
Review

Not peer-reviewed version

Graphs Defined on Rings: A

Review

S Madhumitha and Sudev Naduvath 

*

Posted Date: 2 August 2023

doi: 10.20944/preprints202308.0090.v1

Keywords: Unitary Cayley Graphs; Euler Totient Cayley Graphs; Unitary Addition Cayley Graphs; Unit Graphs;

Absorption Cayley graphs; Nilpotent Cayley Graphs; Zero-divisor Cayley Graphs; Mixed unitary Cayley

Graphs; Divisor Cayley Graphs; Involutory Cayley Graphs; Quadratic Residue Cayley Graphs

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/102198


Review

Graphs Defined on Rings: A Review

S Madhumitha and Sudev Naduvath *

Department of Mathematics, CHRIST (Deemed to be University), Bangalore 560029, India;

s.madhumitha@res.christuniversity.in

* Correspondence: sudev.nk@christuniversity.in

Abstract: The study on graphs emerging from different algebraic structures like groups, rings,

fields, vector spaces, etc. is a prominent area of research in mathematics, as algebra and graph

theory are two mathematical fields that focuses on creating and analysing structures. There are

numerous studies linking algebraic structures and graphs, which began with the introduction

of Cayley graphs of groups. Several algebraic graphs have been defined on rings, which have

huge-growing literature. In this article, we systematically review the literature on some variants

of Cayley graphs that are defined on rings, to understand the research in this area.
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1. Introduction

Graph theory and algebra are two disciplines of mathematics which concentrate on building

and investigating structures. Algebra is a fundamental branch of mathematics, whose roots are

traced back to the early sixteenth century, whereas, graph theory is a flourishing mathematical

research ground, which unfolded in the early eighteenth century, as the Swiss mathematician

solved the famous Königsberg bridge problem, by representing the structure of the bridge and the

landmass surrounding it as a graph. Hence, the subject emerged as a consequence of modeling

real-life problems in terms of graphs, as it gives a comprehensive visual representation of the

problem, and this aids in obtaining optimal and feasible solutions to the problem. It is interesting

to note that, along with the increase in applications of the developed theories, the theory by itself

has evolved independently over the period of time and has established itself as a flourishing

mathematical discipline.

An algebraic structure is a non-empty set along with one or more operations (usually binary)

defined on it and by the very definition of a graph, it can be noticed that a graph can be realised as

a structural representation of a relation defined on a (vertex) set. Relating these two structural

aspects, a synergy between the algebraic and graphical structures is studied in the field of algebraic

graph theory. It has become a stimulating research field, yielding numerous intriguing results as

these two disciplines; algebra and graph theory, interact in many ways to mutually extend the

tools of one subject for the benefit of the other. In fact, powerful combinatorial methods found in

graph theory have been used to prove specific significant and well-known results in group theory.
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For example, all finite groups can be represented as the automorphism group of a connected graph

(c.f.[1]).

Any algebraic structure can be interpreted as a graph, and there are multiple ways of

associating an algebraic structure with a graph. In the past few decades, several graphs are being

constructed from algebraic structures based on different properties that the algebraic structures

posses, and these algebraic graphs have been studied extensively in a motivation to understand

the algebraic structure more clearly; thereby making this an enthralling area of research (c.f.[2–4]).

This association of an algebraic structure with a graph began in the end of the nineteenth

century, when Arthur Cayley connected graph theory and group theory by introducing the Cayley

graph of a group (c.f. [5]), which encoded the algebraic information of a group as a graphical

structure. The Cayley graph for a group G is a graph with the vertex set as the elements of the group

G, which is invariant under the right translation by elements of G. Cayley graphs are by far the

most well-known graph associated with an algebraic structure. They have a massive yet, growing

literature to an extent to convince that algebraic graph theory is only the study of Cayley graphs

of finite groups (see [6–11]).

Another important class of algebraic graph construction is the construction of graphs from

rings, as the study of graphs constructed from rings contributes to an interplay between the

ring structure and the corresponding graph structure. One can sometimes translate the algebraic

properties of the rings in terms of graph-theoretic properties and vice-versa, which can help in

exploring some interesting results related to the graphs as well as the rings. Graphs defined on

rings either have vertices as the set of elements of the ring or they are intersection graphs such

that each vertex represent some subset of the ring, or some well-known sub-structure of the ring

like ideals, subring, etc. and the edges are defined with respect to an algebraic condition on the

elements of the vertex set.

The study on graph defined from rings began with the introduction of the zero-divisor

graphs, which is one of the most well-studied graph defined on commutative rings that have

massive and still augmenting literature (see [12–14]). Apart from the zero-divisor graphs, there

are several other graphs such as the total graphs, annihilating graphs, comaximal graphs, unit

graphs, Jacobson graphs, generalized total graphs, etc. They all have substantial and growing

literature (c.f. [13–19]). A few decades back, algebraic graph theory was just a theory that did not

apply to ordinary human activities, whereas it has now been successfully used in transmitting

encrypted information with high security and privacy through public communication networks

(c.f.[20]).

Though Cayley graphs were initially constructed on groups, the graph construction has

been extended to rings as well. As rings possess several symmetric subsets like the set of all

zero-divisors, units, idempotent, nilpotent elements, etc. many variants of Cayley graphs using

these symmetric subsets of the rings were constructed and studied. This literature review intends

to present an overview of these variants of Cayley graphs that are defined on rings. That is, the

graphs defined such that their vertex sets are the ring elements and their adjacency relation is

similar to the adjacency condition given in the Cayley graph, with respect to some symmetric

subset of the ring.

It can be seen that there are many survey papers, review papers and books on graphs defined

on rings (see [12,16,17]), but many of them cover only several well-studied graphs. Furthermore,

review papers that focus on a particular property of the graph defined on rings can also be found
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in the literature (c.f. [21–23]), whereas there was no comprehensive review found on the variants

of Cayley graphs defined on rings. This motivated us to create a literature hub on these graphs

defined on common grounds, and systematically analyse the study that has been done on these

graphs to understand the pattern and dynamics of research in this area. This systematic review

also helps to identify unsolved open problems that were proposed in the literature as well as the

future scope of study on the topic. Also, this article aims to clear the ambiguity over different

graphs with similar names and the same graphs with different names that have been defined and

studied independently by different authors, which falls under this criteria.

The outline of the article is as follows. The graph theoretic and algebraic preliminaries that

are required to proceed further are given in Section 1.1. A comprehensive review on the unitary

Cayley Graph of Zn and unitary Cayley graph of a ring, where the former is a particular case

of the latter is given in Section 2 and Section 3 respectively. This is followed by a review on the

unitary addition Cayley graph in Section 4 and the unit graph of a ring in Section 5, where again

the first class of graphs forms a subset of the second one. Finally, a review on other variants of

Cayley graphs, for which detailed investigations are not yet done, is given in Section 6 and we

conclude the article by proposing the research gaps that we have found over the course of the

review along with several possible avenues for further research in Section 7.

1.1. Preliminaries

This subsection aims to familiarise the reader with the terminology and notation that are

used in the article. It also includes definitions and results which are required to understand the

study. Unless otherwise noted, all definitions relating to algebra are from [24], and all definitions

relating to graph theory are from [25].

We let N,Z,R and C denote the set of positive integers, integers, real numbers and the

complex numbers. A non-empty set together with a binary operation termed as addition is called

a group if the properties of closure, associativity, existence of a unique identity (additive identity)

of the set and a unique inverse for each element in the set, are satisfied. In addition to this, if the

group elements commute with each other under the defined binary operation, then the group is

said to be an Abelian group.

The structure of a group endowed with another binary operation called the multiplication

gave rise to the abstract concept of rings in the mid nineteenth century. A non-empty set R with

two binary operations of addition and multiplication, denoted by + and · respectively, is said to

be a ring or an associative ring if R is a commutative group under addition and the properties of

associativity and distributivity hold for the multiplication.

In general, the binary operation of multiplication need not be commutative and the ring

need not have an identity element under multiplication. If the ring is commutative under

multiplication, then the ring called a commutative ring and when a ring has an identity element

under multiplication, called the multiplicative identity, the ring is termed as a ring with identity,

where this multiplicative identity is denoted by 1. Similarly, the existence of a multiplicative

inverse for a non-zero element in a ring with identity is not guaranteed. If a non-zero element

in a ring has a multiplicative inverse, then it is called a unit element of the ring and the set of all

unit elements of the ring R form a group under multiplication and is called the multiplicative group

of units. For a ring R, we denote this group of units of R by R∗. In other words, if R is a ring
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with identity and x ∈ R, x is a unit of R when there exists a y ∈ R, such that xy = yx = 1 and

R∗ = {x ∈ R : xy = yx = 1, y ∈ R} is the group of units of R.

An element x ∈ R in a left (ring) zero-divisor if there exists a y ∈ R such that xy = 0

(yx = 0) and y 6= 0. Note that the additive identity 0 of a ring R is a trivial zero-divisor and for

a commutative ring, the notions of left and right zero-divisors mean the same and we just say

the zero-divisors. An integral domain is a commutative ring with identity such that there are no

non-zero zero-divisors and a field is a commutative ring with identity such that every non-zero

element is a unit. Therefore, it can be concluded that every integral domain is a field. Also, a

field can be interpreted as ring that forms an Abelian group with respect to both addition and

multiplication. The characteristic of a ring R, denoted by char(R), is the smallest integer k such that

1 + 1 + . . . + 1
︸ ︷︷ ︸

k−times

= 0 in R and if there exists no such k, then R is said to have characteristic 0.

A subring of a ring R is a subset of R, which is a ring by itself, with the operations defined

on R. A subset I of a ring R is called a left (right) ideal of R if (I, +) is a subgroup of R and

yx ∈ I (xy ∈ I) for all x ∈ I and y ∈ R. For an element x ∈ R, the set 〈x〉 = Rx = {yx : y ∈ R}
(〈x〉 = xR = {xy : y ∈ R}) is an ideal of R called the principal left (right) ideal generated by x.

A left (right) ideal I of a ring R is said to be a maximal left (right) ideal of R if whenever I1 is a

left (right) ideal of R and I ⊆ I1 ⊆ R, then I1 = I or I1 = R; that is, the only ideal that properly

contains a maximal ideal is the ring itself. Note that the notions of left and right are the same for a

commutative ring.

A commutative ring with identity is called a local or quasilocal ring if it has a unique maximal

ideal. A division ring is a non-trivial ring in which division by non-zero elements is defined.

In other words, a field is a commutative division ring and all division rings that are not fields

are non-commutative rings in which the non-zero elements have a multiplicative inverse either

with respect to left or right multiplication. The Jacobson radical of a ring R, denoted by JR, is the

intersection of all the maximal ideals of R. For a ring R and an ideal I of R, R
I = {x + I : x ∈ R} is

called a quotient ring of R by I. For a commutative ring R, R[x] = {
n

∑
i=0

aix
i : ai ∈ R, n ∈ Z} is called

the ring of polynomials over R in the indeterminate x.

A ring R is said to be left (right) Artinian if every strictly descending chain of left (right)

ideals in R is finite. The structure theorem for Artinian rings says that an Artinian ring R is

uniquely (up to isomorphism) a finite direct product of Artinian local rings, where the direct

product R1 × R2 × . . . × Rk of rings R1, R2, . . . , Rk is the set of all ordered pairs {(r1, r2, . . . , rk) :

ri ∈ Ri , 1 ≤ i ≤ k} such that the binary operations of addition and multiplication are defined

element-wise. A simple ring is a non-zero ring that has no non-zero proper ideals. By Zn, we denote

the ring of integers modulo n with the usual operations of addition modulo n and multiplication

modulo n; that is, Zn = (Zn, +n, ·n). The units of the ring Zn, denoted by Z∗
n are the set of all

integers that are relatively prime to n and are less that n; that is, Z∗
n = {k ∈ Zn : gcd(k, n) = 1}

and the cardinality of this set is given by the arithmetic function called the Euler’s totient function,

denoted by φ(n).

A ring-homomorphism f : R1 → R2 between two rings R1 and R2 is a mapping that preserves

the two ring operations; that is, f (x + y) = f (x) + f (y) and f (xy) = f (x) f (y) for all x, y ∈ R1, where

we assume that f (1) = 1. A one-to-one and onto ring-homomorphism is a ring-isomorphism and if

two rings R1 and R2 are isomorphic, it is denoted by R1
∼= R2. Note that other related definitions

are given in the article on the basis of requirement.
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For a graph G with the vertex set V(G) and edge set E(G), the order and the size of the graph

are |V(G)|= n and |E(G)|= m respectively. A graph in which there exists an edge joining a vertex

to itself, called a loop is known as a pseudograph and a graph in which the edges are ordered pairs

of vertices is called a directed graph. A subgraph H of a graph G is said to be a spanning subgraph, if

with V(H) = V(G) and for any subset S ⊆ V(G), the subgraph induced by S, denoted by 〈S〉, is

the maximal subgraph of G with vertex set S. The complement G of a graph G is the graph such

that V(G) = V(G) and E(G) = {uv : uv /∈ E(G)}.

The set N(v) = {u ∈ V(G) : uv ∈ E(G)} is called the open neighborhood of a vertex v ∈ V(G)

and for each vertex v ∈ V(G), the set N[v] = N(v) ∪ {v} is the closed neighborhood of v. The degree

of a vertex v ∈ V(G), denoted by degG(v) or d(v), is the number of vertices adjacent with v in G;

that is, deg(v) = |N(v)| and δ(G) = sup{|N(v)|: v ∈ V(G)} is the maximum degree of a graph G.

A graph G is called connected if there is a path between any two distinct vertices in G;

otherwise, G is said to be disconnected. A graph is called Eulerian if it contains a closed trail

containing every edge and a graph is Hamiltonian if it contains a spanning cycle. Let G be a

connected graph and for two vertices u, v ∈ V(G), the length of a shortest path from u to v is

denoted by d(u, v) and the diameter of the graph G, diam(G) = sup{d(u, v) : u, v ∈ V(G)}. The

girth of a graph G is the length of the smallest induced cycle in G and if the graph is acyclic, girth

of the graph is taken as ∞.

An isomorphism between two graphs G and H is a bijective function f : V(G) → V(H) such

that any two vertices u and v of G are adjacent in G if and only if f (u) and f (v) are adjacent in H and

an isomorphism from a graph G to itself is called an automorphism. The set of all automorphisms

of a graph G forms a group called the automorphism group of G, denoted by Aut(G). Since each

graph has a unique automorphism group, it is called the algebraic invariant of the graph .

The adjacency matrix A(G) of a graph G is a binary matrix of order n such that the ij-th entry

is 1 if vivj ∈ E(G) or 0, otherwise. The set of all eigenvalues of this real symmetric adjacency

matrix of a graph G, along with their multiplicities is called the spectra of the graph G. A graph G

is said to be perfect if the clique number and the chromatic number are equal for all the induced

subgraphs of G. A graph is said to be planar is it can be drawn on a surface such that no two edges

cross each other. The other graph parameters and concepts that are investigated for different

graphs are defined on the basis of requirements.

For more definitions and concepts related to Algebra, see [26,27], and [24] specifically for

ring theory. For fundamental concepts in graph theory, we refer to [25], and for algebraic and

spectral aspects in graphs, see [20,28]. For the theory of domination in graphs, refer to [29]. For

more details on concepts related to the planarity of graphs, see [30] and for all basic definitions

and results required to understand the study of graphs defined on rings in both graph theory as

well as ring theory, we refer the reader to (Chapter 1, [12]).

As the ring of integers modulo n is a standard ring that has an easily understandable structure,

almost all graphs defined on rings are examined on Zn, whose elements are the integers modulo n.

Therefore, to examine the graphs defined on Zn and related rings, proficiency in ring theory, graph

theory, as well as elementary number theory is essential. Therefore, for fundamental concepts in

number theory, we refer the reader to [31,32].
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2. Unitary Cayley Graph of Zn

One of the well-studied graphs defined on rings, especially on Zn, is the unitary Cayley graphs.

As the name suggests, the unitary Cayley graphs can be seen as a restriction or a variation of the

broadly defined Cayley graphs. As this graph is specifically defined on Zn, it can be seen that the

number-theoretic definition of the graph leads to several interesting results that are obtained using

number-theoretic properties and often the innate structure of the graph gives rise to pleasing

combinatorial results.

A graph of order n is said to be representable modulo k if its vertices can be labeled using distinct

integers between 0 and k such that the difference of the labels of two vertices are relatively prime

to k if and only if the vertices are adjacent and the smallest k for which the graph is representable

modulo k is called the representation number of the graph (see [33]). The problem of determining

the representation number of a given graph and analysing the property of graphs that have a

given representation number, along with its relation between the order of the graph was one

of prominent that was put forth as the graph representation problem in the last decade of the

twentieth century, as it was proved that every graph is representable modulo for some positive

integer (c.f. [33]). The main motivation to study the unitary Cayley graph on Zn was to investigate

the representation problem of graphs, put forth in [33], which is closely related to the definition

of the unitary Cayley graph on Zn given below, following which an example of a unitary Cayley

graph is given in Figure 1.

Definition 1 ([34]). The unitary Cayley graph of the ring Zn, denoted by Xn = Cay(Zn,Z∗
n), is a graph

with vertex set as the elements of the ring; 0, 1, . . . , n − 1, and two vertices are adjacent if their difference is

a unit of the ring; that is, for all x, y ∈ V(Xn), xy ∈ E(Xn) when |x − y|∈ Z∗
n, where Z∗

n is the set of all

relatively prime integers to n, which are units of Zn.

1

2

3 4

5

6

70

Figure 1. The unitary Cayley graph X8.

Note that the definition of the unitary Cayley graph of Zn is closely associated with the

definition of a graph to be representation modulo n and therefore, motivated to gain insights

on the graph representation problem, the unitary Cayley graphs were investigated. It can be

observed that post the introduction of the unitary Cayley graph Xn, the definition of a graph

to be representable modulo n was given in terms of Xn. In other words, a graph is said to be

representable modulo k if it is isomorphic to an induced subgraph of Xn (refer to [35]).
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Though the representation problem is stated in terms of the unitary Cayley graphs, Xn and

the results obtained on the investigation of the representation problem may be related to the

graph Xn, note that we do not consider them in the review as the results may address only certain

induced subgraph structures of the graph Xn, which may or may not have all the properties of Xn.

The unitary Cayley graph of Zn was introduced in [34] as a specific case of the Cayley graphs

defined using the generating sets of Zn, as the set Z∗
n generates Zn. The other variants of Cayley

graphs defined based on generating sets in [36] were complete graphs and based on coloring the

edges of these complete graphs in a symmetric fashion, the realisation of the induced subgraphs

of these complete graphs as totally multicolored (TMC) subgraphs; that is, a subgraph of a graph

in which no two edges have the same color, was studied in [36].

Motivated to investigate the possibilities of obtaining totally multicolored Cayley graphs,

the unitary Cayley graph was defined on Zn and its basic properties were investigated in [34].

By Definition 1, it can be seen that the graph Xn is φ(n)-regular, where φ(n) is the Euler’s totient

function that gives the number of integers less than n that are relatively prime to n. The symmetric

nature of the graph can be observed from the adjacency pattern as well as the regularity, as it is

closely related to the number theoretic concepts of modular arithmetic (c.f. [37]). This symmetry

of the unitary Cayley graphs gives raise to several applications in modelling networks and

encourages the investigation on the graph in several directions.

The primary focus of the study in [34] was to examine the existence of triangles and the

enumeration of them in the newly defined unitary Cayley graph, as the intended study was to

explore the possibilities of obtaining totally multicolored graphs. This study on the triangles

present in the graph helps to identify TMC graphs, but it can be seen that the study shall not be

significant when the graph turns out to be a complete graph. Therefore, the first result obtained

on Xn classifies the values of n for which Xn is a complete graph. Since bipartite graphs are

characterised based on the existence of odd cycles, the values of n for which Xn is bipartite and

complete bipartite were also obtained as follows.

Theorem 1 ([34]).

(i) A unitary Cayley graph Xn is isomorphic to a complete graph Kn and a complete bipartite graph

K2t−1 ,2t−1 , when n is prime and n = 2t, t ≥ 1, respectively.
(ii) A unitary Cayley graph Xn is a bipartite graph if n is even.

It can be observed that the graphs X2t , t ∈ N are regular, with each vertex having degree

equal to half the number of vertices and this makes the size of the graph as the square of the sum

of degrees of all vertices in the graph. Since the chromatic uniqueness of complete bipartite graphs

was proved in [38], the graphs X2t , t ∈ N are called chromatically unique unitary Cayley graphs. Note

that for a graph G, the polynomial that gives the number of graph colorings as a function of the

number of colors is a chromatic polynomial (see [25]) and two graphs G1 and G2 are chromatically

equivalent if they have the same chromatic polynomial; that is, Pα(G1) = Pα(G2) and a graph G1 is

said to be chromatically unique if Pα(G1) = Pα(G2) implies that G1
∼= G2 (see [39]).

As the graph Xn is triangle-free for even n, the enumeration of triangles were restricted

to Xn, for odd n. As a first step, the number of triangles in Xn with two common vertices

were enumerated, following which the total number of triangles in the graph was determined.

The number of triangles with two common vertices was obtained as the cardinality of the set
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{u ∈ Z∗
n : (u − 1) ∈ Z∗

n}. This is because, the vertex set of any triangle in Xn with two common

vertices can be taken as {0, 1, u : u ∈ Z∗
n}, owing to the fact that the difference between the vertices

of any edge in the graph is a unit. Therefore, the third vertex that differs for the triangles with

two common vertices will always be a unit and hence, the number of triangles with two common

vertices is obtained as

n ∏
p|n

(

1 − 2

n

)

,

where the product is runs over all the prime factors of n.

