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Abstract: Generative artificial intelligence (GenAI) has been developing with many incredible 
achievements like ChatGPT and Bard. Deep generative model (DGM) is a branch of GenAI, which 
is preeminent in generating raster data such as image and sound due to strong points of deep neural 
network (DNN) in inference and recognition. The built-in inference mechanism of DNN, which 
simulates and aims to synaptic plasticity of human neuron network, fosters generation ability of 
DGM which produces surprised results with support of statistical flexibility. Two popular 
approaches in DGM are Variational Autoencoders (VAE) and Generative Adversarial Network 
(GAN). Both VAE and GAN have their own strong points although they share and imply underline 
theory of statistics as well as incredible complex via hidden layers of DNN when DNN becomes 
effective encoding/decoding functions without concrete specifications. In this research, VAE and 
GAN is unified into a consistent and consolidated model called Adversarial Variational 
Autoencoders (AVA) in which VAE and GAN complement each other, for instance, VAE is a good 
data generator by encoding data via excellent ideology of Kullback-Leibler divergence and GAN is 
a significantly important method to assess reliability of data which is realistic or fake. In other 
words, AVA aims to improve accuracy of generative models, besides AVA extends function of 
simple generative models. In methodology this research focuses on combination of applied 
mathematical concepts and skillful techniques of computer programming in order to implement 
and solve complicated problems as simply as possible. 

Keywords: deep generative model (DGM); Variational Autoencoders (VAE); Generative 
Adversarial Network (GAN) 

 

1. Introduction 

Variational Autoencoders (VAE) and Generative Adversarial Network (GAN) are two popular 
approaches for developing deep generative model with support of deep neural network (DNN) 
where high capacity of DNN contributes significantly to successes of GAN and VAE. There are some 
researches which combined VAE and GAN. Larsen et al. (Larsen, Sønderby, Larochelle, & Winther, 
2016) proposed a traditional combination of VAE and GAN by considering decoder of VAE as 
generator of GAN (Larsen, Sønderby, Larochelle, & Winther, 2016, p. 1558). They constructed target 
optimization function as sum of likelihood function of VAE and target function of GAN (Larsen, 
Sønderby, Larochelle, & Winther, 2016, p. 1560). This research is similar to their research (Larsen, 
Sønderby, Larochelle, & Winther, 2016, p. 1561) except that the construction optimization functions 
in two researches are slightly different where the one in this research does not include target function 
of GAN according to traditional approach of GAN. However uncorrelated variables will be removed 
after gradients are determined. Moreover, because encoded data z is basically randomized in this 
research, it does not make a new random z’ to be included into target function of GAN. This research 
also mentions skillful techniques of derivatives in backpropagation algorithm. 

Mescheder et al. (Mescheder, Nowozin, & Geiger, 2017) transformed gain function of VAE 
including Kullback-Leibler divergence into gain function of GAN via a so-called real-valued 
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discrimination network (Mescheder, Nowozin, & Geiger, 2017, p. 2394) related to Nash equilibrium 
equation and sigmoid function and then, they trained the transformed VAE by stochastic gradient 
descent method. Actually, they estimated three parameters (Mescheder, Nowozin, & Geiger, 2017, p. 
2395) like this research, but their method focused on mathematical transformation while this research 
focuses on skillful techniques in implementation. In other words, Mescheder et al. (Mescheder, 
Nowozin, & Geiger, 2017) tried to fuse VAE into GAN whereas this research combines them by 
mutual and balancing way but both of us try to make unification of VAE and GAN. Rosca et al. 
(Rosca, Lakshminarayanan, Warde-Farley, & Mohamed, 2017, p. 4) used a density ratio trick to 
convert Kullback-Leibler divergence of VAE into the mathematical form log(x / (1–x)) which is similar 
to GAN target function log(x) + log(1–x). Actually, they made a fusion of VAE and GAN like 
Mescheder et al. did. The essence of their methods is based on convergence of Nash equilibrium 
equation. 

Ahmad et al. (Ahmad, Sun, You, Palade, & Mao, 2022) combined VAE and GAN separately as 
featured experimental research. Firstly, they trained VAE and swapped encoder-decoder network to 
decoder-encoder network so that output of VAE becomes some useful information which in turn 
becomes input of GAN instead that GAN uses random information as input as usual (Ahmad, Sun, 
You, Palade, & Mao, 2022, p. 6). Miolane et al. (Miolane, Poitevin, & Li, 2020) combined VAE and 
GAN by summing target functions of VAE and GAN weighted with regular hyperparameters 
(Miolane, Poitevin, & Li, 2020, p. 974). Later, they first trained VAE and then sent output of VAE to 
input of GAN (Miolane, Poitevin, & Li, 2020, p. 975). 

In general, both VAE and GAN have their own strong points, for instance, they take advantages 
of solid statistical theory as well as incredible DNN but they are also stuck in drawbacks, for instance, 
VAE does not have mechanism to distinguish fake data from realistic data and GAN does not concern 
explicitly probabilistic distribution of encoded data. It is better to bring up their strong points and 
alleviate their weak points. Therefore, this research focuses on incorporating GAN into VAE by 
skillful techniques related to both stochastic gradient descent and software engineering architecture, 
which neither focuses on purely mathematical fusion nor focuses on experimental tasks. In practice, 
many complex mathematical problems can be solved effectively by some skillful techniques of 
computer programming. Moreover, the proposed model called Adversarial Variational 
Autoencoders (AVA) aims to extend functions of VAE and GAN as a general architecture for 
generative model. For instance, AVA will provide encoding function that GAN does not concern and 
provide discrimination function that VAE needs to distinguish fake data from realistic data. The 
corporation of VAE and GAN in AVA is strengthened by regular and balance mechanism, which 
obviously, is natural and like fusion mechanism. In some cases, it is better than fusion mechanism 
because both built-in VAE and GAN inside AVA can uphold their own strong features. Therefore, 
experiment in this research is not too serious with large data when AVA and VAE are only compared 
within small dataset, which aims to prove the proposed method mentioned in the next section. 

