TRIPOD [11] and STROBE [12] guidelines as well as the 

checklist for artificial intelligence in dental research [13]. Using the retrospective, cross-sectional 

study design, we assessed the patient records and the dental panoramic radiographs 

(Orthopantomogram; OPG) from the patients who presented themselves at the dental clinic of 

Charité University Medicine Berlin between January 1st, 2015 and December 31st, 2018. The device 

used was Sirona Orthophos XG 3 (Dentsply Sirona, York, Pennsylvania, USA) and indications for 

taking the OPG were widely spread and were not relevant for our analyses. A formal sample size 

calculation was not performed, but a general rule of thumb states that the estimated sample size for 

logistic regression is 100 + (50 x number of independent variables in the final model) [14]. Because 

our study had six independent variables, the minimum sample size according to this formula was 

400. All patients from pre-adolescent age with permanent teeth and over with a well conducted OPG 

were included in the study. The exclusion criteria for the study were patients with primary or mixed 

dentition, completely edentulous patients, incomplete arches and OPGs with distorted images or 

poor quality. In case of multiple OPGs were present in a patient, the latest one was used for the 

analyses. This resulted in having 1071 patients each with an OPG for the final analyses. The study 

sample had a mean age of 50.6 years ± 19.7 and ranged between 11 and 93 years.  
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2.2. Image processing and assessment 

All image data were processed in an established online annotation tool [15]. Every anatomical 

structure was marked pixelwise by four experienced dental radiologists. One dental radiologist 

reviewed all annotated OPG and evaluated each diagnosis and decided in cases of disagreement. 

Then, the final vote was the consensus of all annotated pixels of the radiograph. So, each OPG was 

seen by five independent dentists eventually. Every tooth was radiologically classified by the FDI 

schema, restorative (fillings, crowns and root canal treatment) and apical status. Following this, the 

periapical status was evaluated according to the periapical index score [16]. We defined a score of at 

least 3 as an AL in our analysis. Based on this, we were able to calculate the prevalence of AL on 

tooth- and patient-level within subgroups.  

2.3. Variables 

The covariates were divided into patient-level and tooth-level for presentation purposes. The 

patient-related information was gained from the DICOM-dataset, whereas the tooth-related 

information was acquired from the OPG analysis. Patients’ age (continuous variable) and gender 

(male or female) were patient-related variables; whereas the jaw type (upper or lower), type of the 

tooth (incisor, canine, premolar, or molar) and restorative status of the tooth (non-restored, filled, 

crown or root canal treatment) were defined as tooth-related variables. 

2.4. Sources of Bias 

The annotation process of any anatomical and pathological structure was identified as a 

potential source of bias. Due to the high number of examiners and a consecutive majority voting for 

each finding, we reduced the risk of bias in the stage of OPG analysis.  

We obtained all available radiographic data for a multivariate approach to minimize the risk of 

selection bias. But we did not include clinical data, because we just focused on the radiographical 

appearance of AL. Additionally, we were aware of methodological information bias resulting from 

the use of OPG for prevalence analysis.    

2.5. Statistical analysis 

First, the descriptive statistics such as number (percentage) for categorical variables and mean ± 

standard deviation for continuous variables for all covariates and the category-wise prevalence of 

apical lesions were calculated (Table 1). Second, simple bivariate comparisons of AL prevalence 

between the categories of the covariates were performed. Continuous and categorical variables were 

compared using Student’s t-test and Chi-square test, respectively. Third, a logistic regression model 

was constructed by regressing the patient- and tooth-level covariates on the presence (binary: 

present/not present) of AL. The adjusted odds ratios (aOR) and their corresponding 95% confidence 

intervals (95% CI) and p-values were calculated and tabulated (Table 2).  