To enumerate the number of triangles in the graph Xn, the group action of the group,

Z∗
n × Zn on the set of all triangles of the graph; that is, if (u′, x) ∈ Z∗

n × Zn, then the action

(u′, x){0, 1, u} = {u′x, u′(1 + x), u′(u + x)} that gives the orbits of the triangles corresponding

to different pairs (u′, x) ∈ Z∗
n × Zn was considered. As orbits partition a set, the sum of the

cardinalities of these orbits obtained through the given group action aided in determining the

total number of triangles in the graph Xn. Using the orbits obtained through the group action, the

edges of the triangles were also colored to obtain the edge coloring of the graph and this led to

the enumeration of triangles having different possible combination of colors; that is, the triangles

that have all three edges colored with different colors, all three edges colored with the same color

and two edges colored with same color were termed as scalene-color triangles, equilateral-color

triangles and isosceles-color triangles and they were enumerated.

The enumeration of triangles in the unitary Cayley graphs gave rise to the problem of

counting the number of induced cycles of any given length k. Also, it was seen that to prove

the chromatic uniqueness of a graph, it is important to count the number of induced k cycles in

the graph, as some of the coefficients in the chromatic polynomials are related with the number

of such induced cycles (see [40]). Therefore, this problem of counting the induced k cycles was

proposed in [41] and the induced cycles of length 4 were enumerated using the concept of the

multiplicative arithmetic property (map) of the graphs Xn.

A sequence of Cayley graphs Cay(γt, St), where γt is an Abelian group and St is a symmetric

subset of γt, is said to have the multiplicative arithmetic property if for each pair of positive relatively

prime integers (n1, n2), there is a group isomorphism φn1 ,n2 from γn1n2 to γn1
× γn2 such that

φn1 ,n2 maps Sn1n2 onto Sn1
× Sn2 (see [41]). In [41] the multiplicative arithmetic property on all the

Cayley graphs defined on Abelian groups were discussed and since Zn is also an Abelian group

and Z∗
n is a symmetric subset of Zn, the unitary Cayley graphs were also examined in [41].

In [41], all Cayley graphs defined on Abelian groups were proved to have the multiplicative

arithmetic property by obtaining the corresponding multiplicative arithmetic functions. A

construction of sequences of Cayley graphs with the multiplicative arithmetic property, based on

the number theoretic concepts like the Chinese reminder theorem was also given in the article. As

an application of proving the multiplicative arithmetic property of the unitary Cayley graphs, the

number of induced cycles of length 3 (triangles) and 4 were enumerated. Though, the formula for

the number of triangles had been obtained previously in [34] using the group actions, the same

result was deduced in this article using the multiplicative arithmetic property of the graph.

Along with the results obtained, the authors had also posted many open problems, among

which the possibility to obtain a generalised expression to find the number of induced k cycles

in the graph Xn, for any given n and to characterise the chromatic uniqueness in Xn pertains to

the unitary Cayley graphs. These open problems were partially addressed by the same authors
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in [42], by establishing a connection between the existence of an induced k cycle in Xn and the

number of prime divisors of n as follows.

Theorem 2 ( [42]). Given r ∈ N, there is a natural number M(r) ∈ N, depending only on r, such that

the number of induced k cycles in Xn is zero for all k ≥ M(r) and for all n with at most r different prime

divisors.

This result was proved based on the results obtained in [41], that established the multiplicative

arithmetic property of the unitary Cayley graphs. By Theorem 2, it was deduced that Xn is a

complete p-partite graph on n vertices with the maximum number of edges and is chromatically

unique, when n = pt, where p is prime and t ∈ N, with the partitions Pi = {x : x ∼= i mod p, 0 ≤
i ≤ p − 1} . In [34], it was obtained that Xn is chromatically unique when n = 2t, for some t ∈ N

based on the structure of the graph, and this result is extends the class of chromatically unique

unitary Cayley graphs from n being only 2t to any prime power, pt and this result was also proved

based on the multiplicative arithmetic property. Along with this, the bounds for the value M(r)

are also obtained as follows.

Theorem 3 ([42]). For r ∈ N, there is a natural number M(r) ∈ N, that depends only on r such that

(r − 1) ln(r − 1) ≤ M(r) ≤ 9r!

The bounds given in Theorem 3 shows the existence of induced k cycles in Xn, for arbitrarily

large r, which adds credibility to Theorem 2. Also, a large gap between the bounds of M(r) opened

an avenue to find better estimates, which were computed in [43]. The main problem addressed in

[43] was to determine the length of the longest induced cycle in Xn for a given n and to address

this problem, a representation of the vertices in Xn based on their residues modulo the prime

factors of n, called the residue representation is introduced as follows.

Definition 2 ([43] ). For n = p
α1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and αi ∈ N, if

x ∈ V(Xn) such that x ≡ αi mod pi, for 1 ≤ i ≤ r and 0 ≤ αi < pi, the residue representation of x is

the unique string α1α2 . . . αr.

This representation simplifies the problem of finding the induced cycles in the graph to that

of checking the similarity conditions between consecutive vertices; that is, to check if any pair of

non-consecutive vertices has at least one same index in the representation, as it can be observed

that for any x, y ∈ V(Xn), xy ∈ E(Xn) if and only if x ≡ y mod pi for all 1 ≤ i ≤ r. In this article,

the number M(r) defined in [42] is given in terms of m(n), which denotes the longest induced cycle

in Xn as M(r) = maxn{m(n)}, where the maximum is taken over all n values with r distinct prime

divisors. Since M(r) was proved to depend only on r in [42], m(n) was also proved to depend

only on r in [43], so that there arises no ambiguity in the given definition of M(r) in terms of m(n).

Significant questions on the relation between the values m(n) and M(r) were also answered in [43],

from the conditions under which these values of m(n) and M(r) are equal were obtained as given

below.

Theorem 4 ( [43]). For n = p
α1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and are large,

m(n) = M(r).
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Theorem 5 ( [43]). For n = p
α1
1 pα2

2 pα3
3 . . . pαr

r and n′ = p1 p2 p3 . . . pr, where pi, 1 ≤ i ≤ r are distinct

primes and r 6= 1, m(n) = M(n′).

Theorem 5 reduces the complexity of calculating m(n) for large values of n, as it considers

only the values of n whose prime powers are square-free. These results aided in improving the

tightness of the bounds of M(r) in [43], which is given below.

Theorem 6 ( [43]). For all positive integers n with r > 1 distinct prime divisors, 2r + 2 ≤ M(r) ≤ 6r!.

To prove Theorem 6, an induced subgraph of Xn with 2r + 2 vertices was constructed for all

n, and it was proved that the construction depends only on the number of prime divisors, r of n

and not on the value of the prime divisors, thus providing a lower bound for m(n). It was natural

to examine the properties of Xn that contributed to the results that were obtained and to explore

the possibilities of constructing similar graphs. On analysing these properties, it was noted that

the above results on the length of the longest cycles can be extended to the direct product of any

number of complete k-partite graphs and this extension can be seen as an immediate consequence

of the fact that for any n = p
α1
1 pα2

2 pα3
3 . . . pαr

r , Xn
∼= X

p
α1
1
× X

p
α2
2
× . . . × Xpαr

r
, as Xn is a complete

p-partite graph for n = pt, when p is prime. Note that the unitary Cayley graphs are referred to as

the unitary circulant graphs in [43].

A random walk on a finite, connected graph is a Markov chain1 that jumps from a current

vertex v to one of its k neighbors, where with a uniform probability (refer to [45]). The hitting

time Tv of a vertex v is the minimum number of steps that a random walk takes to reach back

the same vertex and the expected value of Tv for a vertex is known as the expected hitting time.

The expected hitting times for the random walks in the unitary Cayley graph Xn and the direct

product of two unitary Cayley graphs Xn1
and Xn2 , where n1 = pt1 and n2 = pt2 ,t1, t2 ∈ N were

studied in [46] and [47] respectively, as an extension of the study on the expected hitting time of

the edge transitive graphs by the same authors in [45]. Though the high symmetry of the graph

Xn can be realised from the graph construction, the unitary Cayley graphs were formally proven

to be arc-transitive in [46], by obtaining an automorphism of the graph that satisfies the condition

of arc transitivity as follows.

Theorem 7 ([46]). The function ψ(x) = wx + z, where w ∈ Z∗
n, z ∈ Zn and x ∈ V(Xn) are fixed, is an

automorphism of the graph Xn.

A graph G is said to be a vertex-transitive (edge transitive) graph if its automorphism group

acts transitively on V(G) (E(G)). In other words, a graph G is vertex-transitive (edge-transitive), if

there exists an automorphism between any two distinct vertices (edges) of G. Similarly, a graph G

is arc-transitive if there exists an automorphism between any two distinct edges of G such that the

direction of the edges are preserved.

As it can be observed that arc-transitive graph is both vertex transitive and edge transitive,

and hence, this automatically proves that the unitary Cayley graphs are both vertex and edge

1 A Markov chain is a sequence of random variables such that the next move depends only the current position and not
any of the previous ones (refer to [44] for more details).
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transitive. The main focus of the article [46] was to determine the expected hitting time of the

edge transitive graphs, when the diameter of the graphs are 2 and 3, and to tighten the results

when the graphs follow certain adjacency patterns. Since Theorem 7 proves the edge transitivity

of the unitary Cayley graphs, the expected hitting times of these graphs were explicitly computed

in [46] by classifying the graphs that have diameter 2 and 3 as follows.

Theorem 8 ( [46]). The diameter of Xn,

diam(Xn) =

{

2, if n = 2 or n is odd and composite;

3, if n = 2lk, where l ≥ 1 and m > 1 is odd.

By the definition of a random walk, it can be noted that the study of random walk in a regular

graph tends to give a uniform distribution, as the number of neighbors to which the vertex can

jump is equal for all the vertices in the graph. Also, the unitary Cayley graphs considered in the

study were the graphs Xn, n = pk, where p is a prime which were already proven to be complete

k-partite graphs in [42]. To determine the hitting times of these graphs, the degree and distance

between each pair of vertices in the graph must be known and therefore, the degree and distance

between each pair of vertex in the graph Xn, when n is a prime power was determined in [46],

and the diameter of the graph Xn1
× Xn2 , where n1 = pr1 and n2 = pr2 ; for r1, r2 ∈ N, was also

determined as 2 in [47]. As the graphs Xn1
× Xn2 are of diameter 2, the hitting time of the vertices

of these graphs were also computed and are given as follows.

Theorem 9 ( [47]).

(i) The expected hitting time between the vertices at distance 1 is

|V(Xn1
× Xn2 )|−1 = pn1+n2 − 1.

(ii) The expected hitting time between the vertices at distance 2 is

(a) |V(Xn1
× Xn2)|= pn1+n2 , when no pair of vertices are at distance 1 in the graphs Xn1

or

Xn2 .
(b) |V(Xn1

× Xn2 )|+ 1
p−2 = pn1+n2 + 1

p−2 , otherwise.

Though the unitary Cayley graphs were officially introduced in [34] in the year 1995, not

many studies had emerged on the unitary Cayley graphs until 2007, before [48] was published. It

was the first study that laid a strong foundation to the study on the unitary Cayley graphs, as it

had an in-depth investigation on the properties of the unitary Cayley graphs; only after which, a

huge growing literature can be found on the topic. The study in [48] begins with a brief review on

the previous investigations of the unitary Cayley graphs, following which the chromatic number,

clique number, and the vertex connectivity of Xn were computed as follows.

Theorem 10 ( [48]). If p is the smallest prime divisor of n, then χ(Xn) = ω(Xn) = p, where χ and ω

denote the chromatic and clique number respectively.

Theorem 11 ( [48]). The vertex connectivity κ(Xn) of the unitary Cayley graph Xn is φ(n), where φ(n) is

the Euler’s totient function.
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An arc-transitive graph for which the vertex connectivity being its degree makes the unitary

Cayley graphs highly reliable and stable for networks models. Also, the regularity of the graph Xn

implies that its complement is also regular and highly symmetric and therefore, using Theorem

10, the chromatic and clique number, χ(Xn) and ω(Xn) of the complement of Xn were computed

as n
p , where p is the smallest prime divisor of n. Based on these results on the complement of the

unitary Cayley graphs, the following realisation was obtained.

Theorem 12 ([48]). A unitary Cayley graph Xn is self-complementary if and only if n = 1 or n = 2. That

is, Xn
∼= Xn if and only if n = 1 or n = 2.

Based on the investigation of the complement of the graph Xn and its regularity, the number

of common neighbors between the vertices were enumerated in [48] by partitioning the vertex

based on different conditions for different values of n. On obtaining the chromatic and the clique

number of the graphs, perfection in the unitary Cayley graphs was studied by investigating the

existence of odd cycles of length 5 or more in the graph Xn and the unitary Cayley graphs that are

perfect were characterised as follows.

Theorem 13 ( [48]). A unitary Cayley graph Xn is perfect if and only if n is even or n is odd and has at

most two distinct prime divisors.

The investigation of the spectral properties of the unitary Cayley graphs began in [48], where

the adjacency matrix of the graph Xn was obtained. It is known that there are multiple adjacency

matrices for any graph, which are given based on different ordering of the vertices. With the

natural order of vertices 0, 1, 2, . . . , n − 1, the adjacency matrix of the unitary Cayley graphs were

obtained as circulant matrices; that is, matrices in which the entries of its first row generate the

entries of the other rows by a cyclic shift, which established that the unitary Cayley graphs are

circulant graphs; the graphs with circulant adjacency matrices (c.f. [20]).

Using the explicit formula to obtain the eigenvalues of a circulant matrix given in [49], the

eigenvalues of the adjacency matrix of Xn was obtained in terms of an arithmetic function c(r, n)

called the Ramanujan sum2, which takes only integral values for the given integers r, n, n > 0.

Therefore, it was concluded that all eigenvalues of unitary Cayley graphs are integers and hence,

the unitary Cayley graphs fall under the class of graphs called the integral circulant graphs; circulant

graphs whose eigenvalues are integers (see [50]). Further investigation on the eigenvalues of the

graph Xn, based on their symmetry and the number theoretical properties had led to following

interesting results on the eigenvalues of the graphs.

Theorem 14 ( [48]). Let φ(n) denote the Euler’s totient function and µ(n) denote the Mobiüs function 3.

2 For k1, k2 ∈ N, the Ramanujan Sum, c(k1, k2) = ∑
1≤q≤k1

e2πi q
k1

n, where the summation is taken over all integers q such

that gcd(k1, q) = 1 (for more details, refer to [32]).
3 The Mobiüs function, µ(n), on a natural number n = p

α1
1 p

α2
2 . . . pαr

r is defined as,

µ(n) =







1, if n = 1;

−1, if α1 = α2 = . . . = αr = 1;

0, otherwise.
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(i) Every non-zero eigenvalue of Xn, n > 1 is a divisor of φ(n).
(ii) Let p be the maximal square-free divisor of n. Then, λmin = µ(p)

φ(n)
φ(p) is a non-zero eigenvalue of

Xn, n > 1 of minimal absolute value and multiplicity φ(p).
(iii) Every eigenvalue of Xn, n > 1 is a multiple of λmin.
(iv) If n > 1 is odd, then λmin is the only non-zero eigenvalue of Xn with minimal absolute value.
(v) If n > 1 is even, then −λmin is also an eigenvalue of Xn with multiplicity φ(n).

Theorem 15 ( [48]).

(i) There is an eigenvalue −1 or 1 of Xn, if and only if n is square-free.
(ii) If n is square-free, then Xn has the eigenvalue µ(n) with multiplicity φ(n).

(iii) The unitary Cayley graph Xn has both eigenvalues 1 and −1 with multiplicity φ(n) if and only if n

is square-free and even.

Fascinated by the spectral properties of the unitary Cayley graphs and its close relation with

number theory, the authors defined a generalisation of the unitary Cayley graphs, called the

GCD-graphs, in which the set of all positive, proper divisors of an integer n > 1 is considered

as the symmetric subset, to define the adjacency condition. The formal definition of the graph is

given below.

Definition 3 ( [48]). The GCD-graph, denoted by Xn(D∗
n) is a graph with vertex set as the elements of

the ring Zn; 0, 1, . . . n − 1, and two vertices are adjacent if the gcd of their difference and n is a positive

proper divisor of n; that is, for all x, y ∈ V(Xn(D∗
n)), xy ∈ E(Xn(D∗

n)) when gcd(x − y, n) ∈ D∗
n, where

D∗
n is the set of all positive, proper divisors of the integer n > 1. An example of a GCD-graph is given in

Figure 2.

1

2

3 4

5

6

70

Figure 2. The GCD-graph X8(D∗
8 ).

Observe that the set D∗
n consists of only all the proper positive divisors because when one

is included as a divisor, the graph obtained shall be the complement of Xn, for certain values

of n. The analysis on the spectra of GCD-graphs in [51] proved that the GCD-graphs also have

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2023                   doi:10.20944/preprints202308.0090.v1

https://doi.org/10.20944/preprints202308.0090.v1


14 of 94

integral eigenvalues. On further exploration of the properties of these graphs that have integral

spectra, the authors came up with a slightly modified definition of the graphs based on this basic

definition of the GCD-graphs that was put forth by them in [48], to obtain multiple smaller graphs

which fall under this broad category with similar properties as follows.

Definition 4 ( [52]). For a positive integer n, let Dn be the set of all its divisors. Define the graph Gn(d),

where d ∈ Dn, with the vertex set as the elements of the ring Zn and two vertices x, y in the graph are

adjacent when the gcd(x − y, n) = d. The graph Gn(d) is extended by increasing the number of divisors

and modifying the adjacency condition of any two vertices x, y to be gcd(x − y, n) ∈ D, where D ⊆ Dn

and this graph is represented as Gn(D). These graphs are known as gcd-graphs.

Note that if |Dn|= k, then 2k−1 gcd-graphs Gn(D) are possible for any integer n,where the

graphs Xn and Xn(Dn) are also one among them. An illustration of some gcd-graphs emerging

from Z12, for the subsets D ⊂ Dn, apart from D = {1} and D = Dn is given in Figure 3.

0

1

2

3 4 5

6

7

8

91011

(a) The gcd-graph G12(2).

0

1

2

3 4 5

6

7

8

91011

(b) The gcd-graph G12({3, 4, 6}).

Figure 3. gcd-graphs of Z12.

This new generalised definition was simultaneously given in [51] in the process of

characterising integral circulant graphs and it was proved that a graph is an integral circulant

graph if and only if it can be realised as the graph Gn(D), for some D ⊆ Dn. It can be observed

that when the set of all proper divisors are considered, the gcd-graphs Gn will be the GCD-graph

defined in [48] and when D = {1}, Gn(1) = Xn.

Therefore, it can be seen that the unitary Cayley graphs can be realised as a special case of

GCD-graphs as well as the gcd-graphs from their definitions, and any study on gcd-graphs can be

considered to obtain results on the the unitary Cayley graphs. Also, based on the characterisation

of the integral circulant graphs as gcd-graphs and the fact Gn(1) = Xn, the results established for

the integral circulant graphs will also hold for the unitary Cayley graphs. The integral circulant

graphs or the graphs Gn(D) have a huge, growing literature, owing to its spectral properties that

have applications in fields like chemistry, quantum physics, radiology, etc (c.f. [50]).

As already seen, the unitary Cayley graph Xn is a special case of the integral circulant or

gcd-graphs and hence, all the properties that are investigated for the latter shall hold for Xn, but
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the bounds and results obtained for the unitary Cayley graphs shall be more specific and tight

than results obtained for these broader classes of graphs. Therefore, in this article, we present a

review of the study which aree specifically made on the Unitary Cayley graphs and the results

that were explicitly stated for the graph Xn, as an application or a corollary in the articles that

study the integral circulant graphs or gcd-graphs.

In [48], an open problem to determine the automorphism group of the unitary Cayley graphs

Xn, for n > 6 had been posted by the authors, which led to the investigation on the automorphisms

of Xn. Though the problem was not fully addressed, a necessary and sufficient condition for a

bijective mapping to possess the structure of an automorphism of the graph Xn was given in [53]

as follows.

Theorem 16. [53] Let n = p
α1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes, αi ∈ N, and r is

the number of distinct prime divisors of n. Then, a bijective mapping induces an automorphism of the graph

Xn if and only if it preserves congruence modulo pi for all i.

Apart from the above mentioned result that was obtained on the automorphism of Xn, a

characterisation of planar unitary Cayley graphs was obtained along with the crossing number

(The least number of edges that cross in a planar graph drawing.) of Xn for few values of n for

which the graph structure is a well-known graph class, using the existing results on the crossing

number of these graph classes. The traversal properties of Xn were also discussed in the article

along with which the edge chromatic number and the edge connectivity of the graph were also

determined as given below, where φ(n) denotes the Euler’s totient function.

Theorem 17. [53] The graph Xn is planar if and only if n ∈ {1, 2, 3, 4, 6}.

Theorem 18. [53] The graph Xn, n ≥ 3 is Eulerian as well as Hamiltonian and each such Xn can be

decomposed into
φ(n)

2 edge-disjoint Hamiltonian cycles.

Theorem 19. [53] The edge connectivity of the graph Xn is φ(n).

Theorem 20. [53] For the graph Xn, the edge chromatic number is φ(n) and φ(n) + 1, when n is even and

odd, respectively.

The property of the graph Xn having both its edge and vertex connectivity equal to its degree

of regularity and the graph being integral circulant, increases the application of the graphs in the

field of networks, especially in areas that require a stable and strong network. This increases the

significance of the study on the graph for various purposes and this also gives the researchers the

curiosity to investigate other properties of the graphs, and construct similar graphs. Extending

the study further, the authors studied the basic graph properties of the unitary Cayley graph of a

ring, which is obtained as a finite direct product of the rings Zn, for different values of n. This

extension gave rise to the idea of generalising the unitary Cayley graphs of Zn to any ring R, a

detailed review of which is given in Section 3.

The open problem to determine the automorphism group of Xn, put forth in [48] was solved

in [54] by obtaining the automorphism groups of Xn and their cardinality, for different values of

n, as a tool to generalise the automorphism groups of the integral circulant graphs. The results
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obtained are given below and it shows that the structure of the automorphism groups are highly

sophisticated as the value of n increases.