2. Methodology 

This research proposes a method as well as a generative model which incorporates Generative 
Adversarial Network (GAN) into Variational Autoencoders (VAE) for extending and improving 
deep generative model because GAN does not concern how to code original data and VAE lacks 
mechanisms to assess quality of generated data with note that data coding is necessary to some 
essential applications such as image impression and recognition whereas auditing quality can 
improve accuracy of generated data. As a convention, let vector variable x = (x1, x2,…, xm)T and vector 
variable z = (z1, z2,…, zn)T be original data and encoded data whose dimensions are m and n (m > n), 
respectively. A generative model is represented by a function f(x | Θ) = z, f(x | Θ) ≈ z, or f(x | Θ) → z 
where f(x | Θ) is implemented by a deep neural network (DNN) whose weights are Θ, which converts 
the original data x to the encoded data z and is called encoder in VAE. A decoder in VAE which 
converts expectedly the encoded data z back to the original data x is represented by a function g(z | 
Φ) = x’ where g(z | Φ) is also implemented by a DNN whose weights are Φ with expectation that the 
decoded data x’ is approximated to the original data x as x’ ≈ x. The essence of VAE developed by 
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Kingma and Welling (Kingma & Welling, 2022) is to minimize the following loss function for 
estimating the encoded parameter Θ and the decoded parameter Φ. 𝑙VAEሺΘ,Φሻ = 1

2 ฮ𝒙 − 𝒙′ฮ2 + KL൫𝜇ሺ𝒙ሻ,Σሺ𝒙ሻห𝑁ሺ𝟎, 𝐼ሻ൯ (1) 

Such that: Θ∗ = argmin஍ KL൫𝜇ሺ𝒙ሻ, Σሺ𝒙ሻห𝑁ሺ0, 𝐼ሻ൯ Φ∗ = argmin஀ 12 ‖𝒙 − 𝒙ᇱ‖ଶ 

Note that ||x – x’|| is Euclidean distance between x and x’ whereas KL(μ(x), Σ(x) | N(0, I)) is 
Kullback-Leibler divergence between Gaussian distribution of x whose mean vector and covariance 
matrix are μ(x) and Σ(x) and standard Gaussian distribution N(0, I) whose mean vector and 
covariance matrix are 0 and identity matrix I. 

GAN developed by Goodfellow et al. (Goodfellow, et al., 2014) does not concern the encoder f(x 
| Θ) = z but it focuses on optimizing the decoder g(z | Φ) = x’ by introducing a so-called discriminator 
which is a discrimination function d(x | Ψ): x → [0, 1] from concerned data x or x’ to range [0, 1] in 
which d(x | Ψ) can distinguish fake data from real data. In other words, the larger result the 
discriminator d(x’ | Ψ) derives, the more realistic the generated data x’ is. Obviously, d(x | Ψ) is 
implemented by a DNN whose weights are Ψ with note that this DNN has only one output neuron 
denoted d0. The essence of GAN is to optimize mutually the following target function for estimating 
the decoder parameter Φ and the discriminator parameter Ψ (Goodfellow, et al., 2014, p. 3). 𝑏GANሺΦ,Ψሻ = log൫𝑑ሺ𝒙|Ψሻ൯ + log൫1 − 𝑑ሺ𝑔ሺ𝒛|Φሻ|Ψሻ൯ (2) 

Such that Φ and Ψ are optimized mutually as follows: Φ∗ = argmin஍ 𝑏ୋ୅୒ሺΦ, Ψ∗ሻ 

Ψ∗ = argmaxஏ 𝑏ୋ୅୒ሺΦ∗, Ψሻ 

The proposed generative model in this research is called Adversarial Variational Autoencoders 
(AVA) because it combines VAE and GAN by fusing mechanism in which loss function and balance 
function are optimized parallelly. The AVA loss function implies loss information in encoder f(x | Θ), 
decoder g(z | Φ), discriminator d(x | Ψ) as follows: 𝑙AVAሺΘ,Φ,Ψሻ = 1

2 ฮ𝒙 − 𝒙′ฮ2 + KL൫𝜇ሺ𝒙ሻ,Σሺ𝒙ሻห𝑁ሺ𝟎, 𝐼ሻ൯ + log൫1 − 𝑑ሺ𝑔ሺ𝒛|Φሻ|Ψሻ൯ (3) 

The balance function of AVA is to supervise the decoding mechanism, which is the GAN target 
function as follows: 𝑏AVAሺΦ,Ψሻ = 𝑏GANሺΦ,Ψሻ = log൫𝑑ሺ𝒙|Ψሻ൯ + log൫1 − 𝑑ሺ𝑔ሺ𝒛|Φሻ|Ψሻ൯ (4) 