Fourth, we trained multiple machine learning classifier models such as logistic regression, k-

nearest neighbor, decision tree, random forest, support vector machine and GradientBoost, AdaBoost 

(Table 3) on the full dataset and evaluated the predictive performance during the 10-fold cross 

validation. Due to the imbalanced nature of the outcome variable, oversampling and removal of noisy 

data was performed with Synthetic Minority Over-Sampling Technique (SMOTE) and Edited Nearest 

Neighbor (ENN) for each model. During cross validation, each real sample and their synthetic 

correspondents as well teeth from the same radiograph were assigned to the same split for avoiding 

data leakage. Balanced accuracy, precision, specificity, F1 weighted and ROC-AUC scores and their 

corresponding 95% CI from all machine learning models were presented (Table 4). Fifth, no-

Information rate was calculated and compared with the majority class of the dependent variable AL 

(‘present’/’not present’) via 1-sided binomial hypothesis testing. Finally, mean rank values of the 

covariates based on their relative importance (based on decision tree, GradientBoost and AdaBoost 

models) were presented (Table 5) along with a heat map fashioned distribution of AL lesions along 
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the dentition (Figure 1). All statistical analyses were performed using R version 4.2.2 (R Core Team 

2022, Vienna, Austria); and all machine learning models were performed in Python (Version: 3.10.5).  

 

Figure 1. Heatmap visualizing the distribution of apical lesions. The brighter the color (yellow) 

indicates higher intensity in terms of more overlapping lesions in the, thereby a higher number of 

apical lesions are detected (in total numbers). 

Table 1. Patient- and tooth-level characteristics and the prevalence of apical lesions and their 

corresponding 95% confidence intervals, stratified by the covariates in the study. 

Variable Category 
N (%) /  

mean (SD) 

Apical lesions  

N Prevalence (95% C.I.) 

Patient-level     

All  1071 (100) 522  48.74 (45.75; 51.73) 

Sex Female 518 (48.37) 232 44.79 (40.51; 49.07) 

 Male 552 (51.54) 290 52.54 (48.37; 56.70) 

 Other 1 (0.09) 0 0 (0; 0) 

Age 10-19 years 81 (7.56) 10 12.35 (5.18; 19.51) 

 20-29 years 125 (11.67) 42 33.60 (25.32; 41.88) 

 30-39 years 127 (11.86) 53 41.73 (33.16; 50.31) 

 40-49 years 137 (12.79) 77 56.20 (47.90; 64.51) 

 50-59 years 204 (19.05) 125 61.27 (54.59; 67.96) 

 60-69 years 183 (17.09) 98 53.55 (46.33; 60.78) 

 70-79 years 163 (15.22) 85 52.15 (44.48; 59.82) 

 80-89 years 49 (4.58) 30 61.22 (47.58; 74.87) 

 ≥ 90 years 2 (0.19) 2 100 (100; 100) 

Number of teeth  25.71 ± 6.20   

Number of fillings  7.20 ± 5.07   

Number of crowns  5.35 ± 6.11   

Number of root canal 

treatments 
 2.01 ± 2.30   

Number of apical lesions  1.06 ± 1.56   

Tooth-level     

Tooth status Present 27532 (80.33) 1133 4.12 (3.88; 4.35) 

 Missing 6740 (19.67)   

Jaw Upper 13519 (49.10) 564 4.17 (3.83; 4.51) 

 Lower 14013 (50.90) 569 4.06 (3.73; 4.39) 

Type of tooth Incisor 7948 (28.87) 165 2.08 (1.76; 2.39) 

 Canine 4083 (14.83) 83 2.03 (1.60; 2.47) 
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 Premolar 7394 (26.86) 270 3.65 (3.22; 4.08) 

 Molar 8107 (29.45) 615 7.59 (7.01; 8.16) 

Restorative status Non-restored 14572 (52.93) 209 1.43 (1.24; 1.63) 

 Filling 6409 (23.28) 213 3.32 (2.88; 3.76) 

 Crown 4403 (15.99) 183 4.16 (3.57; 4.75) 

 
Root canal 

treatment 
2148 (7.80) 528 24.58 (22.76; 26.40) 

Descriptive statistics were presented as number and percentages N (%) for categorical variables, and as mean 

(standard deviation (SD)) for continuous variables. 

Table 2. Logistic regression analysis of the associations between the presence of apical lesions and 

covariates. The results are presented as adjusted odds ratios, 95% confidence intervals and their 

corresponding p-values on patient and tooth level, respectively. Statistically significant associations 

are indicated in bold. 