Theorem 21. [54] For n = pk, where p is a prime number and k ≥ 1, the size of the automorphism group

of Xn, |Aut(Xn)|= p! ((pk−1)! )p.

Theorem 22. [54] For n = p
α1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r, are distinct primes and αi ∈ N, the

size of the automorphism group of Xn, |Aut(Xn)|=
r

∏
i=1

pi! (( n
r

∏
i=1

pi

)! )

r
∏
i=1

pi!
.

The structure of the automorphism group of Xn was proved by partitioning the vertices of

Xn based on the residue modulo primes, which is similar to the residue representation introduced

in [43] and the permutations on these residue classes were considered to obtain automorphisms of

the graph, using the notion of modular arithmetic and the Chinese remainder theorem. According

to the construction of automorphisms of Xn in the proof of Theorem 22, it was concluded that the

automorphism group is isomorphic to the wreath product of the permutation group (refer to [55])

of the graphs of residue classes modulo r and the permutation groups of vertices in each class, as

given below.

Theorem 23. [54] For n = p
α1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and αi ∈ N, the

automorphism group of Xn, Aut(Xn) ∼= (Sp1
× Sp2 × . . . × Spr ) ≀ S n

r
, where Sk represents the group of

permutations on k elements and ≀ denotes the product of groups.

The same problem of determining the automorphism group of the unitary Cayley graph

was solved in [56,57], using different approaches. The study in [56] began with a motive to

investigate the automorphism group of Xn; but the authors on observing the symmetric pattern

of Xn in several aspects, extended the concept of unitary Cayley graphs to any ring R and the

automorphism groups of the unitary Cayley graphs defined on a ring R were investigated, which

on special case of R = Zn gave the automorphism group of Xn. The main idea of their algebraic

proof, where the dependence of the automorphisms on the underlying algebraic structure of

the rings concerned was emphasized, is different from the proof given in [54], which used a

number-theoretical approach. The authors of [57] investigated the automorphism group of the

rational circulant graphs; circulant graphs with a rational spectra, in which the integral circulant

graphs become a subclass, by developing a framework based on Schur rings (For more details,

refer to [58,59]). The approach is highly complex as it is built for all rational circulant graphs; but

it is claimed in [57] that the automorphism group of Xn could have been traced a few decades ago

if the framework of the approach presented in [57] was followed.

The results on the spectra of the unitary Cayley graphs obtained in [48] fascinated the

researchers to explore other parameters and properties of the unitary Cayley graph Xn that are

closely associated with its adjacency matrix and its eigenvalues. The first of such properties to be

investigated was the perfect state transfer in the unitary Cayley graphs. For a graph G with the

adjacency matrix A, H(t) is defined as the operator e(itA), called the transition operator. A perfect

state transfer between the vertices u and v is said to happen at time τ if the uv-entry of |H(τ)u,v|= 1.

This perfect state transfer is being used in several areas that deals with allocation and assignment
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factors, especially it has been efficiently applied to key distribution in commercial cryptosystems,

and in assignment of objects in quantum spin networks (see [50]). This notion was introduced to

circulant graphs in [60] and the perfect state transfer in the integral circulant graphs was studied

in [50]. Based on these studies, the class of unitary Cayley graphs that allow perfect state transfer

was characterised in [50] as follows.

Theorem 24. [50] The only unitary Cayley graphs that allow perfect state transfer are X2 and X4.

Following the study on perfect state transfer in the unitary Cayley graph Xn the properties

related to the energy of the graph, which is the sum of the absolute values of the eigenvalues of

the adjacency matrix of the graph was determined in [61] and [62] as follows.

Theorem 25. [61,62] For n = pt, where p is a prime and t ∈ N, the energy of Xn, E(Xn) = 2φ(n), where

φ(n) represents the Euler’s totient function.

Theorem 26. [61,62] For n = p
α1
1 pα2

2 pα3
3 . . . pαr

r and n′ = p1 p2 p3 . . . pr, where pi, 1 ≤ i ≤ r are distinct

primes and r 6= 1, the energy of Xn, E(Xn) = 2rφ(n), where φ(n) represents the Euler’s totient function.

Theorem 26 arises as a consequence of Theorem 25 along with the fact that for n =

p
α1
1 pα2

2 pα3
3 . . . pαr

r and n′ = p1 p2 p3 . . . pr, where pi, 1 ≤ i ≤ r are distinct primes and r 6= 1,

Xn
∼= X

p
α1
1
× X

p
α2
2
× . . . × Xpαr

r
. Based on the energy of the graph Xn obtained, the hyperenergetic

unitary Cayley graphs along with their complements were characterised in [61,62] as follows.

Note that a graph G of order n is called hyperenergetic if its energy, E(G) is greater than the energy

of the complete graph of order n; that is, E(G) > E(Kn) = 2(n − 1) (see [61]).

Theorem 27. [61,62] The graph Xn is hyperenergetic if and only if n has at least two prime factors greater

than 2 or at least three distinct prime factors.

Theorem 28. [61,62] The graph Xn is hyperenergetic if and only if n has at least two distinct prime factors

and n 6= 2p, where p is a prime number.

Both [61] and [62] discuss the energy and hyperenergercity of the graphs Xn and Xn and the

same results using similar proof techniques were obtained independently. In addition to these

results, the ratio E(Xn)
2(n−1) that measures the degree of hyperenergecity of Xn, which can be seen to

grow exponentially as the number of distinct prime divisors of n increases, was given in [62].

In the process of proving the above results, the nullity of the graph was discussed, which was

also independently proven in [63]. After the publication of [62], a comment on the article was

released, wherein a one line proof to determine the energy of the unitary Cayley graphs that was

determined in Theorem 25 and Theorem 26, using the notion of Ramanujan sums was given.

This was followed by a discussion on the eigenspace of the Unitary Cayley graphs in [64],

where a specific case in the class of graphs called the Hamming graphs were proved to be

isomorphic to the unitary Cayley graphs and using the results obtained on the spectra of these

unitary Cayley graphs, the eigenspace of Hamming graphs were determined. Note that for

non-negative integers k, r, s, the hamming graph HG(l1, l2, ...lr; s) is a graph which is constructed

based on the number of words formed by considering r out of a given k letters, which have a
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hamming distance s. In other words, given k letters, the kr possible words with r ≤ k letters are

the vertices of a hamming graph and two vertices are joined by an edge if their associated words

differ in exactly s positions (see [64]).

Theorem 29. [64] For n = p
α1
1 pα2

2 pα3
3 . . . pαr

r and n′ = p1 p2 p3 . . . pr, where pi, 1 ≤ i ≤ r are distinct

primes and r 6= 1, Xn
∼= HG(p1, . . . , pr; r).

A k-regular graph G is said to be a Ramanujan graph if and only if the second largest absolute

value of the eigenvalues of the adjacency matrix of G, λ2(G) ≥ 2
√

k − 1 (c.f. [65]). This idea of

realising a graph as a Ramanujan graph was explored in unitary Cayley graphs and its complement,

using the spectra of the graphs that were obtained in the previous literature and a complete

characterisation of the cases in which the unitary Cayley graph and its complement are Ramanujan

graphs was obtained in [65] and [66] respectively as follows.

Theorem 30. [65] The graph Xn is a Ramanujan graph if and only if n satisfies one of the following

conditions for some distinct odd primes p1 < p2 and for s ∈ N.

(i) n = 2s, for some s > 2;
(ii) n = p1;

(iii) n = 2s p, where p > 2s−3 + 1;
(iv) n = p2

1 , 2p2
1, 4p2

1;
(v) n = p1 p2 , 2p1 p2, where p − 1 < p2 ≤ 4p1 − 5;

(vi) n = 4p1 p2, where p − 1 < p2 ≤ 2p1 − 3.

Theorem 31. [66] For n ≥ 2, the graph Xn is a Ramanujan graph if and only if n has one of the following

forms.

(i) n is a prime power;
(ii) n = 2t1 3t2 , where 1 ≤ t1 ≤ 3 when t2 = 1, or t1 = 1, when t2 = 1, 2;

(iii) n = 10 or 30;
(iv) n = p1 p2, where p1 = 3, 5 and p2 = 5, 7.

Further investigation on some variants of energy, namely the distance energy, color energy,

minimum covering Gutman energy, the minimum edge dominating energy and the Seidal

Laplacian energy of the unitary Cayley graphs was conducted in [67–72] respectively. As already

known, energy of a graph is the sum of the absolute values of the eigenvalues of a matrix. Based

on the matrix defined, the corresponding spectra and the energies are computed. Therefore, the

distance energy is obtained from the distance matrix of the graph, which is a square matrix in

which the ij-th entry gives the shortest distance between the vertices vi and vj in the graph (see

[69]). The color energy of a graph G corresponds to the energy of the AL-matrix of G (c.f. [67,71]),

whose entries are based on a proper vertex coloring of the graph G, say c, such that

aLij
=







1, if vivj ∈ E(G) and c(vi) 6= c(vj);

−1, if vivj /∈ E(G) with c(vi) = c(vj);

0, if vi = vj or vivj /∈ E(G) with c(vi) 6= c(vj).
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A emphminimum covering set C ⊆ V(G) of a graph G is a subset of vertices such that each

edge of the graph is incident to at least one vertex in the subset, and the minimum number of

vertices in such a set is called the minimum covering number of the graph (c.f. [70]). A minimum

covering matrix MCC(G) of a graph G of order n is a n × n matrix defined based on the adjacency

of the vertices in a minimum covering set C such that the diagonal entries of the adjacency matrix

of the graph G is 1 if the corresponding vertex belongs to the minimum covering set considered

(see [73]). The Gutman matrix GM(G) of a graph G of order n is a square matrix of order n, whose

entries are 0 and didjdij, where di and dj are the degrees of the vertices vi and vj and dij is the

shortest distance between vi and vj; corresponding to the conditions if the vertices vi = vj and

vi 6= vj (c.f. [74]).

The minimum covering Gutman energy of a graph G is computed based on the minimum

covering Gutman matrix MCG(G) defined in [70], which as observed is defined as a combination

of the minimum covering matrix and Gutman matrix as follows.

mcgij =







1, if vivj ∈ E(G) and c(vi) 6= c(vj);

0, if i = j and vi /∈ C, where C is a minimum covering set;

didjdij, otherwise, where di and dj are the degrees of the vertices vi and vj

and dij is the shortest distance between vi and vj.

Similarly, the minimum edge dominating energy of a graph G is the sum of the absolute values

of eigenvalues of the minimum edge dominating matrix of G, which is a binary matrix of order

m × m, where m is the size of G in which the entries are based on the adjacency of the edges and

the minimum edge dominating set of the graph. A subset F ⊆ E(G) is an edge dominating set of a

graph G if every edge not in F is adjacent to at least one edge in F and an edge dominating set

with the least cardinality is called a minimum edge dominating set of the graph and cardinality is

the edge domination number of the graph (c.f. [29]).

The study on minimum covering Gutman energy of Xn involved the discussion of this energy

for unitary Cayley graph Xn, for the values of n for which Xn is a common graph class such as

complete graph, complete multipartite graph, etc. A similar situation was encountered on the

discussion of the minimum edge dominating energy of the unitary Cayley graphs in [68], except

for a few bounds that were deduced instead of the exact values.

The distance spectra along with the corresponding energy of the unitary Cayley graphs

was computed in [69], as a part of the study of the same on the integral circulant graphs and it

was proved that the integral circulant graphs, including Xn, have integral distance spectra. On

investigating the distance energies of both these graphs, a construction of infinite families of

distance equi-energetic graphs (graphs, possibly isomorphic, that have the same energy) emerged,

which were the first ones to be derived without using construction methods by taking graph

products nor iterated line graphs (defined in the later part of this section). The results on the

distance energy of Xn and the construction obtained in [69] are given below.

Theorem 32. [69] The distance energy of Xn,

DE(Xn) =

{

2(n − 1), if n is prime;

4(n − 2), if n = 2t, for some t ∈ N.
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Theorem 33. [69] Let n = p
α1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and αi ∈ N, be an

odd composite number and m = p1 p2 . . . pr be the maximal square-free divisor of n. The distance energy of

Xn,

DE(Xn) = 2

[

2n + φ(n)(2r−1 − 1) − m − 2 +
k

∏
i=1

(2 − pi)

]

,

where φ(n) is the Euler’s totient function.

Theorem 34. [69] Let n = p
α1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and αi ∈ N, be an

even number with odd prime divisor and m = p1 p2 . . . pr be the maximal square-free divisor of n. The

distance energy of Xn,

DE(Xn) =
9n

2
− 2m + 1 + φ(n)(2k+1 − 6) + |2φ(n) − 2 − n

2
|,

where φ(n) is the Euler’s totient function.

In Theorem 34, the value of |2φ(n) − 2 − n
2 | cannot be resolved, since it takes all positive, zero

and negative values and on specific n values, the solution of the problem relates to the still open

conjecture on the Euler’s totient function (refer to [75]), for which obvious solutions involve prime

Fermat numbers4.

Theorem 35. [69] Let n = p1 p2, where p1 and p2 are odd primes. The unitary Cayley graph Xn is

equi-energetic with the gcd-graph Gn(1, p1); that is, DE(Xn) = DE(Gn(1, p1)).

The color energy of the unitary Cayley graph and its complement was studied in [67,71].

The eigenvalues of the AL matrix defined with respect to the proper colorings of the graphs

were examined and the corresponding energy was obtained in terms of the chromatic number

of the graph and the Euler’s totient function, using the notion of Ramanujan Sums. A study on

a few other matrices of the unitary Cayley graphs along with their eigenvalues and energy was

conducted in [76], where a small-world network depending on the unitary Cayley graph was

proposed with an intent to decrease the delay and increase the reliability in data transfer and used

to create and analyse network communication.

The Seidal Laplacian energy of the unitary Cayley graph Xn was computed in [72] by

obtaining the eigenvalues of the Seidal Laplacian matrix SL(Xn) = S(Xn) − DS(Xn) of Xn, where

SL(Xn) is the Seidal Laplacian matrix of Xn, S(Xn) is the Seidal matrix of Xn and DS(Xn) is an

n × n diagonal matrix of Xn which has its diagonal entries n − 1 − 2deg(vi), 1 ≤ i ≤ n. The Seidal

matrix of a graph G is an n × n matrix with entries 1, -1 corresponding to whether the vertices

vivj ∈ E(G) or vivj /∈ E(G) or 0, otherwise (refer to [72]).

An algebra over a field is an algebraic structure consisting of a set together with the operations

of addition, multiplication and scalar multiplication by elements of a field that satisfies the axioms

of a vector space with a bilinear operator5; that is, an algebra over a field is a vector space equipped

4 A Fermat number is a positive integer of the form 22n
+ 1, where n is a non-negative integer (see [31]).

5 A bilinear operator is a function of two variables which is linear with respect to each of its variables.
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with a bilinear operator (c.f. [77]). For a positive integer n, the set of all n × n matrices over the

field of complex numbers, C forms an algebra Mn(C), with the usual matrix multiplication. As the

adjacency matrix of a graph A(G) is a well-known square matrix, the adjacency algebra of a graph

is defined as the subalgebra of Mn(C) which consists of all polynomials of A(G) with coefficients

from C, where a subalgebra is a subset of the algebra which is an algebra by itself under the same

bilinear operator (refer to [78]).

The adjacency algebra of the unitary Cayley graph Xn was investigated in [77]. Since every

element of the adjacency algebra of a graph is a linear combination of the powers of its adjacency

matrix, the results on the adjacency algebra of a graph was obtained using the powers of the

adjacency matrix. Therefore, using the existing results in on the adjacency matrix of the graph Xn,

the adjacency algebra of Xn was discussed in [77] and it was proved that the adjacency algebra

of unitary Cayley graphs is a coherent algebra; that is, it is a subalgebra of Mn(C) containing

I, J, where I is the identity matrix and J is the matrix with all its entries 1, which is closed under

Hadamard product6 and conjugate transposition.

For a graph G with an adjacency matrix A(G), its coherent closure, denoted by CC(G), is the

smallest coherent algebra containing A(G), and a graph G is said to be a pattern polynomial graph

if its adjacency algebra is its coherent closure. On proving that the unitary Cayley graphs have

a coherent adjacency algebra, the authors proved that every unitary Cayley graph is a pattern

polynomial graph and using this, certain properties of the unitary Cayley graphs were derived

based on the properties of pattern polynomial graphs, obtained in [79]. To prove that all unitary

Cayley graphs are pattern polynomial graphs, the following characterisations on the structure of

the graphs were obtained.

Theorem 36. [77] The graph Xn is strongly regular graph if and only if n is a prime power.

Recall that a k-regular graph G of order n is strongly regular with parameters (n, k, r, s) if any

two adjacent vertices have exactly rcommon neighbours and any two non-adjacent vertices have

exactly s common neighbours and a crown graph, Cr,r is a bipartite graph with vertex set such that

V(Cr,r) = V1 ∪ V2 and |V1|= |V2|= r, with V1 = {v1, v2, . . . , vr} and V2 = {u1, u2, . . . , ur} such that

viuj ∈ E(Cr,r) if and only if i 6= j.

Theorem 37. [77] The graph Xn is crown graph if and only if n = 2p, where p is an odd prime.

Appropriate representation of the circulant graphs on a Euclidean plane, unveils the rotational

symmetry of the graph. As known earlier, unitary Cayley graphs are integral circulant graphs

and therefore such a suitable representation or drawing called the unit circle drawing of the

unitary Cayley graphs were examined in [80]. The unit circle drawing of the graph Xn is nothing

but drawing the graph Xn such that the vertices are placed equi-distantly on a unit circle on the

complex plane C and the edges are drawn as line segments. This representation gives a hole like

structure in the middle of the graph, which is called the central hole or the geometric kernel of the

graph. Just like how the spectrum of a graph provides vital information on the graph, the size of

6 For any two square matrices M1 and M2 of order n, their Hardamard product, M1 ◦ M2 is also a n × n matrix such that
(m1 ◦ m2)ij = m1 ijm2 ij , 1 ≤ i, j ≤ n, where m1 ij and m2 ij are the entries of M1 and M2, respectively (c.f. [77]).
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the geometric kernel in the unit circle drawing of an integral circulant graph, which is measured

through the kernel radius also provides the arithmetic properties of the graph.

It was proven in [81] that the central hole in the unit circle drawing of any circulant graph on

n > 3 vertices is a regular n-gon. Therefore, only the size of the geometric kernel for Xn, which

is already known to be an n-gon had to be determined in [80], by computing the kernel radius,

given by the formula max{k : 1 ≤ k < n
2 , gcd(k, n) = 1}. Only integers less than n

2 are considered

because there shall be no central hole when the edge (k, k
2 ) exists in the unit circle drawing of a

graph. It was observed that the kernel radius of Xn is a strictly decreasing function in the range

(0, n
2 ].

Apart from this, computation of certain graph parameters of the unitary Cayley graph

were carried out in [82–89], where certain topological indices of the unitary Cayley graphs were

computed in [86–88] and few graph polynomials for the unitary Cayley graphs were determined

in [82], using the results that were given in [48], as graph polynomials are also graph invariants

that codes numerical information about the underlying graph (c.f [90]).

It was already seen that the unitary Cayley graphs are highly reliable networks and can be

used in modeling situations which require stable networks. To assert this and to study the degree

of reliability of these networks, few vulnerability parameters which measures the vulnerability

of a graph were computed for the unitary Cayley graphs in [84] and this study on computing

vulnerability parameters paved way to examine the parameters related to graph covering in [89]

and [91].

Graph covering problem is one of the most classical topics in graph theory, where the

minimum number of the entities of a graph, like vertices, edges, etc. with a particular property

having a given graph as their union is determined. One such covering parameter is the tree

covering number, which is defined as the minimum cardinality among all tree covers of the graph,

where a family of mutually edge disjoint trees in a graph is called a tree cover of the graph if

each edge is an edge of a tree in the family. This tree covering number was determined for the

unitary Cayley graph Xn and its complement Xn in [89], from which the Nordhaus-Gaddum type

inequalities; that is, bounds on the sum and the product of the invariant for a graph and the its

complement, for the tree covering number were obtained. The exact value of the tree covering

number of Xn was computed as given in Theorem 38, whereas for the complement Xn the bounds

according to different values of n were obtained. Based on these bounds, the Nordhaus-Gaddum

type inequalities were also obtained for different cases of n depending on its prime factorisation.

Theorem 38. [89] The tree covering number of a unitary Cayley graph Xn is
φ(n)

2 + 1, where φ(n) is the

Euler’s totient function.

The other aspect related to covering that was discussed for the unitary Cayley graphs in [91]

was the property of the well-coveredness of a graph. A graph G is said to be well-covered if all its

maximal independent sets are of the same size. In [91], the well-coveredness of the graphs Xn

and Xn, along with its vertex decomposability were examined and the condition under which

the graphs are well-covered and vertex decomposable (refer to [92] for more details on vertex

decomposable graphs) were given. The number of walks between any pair of two vertices in

the unitary Cayley graphs was enumerated in [83] and as an application of this result, it was

shown that there exists a bijection between walks in Xn and the ordered sums of units in Zn, using
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which the number of representations of a fixed residue class mod n as the sum of k units in Zn

was determined.

A function which is defined on the set of positive integers to a subset of the set of complex

numbers is an arithmetic function. An arithmetic function h is multiplicative, if it is not identically

zero, and for any r, s ∈ N, h(rs) = h(r)h(s) whenever gcd(r, s) = 1. For each non-negative integer r

and prime p, the r-th Schemmel’s totient function STr is a multiplicative arithmetic function that

satisfies

STr(pα) =

{

pα−1(p − r), if p ≥ r;

0, otherwise,

where α is a positive integer. From the name Schemmel’s totient function, it can be seen that

this function introduced by Schemmel, is a generalisation of the Euler’s totient function φ(n) (c.f.