The key point of AVA is that the discriminator function occurs in both loss function and balance 
function via the expression log(1 – d(g(z | Φ) | Ψ)), which means that the capacity of how to 
distinguish fake data from realistic data by discriminator function affects the decoder DNN. As a 
result, the three parameters Θ, Φ, and Ψ are optimized mutually according to both loss function and 
balance function as follows: Θ∗ = argmin஀ 𝑙୅୚୅ሺΘ, Φ∗, Ψ∗ሻ Φ∗ = argmin஍ 𝑙୅୚୅ሺΘ∗, Φ, Ψ∗ሻ Ψ∗ = argmaxஏ 𝑏୅୚୅ሺΦ∗, Ψሻ 

Because the encoder parameter Θ is independent from both the decoder parameter Φ and the 
discriminator parameter Ψ, its estimate is specified as follows: 
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Θ∗ = argmin஍ ቀKL൫𝜇ሺ𝒙ሻ, Σሺ𝒙ሻห𝑁ሺ𝟎, 𝐼ሻ൯ቁ 

Because the decoder parameter Φ is independent from the encoder parameter Θ, its estimate is 
specified as follows: Φ∗ = argmin஀ ൬12 ‖𝒙 − 𝒙ᇱ‖ଶ + log൫1 − 𝑑ሺ𝑔ሺ𝒛|Φ∗ሻ|Ψ∗ሻ൯൰ 

Note that the Euclidean distance ||x – x’|| is only dependent on Θ. Because the discriminator tries 
to increase credible degree of realistic data and decrease credible degree of fake data, its parameter 
Ψ has following estimate: Ψ∗ = argmaxஏ ൫log൫𝑑ሺ𝒙|Ψሻ൯ + log൫1 − 𝑑ሺ𝑔ሺ𝒛|Φ∗ሻ|Ψሻ൯൯ 

By applying stochastic gradient descent (SDG) algorithm into backpropagation algorithm, these 
estimates are determined based on gradients of loss function and balance function as follows: Θ = Θ − 𝛾∇஀ ቀKL൫𝜇ሺ𝒙ሻ, Σሺ𝒙ሻห𝑁ሺ𝟎, 𝐼ሻ൯ቁ Φ = Φ − 𝛾∇஍ ൬12 ‖𝒙 − 𝒙ᇱ‖ଶ + log൫1 − 𝑑ሺ𝑔ሺ𝒛|Φ∗ሻ|Ψ∗ሻ൯൰ Ψ = Ψ + 𝛾∇ஏ൫log൫𝑑ሺ𝒙|Ψሻ൯ + log൫1 − 𝑑ሺ𝑔ሺ𝒛|Φ∗ሻ|Ψሻ൯൯ 

Where γ (0 < γ ≤ 1) is learning rate. Let af(.), ag(.), and ad(.) be activation functions of encoder DNN, 
decoder DNN, and discriminator DNN, respectively and so, let af’(.), ag’(.), and ad’(.) be derivatives of 
these activation functions, respectively. The encoder gradient regarding Θ is (Kingma & Welling, 
2022, p. 5), (Doersch, 2016, p. 9), (Nguyen, 2015, p. 43): ∇஀ ቀKL൫𝜇ሺ𝒙ሻ, Σሺ𝒙ሻห𝑁ሺ𝟎, 𝐼ሻ൯ቁ = ൬𝜇ሺ𝒙ሻ − 12 ൫Σሺ𝒙ሻ൯ିଵ + 12 𝐼൰ 𝑎௙ᇱ ሺ𝒙ሻ 

The decoder gradient regarding Φ is: ∇஍ ൬12 ‖𝒙 − 𝒙ᇱ‖ଶ + log൫1 − 𝑑ሺ𝑔ሺ𝒛|Φ∗ሻ|Ψ∗ሻ൯൰ = − ቆ‖𝒙 − 𝒙ᇱ‖ + 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψ∗ሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψ∗ሻ ቇ 𝑎௚ᇱ ሺ𝒙ᇱሻ 

Where, 𝑔ሺ𝒛|Φ∗ሻ = 𝒙ᇱ 
The discriminator gradient regarding Ψ is: ∇ஏ൫log൫𝑑ሺ𝒙|Ψሻ൯ + log൫1 − 𝑑ሺ𝒙ᇱ|Ψሻ൯൯ = 𝑎ௗᇱ ൫𝑑ሺ𝒙|Ψሻ൯𝑑ሺ𝒙|Ψሻ − 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψሻ  

As a result, SGD algorithm incorporated into backpropagation algorithm for solving AVA is totally 
determined as follows: Θ = Θ − 𝛾 ൬𝜇ሺ𝒙ሻ − 12 ൫Σሺ𝒙ሻ൯ିଵ + 12 𝐼൰ 𝑎௙ᇱ ሺ𝒙ሻ (5) 

Φሾ𝑖ሿ = Φሾ𝑖ሿ + 𝛾 ቌሺ𝒙ሾ𝑖ሿ − 𝒙ᇱሾ𝑖ሿሻ + 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψ∗ሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψ∗ሻ ቍ 𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ (6) 

Ψ = Ψ + 𝛾 ቆ𝑎ௗᇱ ൫𝑑ሺ𝒙|Ψሻ൯𝑑ሺ𝒙|Ψሻ − 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψሻ ቇ (7) 

Where notation [i] denotes the ith element in vector. Please pay attention to the derivatives af’(.), ag’(.), 
and ad’(.) because they are helpful techniques to consolidate AVA. The reason of two different 
occurrences of derivatives ad’(d(x’ | Ψ*)) and ag’(x’) in decoder gradient regarding Φ is nontrivial 
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because the unique output neuron of discriminator DNN is considered as effect of the output layer 
of all output neurons in decoder DNN. 