Covariate Category 
Logistic regression 

Adjusted odds ratio (95% C.I.) p-value 

Patient-level    

Sex Female (Ref.) - - 

 Male 1.43 (1.26; 1.62) <0.0001 

Age - 1.01 (1.00; 1.01) 0.0006 

Tooth-level    

Jaw Upper jaw (Ref.) - - 

 Lower jaw 1.21 (1.06; 1.37) <0.005 

Tooth Incisor (Ref.) - - 

 Canine 0.94 (0.72; 1.24) 0.67 

 Premolar 1.18 (0.96; 1.45) 0.12 

 Molar 2.54 (2.10; 3.08) <0.0001 

Restoration status Non-restored (Ref.) - - 

 Filling 1.76 (1.44; 2.16) <0.0001 

 Crown 2.10 (1.67; 2.63) <0.0001 

 Root canal treatment 16.89 (13.98; 20.41) <0.0001 

Table 3. Summary of machine learning models. Oversampling and removing of noisy data performed 

with SMOTE and ENN. 

Classifier 
Accuracy (95% 

CI) 

Precision 

(95% CI) 

Specificity 

(95% CI) 

F1  

(95% CI) 

ROC-AUC 

(95% CI) 

Logistic regression 
0.83 a 

(0.82; 0.83)  

0.83 a 

(0.82; 0.83) 

0.84 a 

(0.83; 0.84) 

0.83 a 

(0.83; 0.84) 

0.79 a 

(0.77; 0.80) 

      

k-nearest neighbor 
0.87 b 

(0.87; 0.87) 

0.87 b 

(0.87; 0.87) 

0.89 b 

(0.88; 0.89) 

0.87 b 

(0.87; 0.87) 

0.70 b 

(0.68; 0.72) 

      

Decision tree 
0.90 c 

(0.89; 0.90) 

0.90 c 

(0.89; 0.90) 

0.92 c 

(0.91; 0.92) 

0.90 c 

(0.89; 0.90) 

0.67 c 

(0.65; 0.68) 

      

Random forest 
0.87 b 

(0.87; 0.87) 

0.87 b 

(0.87; 0.87) 

0.89 b 

(0.88; 0.89) 

0.87 b 

(0.87; 0.87) 

0.71 b 

(0.69; 0.72) 

      

Support vector 

machine 

0.81 d 

(0.80; 0.82) 

0.81 d 

(0.80; 0.82) 

0.82 d 

(0.81; 0.82) 

0.81 d 

(0.80; 0.82) 

0.78 a 

(0.77; 0.80) 

      

GradientBoost 0.88 f 0.88 b 0.89 b 0.88 b 0.80 a 
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(0.87; 0.88) (0.87; 0.88) (0.89; 0.89) (0.87; 0.88) (0.79; 0.82) 

      

AdaBoost 
0.84 g 

(0.83; 0.84) 

0.84 e 

(0.83; 0.84) 

0.85 a 

(0.84; 0.85) 

0.84 a 

(0.83; 0.84) 

0.80 a 

(0.79; 0.82) 
a-g different letters indicate statistically significant differences (p < 0.05). 

Table 4. Mean rank values based on relative importance (decision tree, AdaBoost, GradientBoost). 

Feature Mean rank value 

Age 1.7 

  

Root canal treatment 2.3 

  

Tooth type 2.3 

  

Crowns 4.7 

  

Sex 5.0 

  

  

3. Results 

Our study had a total of 1071 patients (male/female 51.6%/48.4%) which had 27,532 teeth with 

an average of 25.7 ± 6.2 teeth per patient the mean age in our study was 50.6 ± 19.7 years, which 

ranged between 11 and 93 years. 522 of 1071 patients and 1133 of 27,532 teeth showed an AL, resulting 

in a prevalence of 48.7% on the patient level and 4.1% on the tooth level (Table 1).  