[93]). It can be seen that ST0(n) = n and ST1(n) = φ(n), for all integers n. Since most of the graph

invariants of the unitary Cayley graph Xn are computed and expressed in terms of φ(n) and STr(n)

being its generalisation, it opened an avenue to check the possibility of expressing the parameters

in terms of STr(n) and in [94], a simple formula for the number of cliques of any order in the

unitary Cayley graph Xn was obtained as follows.

Theorem 39. [94] For a given integer k, the number of cliques of order k in the unitary Cayley graph Xn

is given by the expression
k

∏
i=1

STi−1(n)
k , where Si−1(n) is the Schemmel totient function.

This formula naturally gives the number of triangles in the graph Xn in terms of the

Schemmel totient function as ST0(n)
1

ST1(n)
2

ST2(n)
3 , which is more generalised and simple than the

same expression which was computed independently in [34,41,42,48].

The k-th power G(k) of a graph G is a graph whose vertex set is the same as the vertex set of G

and there is an edge between two vertices in the graph G(k) if and only if there is a path of length

at most k between them in G. The k-th power of the unitary Cayley graphs were examined in

[85], where the energies of these graphs were determined and all the powers of unitary Cayley

graphs that are Ramanujan graphs were classified. Note that in [85], the k-th powers of a unitary

Cayley graph is addressed as the the distance powers of the graph. Using the results obtained on

the energies of distance powers of unitary Cayley graphs, infinitely many pairs of non-cospectral

equi-energetic graphs were constructed and all the hyperenergetic distance powers of unitary

Cayley graph Xn were characterised. It can be noticed that the k-th power of any graph G can be

defined for the values 1 ≤ k ≤ diam(G) and diam(Xn) ≤ 3. Therefore, the investigation is limited

to the unitary Cayley graphs that have diameter 3, in which case there exists only the value k = 2

for which the discussion of the k-th power of the graph Xn is non-trivial.

Apart from Cayley graphs, the power graphs of groups have a growing literature, giving

rise to several survey papers (c.f.[2,95–97]). Note that the power graph of a finite group is a graph

with the vertex set as the elements of the group, and two vertices are adjacent if one is a power

of the other and are not to be confused with the k-th power of a graph, as both the graphs are

referred to as the power graphs in the literature. Owing to the huge literature on power graphs

of finite groups, an open problem to explore the relation between the power graphs and Cayley

graphs was put forth in [95]. This problem was addressed in [98] and it was shown that, for

certain values of n, the vertex deleted subgraphs of power graphs of Zn are spanning subgraphs
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or the complement of the vertex deleted subgraphs of certain unitary Cayley graphs. Using these

relations, the relation between the energy of power graphs and Cayley graphs were also obtained

in [98]. The following theorem gives a relation between the power graph P(Zn) and unitary Cayley

graph Xn of Zn, for some values of n.

Theorem 40 ( [98]).

(i) For any prime p, P(Zp) ∼= Xp
∼= Kp.

(ii) If n = p
α1
1 , for a prime p1 and α1 > 1, Xn is a regular spanning subgraph of P(Zn).

(iii) When n = p
α1
1 pα2

2 , where p1, p2 are distinct primes, and α1, α2 are positive integers, P∗(Zn) is a

spanning subgraph of X∗
n, where P∗(Zn) is the vertex deleted subgraph, P(Zn) − {Z∗

n ∪ 0} and

X∗
n is the vertex deleted subgraph, X(Zn) − {Z∗

n ∪ 0}. The graphs X∗
n
∼= P∗(Zn) if and only if

α1 = α2 = 1.

Recall that the study on unitary Cayley graphs began with the investigation of the edge

coloring of the graph, in order to obtain a total multicolored graph. This motivated to study

different colorings of the graph and to investigate the related parameters and properties. The total

coloring and the strong edge coloring of the unitary Cayley graphs were studied in [99–101]. A

total coloring of a graph G is a proper coloring on both the edges and vertices such that no two

adjacent entities (both vertices and edges) are assigned the same color and the total chromatic

number is the minimum number of colors required in the total coloring of the graph (see [101]).

The total coloring conjecture given in [102] states that the total chromatic number of a graph G

is at most δ(G) + 2, where δ(G) is the maximum degree of G and this was proved for the unitary

Cayley graphs in [101], as a part of the investigation on the total coloring of some regular graphs.

Also, the total chromatic number of the unitary Cayley graphs was determined along with which

a pattern to assign colors to obtain an optimal total coloring of unitary Cayley graphs for some

values of n was given in [99].

A strong edge coloring of a graph G is a proper edge coloring of G such that every color

class induces a matching and the minimum number of colors required is the strong chromatic

index. In [100], the strong chromatic index of all unitary Cayley graphs was determined and the

coloring technique revealed the underlying product structure from which the unitary Cayley

graphs emerge.

Following the notion of coloring, domination in unitary Cayley graphs were investigated in

[103–106]. In [94], the domination number, upper domination number and the total domination

number (refer to [29]) of the unitary Cayley graphs were investigated based on the structural

property of the unitary Cayley graph Xn to be realised as a direct product of its factor graphs,

that are complete. The bounds for these domination parameters were obtained in terms of an

arithmetic function called the Jacobsthal function g(n), that denotes the smallest positive integer

r such that every set of r consecutive integers contains an element that is relatively prime to n

(see [107]). By the definition of g(n) and Xn, it can be deduced that the set {0, 1, . . . , g(n) − 1} is

a dominating set as well as a total dominating set of Xn, the cardinality of which gives a tight

bound on the total domination number and the domination number of Xn. It was proved that the

domination number of Xn necessarily need not be equal to g(n) by identifying the cases when the

equality γ(Xn) = g(n) does not hold. Also, the rate at which the tightness of the bound decreases

as the n value increases was also discussed in [104], as given below.
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Theorem 41. [104] For each positive integer j, there is an integer n with more than j distinct prime factors

such that γ(Xn) ≤ γt(Xn) ≤ g(n), where γ(Xn), γt(Xn) and g(n) denote the domination number of Xn,

total domination number of Xn and the Jacobsthal’s function.

Theorem 42. [104] If n = p
α1
1 pα2

2 pα3
3 . . . pαr

r is an integer with a square-free canonical representation

(αi < 2, for all 1 ≤ i ≤ r), having less than 3 distinct prime, then the domination number of Xn is at most

4.

Theorem 43. [104] Let n = p
α1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes and αi ∈ N. If

r ≤ 3 and αj ≥ 2 for some 1 ≤ j ≤ r, then the domination number of Xn is at least
p1

p1−1 .

Theorem 44. [104] If the number of distinct prime factors of n is at most 3 such that n is not square-free,

then the domination number of Xn is g(n), where g(n) denotes the Jacobsthal’s function.

The proof of Theorem 38 and Theorem 43 establishes that for infinitely many n, the

domination number of Xn is strictly less than the Jacobsthal function evaluated at n and this

gives rise to a tighter bound on the total domination number (For definition, refer to Section 4) of

Xn, γt(Xn); γt(Xn) ≤ g(n), whenever n has at most three distinct prime factors. These results also

affirm the fact that as the number of prime factors of n increases, the domination number as well

as the total domination number of Xn shall never be equal to the Jacobsthal’s function g(n), by

showing that there exists an integer n with arbitrarily many distinct prime factors such that the

bound γ(Xn) ≤ γt(Xn) < g(n) holds.

Also, the possibility of the value g(n) − γ(Xn) being arbitrarily large was not explored in the

article, owing to which the open problems to determine the existence of integers n with arbitrarily

large number of distinct prime factors such that γ(Xn) ≤ g(n) − 2 and to find a single integer n

such that γt(Xn) ≤ g(n) − 2 were posted. Apart from this, it was also conjectured that the upper

domination number of Xn is n
p1

, where p1 is the smallest prime factor of n and the conjecture was

proved for certain values of n, based on their number theoretical properties. The approach in

[103] to determine the domination parameters of the unitary Cayley graphs were built in order

to investigate the solutions of the two open problems posed in [104]. These open problems were

solved in [103] by constructing integers n with arbitrarily many distinct prime factors such that

the unitary Cayley graph Xn contains a dominating cycle of size g(n) − 2; thus answering both

questions, because a dominating cycle is a total dominating set.

Recall that a dominating set which is independent is called an independent dominating set and

the minimum cardinality of such a set is called the independent domination number. Also, a set

S ⊆ V(G) is called irredundant if for each v ∈ S, either v is isolated in S or v has a neighbor u /∈ S

such that u is not adjacent to any vertex of S−{v} and the minimum size of a maximal irredundant

set is called the irredundance number of the graph G (c.f. [29]). The bounds on other domination

parameters like the irredundance number, (ir(Xn)), independent domination number(i(Xn)), etc.

of the unitary Cayley graphs were determined in [103], as a special case of these bounds obtained

for the direct products of complete graphs. This result gave raise to the construction of some

infinite families of integers n, where ir(Xn) = γ(Xn) = i(Xn) as given below.

Theorem 45. For a unitary Cayley graph Xn, ir(Xn) = i(Xn), when n = p, n = 2p, or n = 3p, for some

prime p, or n is square-free with exactly three prime divisors.
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The problem of finding other square-free integers n for which the equality is achieved in the

lower portion of the domination chain (see [29]) was posed along with two other open problems

similar to the ones posed in [104], to check the existence of infinitely many integers n such that

γc(Xn) > g(n); if so, to check if such integers can have arbitrarily many distinct prime factors and

to check if there exists a single integer n such that γt(Xn) ≥ g(n) − 3, where γc(Xn) and γt(Xn) are

the connected and total domination number of Xn, respectively. Note that the connected domination

number of a graph is the cardinality of a minimum dominating set whose induced subgraph is

connected (refer to [29]).

The study on the domination parameters of the unitary Cayley graph Xn was extended in

[106], where the open problem to find an integer n such that γt(Xn) ≥ g(n) − 3 was solved, using

the updated results on the nature of Jacobsthal’s function in the literature. The problem was

solved for not just γt(Xn) ≥ g(n) − 3, but the existence of n with arbitrarily many prime factors

that satisfy γt(Xn) ≥ g(n) − 16 was also proved in [106]. In addition to this, new lower bounds

on the domination numbers of direct products of complete graphs were presented in [106], from

which new asymptotic lower bounds on the domination number of Xn, when n is a product of

distinct primes, were obtained by adopting the proof techniques used in [104].

Two variants of domination namely, the closed domination and the inverse closed domination

of the unitary Cayley graphs were discussed in [105], by determining the corresponding

domination parameters. Given a graph G, choose v1 ∈ V(G) and put S1 = {v1}. If

NG[S1] 6= V(G), choose v1 ∈ V(G) − S1 and put S2 = {v1, v2}. Where possible, for ≥ 3, choose

vk ∈ V(G) − NG[Sk−1] and put Sk = {v1, v2, . . . , vk}. At some point, we obtain a positive integer k

such that NG[Sk] = V(G). A dominating set obtained in the given above method is called a closed

dominating set and the smallest cardinality of a closed dominating set is called the closed domination

number of G (c.f. [108]). The dominating set S ⊆ V(G) − D is called an inverse dominating set with

respect to D. A closed dominating set S ⊆ V(G) − C is called an inverse closed dominating set with

respect to C and the minimum cardinality of an inverse closed dominating set is the inverse closed

domination number of G (c.f. [109]). In the study, the closed and inverse closed domination numbers

of the unitary Cayley graphs whose structures are standard graph classes like complete graphs,

complete r-partite graphs, etc. were computed based on the existing results for those graph classes

and hence, it does not contribute to any dynamic results.

On reviewing the literature on the domination of unitary Cayley graphs, it was seen that the

unitary Cayley graphs were independently investigated under the name Euler totient Cayley graph

and a review of the studies conducted on the graphs Xn under the name Euler totient Cayley

graphs is given in the following subsection.

2.1. Euler Totient Cayley Graphs

Let n = p
α1
1 pα2

2 pα3
3 . . . pαr

r , where pi, 1 ≤ i ≤ r are distinct primes, αi ∈ N and r is the number

of prime divisors of n. The arithmetic graph Vn is defined as the graph whose vertex set consists

of the divisors of n and two vertices are adjacent in the graph if and only if their gcd is a prime

divisor of n. In other words, two vertices u, v ∈ E(Vn), when gcd(u, v) = pi, 1 ≤ i ≤ r. An

illustration of an arithmetic graph is given in Figure 4.
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Figure 4. The arithmetic graph V12.

The Euler totient Cayley graphs were introduced in [110] as a combination of arithmetic graphs

and Cayley graphs. As it was a parallel, independent study on the same graph with a different

name, various results are repeated in the literature; but the study on the Euler totient Cayley

graphs were mainly concentrated on the computation of different domination parameters of the

graph. The Euler totient Cayley graphs were introduced in [110] and the basic properties of

the graph was studied and the values of n for which the graph is a standard graph class were

classified and characterised. Using this study, various types of domination were discussed and

the corresponding domination parameters were determined in [111–118].

The results on the domination number of the Euler totient Cayley graph proved in [116] was

the motivation to investigate the tightness of the bounds of the domination number in terms of the

Jacobsthal’s function as given in [103,104]. Also, on computing the domination parameters of Xn

in [103], an error in the bounds obtained in [113] for the independent domination number of the

graph was stated and rectified. The independent domination number and the isolate domination

number of the Euler totient Cayley graphs were discussed again in [119], in which the bounds

obtained in [113] were improved for a few cases and a few counterexamples to disprove the results

in [119] were also obtained. Note that a set dominating set of a graph G whose induced subgraph

has an isolate vertex is called an isolate dominating set of G and the minimum cardinality of such a

set is the isolate domination number of the graph (c.f. [120]).

Apart from this, the energy of the Euler totient Cayley graphs was studied in [119,121], which

was a prefatory study when compared to the study on the energy of the unitary Cayley graphs in

[61,62]. Also, certain functions defined on the vertex set of a graph like independent function and

basic minimal dominating functions (For more details, see Subsection 6.5.2) were discussed for

the Euler totient Cayley graphs in [122,123], and the structure and enumeration of cycles in the

Euler totient Cayley graphs was discussed in [118,124]. Note that a function f : V → [0, 1] is an

independent function if for every vertex v with f (v) > 0, ∑
u∈N(v)

f (u) = 1, where N(v) is the set of all

vertices adjacent to v (see [123]).
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As the Euler totient Cayley graphs were introduced relating the arithmetic graphs, different

domination numbers that were determined for the Euler totient Cayley graphs were also computed

for the different graph products of Euler totient Cayley graphs with the arithmetic graphs in

[125–129]. This includes the lexicographic product, Cartesian product, direct product and the

strong product of the graphs concerned, where the definition of different graph products studied

are given as follows.

Definition 5 ( [130]). Let G1 and G2 be two simple graphs with vertex sets V(G1) and V(G2) respectively.

The lexicographic product G1[G2] of G1 and G2 is a graph with V(G1[G2]) = V(G1) × V(G2) and two

vertices (v1, u1) and (v2, u2) are adjacent in G1[G2] if either v1 is adjacent to v2 in G1 or u1 is adjacent to

u2 in G2.

Definition 6 ([130]). For two graphs G1 and G2 with vertex sets V(G1) and V(G2), and edge sets E(G1)

and E(G2), the direct product of G1 and G2, denoted by G1 × G2, is a graph with V(G1 × G2) =

V(G1) × V(G2) and two vertices (v1, u1) and (v2, u2) are adjacent in G1 × G2 if both v1v2 ∈ E(G1) and

u1u2 ∈ G2.

Definition 7 ([130]). Let G1 and G2 be two graphs with vertex sets V(G1) and V(G2) and edge sets

E(G1) and E(G2). The Cartesian product of G1 and G2, denoted by G1�G2, is a graph with the vertex

set V(G1�G2) = V(G1) × V(G2) and two vertices (v1, u1) and (v2, u2) are adjacent in G1�G2 if either

u1 = u2 and u1u2 ∈ E(G1) or v1 = v2 and u1u2 ∈ G2.

Definition 8 ( [130]). Let G1 and G2 be two simple graphs with vertex sets V(G1) and V(G2) respectively.

The strong product G1 ⊠G2 of G1 and G2 is a graph with V(G1 ⊠G2) = V(G1)×V(G2) and two vertices

(v1, u1) and (v2, u2) are adjacent in G1 ⊠ G2 if either

• u1 = u2 and v1 is adjacent to v2 in G1 or
• v1 = v2 and v1 is adjacent to v2 in G2 or
• v1v2 ∈ E(G1) and u1u2 ∈ E(G2).

The study in [127,131] focus on the computation of the domination parameters of the

Cartesian product of Xn�Vn, and in [125,126,129,132] the domination parameters in the direct

product of Xn and Vn are studied. The domination parameters in the lexicographic product of

Xn and Vn was discussed in [128,133–135] and the matching domination number; the minimum

cardinality of a dominating set that induces a matching in a graph, of the strong product of the

graphs Xn and Vn was determined in [136].

The different products of the arithmetic graph with the Euler totient Cayley graphs give rise

to various graphs with different structural properties, as per the number theoretic properties of

the values of n. Based on this, the parameters were computed in multiple cases, where it can be

observed the results are mainly obtained for the structure of graph products that are standard

graph classes and this makes the study a secondary one. Also, it can be seen that the product

structures are complex as the value of n increases and the number of prime factors increase.

Therefore, this sets a challenge in studying many other structural parameters, despite the pattern

and symmetry of the factor graph.
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2.2. Signed Graphs Based on the Unitary Cayley Graphs

A signed graph or a sigraph, S = (G, σ) is a graph obtained from G, in which every edge is

assigned either a positive or a negative sign by a function σ : E(G) → {+,−}. If the signs assigned

to the edges depend on some property, the graph is called an induced sign graph. It is very natural

to extend the theory of signed graphs into the algebraic graphs by assigning signs to the edges

of algebraic graphs and the study on such signed algebraic graphs (algebraic signed graphs) are

found to be of much interest (see [137,138]).

One such signed algebraic graph is the signed unitary Cayley graph. As the assignment of

signs can be arbitrary or it can depend on any property, there are possibilities for generating

several variations of signed graphs from a single algebraic graph. Depending on how the signs

are assigned to the edges of the graph Xn, there are four variations of the signed graphs that have

emerged from the unitary Cayley graphs, until now, and the definitions of these graphs are given

below, following which the illustration of each of them is given in Figure 5. Note that the dashed

edges in the figures represent the negative edges and the other edges are positively signed.

Definition 9 ( [139] ). The unitary Cayley join signed graph, denoted by S∨
n = (Xn, σ∨), is a signed

graph whose underlying graph is the unitary Cayley graph Xn, n ∈ N and the sign of an edge vivj ∈ E(S∨
n )

is assigned by the function σ∨ : E(Xn) → {+,−} as follows. For an edge vivj in Xn,

σ∨(vivj)

{

+, if vi ∈ Z∗
n or vj ∈ Z∗

n;

−, otherwise.

Definition 10 ([139]). The negation of the unitary Cayley join signed graph, denoted by S∨
n =

(Xn, σ∨), is a signed graph whose underlying graph is the unitary Cayley graph Xn, n ∈ N and the sign of

an edge vivj ∈ E(S∨
n ) is assigned by the function σ∨ : E(Xn) → {+,−} as follows. For an edge vivj in Xn,

σ∨
{

+, if both vi /∈ Z∗
n and vj /∈ Z∗

n;

−, otherwise.

Definition 11 ([139]). The unitary Cayley meet signed graph, denoted by S∧
n = (Xn, σ∧), is a signed

graph whose underlying graph is the unitary Cayley graph Xn, n ∈ N and the sign of an edge vivj ∈ E(S∧
n )

is assigned by the function σ∧ : E(Xn) → {+,−} as follows. For an edge vivj in Xn,

σ∧(vivj)

{

+, if both vi ∈ Z∗
n and vj ∈ Z∗

n;

−, otherwise.

Definition 12 ([139]). The unitary Cayley ring signed graph, denoted by S⊕
n = (Xn, σ⊕), is a signed

graph whose underlying graph is the unitary Cayley graph Xn, n ∈ N and the sign of an edge vivj ∈ E(S⊕
n )

is assigned by the function σ⊕ : E(Xn) → {+,−} as follows. For an edge vivj in Xn,

σ⊕(vivj)

{

+, if either vi ∈ Z∗
n or vj ∈ Z∗

n;

−, otherwise.
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(a) The unitary Cayley join signed graph S∨
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(b) The negation of unitary Cayley join signed

graph S∨
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(c) The unitary Cayley meet signed graph S∧
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(d) The unitary Cayley ring signed graph S⊕
6 .

Figure 5. The signed unitary Cayley graphs of X6.

One of the main properties of a signed graph is its balance and consistence. A signed graph

is said to be balanced if every cycle in the graph has an even number of negative edges. A marked

sign graph of a graph G is an ordered pair Sµ = (S, µ), where S = (G, σ) is a signed graph and

the function µ : V(S) → {+,−} is called a marking of the signed graph S. A cycle in Sµ is said

to be consistent if it contains an even number of negative vertices and a sign graph S is said to

be consistent if every cycle in it is consistent (see [140]). The unique marking µσ induced by the

sign function σ : E(G) → {+,−} such that for every vertex v ∈ V(S), µσ(v) = ∏
e∈Ev

σ(e), where

Ev is the set of all edges incident with v in S, is called the canonical marking and a cycle in S is

said to be canonically consistent if it contains an even number of negative vertices and the given

sigraph is said be canonically consistent if every cycle in it is canonically consistent. A sigraph

S is sign-compatible if there exists a marking of its vertices such that the end vertices of every

negative edge receives a negative marking and no positive edge in S has both of its ends assigned

a negative sign by the marking, otherwise the graph is sign-incompatible (see [140]).