 

Figure 1. Causality effect relationship between decoder DNN and discriminator DNN. 

When weights are assumed to be 1, error of causal decoder neuron is error of discriminator 
neuron multiplied with derivative at the decoder neuron and moreover, the error of discriminator 
neuron, in turn, is product of its minus bias –d’(.) and its derivative a’d(.). errorሺ𝒙ᇱሾ𝑖ሿሻ = 1 ∗ errorሺ𝑑଴ሻ𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ errorሺ𝑑଴ሻ = −𝑑ᇱሺ𝑑଴ሻ𝑎ௗᇱ ሺ𝑑଴ሻ 

It is necessary to describe AVA architecture because skillful techniques cannot be applied into AVA 
without clear and solid architecture. The key point to incorporate GAN into VAE is that the error ௔೏ᇲ ൬ௗቀ𝒙ᇱቚΨ∗ቁ൰ଵିௗቀ𝒙ᇱቚΨ∗ቁ  of generated data is included in both decoder and discriminator, besides decoded data 

x’ which is output of decoder DNN becomes input of discriminator DNN. Φሾ𝑖ሿ = Φሾ𝑖ሿ + 𝛾 ቌሺ𝒙ሾ𝑖ሿ − 𝒙ᇱሾ𝑖ሿሻ + 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψ∗ሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψ∗ሻ ቍ 𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ 
Ψ = Ψ + 𝛾 ቆ𝑎ௗᇱ ൫𝑑ሺ𝒙|Ψሻ൯𝑑ሺ𝒙|Ψሻ − 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψሻ ቇ 

Figure 2 shows the AVA architecture. 

 
Figure 2. AVA architecture. 

AVA architecture follows an important aspect of VAE where the encoder f(x | Θ) does not 
produce directly decoded data z as f(x | Θ) = z. It actually produces mean vector μ(x) and covariance 
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matrix Σ(x) belonging to x instead. In this research, μ(x) and Σ(x) are flattened into an array of neurons 
output layer of the encoder f(x | Θ). 𝑓ሺ𝒙|Θሻ = ൬𝜇ሺ𝒙ሻΣሺ𝒙ሻ൰ → 𝒛 

The actual decoded data z is calculated randomly from μ(x) and Σ(x) along with a random vector r. 𝒛 = 𝜇ሺ𝒙ሻ + ൫Σሺ𝒙ሻ൯ଵଶ𝒓 (8) 

Where r follows standard Gaussian distribution with mean vector 0 and identity covariance matrix I 
and each element of (Σ(x))1/2 is squared root of the corresponding element of Σ(x). This is an excellent 
invention in traditional literature which made the calculation of Kullback-Leibler divergence much 
easier without loss of information. 

The balance function bAVA(Φ, Ψ) aims to balance decoding task and discrimination task without 
partiality but it can lean forward decoding task for improving accuracy of decoder by including the 
error of original data x and decoded data x’ into balance function as follows: 𝑏୅୚୅ሺΦ, Ψሻ = 𝑏ୋ୅୒ሺΦ, Ψሻ − 12 ‖𝒙 − 𝒙ᇱ‖ଶ

= log൫𝑑ሺ𝒙|Ψሻ൯ + log൫1 − 𝑑ሺ𝑔ሺ𝒛|Φሻ|Ψሻ൯ − 12 ‖𝒙 − 𝒙ᇱ‖ଶ 
(9) 

As a result, the estimate of discriminator parameter Ψ is: Ψ = Ψ + 𝛾 ൭𝑎ௗᇱ ൫𝑑ሺ𝒙|Ψሻ൯𝑑ሺ𝒙|Ψሻ − 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψሻ + 𝑎ௗᇱ ሺ𝑑଴ሻ ෍ሺ𝒙ሾ𝑖ሿ − 𝒙ᇱሾ𝑖ሿሻ𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ௜ ൱ (10) 

In a reverse causality effect relationship in which the unique output neuron of discriminator DNN is 
cause of all output neurons of decoder DNN as shown in Figure 3. 

 

Figure 3. Reverse causality effect relationship between discriminator DNN and decoder DNN. 

Suppose bias of each decoder output neuron is bias[i], error of the discriminator output neuron 
error[i] is sum of weighted biases which is in turn multiplied with derivative at the discriminator 
output neuron with note that every weighted bias is also multiplied with derivative at every decoder 
output neuron. Suppose all weights are 1, we have: errorሾ𝑖ሿ = 𝑎ௗᇱ ሺ𝑑଴ሻ ෍ biasሾ𝑖ሿ𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ௜  biasሾ𝑖ሿ = 𝒙ሾ𝑖ሿ − 𝒙ᇱሾ𝑖ሿ 
Because the balance function bAVA(Φ, Ψ) aims to improve the decoder g(z | Φ), it is possible to improve 
the encoder f(x | Θ) by similar technique with note that output of encoder is mean vector μ(x) and 
covariance matrix Σ(x). In this research, another balance function BAVA(Θ, Λ) is proposed to assess 
reliability of the mean vector μ(x) because μ(x) is most important to randomize z and μ(x) is linear. 
Let D(μ(x) | Λ) be discrimination function for encoder DNN from μ(x) to range [0, 1] in which D(μ(x) 
| Λ) can distinguish fake mean μ(x) from real mean μ(x’). Obviously, D(μ(x) | Λ) is implemented by 
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a so-called encoding discriminator DNN whose weights are Λ with note that this DNN has only one 
output neuron denoted D0. The balance function BAVA(Θ, Λ) is specified as follows: 𝐵୅୚୅ሺΘ, Λሻ = log൫𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ൯ + log൫1 − 𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ൯ (11) 