3.1. Statistical analysis 

We found that AL was significantly more prevalent in the patients aged ≥ 40 years than in the 

age group of 10 - 39 years; whereby men (52.5%; 95% CI: 48.4-56.7) demonstrated significantly more 

AL than women (44.8%; 40.5-49.1). On a tooth level, there was no significant difference between the 

lower (4.1%; 3.7-4.4) and upper jaw (4.2%; 3.8-4.5). Anterior teeth (incisors: 2.1%; 1.8-2.4) and canines: 

2.0%; 1.6-2.5) had a significantly lower prevalence than premolars (3.7%; 3.2-4.1) and molars (7.6%; 

7.0-8.2). Figure 1 shows in a heat map the distribution of AL among all OPG. We also found that non-

restored teeth (1.4%; 1.2-1.6) were significantly associated with lower AL prevalence than teeth with 

a filling (3.3%; 2.9-3.8), a crown (4.2%; 3.6-4.8) or a root canal treatment (24.6%; 22.8-26.4) (Table 1). 

The logistic regression analysis showed that at the patient level ‘male’ (aOR 1.43; 95% CI: 1.26-

1.62) have higher odds to develop AL than female. In addition, it could be shown that AL occur 

significantly more frequently with increasing years of life (1.01; 1.0-1.01). With respect to the tooth 

level covariates, the lower jaw (1.21; 1.06-1.37), molars (2.54; 2.1-3.08), teeth with fillings (1.76; 1.44-

2.16), crowns (2.10; 1.67-2.63) or a root canal treatment (16.89; 13.98-20.41) had significantly higher 

risk to present AL (Table 2).  

3.2. Machine learning models 

The unbalanced tooth-level dataset (26032 healthy surfaces vs. 1129 apical lesions) was 

resampled using SMOTE and ENN to arrive at a balanced dataset (22347 healthy surfaces vs. 20130 

apical lesions). Decision tree model had the highest accuracy (0,9; 95% CI: 0.89-0.9) followed by 

GradientBoost (0.88; 0.87-0.88), random forest (0.87; 0.87-0.87) and k-nearest neighbor (0.87; 0.87-

0.87); while logistic regression showed an accuracy of 0.83 (0.82-0.83) Compared to other models, the 

decision tree showed a high precision (0.9; 0.89-0.9), specificity (0.92; 0.91-0.92) and F1 score (0.9; 0.89-

0.9); however, with the lowest ROC-AUC value (0.67; 0.65-0.68).  
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Comparing the ROC-AUC score, logistic regression, GradientBoost, support vector machine 

showed statistically significant higher values compared to k-nearest neighbor, decision tree and 

random forest. With regards to the F1 score, support vector machine (0.81; 0.8-0.82) significantly 

underperformed all other models while the decision tree offered the highest F1 score with 0.9 (0.89-

0.9). A summary of all used machine learning classifier models is given in Table 3.  

Notably, none of the model performance parameters were higher than the NIR (95.9%, p>0.05). 

Decision tree, AdaBoost and GradientBoost assigned a score (relative importance) to each input 

covariate, so we calculated mean rank values for the six most important covariates (Table 4). Age was 

the covariate with the highest relative importance with a mean rank value of 1.7, followed by teeth 

restored with root canal treatments (2.3), tooth type (2.3), crowns (4.7), and sex (5.0).  

4. Discussion 

Radiographic examinations are essential for diagnostics and treatment planning. Knowing about 

the prevalence and the associated risk factors of AL is helpful for evaluating the respective 

radiograph and sensitizes the operator to pay attention to certain regions with higher risks for AL. 

Our analysis aimed first to figure out which independent patient- and tooth-related variables had an 

influence on the dependent variable AL and second to predict the occurrence of AL based on the 

identified risk factors.  

4.1. Key results 

In our study, prevalence was similar to other studies [7,17–19]. One recent CBCT study from 

Münster/Germany found a similar prevalence of AL on tooth level as we did [20]. A recent study 

from Finland indicated a lower prevalence (27%) on patient level but confirmed our findings that 1) 

AL is significantly more prevalent in men than in women and 2) teeth with a root canal filling are 

more likely associated with AL than teeth without previous endodontic treatment [21]. In our study, 

root filled teeth showed a 17-times higher probability in having an AL compared to non-treated teeth. 

This general finding is in line with other studies [5,6] indicating a significantly higher prevalence of 

AL for root canal treated teeth.  

The bivariate analysis showed no statistically significant difference between maxilla and 

mandible in prevalence in the prevalence of AL. In the multivariate analysis, it became clear that 

allocation to the upper or lower jaw had a significant influence on the prevalence of AL. These at a 

first glance contradictory results can be explained by the different utilized statistical approaches. 