The above mentioned four variations of the signed unitary Cayley graphs were examined in

[139,141–143], where the properties of the unitary Cayley join signed graph and its negation were

investigated in [142], the unitary Cayley ring signed graph was investigated in [141], the unitary

Cayley meet signed graph was explored in [139,143]. In [142], a characterisation of the balanced

unitary Cayley join signed graphs and canonically consistent unitary Cayley join signed graphs

S∨
n , where n has at most two distinct odd prime factors were obtained as follows.

Theorem 46. [142] The unitary join Cayley signed graph S∨
n is balanced if and only if either n is even or

if n is odd and it does not have more than one distinct prime factors.

Theorem 47. [142] The negation of a unitary join Cayley sigraph S∨
n is balanced if and only if n is even.
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Theorem 48. [142] The unitary join Cayley sigraph S∨
n , where n has at most two distinct odd prime

factors is canonically consistent if and only if n is odd, 2, 6 or a multiple of 4.

The unitary Cayley ring signed graphs, which are closely associated with the unitary Cayley

join signed graphs were examined in [141]. It can be seen that an edge in unitary Cayley join

signed graph is positively signed when at least one of its end vertex is a unit of the ring; that is,

either one or both the end vertices can be units for an edge to be positive; whereas, an edge in

the unitary Cayley ring signed graph is positively signed only when exactly one of its end vertex

is a unit of the ring. Therefore, the difference and the relation between the unitary join Cayley

signed graph, the unitary ring Cayley signed graph and the unitary Cayley meet signed graph

was given in [141] and the conditions under which they shall be isomorphic were obtained as

given in Theorem 49 and Theorem 50.

Theorem 49. [141] For a unitary Cayley graph Xn, the unitary Cayley join sigraph and unitary Cayley

ring sigraph are isomorphic if and only if n is even.

Theorem 50. [141] For a unitary Cayley graph Xn, the unitary Cayley join sigraph can never be

isomorphic to the unitary Cayley meet sigraph.

Along with the above mentioned characterisations of balanced and canonically consistent

unitary Cayley ring signed graphs, the characterisations of clusterable and sign-compatible unitary

Cayley ring signed graphs were also obtained in [141], as given in Theorem 51 and Theorem 52,

based on the results on the property of balance. A signed graph is said to be clusterable if its vertex

set can be partitioned into pairwise disjoint subsets, called clusters, such that every negative edge

joins vertices in different clusters and every positive edge joins vertices in the same cluster.

Theorem 51. [141] For unitary Cayley graph Xn, the unitary Cayley ring sigraph is balanced if and only

if n is even and is clusterable if and only if the graph is balanced.

Theorem 52. [142] The unitary Cayley ring signed graph S∨
n is sign-compatible if and only if either n is

even or if n = pt, where p is an odd prime and t ∈ N.

The unitary Cayley meet signed graphs in which an edge is positively signed only when both

of its end vertices are units was investigated in [139,143], where the graph was characterised based

on the similar properties of balance, canonical consistency, sign-compatibility and clusterability as

given below.

Theorem 53. [139,143] For unitary Cayley graph Xn, the unitary Cayley meet sigraph is balanced if and

only if n is even or n is a power of an odd prime.

Theorem 54. [139,143] The unitary meet Cayley sigraph S∧
n , where n has two distinct odd prime factors,

is canonically consistent if and only if n is even.

Theorem 55. [139,143] For unitary Cayley graph Xn, the unitary Cayley meet sigraph is always

clusterable.
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Theorem 56. [139,143] For unitary Cayley graph Xn, the unitary Cayley meet sigraph is sign-compatible

if and only if n is even.

Along with the significant characterisations on the properties of balance, clusterability, etc. of

the four different signed graphs defined from the unitary Cayley graphs, a few cursory studies on

certain derived signed graphs from the signed graphs corresponding to each of the definitions of

the signed graphs were also done in [139,141–143], which included the discussions on different

variations of the line signed graphs, as the canonical marking serve as the signs of the edges in the

line signed graphs and the property of canonical consistency of the signed graph can be used to

investigate the properties like balance, clusterability, etc. of the line signed graphs.

3. Unitary Cayley Graph of a Ring

The definition of the unitary Cayley graph Xn of the ring Zn, naturally fostered an extension

of the definition to any associative ring R, in order to explore the properties of the ring and to

obtain similar graphs to that of Xn with the same properties. It can be seen that all investigations

on the unitary Cayley graphs of rings are inspired from the investigations of the same concepts

on Xn and a particular case of the study or the results obtained on the unitary Cayley graph of a

ring R produces the existing results on the graph Xn, which can be seen as a factor of verification

of the obtained results on the unitary Cayley graph of any ring, as well as a validation of the

existing results on the graphs Xn. This definition of the unitary Cayley graph for a ring R, which is

mentioned below was first put forth in [144]. Following the definition, an illustration of a unitary

Cayley graph of a ring is given in Figure 6.

Definition 13. [144] Let R be a ring and R∗ be the group of units in R. The unitary Cayley graph,

denoted by G(R) = Cay(R, R∗), is a graph with the vertex set as the elements of the ring and

any distinct two vertices u and v are adjacent in the graph if their difference is a unit; that is, for

u, v ∈ V(G(R)), uv ∈ E(G(R)) when u − v ∈ R∗.

00
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131415

Figure 6. The unitary Cayley graph of Z2 ×Z6.
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Before the introduction of the graph as the unitary Cayley graphs in [15], a graph that was

constructed using the property of the elements of an Artinian ring to be expressed as the sum of

two units under certain conditions had the same definition in [144], where a short introductory

study on the graph was done to understand the nature of the graph. The two main results

obtained in the study was that, for an Artinian ring R, the number of connected components

of the constructed graph G(R) is always a power of 2 and is Hamiltonian. Also, to answer the

question of the existence of algebraic graphs possessing certain properties that have their clique

and chromatic numbers equal, a graph construction on the Artinian rings was proposed in [145]

using the same notion; that is, the nature of the elements to be expressed as the sum of units,

which later emerged as the formal definition unitary Cayley graphs of rings in [15].

As we restrict our study to finite graphs, the rings considered shall be taken as finite rings,

unless mentioned. In [43], the unitary Cayley graph of a ring was defined with a motive to extend

a few results of Xn to the unitary Cayley graph of any ring R, where the result on the number of

induced cycles in the graph Xn that was enumerated was extended to the graph G(R), for some

specific rings. To obtain this extension, the rings which were isomorphic to the direct product of

local rings were considered first and it was proved that if R ∼= R1 × R2 × . . . × Rt, where each Ri,

1 ≤ i ≤ t is a local ring with Mi as their maximal ideal, called the local factors of R, then G(R) is a

direct product of complete ki-partite graphs, for some ki. As it was also proved in [43] that the

result obtained on the length of the longest induced cycle in Xn holds for the direct product of

complete ki-partite graphs, for some ki (which need not be necessarily finite), the longest induced

cycles in G(R), for a ring R which is isomorphic to the direct product of the local rings were

investigated in [43].

To prove the structure of the graph G(R) as the direct product of complete ki-partite graphs

when R is the direct product of local rings, the graph G(Ri) for each local ring Ri was first obtained

as a complete ki-partite graph, where ki = | Ri
Mi

|, by partitioning the vertex set of the graph into ki

residue classes modulo. In this partition, two vertices, say u, v ∈ V(G(Ri)), 1 ≤ i ≤ t belong to the

same residue class modulo ki, only when u − v ∈ Mi and hence u − v /∈ R∗. This implies that two

vertices u, v ∈ V(G(Ri)) belong to different partite sets, only when they are adjacent and hence,

their difference is a unit, according to the definition of the graph. This partition gives a complete

ki partition for the unitary Cayley graph of each of the local rings, such that the partite sets are the

cosets of Mi in the additive group R. Following this, the graph G(R) was proved to be isomorphic

to the direct product G(R1) × G(R2) × . . . × G(Rt), based on the similar argument. As a corollary

of this result, the same direct product structure of the unitary Cayley graphs of a Dedekind ring;

that is, the quotient ring of a Dedekind domain, was also discussed, as the Dedekind rings are

local rings.

In algebraic graph theory, realisation of an algebraic structure through the structure of the

graph defined on the corresponding algebraic structure is a fundamental problem considered for

any new algebraic graph defined. That is, to investigate the relation between the isomorphism

of the algebraic structure and the corresponding graphs defined, in order to understand the

properties of the algebraic structure that induces the properties of the graph. This problem of

realising rings through the graph G(R) was addressed in [146], by proving that the unitary Cayley

graphs of rings are isomorphic when the corresponding rings on which they are defined are

isomorphic, with respect to certain conditions on the structure of the ring.
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A ring R1 is said to be a determined by the unitary Cayley graph G(R1) if R2 is also a ring

such that G(R1) ∼= G(R2) implies R1
∼= R2. The Jacobson radical of a ring R, denoted by JR, is

defined as the intersection of all the maximal ideals of R and a ring R is said to be reduced if it has

no non-zero nilpotent elements.

Successively, the unitary Cayley graph of finite rings was investigated in [146], where the

study as a whole aims to discuss the unitary Cayley graphs of all finite rings; but, the results

obtained were mainly focused on the unitary Cayley graphs of some specific finite rings and finite

commutative rings. For these rings, the graph invariants of G(R) like the clique and the chromatic

number were also obtained when R = Mn(F), where F is a field. Also, for a ring R, it was proved

that the clique and the chromatic number of G(R) will be equal to the clique and the chromatic

number of the graph G( R
JR

),s the unitary Cayley graph of the ring R
JR

. A more stronger result that

was proved on the isomorphism of these graphs in [146], as given below.

Theorem 57. [146] Let R1 and R2 be finite rings such that G(R1) ∼= G(R2). Then, G( R1
JR1

) ∼= G( R2
JR2

).

Also, |JR1
|= |JR2

|.

As an application of Theorem 57, a similar result was proved in the case of commutative

rings, which aided in proving that a commutative reduced ring can be determined by the unitary

Cayley graph. Along with the proof of this theorem, an example of the ring R = Z4 was also given

to show that not all commutative rings can be determined by the unitary Cayley graphs. Finally, a

conjecture on the isomorphism between the reduced rings R1
JR1

and R2
JR2

, when their unitary Cayley

graphs are isomorphic was given in [146].

Followed by this, the diameter of unitary Cayley graphs of rings was investigated in [147]

and it was proved that for each integer n ≥ 1, there exists a ring R such that diam(G(R)) = n. The

proof of this result revealed that the connectedness of the graph G(R) is closely related to the

property of the ring R to be generated additively by its units. The diameter of the unitary Cayley

graphs of a few extensions of rings like the power series ring over a ring, polynomial ring over a

ring and self injective rings were also investigated based on the main results that were obtained.

Note that a ring R is called right (left) self-injective if every homomorphism from a right (left) ideal

of R into R can be extended to a homomorphism of R to itself (refer to [148]).

An element of a ring R is said to be k-good if it can be expressed as a sum of k units of the ring

R and a ring is said to be k-good if every element is k-good. The unit sum number, usn(R) of a ring

R is the smallest number l such that every element can be written as the sum of at most l units. If

some element of R is not k-good for any k ≥ 1, then usn(R) is ∞ (c.f. [149]). Few characterisations

of rings with their unitary Cayley graphs having different values of diameter was obtained based

on the definitions of the unit sum number of a ring, as follows.

Theorem 58. [146] Let R be any ring with the unitary Cayley graph G(R) and unit sum number usn(R).

Then,

(i) diam(G(R)) = 1 if and only if R is a division ring.
(ii) diam(G(R)) = 2 if and only if usn(R) = 2 and R is not a division ring.

(iii) diam(G(R)) = k if and only if usn(R) = k, for k ≥ 3.
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In [15], the unitary Cayley graph of finite commutative rings with a non-zero unit element

was considered for the study, where the properties of the graph G(R) were investigated in a similar

pattern like how the properties of Xn were discussed in [48]; but using an algebraic approach.

That is, the proof techniques of the results on the unitary Cayley graph of finite commutative rings

emphasize on the algebraic structure of the rings, which in some cases were comparatively simpler

and more efficient that the proofs given in [48], for the graphs Xn. The structure of the graph

G(R) was first discussed by obtaining results on its regularity, the number of common neighbors

between the vertices of the graph, and the basic graph parameters like diameter, girth, the number

of triangles, chromatic number, clique number, edge and vertex connectivity, etc. as follows.

Theorem 59. [15] For any ring R with the group of units R∗, G(R) is a r-regular graph, where r = |R∗|.

Theorem 60. [15] Let R be a local ring with maximal ideal M. Then, G(R) is a complete graph if and only

if R is a field.

Theorem 61. [15] Let G(R) be the unitary Cayley graph of an Artinian ring R. The neighbourhood of two

vertices u, v ∈ V(G(R)) are equal if and only if u − v belongs to the ideal of all nilpotent elements of R.

Recall that a finite ring R is Artinian, and the structure theorem of Artinian rings (refer

to [26]) that states R ∼= R1 × R2 × . . . × Rt, where each Ri, 1 ≤ i ≤ t is a finite local ring with

the corresponding maximal ideal Mi, 1 ≤ i ≤ t, such that the decomposition is unique up to

permutation of factors. Here, the finite residue field is Ri
Mi

, and the mapping πi : Ri → Ri
Mi

is the

quotient map. With appropriate permutation of the factors, f1 ≤ f2 ≤ . . . ≤ ft, where fi = | Ri
Mi

|,
for 1 ≤ i ≤ t can be obtained. Note that these notations are used in the following Theorems and

the notation shall be maintained throughout the paper whenever R is mentioned as a finite or an

Artinian ring.

Theorem 62. [15] Let G(R) be the unitary Cayley graph of an Artinian ring R ∼= R1 × R2 × . . . × Rt.

Then, the diameter of G(R),

diam(G(R)) =







1, if t = 1 and R is a field;

2, if t = 1 and R is not a field;

3, if t ≥ 2, f1 ≥ 3 or t ≥ 2, f1 = 2, f2 ≥ 3;

∞, if t ≥ 2, f1 = f2 = 2.

Theorem 63. [15] Let G(R) be the unitary Cayley graph of an Artinian ring R ∼= R1 × R2 × . . . × Rt.

Then, the girth of G(R),

gir(G(R)) =







3, if f1 ≥ 3;

6, if R ∼= Zr
2 ×Z3, for some r ≥ 1;

∞, if R ∼= Zr
2, for some r ≥ 1;

4, otherwise.
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Theorem 64. [15] Let G(R) be the unitary Cayley graph of an Artinian ring R ∼= R1 × R2 × . . . × Rt.

Then,

(i) The clique number, ω(G(R)) = χ(G(R)) = f1, where χ(G(R)) denotes the chromatic number of

G(R).
(ii) The independence number, α(G(R)) = |R|

f1
.

(iii) The edge chromatic number,

χ′(G(R)) =

{

|R∗|+1, if |R| is odd;

|R∗|, otherwise.

(iv) The vertex and the edge connectivity of G(R), κ(G(R)) = κ′(G(R)) = |R∗|.

Along with the computation of these parameters, the planarity and perfection of the graph

G(R) was also discussed in [15] and a characterisation of planar and perfect unitary Cayley graphs

of finite commutative rings were obtained as mentioned in Theorem 66 and Theorem 67. To

investigate the perfection of the graph, the clique and the chromatic numbers of the complement

(G(R)) of the graph G(R) was also determined in [15] as given below.

Theorem 65. [15] The clique number of the graph G(R), ω(G(R)) = χ(G(R)) = α(G(R)) = |R|
f1

, where χ

and α represent the chromatic and the independence number.

Theorem 66. [15] Let R be an Artinian ring. Then, G(R) is perfect if and only if f1 = 2, R is local, or R is

a product of two local rings.

Theorem 67. [15] Let R be a finite ring and s be a non-negative integer. Then, the graph G(R) is planar if

and only if R is one of the following rings.

(i) ( Z
2Z )s,

(ii) Z
3Z × ( Z

2Z )s,
(iii) Z

4Z × ( Z
2Z )s,

(iv) F4 × ( Z
2Z )s, where F4 is a field with 4 elements.

Following this, the algebraic properties like the automorphism group and the spectra of the

graph G(R) were obtained using the concept of reduction of a graph, given in [33] as follows.

Two vertices of a graph G are said to be equivalent if their open neighborhoods are equal

and this defines an equivalence relation on the vertices of the graph, as two vertices are adjacent

only if they are in different equivalence classes, and the induced subgraph of the vertices of two

equivalence classes is either a complete bipartite graph or an edgeless graph. The reduction of a

graph G is said to be the graph in which vertices are the equivalence classes of G, and two classes

are adjacent if and only if their union induces a complete bipartite graph and a graph is said to

be reduced if it is isomorphic to its reduction. Recall that a ring is said to be reduced if it has no

non-zero nilpotent element and hence a finite commutative reduced ring is a finite product of

finite fields.

An interesting relation between the reduction of the unitary Cayley graph G(R) of a ring

R and the structure of the reduced ring R was obtained in [15], which decreases the complexity
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of answering general questions about unitary Cayley graphs of finite rings to answering the

questions for the corresponding finite reduced rings, as follows.

Theorem 68. [15] Let R be an Artinian ring. Then, the reduction (G(R))red
∼= G(Rred), where (G(R))red

is the reduced graph of G(R) and Rred
∼= R

NR
, where NR is the maximal ideal of R containing the nilpotent

elements is the reduced ring R and G(Rred) is the unitary Cayley graph of the ring Rred
∼= R

NR
.

The above established relation aids in determining the automorphism group of the graph

G(R), by reducing the problem to determine the automorphism group of the reduced graph of

G(R). In that case, an isomorphism f : Aut(G(R)) → Aut(G(Rred))× (Sn)
R

NR is established between

the structures of the automorphism group of the graph G(R) and its reduced graph, because any

σ ∈ Aut(G(R)) permutes the cosets of NR and induces an automorphism σ ∈ Aut(G(Rred)), as a

consequence of Theorem 61. As the automorphism group of the reduced graph is known through

this process, the automorphism group of the graph was determined using this in [15] as follows.

Theorem 69. [15] Let t ∈ N and r1, r2, . . . , rt be prime power integers, such that 2 ≤ r1 < r2 < . . . < rt

and R ∼=
t

∏
i=1

(Fi)
ni , where Fi denotes a field with ri elements and ni ∈ Z, for each 1 ≤ i ≤ t. Then,

Aut(G(R)) ∼=
t

∏
i=1

Sri
×

t

∏
i=1

Sni
.

As mentioned previously, the spectra of the unitary Cayley graph G(R) of a ring R, was also

determined based on the properties of the ring by grouping the rings under three cases. Firstly,

the spectra of G(R) when R is a field was computed as the graph G(R) is a complete graph in that

case. Followed by that, the spectra of G(R) when R is not a field was computed as follows.

Theorem 70. [15] Let R be a finite local ring which is not a field, having a non-zero maximal ideal of size

s and f = |R|
s . Then,

Spec(G(R)) =

(−s 0

f f (s − 1)

)

.

Theorem 71. [15] Let R ∼= R1 × R2 × . . . × Rt be a finite ring having t local factors of which none are

fields. Then,

Spec(G(R)) =

(−1t(|NR|) 0

|Rred| |R|−|Rred|

)

,

where NR is the maximal ideal of R containing the nilpotent elements and Rred is the reduced ring of R.

On computing the eigenvalues of the graph G(R), the properties related to the spectra like

energy, perfect state transfer, etc. of the graph were studied. It could be seen that all these

properties that were examined on the unitary Cayley graph of a finite commutative ring was

inspired from the study of the same property on the unitary Cayley graph of Zn. The energy of the

unitary Cayley graph of finite commutative rings, as well as their complements was determined in

[150] and the rings that have hyperenergetic unitary Cayley graphs were characterised as follows.
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Theorem 72. [150] Let R be a finite commutative ring such that R ∼= R1 × R2 × . . . × Rt, where each

Ri, 1 ≤ i ≤ t is a local ring with the corresponding maximal ideal Mi.Then, the energy, E(G(R)) = 2t|R∗|,
where R∗ is the group of units in R.

Theorem 73. [150] Let R be a finite commutative ring such that R ∼= R1 × R2 × . . . × Rt, where each Ri,

1 ≤ i ≤ t is a local ring with the corresponding maximal ideal Mi and assume that f1 ≤ f2 ≤ . . . ≤ ft,

where fi = | Ri
Mi

|, for 1 ≤ i ≤ t. Then,

(i) For s = 1, G(R) is not hyperenergetic.
(ii) For s = 2, G(R) is hyperenergetic if and only if f1 ≥ 3 and f2 ≥ 4.

(iii) For s ≥ 3, G(R) is hyperenergetic if and only if fs−2 ≥ 3 or fs−1 ≥ 3 and fs ≥ 4.

The study on the energy of the unitary Cayley graph G(R) was followed by the

characterisation of finite commutative rings R, for which G(R) and its complement G(R) are

Ramanujan graphs in [151] as given in Theorem 74 and Theorem 75. In addition to it, the energy

of the line graph L(G(R)) of the unitary Cayley graph G(R) of a ring R, its hyperenergecity and

its spectral moments were also determined in [151]. Note that for an integer k ≥ 0, the k-th

spectral moment of a graph G of order n with eigenvalues λ1, λ2, . . . , λn is given by the the value,

smk(G) =
n

∑
i=1

λk
i , which was found to be related to many combinatorial properties of the graph (see

[152]).

Theorem 74. [151] Let R be a finite local ring with maximal ideal M of order s. Then, G(R) is a

Ramanujan graph if and only if either |R|= 2s or |R|=
(

m
2 + 1

)2

and m 6= 2.

Theorem 75. [151] The complement G(R) of the unitary Cayley graph, G(R) of a finite local ring R is

always a Ramanujan graph.