Note, 𝑔ሺ𝒛|Φሻ = 𝒙ᇱ 
AVA loss function is modified with regard to the balance function BAVA(Θ, Λ) as follows: 𝑙୅୚୅ሺΘ, Φ, Ψ, Λሻ= 12 ‖𝒙 − 𝒙ᇱ‖ଶ + KL൫𝜇ሺ𝒙ሻ, Σሺ𝒙ሻห𝑁ሺ𝟎, 𝐼ሻ൯ + log൫1 − 𝑑ሺ𝒙ᇱ|Ψሻ൯+ log൫1 − 𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ൯ 

(12) 

By similar way of applying SGD algorithm, it is easy to estimate the encoding discriminator 
parameter Λ as follows: Λ = Λ + 𝛾 ቆ𝑎஽ᇱ ൫𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ൯𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ − 𝑎஽ᇱ ൫𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ൯1 − 𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ ቇ (13) 

Where aD(.) and a’D(.) are activation function of the discriminator D(μ(x) | Λ) and its derivative, 
respectively. 

The encoder parameter Θ is consisted of two separated parts Θμ and ΘΣ because the output of 
encoder f(x | Θ) is consisted of mean vector μ(x) and covariance matrix Σ(x). Θ = ൬ΘఓΘஊ൰ 

Where, Θఓ = Θఓ − 𝛾𝜇ሺ𝒙ሻ𝑎௙ᇱ ሺ𝒙ሻ Θஊ = Θஊ − 𝛾 ൬− 12 ൫Σሺ𝒙ሻ൯ିଵ + 12 𝐼൰ 𝑎௙ᇱ ሺ𝒙ሻ 

When the balance function BAVA(Θ, Λ) is included in AVA loss function, the part Θμ is recalculated 
whereas the part ΘΣ is kept intact as follows: Θఓ = Θఓ − 𝛾 ቆ𝜇ሺ𝒙ሻ − 𝑎஽ᇱ ൫𝐷ሺ𝒙ᇱ|Λሻ൯1 − 𝐷ሺ𝒙ᇱ|Λሻ ቇ 𝑎௙ᇱ ሺ𝒙ሻ (14) 

Figure 4 shows AVA architecture with support of assessing encoder. 

 

Figure 4. AVA architecture with support of encoder assessing. 
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Similarly, the balance function BAVA(Φ, Λ) can lean forward encoding task for improving 
accuracy of encoder f(x | Θ) by concerning the error of original mean μ(x) and decoded data mean 
μ(x’) as follows: 𝐵୅୚୅ሺΦ, Λሻ = log൫𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ൯ + log൫1 − 𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ൯ − 12 ‖𝜇ሺ𝒙ሻ − 𝜇ሺ𝒙ᇱሻ‖ଶ (15) 

Without repeating explanations, the estimate of discriminator parameter Λ is modified as follows: Λ = Λ + 𝛾 ൭𝑎஽ᇱ ൫𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ൯𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ − 𝑎஽ᇱ ൫𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ൯1 − 𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ
+ 𝑎஽ᇱ ሺ𝐷଴ሻ ෍ሺ𝜇ሺ𝒙ሻሾ𝑖ሿ − 𝜇ሺ𝒙ᇱሻሾ𝑖ሿሻ𝑎௚ᇱ ሺ𝜇ሺ𝒙ᇱሻሾ𝑖ሿሻ௜ ൱ 

(16) 

These variants of AVA are summarized, and their tests are described in the next section. 

3. Experimental Results and Discussions 

In this experiment, AVA is tested with VAE and GAN but there are 5 versions of AVA such as 
AVA1, AVA2, AVA3, AVA4, and AVA5. Recall that AVA1 is normal version of AVA whose 
parameters are listed as follows: Θ = Θ − 𝛾 ൬𝜇ሺ𝒙ሻ − 12 ൫Σሺ𝒙ሻ൯ିଵ + 12 𝐼൰ 𝑎௙ᇱ ሺ𝒙ሻ 

Φሾ𝑖ሿ = Φሾ𝑖ሿ + 𝛾 ቌሺ𝒙ሾ𝑖ሿ − 𝒙ᇱሾ𝑖ሿሻ + 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψ∗ሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψ∗ሻ ቍ 𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ 
Ψ = Ψ + 𝛾 ቆ𝑎ௗᇱ ൫𝑑ሺ𝒙|Ψሻ൯𝑑ሺ𝒙|Ψሻ − 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψሻ ቇ 

AVA2 leans forward improving accuracy of decoder DNN by modifying discriminator parameter Ψ 
as follows: Θ = Θ − 𝛾 ൬𝜇ሺ𝒙ሻ − 12 ൫Σሺ𝒙ሻ൯ିଵ + 12 𝐼൰ 𝑎௙ᇱ ሺ𝒙ሻ 

Φሾ𝑖ሿ = Φሾ𝑖ሿ + 𝛾 ቌሺ𝒙ሾ𝑖ሿ − 𝒙ᇱሾ𝑖ሿሻ + 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψ∗ሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψ∗ሻ ቍ 𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ 
Ψ = Ψ + 𝛾 ൭𝑎ௗᇱ ൫𝑑ሺ𝒙|Ψሻ൯𝑑ሺ𝒙|Ψሻ − 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψሻ + 𝑎ௗᇱ ሺ𝑑଴ሻ ෍ሺ𝒙ሾ𝑖ሿ − 𝒙ᇱሾ𝑖ሿሻ𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ௜ ൱ 