With multivariate logistic regression analysis, we were able to examine several dependent variables 

for their influence on the outcome. Thus, the significance of the multivariate model exceeds that of 

the bivariate analysis.  

Predicting AL based on the identified risk factors was possible with differences among the 

selected models. Assuming that the relevance of identifying the true positive cases (AL present) is 

more important than the true negative class (AL not present), the F1 score is more informative for 

our analysis than the ROC-AUC; the F1 score is more sensitive to changes in predicting the positive 

class whereas the ROC-AUC balances the true negatives and the true positives [22]. Decision tree 

revealed the highest F1 score and outperformed the more complex models like random forest or 

GradientBoost. This can be explained by the straightforward associations between the identified risk 

factors and the presence of an AL; more complex models are intended to identify complex patterns 

in data structures but are more likely to fail in situations with non-complex patterns. Consequently, 

the identified risk factors in the logistic regression modelling offered some predictive value. When it 

comes to prediction accuracy, no model outperformed simply guessing the majority/negative class 

(“AL not present”). One reason is the high prevalence of healthy units (95.9%) on tooth level. Overall, 

we had to reject the first hypothesis due to statistically significant differences in the performance of 

the models (F1 score/ROC-AUC) and to accept the second hypothesis, because all models did not 

outperform simply guessing the majority class.  

There is a difference with regards to the importance ranking of the risk factors: Multivariate 

analysis with logistic regression found that the presence of a root canal filling was the most important 
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risk factor while mean rank values indicated that the patients age was most relevant. This difference 

might be explained by the different types of measurement scales across the models. During predictive 

modeling, the age was categorized into nine defined age groups (Table 1) and in the multivariate 

analysis, age was implemented as a continuous variable. As a consequence, belonging a distinct “age 

group” seems to more significant than the gradual increase of years. 

4.2. Limitations and generalizability 

The use of OPG for screening AL leads to information-bias, because it is known that OPG are 

less accurate in detecting AL than periapical radiographs (PR) or cone beam tomography (CBCT). 

One study found a sensitivity of 0.28 and 0.58 for OPG and PR respectively, considering CBCT as the 

reference tool [23]. Also, despite of technical improvements, especially front teeth are difficult to 

assess in OPG, due to superimposition of anatomical structures like the cervical spine and the mental 

fossa area [24]. Within these limitations, OPG is still a good method in detecting AL [25]: It delivers 

data of the whole dentition of a patient, whereby PR and CBCT are just focusing a particular region 

of interest, and only a small group of patients obtain PR of all teeth, e.g., for periodontal treatment 

planning and we would generate an indication bias. Also, the indication for a CBCT of both jaws is 

rare, whereas the indication for OPG is more commonly given. Hence, the group of patients obtaining 

a OPG is more representable than that for CBCT and full-mouth PR status. For this reason, OPG are 

the most common method in cross-sectional studies [26]. 

In general, there is still a problem regarding the manual labeling of specialists as the ground 

truth for ML training [27]. For evaluating AL, histological data were still the gold standard but not 

available in large, so we tried to reduce the obsever bias through a gradual majority process for 

labelling the AL. Every entry of each examiner was checked twice by an experienced supervisor and 

in case of disagreement, the experienced supervisor decided. One major advantage of this procedure 

is, that every annotated structure and decision of PAI was transparent and saved.  

The generalizability of this study is limited due to the study design. We analyzed a local cohort 

from Berlin, Germany. However, based on such retrospective prevalence studies, only prevalence 

estimates for the entire population can be made. As mentioned before, a very recent study from 

another local cohort in Germany found similar prevalence values to ours [20], so the true prevalence 

could be in the range of our data. In general, our findings concerning the risk factors were comparable 

to other international studies, while they differ in the magnitude of the associations . 

5. Conclusions 

On tooth level, posterior and restored teeth and those root canal fillings showed the highest 

prevalence of AL. Predicting the occurrence of AL was possible, even though no model performed 

better than guessing “AL not present”. Simpler ML models outperformed more sophisticated 

algorithms with regards to the F1 score.  
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