All the characterisations obtained in [151] were given separately for the cases of R being

a local ring and R being a finite product of local rings, where the characterisation on the latter

involved the number theoretic properties of the cardinalities of the quotient ring | Ri
Mi

|. This is

mainly because of the variation in the spectra of the unitary Cayley graph of these two types of

rings, which reveals the innate algebraic structure of the rings. This could be observed explicitly

because, on proving these characterisations, several other results on the structure of the graph

which complete rely on the structure of the rings were obtained in the process. For example, it

was proved that the graph G(R) is connected if and only if there is at most one factor Ri such that
Ri
Mi

∼= F2, a field with 2 elements. This result on the connectedness of the graph can also be seen

as a consequence of the well known fact that for an r-regular graph G, the multiplicity of r as an

eigenvalue gives the number of connected components of G, and in view of the same it was also

concluded that the unitary Cayley graph of a finite local ring R is always connected.

In the sequence of studying the graph properties based on the spectra, the perfect state

transfer in the unitary Cayley graphs of rings; that is, the problem of finding if the network admits

data transfer without a loss of information, so that the probability of transfer is 1, were investigated

in [153] and [154]. The rings were characterised based on the existence of the perfect state transfer
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in their unitary Cayley graphs, along with which the time of transfer was also obtained for the

unitary Cayley graph of finite local ring, as follows.

Theorem 76. [153] Let R be a finite local ring with maximal ideal M of size s. Then, G(R) has a perfect

state transfer if and only if R = F2 or s = 2, where F2 is a field with 2 elements. In particular, a perfect state

transfer occurs at time t = π
2 .

One of the interesting aspect of research in spectral graph theory is to find non-cospectral

(non-isospectral) equi-energetic graphs. One such problem is to find families of regular graphs

which are equi-energetic with their own complements. Unitary Cayley graphs being regular,

an attempt to obtain such non-cospectral equi-energetic regular graphs was done in [155,156]

and it was proven that if R ∼= R1 × R2 × . . . × Rt has an even number of local factors, then G(R)

and G(R) are complementary equi-energetic if and only if R is the product of two finite fields

and in this case, the graphs are strongly regular. It was also given that the classification of such

complementary equi-energetic unitary Cayley graphs for R, when it has odd number of local

factors, greater than three remains open.

A similar problem of finding integral equi-energetic non-isospectral graphs was addressed

with the properties of unitary Cayley graphs G(R), their complements G(R) and the unit graphs

G+(R) (refer to Section 5 for details on the Unit graphs of rings) in [155] and [157]. The conditions

under which the unit and unitary Cayley graph of a finite commutative ring are equi-energetic

were obtained in [157] and in addition to that, using the results on the equi-energetic complements

of the unitary Cayley graphs given in [156], all integral equi-energetic non-isospectral triple

{G(R), G(R), G+(R)} such that all three graphs are also Ramanujan graphs was characterised in

[155].

It was first proved that for a ring R, G(R) and G+(R) were equi-energetic as the group of units

considered for the adjacency criteria is a symmetric subset of R. Following this, the conditions

on the structure of the ring R, the spectrum of G(R) and G+(R), and the corresponding graphs

were obtained in order to prove that the unitary Cayley and the unit graphs of the ring concerned

are non-isospectral. Using this, it was shown that G(R) and G+(R) are integral equi-energetic

non-isospectral connected non-bipartite graphs, under certain conditions and as an application,

the graphs G(R) and G+(R) which are strongly regular were characterised. This characterisation

of all finite commutative rings for which its unitary Cayley graph is strongly regular was also

obtained independently in [158] as follows.

Theorem 77. [155,158] The unitary Cayley graph G(R) of a finite commutative ring R is strongly regular

if and only if R is a local ring or R ∈ {Zk
2,F× F}, where F is a finite field with |F|≥ 3.

Another important spectra of the graph that arises from the adjacency and the degree matrices

of the graph is the Laplacian and the signless Laplacian spectra. These Laplacian and the signless

Laplacian eigenvalues for the unitary Cayley graph of a commutative ring along with their

corresponding energies for the graph G(R) as well as its line graph L(G(R)) was determined in

[159].

It can be noticed that the properties of the Laplacian and the signless Laplacian spectra

shall be in parallel with the properties of the adjacency spectra, as the Laplacian matrix and

the signless Laplacian matrix of a graph G are given by the relation L(G) = A(G) − Deg(G) and
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L(G) = A(G) + Deg(G), respectively, where A(G) is the adjacency matrix and Deg(G) is the degree

matrix of the graph G. The degree matrix Deg(G) of a graph G of order n is a n × n matrix whose

only non-zero entries are the diagonal entries that gives the degree of the vertices.

The study of groups admitting planar Cayley graphs can be traced back over almost 120 years,

and there is a long history for studying infinite planar Cayley graphs which satisfy additional

special conditions (For example, see [30,160]). Regarding the unitary Cayley graphs of rings, a

list of finite commutative rings whose unitary Cayley graphs are planar was given in [15,161].

This result only dealt only with finite graphs, and the main algebraic tool used in its proof was

the Wedderburn-Artin Theorem7. In [161,162], the unitary Cayley graph of arbitrary rings was

considered for investigation, for which the unitary Cayley graphs are mostly infinite.

Though the list of finite planar unitary Cayley graphs was given in [15], the difference in

the technique of investigating the planarity of a finite graph and an infinite graph was visible on

observing the proof techniques used to prove the results in [161,162]. One distinguishing example

is, for a finite planar graph, the minimal degree of the graph is at most five; whereas it was proved

in [163] that there exists a k-regular planar infinite graph for any positive integer k.

A thorough analysis of the group of units of the associated ring structures was conducted

in [162] and it was shown that a ring with a planar unitary Cayley graph has either at most 4

units or exactly 6 units. This result served as a key to obtain a complete characterisation of the

rings whose unitary Cayley graphs are planar in [162] as given in Theorem 78. Using Theorem 78,

the semilocal rings with planar unitary Cayley graphs were completely determined. Note that a

semilocal ring is a commutative Noetherian ring with finitely many maximal ideals, where a ring is

called Noetherian if every strictly ascending chain of ideals in the ring is finite.

Theorem 78. [151,162] Let R be a ring with the group of units R∗. Then, G(R) is planar if and only if

one of the following holds:

(i) |R∗|≤ 3 and |R|≤ |R|,
(ii) |R∗|= 4, Char(R) = 0 and |R|≤ |R|,

(iii) |R∗|= 6 and R contains a subring isomorphic to Z[t]
(t2−t+1)

with |R|≤ |R|, where Z[t] is the

polynomial ring over a ring Z in the indeterminate t.

An orientable surface is said to be of genus g if it is topologically homeomorphic to a sphere

with g handles. The genus of a graph is the minimum number of handles that must be added to a

plane to embed the graph without any crossings. A planar graph is a graph with genus zero, and a

toroidal graph is a graph with genus one (c.f.[30]). It could be noted that this investigation on the

planarity of unitary Cayley graphs of rings was restricted to finite commutative rings owing to the

complexity of the structure of the unitary Cayley graphs emerging from finite as well as infinite

arbitrary rings due to the diversity in their properties.

As an extension of the characterisation of planar unitary Cayley graphs, the minimal

non-planar unitary Cayley graphs were investigated in [162,164]. In [164], the structure of the

finite commutative rings whose unitary Cayley graphs have genus at most 3 was examined and it

7 The Wedderburn–Artin theorem states that an Artinian semisimple ring R is isomorphic to a product of finitely many
ni × ni matrix rings MNi

(Di) over the division rings Di , for some integers ni , both of which are uniquely determined
up to permutation of the index i (c.f. [26]).
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was proven that for any given positive integer g, there are at most finitely many finite commutative

rings whose unitary Cayley graphs have genus g.

A graph G is a ring graph if each block of G which is not a bridge or a vertex can be constructed

from a cycle by successively adding H-paths of length at least 2, that meets the graph H in two

adjacent vertices. Here, given a graph H, we call a path P an H-path if P is non-trivial and meets

H exactly in its ends (For more details, refer to [165]). By definition, it is clear that the ring graphs

are planar. An outerplanar graph is a graph that has a planar drawing for which all vertices are in

the outer face of the drawing.

Based on the characterisations of planar unitary Cayley graphs on rings, the rings for which

the unitary Cayley graphs are outerplanar and the ring graphs were also characterised in [166] as

follows.

Theorem 79. [166] Let R be a finite ring. Then, G(R) is a ring graph if and only if it is a planar graph.

This gives the same list of rings for which G(R) is planar as given in Theorem 67. It was

proven in [165] that every outerplanar graph is a ring graph. The following theorem on the

characterisation of outerplanar unitary Cayley graphs serves as a counterexample for the converse

of the theorem, as the existence of a ring R for which G(R) is a ring graph but not outerplanar

could be seen.

Theorem 80. [166] Let R be a finite ring and s be a non-negative integer. Then, G(R) is outerplanar if

and only if R is one of the following rings.

(i) ( Z
2Z )s,

(ii) Z
3Z × ( Z

2Z )s,
(iii) Z

4Z × ( Z
2Z )s.

The same study of examining the rings for which the line graph of the unitary Cayley graphs

are planar, outerplanar and ring graphs was done in [167] and it was proved that L(G(R)) is planar

if and only if G(R) is planar and L(G(R)) is outerplanar if and only if it is a ring graph. Both of

these conditions can be found similar to that of the outerplanarity conditions of the unitary Cayley

graphs itself.

Following the investigation on the planarity of line graphs of the unitary Cayley graphs, the

planarity parameters on the iterated line graphs were investigated in [168]. The k-th iterated line

graph of a graph G, denoted by Lk(G), is defined inductively as L0(G) = G, L1(G) = L(G) and

Lk(G) = Lk−1(L(G)). The planarity (outerplanarity) index of a graph G, denoted by ζ(G) (η(G)), is

the smallest integer k such that Lk(G) is non-planar (non-outerplanar). The results obtained on

these parameters of the unitary Cayley graph of R is given as follows.

Theorem 81. [168] For a finite commutative ring R,

(i) ζ(G(R)) = ∞ if and only if G(R) is outerplanar.
(ii) ζ(G(R)) = 2 if and only if G(R) is a non- outerplanar ring graph.

(iii) ζ(G(R)) = 0, otherwise.

Theorem 82. [168] For a finite commutative ring R,
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(i) η(G(R)) = ∞ if and only if G(R) is outerplanar.
(ii) η(G(R)) = 0, otherwise.

Equivalently, it can also be told as η(G(R)) = ∞ if and only if ζ(G(R)) = ∞ and if not

η(G(R)) = 0, to establish the significance of the relation between the planarity and outerplanarity

indices of the graph. Note that we have rephrased the above results from[168] in terms of the

planarity and outerplanarity of the unitary Cayley graphs to emphasize the relation and similarity

between the concepts. Along with this, the study in [166–168] also determined the same properties

and parameters related to planarity, outerplanarity of graphs and line graphs for the unit graphs

of the rings also, and similar results were obtained as their structures are similar to each other

according to the graph construction.

By identifying the vertices of a simple graph G as the variables of the polynomial ring

R = F[x1, x2, . . . , xn] over a field F, the edge set of the graph becomes an ideal I for the ring R

and the quotient ring R
I is called the edge ring of the graph G. A simplicial complex ω on a vertex

set V = {x1, x2, . . . , xn} is a set of subsets of V that satisfies the following conditions, where the

elements of ω are called its faces.

(i) If F ∈ ω and F1 ⊆ F, then F1 ∈ ω;
(ii) For each i = 1, 2, . . . , n, {xi} ∈ ω.

Using the above given definitions, the properties of a graph to be Cohen-Macaulay and

Gorenstien are defined based on the Cohen-Macaulay and Gorenstien ring structures (refer to

[169]). It was already seen that the property of well-coveredness of the graphs Xn was examined

in [91]. The same has been extended to the unitary Cayley graphs of finite commutative rings

in[170], in which a characterisation of the rings that have well-covered unitary Cayley graphs

was obtained in terms of the unitary Cayley graph of its reduced ring as given in Theorem 83,

along with an equivalence relation of the properties of Cohen-Macauleyness, Shellability and

Gorenstien, which states that that all the Cohen–Macaulay unitary Cayley graphs are shellable

and Gorenstein.

Theorem 83. [170] Let R be a finite ring. Then, G(R) is a well-covered graph if and only if G( R
J(R) ) is well

covered.

It was seen that a several variants of domination numbers and other domination related

parameters were computed for the graph Xn, as the computation of domination parameters for

algebraic graphs is a very common study. Interestingly, for the unitary Cayley graphs of rings,

the literature has discussions only on the Roman domination number γrom(G(R)) (refer to [171])

of these graphs in [172], where the following characterisation of the unitary Cayley graphs with

Roman domination number at most four was obtained.

Theorem 84. [158] Let R be a finite commutative ring with non-zero identity. Then, the following

properties are satisfied:

(i) For the graph G(R), γrom(G(R)) = 2 if and only if R is a field.
(ii) For the graph G(R), γrom(G(R)) = 3 if and only if R is a local ring with the maximal ideal M

such that |M|= 2.
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(iii) For the graph G(R), γrom(G(R)) = 4 if and only if either R is a local ring with the maximal ideal

M such that |M|≥ 3 or R ∼= Z2 × F, where F is a field.

In the course of the study on unitary Cayley graph of a ring, the extension of the graph’s

definition to an algebraic signed graph was given in [173]. The Unitary Cayley signed graph was

defined based on the definition of unitary Cayley graphs on finite commutative rings as given in

Definition 14 and the graphs were characterised based on the properties of balance and canonical

consistence of the graph.

Definition 14 ( [173]). Let R be a finite commutative ring with the group of units R∗. The unitary Cayley

signed graph, denoted by SR = (G(R), σ), is a signed graph whose underlying graph is the unitary Cayley

graph G(R), and the sign of an edge vivj ∈ E((G(R)) is assigned by the function σ:E(G(R)) → {+,−} as

follows. For an edge vivj in (G(R),

σ(vivj)

{

+, if vi ∈ R∗ or vj ∈ R∗;

−, otherwise.

The spectra and energy of the signed graphs and also their corresponding line signed graph

was computed and the characterisation of all finite commutative rings for which the graph SR

is hyperenergetic balanced was given. Also, it was obtained in [173] that for a finite local ring,

the adjacency matrix of the unitary Cayley graph and the adjacency matrix of the unitary Cayley

signed graph coincide. Using this, the perfect state transfer in this signed graph SR was examined

in [154].

It was seen in [174] that the structure of the unitary Cayley graphs were determined by the

appropriate reduction structures of the graph as well as the rings. The properties of the graph

as well as the ring reduction gives further scope to examine the rings and the unitary Cayley

graphs of the rings by studying the properties of the subgraph induced by the unit elements in

the unitary Cayley graph; that is, for a finite commutative ring R with the unitary Cayley graph

G(R), the induced subgraph γ(G(R)) is the graph with V(γ(G(R))) = R∗ and two vertices are

adjacent if their difference is a unit, where R∗ the group of all units of the ring R. This graph

was introduced in [175] and the basic properties of the graph γ(G(R)) were investigated. Some

characterisation results based on the graph invariants like girth, chromatic number, chromatic

index (edge chromatic number) and genus were also given in [175].

The main motivation of the study in [175] was to examine the possibility of determining the

structure of the reduced ring of a ring R using γ(G(R)), for which the outcome was positive. This

was proved by showing that for two finite commutative rings R1 and R2, γ(G(R1)) ∼= γ(G(R2)) if

and only if R1
JR1

∼= R2
JR2

, where JR1
and JR2

are the Jacobson radical of R1 and R2 respectively, using

the algebraic properties of the spectrum of the graph.

In distinction from the extensive studies on the unitary Cayley graphs over commutative

rings, it can be seen that not much work was done on unitary Cayley graphs over non-commutative

rings, for which a possible reason is the complicated structures of non-commutative rings,

compared to the commutative rings. The first class of non-commutative ring that was specifically

considered to construct the graph G(R) and study its properties, is the matrix rings.
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The unitary Cayley graphs of the matrix algebras; that is, the set of all square matrices of

order n over a finite field F, denoted by Mn(F) was studied specially in [176–178]. Though, in

[15,146], certain properties of the graph G(Mn(F)) were discussed for these rings as a special case,

[176–178] re-iterate them and give a broader proof. As known, the unit group of Mn(F) is the set

of all invertible matrices of order n, which is also called the general linear group, denoted by GLn(F).

The graph invariants of G(Mn(F)) were already discussed in [146,158], as given below and they

can also be deduced as a special case from the existing results of the graphs G(R).

Theorem 85. [146]

(i) The clique number of the unitary Cayley graph of Mn(F) is |F|n.
(ii) The independence number of the unitary Cayley graph of Mn(F) is |F|n2−n.

(iii) The diameter of G(Mn(F)) is 1, when n = 1 or 2, otherwise.

In [177], an analogous notion to the representation problem of graphs put forth in [33] was

given, as the representation of graphs by matrices was defined to investigate if every graph in

any family is an induced subgraph of G(Mn(F)) and it was conjectured that there is a graph G

such that for each finite field F, the graph G is not an induced subgraph of G(Mn(F)). Also, the

characterisation of the G(Mn(F)) to be strongly regular was obtained in [177] as follows.

Theorem 86. [177] The graph G(Mn(F)) is strongly regular if and only if n = 2 and M2(F) is strongly

regular with the parameters (q4, q4 − q3 − q2 + q, q4 − 2q3 − q2 + 3q, q4 − 2q3 + q), where q = |F|.

In [177], Theorem 86 has been proved only by considering two special cases of n, when

n = 2, 3 and has failed to cover the other general cases. This was quoted and rectified in [176],

and the same result was re-established by proving that the graph G(Mn(F)) cannot be strongly

regular for any n > 2. Following this, the spectral properties of the graph G(Mn(F)) was studied

in [178], where the three eigenvalues of the graph were determined using the additive property of

the ring Mn(F), along with its energy and the conditions for hyperenergecity of the graphs, which

was determined without explicitly computing the spectrum of the graph. The characterisation of

rings Mn(F) by determining the value of n for which G(Mn(F)) are Ramanujan graphs were also

obtained in [178] as given below.

Theorem 87. [178] The graph G(Mn(F)) is a Ramanujan graph if and only if n = 2 or n = 3 and F = Z2.

The study on the unitary Cayley graphs of matrix rings was extended in [179], where

explicit formulas for all the eigenvalues of the graphs G(Mn(F)) and G(Mn(R)), where R is a finite

commutative local ring that is not a field, was obtained using an alternate approach to the one that

was followed in [174]. Using this, the energy, the Kirchhoff index and the number of spanning

trees of the graphs G(Mn(F)) and G(Mn(R)) were also derived. Note that the Kirchoff index of a

graph G of order n is the value n
n

∑
i=2

1
λi

, where λi, 2 ≤ i ≤ n denote the eigenvalues of the Laplacian

matrix of the graph (see [? ]).

For a vertex v in a graph G, its first and the second subconstituent of G at v is the subgraph of G

induced by the neighbors and the non-neighbors of v (except v) respectively. The subconstituents

of strongly regular graphs are being studied for several graphs, as they have many interesting
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properties associated with the structure of the graph (see [180]). Moreover, the problem of finding

graphs which have strongly regular subconstituents is a problem of interest to the researchers,

as several properties including the eigenvalues of these subconstituents were used to prove

the uniqueness of the parameters of some strongly regular graphs (c.f. [180]). This notion of

subconstituents of the unitary Cayley graphs of the ring G(Mn(R)) was investigated in [181].

On examining the subconstituents of the unitary Cayley graphs of a finite ring R with identity

1 6= 0, it can be seen that both the first and the second subconstituent of the additive identity 0,

are the graph isomorphisms that maps v to u − v, where u, v ∈ V(G(Mn(R))). Hence, a complete

study on the subconstituents of 0 in G(Mn(R)) was done, especially when R is a finite field F;

that is the subconstituents of the 0 element in the graph G(Mn(F)) were investigated. It can be

observed that the first constituent of the 0 element in the graph G(Mn(F)) is nothing but the graph

with the vertex set as the group G(GLn(F)) (can be correlated as the graph γ(G(GLn(F))) and the

second constituent is defined on the set of non-zero non-invertible matrices over F. The structure

of these subconstituents were determined, from which the spectra, energy and other spectral

related properties like hyperenergeticity and Ramanujan property for both graphs were studied.

In addition to it, the clique number, chromatic number and the independence number of these

subconstituents were also computed in [181].

The next ring for which the unitary Cayley graphs were investigated in [182] is the quotient

ring R
I , where R is a Dedekind domain and I is an ideal of R, that gives a finite and non-trivial

R
I . The unitary Cayley graph defined on this Dedekind ring is a very close generalisation to that

of the graph Xn and hence, the unitary Cayley graphs of such Dedekind rings R
I is called the

generalised totient graphs. Recall that the Schemmel’s totient function STr is a generalisation of the

Euler’s totient function defined for each non-negative integer r and prime p, as a multiplicative

arithmetic function that satisfies

STr(pα) =

{

pα−1(p − r), if p ≥ r;

0, otherwise,

where α is a positive integer (c.f. [31]).

To study the properties of the generalised totient graphs, the Schemmel’s totient function

was used, and especially one of the two extensions of the Schemmel’s totient function was used

to obtain a formula for the number of cliques of any order k in a given generalised totient graph.

This formula had not been used in the literature even for Euler totient Cayley graphs before this

article and after a couple of years, the formula to obtain the number of cliques of any order k was

given using the Schemmel’s totient functions in [94].

Using this formula of the number of cliques, the clique domination number of the generalised

totient graphs was determined, which aided in the correction of an erroneous claim that had been

made regarding this topic in [115] and also to provide a counter-example for the result on the

strong domination (refer to Section 4 for definition) of the graph Xn that was given in [110]. The

study in [182] can be seen to have built on the basis of [48], as similar results and proof techniques

have been adopted. The paper concludes by suggesting further scope of research pertaining to the

topic, of which some are investigated over the period for all finite commutative rings.