AVA3 supports the balance function BAVA(Θ, Λ) for assessing reliability of encoder f(x | Θ). Its 
parameters are listed as follows: 
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Θఓ = Θఓ − 𝛾 ቆ𝜇ሺ𝒙ሻ − 𝑎஽ᇱ ൫𝐷ሺ𝒙ᇱ|Λሻ൯1 − 𝐷ሺ𝒙ᇱ|Λሻ ቇ 𝑎௙ᇱ ሺ𝒙ሻ 
Θஊ = Θஊ − 𝛾 ൬− 12 ൫Σሺ𝒙ሻ൯ିଵ + 12 𝐼൰ 𝑎௙ᇱ ሺ𝒙ሻ 

Φሾ𝑖ሿ = Φሾ𝑖ሿ + 𝛾 ቌሺ𝒙ሾ𝑖ሿ − 𝒙ᇱሾ𝑖ሿሻ + 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψ∗ሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψ∗ሻ ቍ 𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ 
Λ = Λ + 𝛾 ቆ𝑎஽ᇱ ൫𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ൯𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ − 𝑎஽ᇱ ൫𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ൯1 − 𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ ቇ 

 
AVA4 is a variant of AVA3 along with leaning forward improving accuracy of encoder f(x | Θ) like 
AVA2. Its parameters are listed as follows: Θఓ = Θఓ − 𝛾 ቆ𝜇ሺ𝒙ሻ − 𝑎஽ᇱ ൫𝐷ሺ𝒙ᇱ|Λሻ൯1 − 𝐷ሺ𝒙ᇱ|Λሻ ቇ 𝑎௙ᇱ ሺ𝒙ሻ 

Θஊ = Θஊ − 𝛾 ൬− 12 ൫Σሺ𝒙ሻ൯ିଵ + 12 𝐼൰ 𝑎௙ᇱ ሺ𝒙ሻ 
Φሾ𝑖ሿ = Φሾ𝑖ሿ + 𝛾 ቌሺ𝒙ሾ𝑖ሿ − 𝒙ᇱሾ𝑖ሿሻ + 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψ∗ሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψ∗ሻ ቍ 𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ 

Λ = Λ + 𝛾 ൭𝑎஽ᇱ ൫𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ൯𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ − 𝑎஽ᇱ ൫𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ൯1 − 𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ
+ 𝑎஽ᇱ ሺ𝐷଴ሻ ෍ሺ𝜇ሺ𝒙ሻሾ𝑖ሿ − 𝜇ሺ𝒙ᇱሻሾ𝑖ሿሻ𝑎௚ᇱ ሺ𝜇ሺ𝒙ᇱሻሾ𝑖ሿሻ௜ ൱ 

AVA5 is the last one which supports all functions such as decoder supervising, leaning decoder, 
encoder supervising, and leaning encoder. Θఓ = Θఓ − 𝛾 ቆ𝜇ሺ𝒙ሻ − 𝑎஽ᇱ ൫𝐷ሺ𝒙ᇱ|Λሻ൯1 − 𝐷ሺ𝒙ᇱ|Λሻ ቇ 𝑎௙ᇱ ሺ𝒙ሻ 

Θஊ = Θஊ − 𝛾 ൬− 12 ൫Σሺ𝒙ሻ൯ିଵ + 12 𝐼൰ 𝑎௙ᇱ ሺ𝒙ሻ 
Φሾ𝑖ሿ = Φሾ𝑖ሿ + 𝛾 ቌሺ𝒙ሾ𝑖ሿ − 𝒙ᇱሾ𝑖ሿሻ + 𝑎ௗᇱ ൫𝑑ሺ𝒙ᇱ|Ψ∗ሻ൯1 − 𝑑ሺ𝒙ᇱ|Ψ∗ሻ ቍ 𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ 

Λ = Λ + 𝛾 ൭𝑎஽ᇱ ൫𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ൯𝐷ሺ𝜇ሺ𝒙ሻ|Λሻ − 𝑎஽ᇱ ൫𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ൯1 − 𝐷ሺ𝜇ሺ𝒙ᇱሻ|Λሻ + 𝑎ௗᇱ ሺ𝑑଴ሻ ෍ሺ𝒙ሾ𝑖ሿ − 𝒙ᇱሾ𝑖ሿሻ𝑎௚ᇱ ሺ𝒙ᇱሾ𝑖ሿሻ௜+ 𝑎஽ᇱ ሺ𝐷଴ሻ ෍ሺ𝜇ሺ𝒙ሻሾ𝑖ሿ − 𝜇ሺ𝒙ᇱሻሾ𝑖ሿሻ𝑎௚ᇱ ሺ𝜇ሺ𝒙ᇱሻሾ𝑖ሿሻ௜ ൱ 