A dual number is a number x + ǫy, where x, y ∈ R and ǫ is a matrix with the property that

ǫ2 = 0 (refer to [183]). As the set of all dual numbers is an Artinian local ring, the unitary Cayley

graph associated with ring of dual numbers was investigated in [183], where the exact values
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of the diameter, chromatic number and chromatic index was determined along with which a

classification of all perfect unitary Cayley graphs of this ring was given.

Definition 15 ([184]). The set of all complex numbers a + ib, where a, b ∈ Z, is the ring of Gaussian

integers, denoted by Z[i]. For any k ∈ N, if [k] is the principal ideal generated by k in Z[i], then the factor

ring Z[i]
[k] is isomorphic to Zk[i], where Zk[i] is the set of all complex numbers a + ib, where a, b ∈ Zk and

the ring Zk[i] is called the ring of Gaussian integers modulo k.

Definition 16 ([185]). The set of all complex numbers a + bω, where a, b ∈ Z and ω = 1
2 (−1 + i

√
(3)) is

a primitive third root, forms an integral domain called the ring of Eisenstein integers, denoted by Ze[i].

For any k ∈ N, if [k] is the principal ideal generated by k in Ze[i], then the factor ring Ze[i]
[k] is isomorphic to

Ze
k[i], where Ze

k[i] is the set of all complex numbers a + bω, where a, b ∈ Zk and the ring Ze
k[i] is called the

ring of Einstein integers modulo k.

To understand the unitary Cayley graphs of these rings, the nature of the units of these

rings must be known. Both the rings have n2 elements and they form a ring with respect to

the operations of usual addition modulo n and multiplication modulo n. The structure of the

units of the ring depends on the norm defined and is given below in the following theorems. An

illustration of the unitary Cayley graph on both the rings, Zk[i] and Ze
k[i] is given in Figure 7.

In [186] and [187] the unitary Cayley graphs of the rings Zk[i] and Ze
k[i] were studied

individually, where the basic graph invariants were obtained for the unitary Cayley graphs

of these rings. In addition, the traversal properties of these graphs were explored and it was

proved that the unitary Cayley graphs of both these rings were Hamiltonian and certain necessary

and sufficient conditions for the graph G(Zk[i]) to be Eulerian, were obtained in [186].

Theorem 88. [184] An element a + ib ∈ Zn is a unit in the ring Zn if and only if a2 + b2 is a unit in Zn.

Theorem 89. [185] An element a + bω ∈ Ze
n is a unit in the ring Ze

n if and only if a2 + b2 − ab is a unit

in Zn.
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(a) The unitary Cayley graph of Z3[i].
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(b) The unitary Cayley graph of Ze
3[i].

Figure 7. Unitary Cayley graphs of the rings Gaussian and Einstein integers modulo n.
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It can be seen that the properties of the unitary Cayley graph of rings highly depend on the

properties of the rings, owing to which not many properties of the graphs were discussed, unlike

the ones studied for the graphs Xn. This is because the feasibility of condensing all the rings under

same roof and investigating many properties is less; however, still, several avenues are open for

further research.

4. Unitary Addition Cayley Graph

The conventional definition of a Cayley graph on any algebraic structure, with respect to any

of its symmetric subset is a graph with the vertex set as the elements of the algebraic structure

and there exists an edge between two vertices in the graph if their difference is an element of

the symmetric subset considered. A slight modification on this adjacency condition in the usual

Cayley graph to the sum of two elements to belong to the symmetric subset instead of their

difference, paved its way to the concept of addition Cayley graphs, also known as the Cayley-sum

graphs in [188], which almost have the same properties and symmetric nature as the usual Cayley

graphs.

Though these addition Cayley graphs were termed as a twin to the Cayley graphs, it can be

seen that they have received very less attention in the literature, when compared to the Cayley

graphs. To some extent, this situation can be explained based on the fact that the addition Cayley

graphs are comparatively difficult to study than the Cayley graphs. For example, the connectivity

of a Cayley graph on a finite Abelian group was a obtained as an immediate consequence of

its adjacency pattern, whereas determining the connectivity of an addition Cayley graph was a

non-trivial problem that was exclusively solved in [189].

In the literature, though the addition Cayley graph was first defined for groups in [188], it

was extended to many algebraic structures. The addition Cayley graph of an algebraic structure

A, with a symmetric subset S is given in Definition 17 ensuing which, an Illustration of the same

is given in Figure 8.

Definition 17 ( [188]). An addition Cayley graph of an algebraic structure A is the graph with the

vertex set as the elements of A and any two vertices u and v in the graph are adjacent when u + v ∈ S,

where S is a symmetric subset of A. This addition Cayley graph of A with respect to its symmetric subset S

is usually denoted by Cay+(A, S).

a3

a

a2

0

re f1

re f2 re f3

re f4

Figure 8. The addition Cayley graph of the dihedral group D4, Cay+(D4, {a2, b2
1}).
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Combining the notions of the addition Cayley graph with the definition of the graph Xn; that

is, the unitary Cayley graphs of Zn, the unitary addition Cayley graphs was introduced in [190] as

given below and an example of a unitary addition Cayley graph is given in Figure 9.

Definition 18 ( [190]). The unitary addition Cayley graph, denoted by X+
n = Cay+(Zn,Z∗

n), is a graph

with the vertex set as the elements of the ring Zn; 0, 1, . . . , n − 1, and two vertices are adjacent if their sum

is a unit of the ring; that is, for all u, v ∈ V(X+
n ), uv ∈ E(X+

n ) when |u + v|∈ Z∗
n, where Z∗

n is the set of all

relatively prime integers to n, which are the units of Zn.

0

1

2

3

4

5
6

Figure 9. Unitary addition Cayley graph X+
7 .

Though the graph was defined and introduced officially with the name unitary addition

Cayley graph in [190], this graph was already defined by Grimaldi in [18], from which the unit

graphs of rings (refer to Section 5) was defined and studied. Since unitary addition Cayley graph

is a unit graph of Zn, researchers focused on studying the unit graphs of all rings, rather than

a particular one. Over a period of time, as the unitary Cayley graph of Zn marked its high

significance in this area of research, its claimed twin, the unitary addition Cayley graph was

defined independently and is being studied.

In [18], the basic results on the regularity of the graph X+
n and the decomposition of

the graph into Hamiltonian cycles were given, along with which the challenging nature of

investigating different graph properties for the unitary Cayley graphs with odd order, despite a

clear understanding of the structure of the graph was discussed.

On re-introducing the unit graph of Zn as the unitary addition Cayley graph, the basic

properties such as the regularity, girth, size, etc. of the graph was investigated in [190], along with

their traversal properties, as mentioned in Theorem 90. The structural characterisations of the

graph on their k-partiteness, planarity were also obtained, which are given below.

Theorem 90. [190] Let X+
n be the unitary addition Cayley graph of the ring Zn and φ(n) be the Euler’s

totient function. Then, the following properties hold.

(i) The graph X+
n is (φ(n), φ(n) − 1)- semiregular, when n is odd.

(ii) |E(X+
n )|= (n−1)φ(n)

2 , when n is odd.
(iii) gir(X+

n ) = 3, for odd n > 3 and 4 for even n > 2 and n ≇ 0 mod 3.
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Theorem 91. [190] The unitary addition Cayley graph is planar if and only if the value of n is 1, 2, 3, 4 or

6 and it is outerplanar if and only if it is planar.

As the graph is obtained from the unitary Cayley graphs, a natural and an important question

of the relation between the unitary addition Cayley graph X+
n and its termed to be twin, the unitary

Cayley graph Xn had to be answered. This was solved by obtaining the characterisation that

Xn
∼= X+

n if and only if n is even and this characterisation reduces the problem of investigating the

properties and the structure of X+
n for only the odd values of n. Owing to this, the results on the

unitary addition Cayley graphs explicitly mentioned in this section are only for odd values of n.

This characterisation naturally motivates the researchers to extend the investigation on all

similar problems and properties that were addressed for the unitary Cayley graphs to the unitary

addition Cayley graphs, for two different reasons; one is to understand how the structure and

properties of the unitary addition Cayley graphs differ for odd values of n and the other reason is

to obtain parallel results with the help of a similar methodology existing in the literature, especially

in a similar context and which can also be verified without much challenge.

This study in [190] was extended in [191], by more clearly establishing the structure of the

unitary addition Cayley graph as a k-partite graph for odd n, as given in Theorem 92, which aided

in computing several numerical parameters of the graph in [191]. Note that the parameters of the

graph X+
n that were computed in [191] are given below only for odd n.

Theorem 92. [191] The unitary addition Cayley graph X+
n , for an odd n is a

φ(n)
2 + r-partite graph, where

r is the number of distinct prime factors of n.

Theorem 93. [191] Let X+
n be the unitary addition Cayley graph of Zn, where n = p

α1
1 pα2

2 . . . pαr
r , such

that pi < pj, for i < j and αi ∈ N, for all 1 ≤ i ≤ r. Then,

(i) The independence number, α(X+
n ) = 2, when n is prime and α(X+

n ) = n
p1

, when n is an odd

composite number.
(ii) The vertex covering number, α0(X+

n ) = n − 2, when n is prime and α0(X+
n ) = n − n

p1
, when n is

an odd composite number.
(iii) The edge covering number, α1(X+

n ) = n+1
2 , when n is odd.

(iv) The matching number, β1(X+
n ) = n−1

2 , when n is odd.
(v) The edge connectivity, κ1(X+

n ) = φ(n) − 1, when n is odd.
(vi) The edge chromatic number, χ′(X+

n ) = φ(n), for all n.

Based on Theorem 92, the bounds for the chromatic number and clique number of the unitary

addition Cayley graph was obtained in [191], using which it was obtained that a unitary addition

Cayley graph X+
n is perfect if and only if n is even or a prime power. This characterisation was

obtained by proving that for all the other values of n, the unitary addition Cayley graph contains

an induced cycle of length 5, according to its chromatic partition.

A more detailed study on the chromatic number of the unitary addition Cayley graph was

done in [192], where tighter bounds for the clique and the chromatic number of the unitary

addition Cayley graph X+
n for different values of n, based on their number theoretic properties was

obtained. A coloring pattern that satisfies the bound was also given along with some examples of

the unitary addition Cayley graphs to show that the bounds were sharp as well as strict.
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This was followed by a study on the achromatic number of the unitary addition Cayley graph

in [193], whose relation with the chromatic number of the graph is visible from the definition

given as follows. The achromatic number of G, denoted by χach(G), is the maximum number of

colors that can be assigned to the vertices of the graph, such that the adjacent vertices are assigned

different colors and any two different colors are assigned to some pair of adjacent vertices. It

therefore follows that for any graph G, χach(G) ≥ χ(G) (c.f. [194]).

Though the lower bounds of the chromatic number obtained in [192] can serve as the lower

bounds for the achromatic number, better bounds were computed as per the maximisation

condition in [193] and in a similar way, coloring patterns were given to establish the bounds

as well as its tightness. In certain cases, the exact value of the achromatic number was also

determined, as given below.

Theorem 94. [193] The achromatic number of a unitary addition Cayley graph,

χach(X+
n ) =

{

2, if n = 2k, for some k ∈ N;

1 +
φ(n)

2 if n = pk, for and odd prime p and k ∈ N;

Ensuing this, the domination parameters of the unitary addition Cayley graph was

determined in [195,196]. In [196], the exact values of the domination number of the unitary

addition Cayley graph was determined for a few values of n as given in Theorem 95 and in [196],

the strong domination and the total strong domination of the graph X+
n was studied, where the

parameters were computed for similar cases of n, which also is given in Theorem 95.

For a graph G without isolated vertices, a total dominating set of the graph is a dominating

set in which every vertex of the graph is adjacent to at least one vertex in the dominating set

(c.f. [29]). A vertex v ∈ V(G) strong dominates a vertex u ∈ V(G) in a graph G, if uv ∈ E(G)

and deg(u) ≥ deg(v). A dominating set S ⊆ V(G) in which every vertex u ∈ V − S is strongly

dominated by some vertex v ∈ S is said to be a strong dominating set of the graph G and the

minimum cardinality of a strong dominating set is the strong domination number γs(G) of the graph

G (see [197]). A total dominating set S ⊆ V(G) in which every vertex u ∈ V − S is strongly

dominated by some vertex v ∈ S said to be a total strong dominating set of a graph G and the

minimum cardinality of total strong dominating set of G is called the total strong dominating number

of the graph, denoted by γts (refer to [197]).

Theorem 95. [195,196] Let X+
n be the unitary addition Cayley graph and φ(n) represent the Euler’s totient

function. Then,

(i) γ(X+
n ) = 2, when n = 2r, for some integer r ≥ 2.

(ii) γ(X+
n ) = γs(X

+
n ) = 1 and γts(X

+
n ) = 2, when n is prime.

(iii) γ(X+
n ) = γs(X

+
n ) = 2, when n = 2k, where k is an odd prime.

(iv) γ(X+
n ) = γs(X

+
n ) = ⌈ n

3 ⌉, when n is even such that φ(n) = 2.
(v) γts(X

+
n ) = γs(X

+
n ) = 2, when n is a prime power.

Proceeding with the study on other computational parameters of the unitary addition Cayley

graphs, a few topological indices for the graph was computed in [198,199]. The Wiener index of

a graph, which is the sum of shortest paths between all pairs of vertices in the graph and the

hyper-Wiener index of a graph, which is the sum of the shortest distance and its square between
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every pair of vertices in the graph were computed in [199]. The reverse Wiener index of the graph

G, given by the value 1
2

n

∑
i=1

n

∑
j=1

diam(G) − d(u, v), where d(u, v) is the shortest distance between two

distinct vertices u and v in the graph G was computed for the unitary addition Cayley graph in

[198].

By the above mentioned definition of the topological indices, it can be seen that the reverse

Wiener index of a graph is closely related with the previously computed Wiener and hyper-Wiener

indices. As the computation of all these topological indices required the distance between the

vertices, the number of common neighbors between any two vertices in the unitary addition

Cayley graph was computed in [199]. The values of all three topological indices for the graph X+
n

that were obtained in [198,199], based on the values of n is given in Table 1, where φ(n) denotes

the Euler’s totient function.

Table 1. Topological indices of the unitary addition Cayley graph X+
n .

n Values Wiener Index Hyper-Wiener Index Reverse-Wiener Index

n is a prime integer n2−1
2 (n − 1)(n + 2) (n−1)2

2

n = 2t, for some integer t > 1 3n2

4 − 4 2(n2 − 3n
2 ) ( n

2 )2

n is a composite odd number (n − 1)(n − φ(n)
2 ) (n − 1)(3n − 2φ(n))

(n−1)φ(n)
2

n = 2t, for some integer t > 1
having odd prime divisors

5n2

4 − n(φ(n) − 1)
n(9n−10φ(n)−6)

2
n(n−2+4φ(n))

4

The Wiener index of the graph X+
n was independently computed in [200] using an algorithm

and program. Programs to draw the unitary addition Cayley graphs as well as the unitary Cayley

graph of the given order and also to find the adjacency matrix and the energy of unitary addition

Cayley graph was given in [200]. Also, few other topological indices for the unitary addition

Cayley graphs were computed in [201,202], whose values could be derived from the entries of

different matrices associated with the graph.

Apart form the study of these computational parameters, the spectra associated with different

matrices defined on the graph along with their corresponding spectral properties were investigated

in [203–206]. In [205], the spectral studies related to the adjacency and the Laplacian matrix

was conducted, where the eigenvalues and the Laplacian eigenvalues of the unitary addition

Cayley graph X+
n and its complement X+

n were determined. Also, the bounds for the energy

and Laplacian energy, for both these graphs were computed and it was proved that the unitary

addition Cayley graph is hyperenergetic if and only if n is an odd composite number that is not a

power of 3 or n is even and has at least three distinct prime factors. The characterisation for the

complement of the unitary addition Cayley graph to be hyperenergetic was also given as follows.

Theorem 96. [205] The graph X+
n is hyperenergetic if and only if n is odd and has at least 2 distinct

prime factors.

On comparing the degree of hyperenergeticity of the unitary Cayley graph Xn with the

unitary addition Cayley graph X+
n , it was seen that X+

n is more hyperenergetic than Xn. A high

number theoretical approach can be seen in the proof of the results in which both the adjacency

and the Laplacian spectra and their corresponding energies were obtained in [205]. This was
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followed by a discussion on the signless Laplacian spectrum for the graph in [206], where the

results obtained can be seen to be closely related to the results in [205].

The signless Laplacian energy of the unitary addition Cayley graph was also independently

examined in [204], which again had the same results, with similar proof techniques. In [204],

along with the signless Laplacian energy, other derived forms of Laplacian energies such as the

distance Laplacian and the signless distance Laplacian energy for the unitary addition Cayley

graphs were investigated. The distance Laplacian energy and the signless distance Laplacian energy

of a graph are the sum of the absolute values of the eigenvalues of the distance Laplacian and

the signless distance Laplacian matrix respectively. The distance Laplacian matrix and the signless

distance Laplacian matrix are correspondingly given as D(v) − Dis(G) and D(v) + Dis(G), where

Dis(G) denotes the distance matrix of the graph G and D(v) denotes the diagonal matrix in which

each diagonal element corresponding to a vertex v is the sum of the shortest distances from the

vertex v to all the vertices of the graph (refer to [204]).

These derived Laplacian spectra were computed for the unitary addition Cayley graph

X+
n and its complement X+

n and the bounds for these energy values for different n were also

determined. This was followed by the investigation of the Aα matrix of the unitary addition Cayley

graph in [203]. The Aα-matrix of a graph G is defined as Aα(G) = αD(G) + (1 − α)A(G), α ∈ [0, 1],

where D(G) and A(G) are the degree and the adjacency matrices of G (see [203]).

In [203], the eigenvalues of the Aα matrix for the unitary addition Cayley graph X+
n and

its complement were computed along with some bounds for these eigenvalues, when n is odd.

Consequently, the Aα-energy of both X+
n and its complement, when n is a prime power and n is

even was determined along with some bounds for the Aα-energy of X+
n and X+

n, when n is odd,

from which the Aα-borderenergetic and Aα-hyperenergetic graphs were defined as the graphs

having their Aα-energy equal to the Aα-energy of a complete graph and the graphs having their

Aα energy greater than the Aα-energy of a complete graph respectively; following which a few

unitary addition Cayley graphs were classified as Aα-borderenergetic and Aα-hyperenergetic.

An incidence structure D = (P, B, J), with a point set P, block set B, and an incidence relation

J is a t − (r, k, s)-design, where |P|= r, every block in B is incident with precisely k points, and

every t distinct points are together incident with precisely s blocks. The code CF(D) of the structure

D over the finite field F is the space spanned by the incidence vectors of the blocks over F (c.f.

[207]). The notion of codes is given in higher design theory to study the relation between the

elements in a design; but, this on restriction to the discrete structure of graphs, reduces to the

notions related to the incidence and adjacency in a graph, like the adjacency design, incidence

design, neighborhood design, etc. (refer to [208]).

If G is a k-regular graph, then the 1 − (|E|, k, 2) design with the incidence matrix of G is called

the incidence design of G, where the incidence matrix, B(G) of the graph G is a |V(G)|×|E(G)|
binary matrix, such that the entry bij = 1, if vi is incident with ej and 0, otherwise. A code C|F|(G)

of a graph G over a finite field F is the row span of the incidence matrix of the graph over F and

the dimension of the code is the rank of the matrix over F.

As the unitary addition Cayley graphs are regular, linear codes from the incidence matrix of

the unitary addition Cayley graph X+
n over the field Z2 were determined in [209], by computing

the main parameters of the code for the values n = p, 2p, where p is prime. Since the incidence

matrix is a binary matrix, the field considered to determine the linear code is Z2. To determine

these binary linear codes, the edge connectivity, regularity and the size of the graphs were taken
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from the existing results, as it was stated in [] that the incidence code of a graph G over a field with

2 elements is a [|E|, |V|−1, (κ1(G))]2 code, where the subscript 2 tells that the binary conversions

of these integers are to be considered.

In [210–212], the properties of the unitary addition Cayley graph of the ring of Gaussian

integers modulo n, Zn[i] (refer to Definition 15) was investigated, where the exact values and

bounds of certain parameters of the graph Zn[i] were obtained. Note that the number of elements

in the ring Zn[i] is n2, as there are n ways to fill both the real and the complex part of the number

a + ib. Correspondingly, the number of units of the ring differs, based on the value of n.

The degrees of the vertices, the size, diameter and the girth of the unitary addition Cayley

graph of Zn[i] was given in [210], based on the value of n, as mentioned in Theorem 97, from

which it was characterised that the unitary addition Cayley graph of Zn[i] is a complete bipartite

graph if and only if n = 2t, t ∈ N. The traversal properties of the graph was also investigated in

[210] and it was proven that the unitary addition Cayley graph of Zn[i] is always Hamiltonian and

when n is even, the graph is Eulerian. It was also found that the unitary addition Cayley graph of

Zn[i] is planar only for n = 1, 2.

Theorem 97 ([210]).

(i) The diameter of the unitary addition Cayley graph of Zn[i] is 3, if n = kp, where k is even and p is an

odd prime or 2, otherwise.
(ii) The girth of the unitary addition Cayley graph of Zn[i] is 3, if n is odd and 2, when n is even.