The experiment is performed on a laptop with CPU AMD64 4 processors, 4GB RAM, Windows 10, 
and Java 15 given dataset is a set of thirty-six 100x64 images. It is necessary to define how good deep 
generative models (DGMs) such as VAE, GAN, and AVA are. Let imageGen be the best image 
generated by a deep generative model (DGM), which is compared with the ith image denoted 
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images[i] in dataset and then, let dij be the pixel distance between imageGen and the ith image at the 
jth pixel as follows: 𝑑௜௝ = ‖imageGenሾ𝑗ሿ − imageሾ𝑖ሿሾ𝑗ሿ‖ 
Obviously, image[i][j] (imageGen[j]) is the jth pixel of the ith image (the gen image). The notation ||.|| 
denotes norm of pixel. For example, norm of RGB pixel is ඥ𝑟ଶ + 𝑔ଶ + 𝑏ଶ where r, g, and b are red 
color, green color, and blue color of such pixel. Suppose all pixel values are normalized in interval [0, 
1]. The quantity dij implies difference between two images and so, it expresses similarity quality of 
generated image, which is as small as possible. The inverse 1–dij expresses diversity quality of 
generated image, which is as large as possible. Therefore, the best image should balance these 
quantities dij and 1–dij so that the product dij(1–dij) gets as larger as possible. 𝑑௜௝൫1 − 𝑑௜௝൯ → max 

Because the product dij(1–dij) is second-order function, its maximizer exists and so, the generated 
image whose product dij(1–dij) is larger is the better one when its balance is more stable. As a result, 
let balance metric (BM) be the metric to assess quality of the generated image (the best image) with 
regard to the ith image, which is formulated as follows: BM௜ = 1𝑛௜ ෍ 𝑑௜௝൫1 − 𝑑௜௝൯௝  

Where ni is the number of pixels of the ith image. The larger the BMi is, the better the generated image 
is, the better the balance of similarity and diversity is. The overall BM of a DGM is average BM[i] over 
N=10 test images as follows: BM = 1𝑁 ෍ BM௜௜ = 1𝑁 ෍ 1𝑛௜ ෍ 𝑑௜௝൫1 − 𝑑௜௝൯௝௜  (17) 

Where, 𝑑௜௝ = ‖imageGenሾ𝑗ሿ − imageሾ𝑖ሿሾ𝑗ሿ‖ 
Recall that the larger the BM is, the better the DGM is. However, if the similarity quality is concern, 
the DGM will be better when its BM is smaller because a small BM implies good similarity in this test 
with note that such small BM implies small distance or small diversity. Therefore, the DGM whose 
BM is largest or smallest is preeminent. If the DGM whose BM is largest, it is best in balance of 
similarity and diversity. If the DGM whose BM is smallest, it is best in similarity. Both maximum and 
minimum of BM, which indicates both balance quality and similarity quality, respectively, are 
concerned in this test but balance quality with large is more important. 

The four AVA variants (AVAs) as well as VAE and GAN are evaluated by BM with 19 learning 
rates γ = 1, 0.9,…, 0.1, 0.09,…, 0.01 because stochastic gradient descent (SGD) algorithm is affected by 
learning rate and the accuracy of AVA varies a little bit within a learning rate because of randomizing 
encoded data z in VAE algorithm. Table 1 shows BM values of AVAs, VAE, and GAN with 10 
learning rates γ = 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1. 

Table 1. BM regarding learning rates from 1 down to 0.1. 

 AVA1 AVA2 AVA3 AVA4 AVA5 VAE GAN 
γ=1.0 0.2298 0.2301 0.0642 0.0766 0.2301 0.0583 0.2298 
γ=0.9 0.2307 0.2294 0.0546 0.0594 0.2293 0.0681 0.2283 
γ=0.8 0.2309 0.2316 0.0596 0.0546 0.2301 0.0587 0.2311 
γ=0.7 0.2316 0.2305 0.0629 0.0631 0.2305 0.0665 0.2311 
γ=0.6 0.2309 0.2317 0.0555 0.0657 0.2318 0.0623 0.2315 
γ=0.5 0.2318 0.2319 0.0591 0.0598 0.2313 0.0610 0.2311 
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γ=0.4 0.2322 0.2329 0.0629 0.0732 0.2322 0.0568 0.2312 
γ=0.3 0.2318 0.2321 0.0741 0.0655 0.2326 0.0651 0.2325 
γ=0.2 0.2300 0.2312 0.0740 0.0929 0.2302 0.0735 0.2315 
γ=0.1 0.2103 0.2105 0.1230 0.1217 0.2114 0.1238 0.2107 

Table 2 shows BM values of AVAs, VAE, and GAN with 9 learning rates γ = 0.09, 0.08, 0.07, 0.06, 
0.05, 0.04, 0.03, 0.02, 0.01. 

Table 2. BM regarding learning rates from 0.09 down to 0.01. 

 AVA1 AVA2 AVA3 AVA4 AVA5 VAE GAN 
γ=0.09 0.2038 0.2015 0.1319 0.1328 0.2026 0.1338 0.2031 
γ=0.08 0.1924 0.1938 0.1417 0.1446 0.1978 0.1435 0.1916 
γ=0.07 0.1842 0.1826 0.1566 0.1574 0.1834 0.1555 0.1818 
γ=0.06 0.1685 0.1772 0.1662 0.1659 0.1785 0.1676 0.1699 
γ=0.05 0.1664 0.1617 0.1792 0.1785 0.1621 0.1805 0.1628 
γ=0.04 0.1675 0.1655 0.1918 0.1906 0.1662 0.1924 0.1665 
γ=0.03 0.1845 0.1832 0.2017 0.2014 0.1855 0.2021 0.1857 
γ=0.02 0.2047 0.2032 0.2098 0.2098 0.2028 0.2099 0.2046 
γ=0.01 0.2147 0.2146 0.2147 0.2147 0.2146 0.2147 0.2148 

Table 3 shows BM means, BM maxima, BM minima, and BM standard deviations of AVAs, VAE, 
and GAN. 

Table 3. Evaluation of AVAs, VAE, and GAN. 

 AVA1 AVA2 AVA3 AVA4 AVA5 VAE GAN 
Mean 0.2093 0.2092 0.1202 0.1225 0.2096 0.1207 0.2089 

Maximum 0.2322 0.2329 0.2147 0.2147 0.2326 0.2147 0.2325 
Minimum 0.1664 0.1617 0.0546 0.0546 0.1621 0.0568 0.1628 

SD 0.0249 0.0251 0.0606 0.0586 0.0244 0.0606 0.0252 

Note that VAE and GAN represent a pole of similarity quality and a pole of balance quality, 
respectively. From experimental results shown in Table 3, AVA5 is the best DGM because it gains 
highest BM mean (0.2096) which is also larger than BM mean (0.2089) of the pole GAN. It is easy to 
explain this result because AVA5 is the one which improves both decoding task and encoding task 
when it embeds both decoder discriminator and encoder discriminator as well as both leaning 
decoder and leaning encoder. Moreover, both AVA1 and AV2 are better than GAN because their BM 
means (0.2093, 0.2092) are larger than BM mean (0.2089) of GAN. If the similarity quality is concerned, 
AVA3 is the best DGM because it gains the lowest BM mean (0.1202) which is also larger than BM 
mean (0.1207) of the pole VAE. It is easy to explain this result because AVA3 is the one which 
improves encoding task when it embeds encoder discriminator. Moreover, AVA1, which is a fair 
AVA because it embeds decoder discriminator but it does not support leaning decoder, is better than 
the pole GAN whereas AVA3, which is a fair AVA because it embeds encoder discriminator but it 
does not support leaning encoder, is better than the pole VAE. This result is important because the 
best AVA5 is not a fair one because it supports both leaning decoder and leaning encoder. Therefore, 
about BM mean which the most important metrics, all AVA variants are better than traditional DGMs 
such as VAE and GAN with regards to both similarity quality and balance quality. 

Although BM mean is the most important metrics, it is necessary to check other metrics related 
to extreme values which are BM maximum and BM minimum where BM maximum implies best 
balance quality and BM minimum implies best similarity quality. Note from experimental results 
shown in Table 3 that the decoder improvement with AVA1 and AVA2 aims to improve balance 
quality with high BM and the encoder improvement with AVA3 and AVA4 aims to improve 
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similarity quality with low BM whereas AVA5 improves both decoder and encoder. AVA2 and AVA5 
are better DGMs about extreme balance quality because their BM maxima (0.2329, 0.2326) are larger 
than BM maximum (0.2325) of GAN. Similarly, AVA3 and AVA4 are better DGMs about extreme 
similarity quality because their BM minima (0.0546, 0.0546) are smaller than BM minimum (0.0568) 
of VAE. Therefore, about BM extreme values, AVA variants are better than traditional DGMs such as 
VAE and GAN with regards to both similarity quality and balance quality. 

Because the two poles VAE and GAN is stabler than AVAs in theory because each AVA includes 
functions from VAE and GAN so that each AVA is more complicated than VAE and GAN of course, 
it is necessary to check standard deviation (SD) of BM which reflects stability of DGMs. The smaller 
the SD is, the stabler the DGM is. AVA1 and AVA2 are stabler than GAN when their SD (0.0249, 
0.0251) are smaller than SD (0.0252) of GAN. AVA3 and AVA4 are slightly stabler than VAE when 
their SD (0.0606, 0.0586) are smaller than or equal to SD (0.0606) of VAE. Moreover, AVA5 is the best 
one about stability quality when its SD (0.0244) is smallest. Therefore, AVA variants are stabler than 
traditional DGMs such as VAE and GAN. 

Figure 5 depicts BM means, BM maxima, BM minima, and BM standard deviations of AVAs, 
VAE, and GAN by charts. 

 

Figure 5. Evaluation of AVAs, VAE, and GAN. 

It is concluded that the corporation of GAN and VAE which produces AVA in this research 
results out better encoding and decoding performance of deep generative model when metrics such 
as BM means, BM maxima, BM minima, and BM standard deviations of AVAs are better with regards 
to contexts of balance quality and similarity quality. Moreover, AVA5 which is full of functions 
including decoder discriminator, decoder leaning, encoder discrimination, and encoder leaning 
produces the best results with highest balance quality given largest BM mean (0.2096) and highest 
stability given smallest SD (0.0244). 

4. Conclusions 

It is undoubtful that AVA is better than traditional VAE and GAN due to the support of 
Kullback-Leibler divergence that establishes the encoder as well as the built-in discriminator function 
of GAN that assesses reliability of data. We think that VAE and GAN are solid models in both theory 
and practice when their mathematical foundation cannot be changed or transformed but it is still 
possible to improve them by modifications or combinations as well as applying them into specific 
applications where their strong points are brought into play. In applications related to raster data like 
image, VAE has a drawback of consuming much memory because probabilistic distribution 
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represents entire image whereas some other deep generative models focus on representing product 
of many conditional probabilistic distributions for pixels. However, this pixel approach for modeling 
pixels by recurrent neural network does not consume less memory but it is significantly useful to fill 
in or recover smaller damaged areas in a bigger image. In the future trend, we try to apply the pixel 
approach into AVA, for instance, AVA processes a big image block by block and then, every block is 
modeled by conditional probability distribution with recurrent neural network as well as long short-
term memory network. 
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