Adding on to the study, the basic graph invariants for the unitary addition Cayley graph

of Zn[i] was computed in [211,212]. Some bounds for the chromatic and the clique number of

the graph was given in [212] as well as [211], which coincide with each other. In [211], the clique

covering number of the unitary addition Cayley graph of Zn[i] was determined by determining

the independence number of its complement and in [212], the domination number of the graph

was obtained as either 1,2 or 3, based on the value of n. A similar study was conducted on the

unitary addition Cayley graphs of the ring Einstein integers modulo n, Ze
n[i] (refer to Definition

16) in [213], where along with the basic properties and parameters of the unitary addition Cayley

graphs of Ze
n[i], a comparison between the unitary addition Cayley graphs of the rings Zn[i]

and Ze
n[i] was also given for a better comprehension of the structure of the rings, graphs and its

properties. For understanding the structure of the unitary Cayley graphs on the rings Zn[i] and

Ze
n[i], an illustration of the same is given in Figure 10

In the literature, it can be seen that these unitary addition Cayley graphs of the rings Zn[i]

and Ze
n[i] were independently examined in [186] and [187] respectively as the unit graphs of the

corresponding rings, where almost the same invariants and the properties were examined in

more detail. In the next section (Section 5), it can be seen that the unit graphs are nothing but

the extension of the same definition of a unitary addition Cayley graph to a ring R, like how the

unitary Cayley graph Xn of Zn was extended to all the rings R as the graph G(R).
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(a) The unitary addition Cayley graph of Z3[i].
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(b) The unitary addition Cayley graph of Ze
3[i].

Figure 10. Unitary addition Cayley graphs (Unit graphs) of the rings Gaussian and Einstein integers modulo n.

For a graph G, S ⊆ V(G) is a perfect code (different from the notions of a code of a graph) of

the graph if S is an independent set such that every vertex in V(G) − S is adjacent to exactly one

vertex in S (see [214]). The perfect codes in an induced subgraph of the unitary addition Cayley

graph containing the vertices that represent the idempotent elements of the ring Zn was examined

in [215], where the question of when a subset of the idempotent elements of the ring Zn is a perfect

code in this induced subgraph of a unitary addition Cayley graph was answered.

It was shown in [215] that the subgraph of X+
n induced by the idempotent elements of the

ring Zn admits a perfect code of size 2 if n is a product of two prime powers, where one of the

prime is even, a perfect code of size 1 if n is the product of k factors of odd prime powers, and

a perfect code of size 2t−1 for the unitary addition Cayley graph on a ring which is the direct

product of the factors of Zpk .

Analogous to the previously discussed unitary Cayley graphs, the notion of signed algebraic

graphs were investigated for the unitary addition Cayley graphs also. Similar to the case of the

unitary Cayley graphs on Zn, multiple signed graphs were defined on the unitary addition Cayley

graph in [216–218]. These definitions are given below followed by which an example of these

graphs are given Figure 11.

Definition 19 ([217]). The unitary addition Cayley signed graph, denoted by S∨+
n = (X+

n , σ∨+), is a signed

graph whose underlying graph is the unitary addition Cayley graph X+
n , n ∈ N and the sign of an edge

vivj ∈ E(X+
n ) is assigned by the function σ∨+ : E(X+

n ) → {+,−} as follows. For an edge vivj in X+
n ,

σ∨+(vivj)

{

+, if vi ∈ Z∗
n or vj ∈ Z∗

n;

−, otherwise.
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Definition 20 ([216]). The unitary addition Cayley ring signed graph, denoted by S⊕+
n = (X+

n , σ⊕+), is a

signed graph whose underlying graph is the unitary addition Cayley graph X+
n , n ∈ N and the sign of an

edge vivj ∈ E(X+
n ) is assigned by the function σ⊕+ : E(Xn) → {+,−} as follows. For an edge vivj in X+

n ,

σ⊕+(vivj)

{

+, if either vi ∈ Z∗
n or vj ∈ Z∗

n;

−, otherwise.

Definition 21 ([218]). The addition signed Cayley graph, denoted by S∧+
n = (Xn, σ∧+), is a signed

graph whose underlying graph is the unitary addition Cayley graph X+
n , n ∈ N and the sign of an edge

vivj ∈ E(X+
n ) is assigned by the function σ∧+ : E(X+

n ) → {+,−} as follows. For an edge vivj in X+
n ,

σ∧+(vivj)

{

+, if both vi ∈ Z∗
n and vj ∈ Z∗

n;

−, otherwise.

For all the above defined signed graphs, the properties of balance, clusterability,

sign-compatibility and canonical consistence were studied in the corresponding articles. As

the the graphs Xn and X+
n coincide when n is even, the corresponding sign graphs also coincide,

and so is their properties and characterisations. In [217], the unitary addition Cayley sigraph was

introduced and the above mentioned properties were studied and the following characterisations

were obtained.

Theorem 98 ([217]).

(i) The unitary addition Cayley sigraph S∨+
n is balanced if and only if either n is even or it does not have

more than one distinct prime factor.
(ii) The unitary addition Cayley sigraph S∨+

n is clusterable if and only if it is balanced.
(iii) The unitary addition Cayley sigraph S∨+

n , where n has at most two distinct odd prime factors is

canonically consistent if and only if n is either odd, or n is 2, 6 or a multiple of 4.
(iv) Every unitary addition Cayley sigraph S∨+

n is sign-compatible.

It has been shown in [219] that all line signed graphs are sign-compatible. Hence, in view of

(iv) in Theorem 98, the question of realising a unitary addition Cayley sigraph as a line sigraph

had come up and this was answered by characterising all the unitary addition Cayley sigraph that

could be realised as a line graph and also line signed graph as given in Theorem 99.

Theorem 99. [217] Unitary addition Cayley graph is a line graph if and only if n ∈ {2, 3, 4, 6} and is a

line signed graph if and only if it is a line graph.
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(a) The unitary addition Cayley signed graph S∨+
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(b) The unitary addition Cayley ring signed graph S⊕+
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(c) The addition signed Cayley graph S∧+
10 .

Figure 11. Examples of signed unitary addition Cayley graphs.

Similarly, the unitary addition Cayley ring signed graph and the addition signed Cayley

graph were introduced and a similar properties were studied in [216] and [218] respectively.

Through the results obtained on all these signed graphs defined on the unitary addition Cayley

graphs, it can be seen that even though the definitions of the signed graphs differ, the properties

are almost similar to each other, except a very few. It can also be noticed that in some cases, the
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properties of the signed graphs defined on the unitary Cayley graphs coincide with the properties

of the corresponding signed graph defined on the unitary addition Cayley graphs. Along with

the characterisation of the signed graphs based on the above mentioned four properties, the

characterisations of these properties of balance, clusterability, etc. in certain derived signed graphs

from the signed graphs like the negation of the signed graph and some variations of line signed

graphs were also investigated in [213,216,217].

5. Unit Graph of a Ring

As mentioned earlier, Grimaldi had introduced the unitary addition Cayley graph as the unit

graph of Zn in [18], which remained latent for some years. This definition of the unitary addition

Cayley graph of Zn was generalised to all rings as the unit graph of a ring in [220] as follows. Note

that these graphs may be referred to as Grimaldi graphs in the literature by some authors, owing

to the fact that the unit graph of rings is generalised based on the graph formerly introduced by

Grimaldi in [18]. Following the definition of the unit graph and the closed unit graph of a ring,

examples of these graphs are given in Figure 12.

Definition 22 ([18]). The unit graph of a ring R, denoted by G+(R) = Cay+(R, R∗), is a graph with the

vertex set as the elements of the ring, and two distinct vertices are adjacent if their sum is a unit of the ring;

that is, for all u, v ∈ V(G+(R)), uv ∈ E(G+(R)) when u + v ∈ R∗, where R∗ is the group of units of the

ring R. If the word“distinct" is omitted from this definition, it gives the definition of the closed unit graph

of a ring R. That is, a closed unit graph of a ring R is the unit graph of R, where there may be a loop from

the vertex to itself in the graph if the sum of an element with itself is a unit.

00
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03 10 11

12

13

20

212223

(a) The unit graph of Z3 ×Z4.

11 01

1000

(b) The closed unit graph of Z2 ×Z2.

Figure 12. Examples of unit and closed unit graphs of rings.

Though this definition of the unit graphs is given for any associative ring with unity, it can

be seen that for most of the studies, only a finite commutative ring with unity is considered,

owing to the symmetric structure of these rings. Furthermore, a very limited study on the unit

graphs of associative rings can be seen, as the structure of an arbitrary ring is very sophisticated

to comprehend. This sophisticated structure of the ring gives rise to highly complex and diverse

graphs, whose structure cannot be generalised. Therefore, it can be seen in the literature reviewed
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in this section that at several instances, different authors have considered rings with specific

properties to obtain the results pertaining to the unit graphs of rings in their study.

Note that the unit graphs of rings are the complement of the total graphs defined on rings,

which has the vertex set of the graph as the elements of the ring and two vertices are adjacent if

their sum is a zero divisor. This relation between the unit and the total graph of a rings is because

of the fact that every element in a ring is either a unit or the zero-divisor of the ring. Total graphs

have huge literature (c.f. [12,16,221]), where certain properties of the complement of the total

graphs have also been investigated. Though the complement of total graphs of rings represent

the unit graphs, in this article, we review the literature that has discussed the properties of unit

graphs of rings under its name only.

On observing the definition of the unit graph of a ring, it can be noticed that it is a subgraph

of the comaximal graph defined on a ring R, in which the vertices are the elements of the ring

any two vertices u and v are adjacent in the graph if Ru + Rv = R (refer to [19]). Though certain

properties of the comaximal graphs (when restricted to its subgraphs) hold for the unit graphs

also, this article focuses only on the results that are specifically obtained for the unit graphs of

rings.

In [220], discussions on the unit graph of rings were initiated, where the properties like

the regularity, and connectedness were investigated for the unit graphs of all associative rings

and some properties like diameter, girth, and planarity were investigated for the unit graphs

of finite commutative rings. The unit graph of a ring was found to be either |R∗|-regular or

(|R∗|,|R∗|−1)-biregular based on the unit elements of the ring.

Recall that an element of a ring R is said to be k-good if it can be expressed as a sum of k units

of the ring R and a ring is said to be k-good if every element is k-good. The connectedness of the

graph was characterised based on the unit sum number and the k-goodness property of the ring

as given below and this discloses the fact that the unit graphs are generally not connected, as the

unit sum number of not all rings are finite. Also, an interesting relation between the dominating

set and the connectedness of the unit graph of rings was also obtained in [220], as stated below.

Theorem 100. [220] The unit graph G+(R) of a ring R is connected if and only if the ring is k-good for

some integer k ≥ 1 or the ring R is not k-good but every element of R is k-good, for some k ≥ 1; that is, the

units additively generate R.

Theorem 101. [220] If the set of all vertices that corresponds to the units of the ring form a dominating

set of the unit graph of the ring, then the unit graph is connected.

The connectedness of the unit graphs of some particular rings were investigated based on

the above mentioned characterisation that was obtained on the connectedness of the unit graphs.

The chromatic index of the unit graph of an associative ring was also computed as δ + 1, where δ

is the maximum degree of the vertices in the unit graph, and certain structural characterisations

of the unit graph on when can the unit graph of a ring be a cycle, path, bipartite and complete

bipartite graph were obtained in [220], which are given below.
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Theorem 102. [220] The unit graph G+(R) of a ring R is a cycle if and only if R is either Z4, Z6 or the set

of all 2 × 2 matrices of the form

(
a b

0 a

)

, where a, b ∈ Z2.

Theorem 103 ([220]).

(i) The unit graph of a ring R is a complete graph if and only if R is a division ring with characteristic 2.
(ii) The unit graph of a ring R is a complete bipartite graph if and only if R is a local ring with the

maximal ideal M such that | R
M |= 2.

Following this, the structure of the cliques and co-cliques (independent sets) in the unit

graph of a finite commutative ring R was studied in relation with its Jacobson radical JR and the

corresponding quotient ring R
JR

. In addition to it, characterisations of finite commutative rings

based on their diameter, girth and planarity were also obtained in [220]. Using this structure of

cliques and co-cliques and the structural realisations obtained in in [220], the unit graph of a finite

commutative ring was proved to be weakly perfect in [222]; that is, for a finite commutative ring

R, χ(G+(R)) = ω(G+(R)), where χ and ω denote the chromatic and the clique number of the graph.

This was proved by using a series of lemmas, where finite commutative rings having different

algebraic properties were considered and the corresponding unit graphs were proved to be weakly

perfect by computing their clique and chromatic numbers. Owing to the fact that every finite

commutative ring R is isomorphic to the direct product of local rings, and their quotient ring R
JR

is

isomorphic to the direct product of fields, the proof of the main theorem was given in two cases,

based on the structure of the fields that are present in the direct product of the quotient ring R
JR

.

That is, the first case was considered as no field in the local factors of R
JR

has its characteristic 2 and

the second one was the existence of at least one field in the local factors of R
JR

with characteristic 2

in the direct product.

The structure of the unit graphs of the quotient rings R
JR

in these cases followed the values of

the clique and the chromatic number of the unit graph of obtained in [18], which correlates the

structure of a ring R and its quotient ring R
JR

. Using this result, the parameters were computed

and the final result was proved. This discussion of the weak perfect property led to the discussion

of the property of perfection in the unit graphs of rings in [223], where the perfection of the unit

graphs of finite commutative Artinian rings were examined and the results on classification of

rings whose unit graphs are perfect and not-perfect were obtained.

The girth of the unit graph of any finite commutative ring R was proved to be either 3,4,6

or ∞ in [220]. This result was extended in [224] to the unit graph of any arbitrary ring and the

same values were obtained as the girth of the corresponding unit graphs. On obtaining these

restricted values for the girth of unit graphs, the exact girth values of the unit graph of specific

rings were computed and relations between the girth of the unit graph of a ring R and R
JR

were

also established. The rings R with semipotent quotient rings R
JR

such that the girth of the unit

graph of the ring R is either 6 or ∞ were determined and some necessary conditions on the group

of unit elements of a ring were obtained to realise the unit graph of the corresponding ring based

on its girth. Note that a semipotent ring is a ring such that every left ideal that is not contained in

the Jacobson radical of the ring contains a non-zero idempotent element

In an analogous manner, it was proved that the diameter of the unit graphs of finite

commutative ring take the values 1,2,3, or ∞ in [220] and this result was extended to the unit graphs
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of rings that have a self-injective quotient ring R
JR

in [225]. Recall that a ring is called self-injective if

every homomorphism from the principal ideal to the ring extends to a homomorphism of the ring

to itself.

As the diameter of a graph is associated with its connectedness, certain discussions on the

connectedness of the unit graphs of some rings, based on their unit sum numbers were given,

following which all rings that have a self-injective quotient ring R
JR

were classified based on the

values of the diameter of their unit graphs. Furthermore, characterisation of rings based on the

diameter values of their unit graphs were also obtained as given in Theorem 104 and it was proved

that for any integer n ≥ 1, there exists a ring R such that n ≤ diam(G+(R)) ≤ 2n.

Theorem 104. [225] For a ring R with its unit graph G+(R), diam(G+(R)) = 2 if and only if usn(R) = 2

and R is not a division ring with char(R) = 2.

As an extension to the discussions on the diameter of the unit graphs of rings, the radius of

the unit graphs were investigated in [226]. It can be seen that the studies on the radius of algebraic

graphs are rare when compared to the studies on the diameter, though they are closely related.

This is because several graphs tend to have the minimum eccentricity one. In [226], the relation

between the unit graph of a ring R and its corresponding quotient ring R
JR

was obtained and some

characterisations of rings having the radius of their unit graphs 1, 2, 3 and ∞ were given. It was

also proved that for every positive integer n, there exists a ring R such that the radius of its unit

graph is n. It can be seen that the investigations in [226] on the radius of the unit graphs of rings

are made in a similar pattern of discussion as followed in [224,225].

This was followed by a cursory investigation on the connectedness of the complement of

unit graphs of finite commutative rings in [227], where the complement of the unit graph was

proved to be always connected and the following equivalent statements were obtained by relating

connectedness to the dominating set and the number of the maximal ideals of the ring, based on

the results obtained in [18], relating the same notions.

Theorem 105. For a finite commutative ring R with the set of all maximal ideals of the ring M. Then, the

following statements are equivalent.

(i) The complement of the unit graph G+(R) is connected.
(ii) |M|≥ 2.

(iii) R − {R∗} is a dominating set of the graph G+(R).

Note that Theorem 101 states the necessary condition of the set of all units to be just a

dominating set, and not a minimal or a minimum dominating set of the unit graph of a ring.

This conveys the possibilities of the graph having other minimal dominating sets, which may

possibly be a subset of the set of all vertices that represent the units of the ring also and this

led to the investigation of the domination numbers in the unit graphs of rings. In [228], the

finite commutative rings that have domination number less than 4 were characterised as given in

Theorem 106, by studying the domination number of the unit graphs of fields, product of fields,

rings, local rings, etc. The unit graphs of the product of local rings were also investigated by

considering the cases of certain special rings as local factors, where these special rings have unit

graphs with structural properties that shall influence the structure of the overall unit graph of the

ring.
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Theorem 106. [228] Let R be a finite commutative ring with the unit graph G+(R). Then,

(i) γ(G+(R)) = 1 if and only if R is a field.
(ii) γ(G+(R)) = 2 if and only if either R is a local ring that is not a field or R is isomorphic to the product

of two fields such that only one of them have characteristic 2 or R ∼= Z2 × F, where F is a finite field.
(iii) γ(G+(R)) = 3 if and only if R is not isomorphic to the product of two fields such that only one of

them have characteristic 2 and R ∼= R1 × R2, where R1 and R2 are local rings with maximal ideals

M1 and M2, respectively such that their quotient rings are not isomorphic to Z2.

The concept of domination in unit graphs was also studied in [229], where the motive of the

study was to characterise commutative rings that have the domination number of their unit graphs

as half their order; that is, to characterise rings such that γ(G+(R)) = |R|
2 or γ(G+(R)) = |R|−1

2 . A

characterisation of the former one was obtained completely as given in Theorem 107, whereas the

latter problem was solved partially, considering only the rings of integer modulo n.

Theorem 107. [228] Let R be a finite commutative ring with the unit graph G+(R). Then, γ(G+(R)) = |R|
2

if and only if R ∼= Z2 ×Z2 × . . . ×Z2
︸ ︷︷ ︸

t−times

×S, t ≥ 0, where S is is either Z2, Z4 or Z2[x]
〈x〉 .

An open problem to determine the existence of a ring R such that given an integer n, the

unit graph has domination number n was put forth in [229]. Though the question is yet to be

fully answered, in the same article, it was concluded that for integers of the form 2k, k ≥ 0, there

exists a ring R such that γ(G+(R)) = 2k, using the results obtained in that article. Continuing the

investigation on the domination number of the unit graphs of rings, the study in [230] examined

the domination number of the unit graph G+(R) of a ring R ∼= Z
p

α1
1
× Z

p
α2
2
× Z

p
α3
3

, where pi;

1 ≤ p ≤ 3 are primes was computed and the following characterisations were obtained in [230].

Theorem 108. [230] Let R ∼= Z
p

α1
1
× Z

p
α2
2
× Z

p
α3
3

, where pi; 1 ≤ p ≤ 3 and p1 < p2 < p3 are primes

and G+(R) be its unit graph having domination number γ(G+(R)). Then,

(i) 4 ≤ γ(G+(R)) ≤ 6.
(ii) γ(G+(R)) = 4 if and only if α1 = α2 = α3 = 1 or p1 > 3.

(iii) γ(G+(R)) = 5 if and only if α1α2α3 ≥ 2 or p1 = 3.
(iv) γ(G+(R)) = 6 if and only if α1α2α3 ≥ 2 or p1 = 2.

In [231], a relation between the domination number as well as the total domination number of

the unit graph of a ring R and its Ore’s extension R[x; α1, α2]; the ring of polynomials over R with

usual addition and multiplication defined as the relation xy = α1(y)x + α2(y), were studied and it

was obtained that for all associative rings, γt(G
+(R)) = γt(G

+(R[x; α1, α2])), where γt denotes the

total domination number of the graph.

Based on this, an open problem to investigate if the same equality holds for the domination

number of the unit graphs of all associative rings and their Ore’s extension. That is, to check if

γ(G+(R)) = γ(G+(R[x; α1, α2])), for all associative rings, was posed in [231]. Note that in the former

study, the rings considered were the general associative ring and were not restricted to the finite

commutative rings, whereas several bounds for the domination number of the unit graphs of only
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the finite commutative rings were obtained in [232], using the existing results on the domination

number of the unit graphs of rings.

Examining planarity in algebraic graphs has caught the attention of several researchers, due

to which for any new algebraic graph defined, these algebraic structures are characterised based

on the planarity of the algebraic graphs introduced. Such characterisations of finite commutative

rings for which the unit graph is planar was obtained in [220] (Theorem 109). This was followed

by characterising any associative ring whose unit graph is planar in [233], which was determined

based on mainly the order of the ring and its unit group, along with the structure of the ring, as

given in Theorem 110 and as an application of the obtained result, all semipotent rings whose unit

graphs are planar were characterised in [234] and based on this, a list of all semilocal rings with

planar unit graphs were obtained. Recall that a semipotent ring is a ring such that every left ideal

that is not contained in the Jacobson radical of the ring contains a non-zero idempotent element

and a semilocal ring is a commutative Noetherian ring with finitely many maximal ideals, where a

ring is called Noetherian if every ideal of the ring is finitely generated.

Theorem 109. [220] Let R be a finite commutative ring with the unit graph G+(R). Then, G+(R) is planar

if and only if R is either Z5, Z3 ×Z3 or S is isomorphic to one of the following rings.

(i) Z2,
(ii) Z3,

(iii) Z4,
(iv) F4,

(v) The set of all 2 × 2 matrices of the form

(
a b

0 a

)

, where a, b ∈ Z2.

Theorem 110. [233] Let R be an associative ring with the unit graph G+(R) and the group of units R∗.

Then, G+(R) is planar if and only if one of the following holds.

(i) |R∗|< 4 and |R|≤ |R|,
(ii) |R∗|= 4 and char(R) = 0 with |R|≤ |R|,

(iii) R ∼= Z5,
(iv) R ∼= Z3 ×Z3.

The planarity of the unit graphs of some local and quasilocal rings were examined in

[235–237], where a commutative ring R which has only a finite number of maximal ideals is

referred to as a quasilocal ring and a ring with a unique maximal ideal is a local ring. In [234], a

characterisation of finite quasilocal rings that have planar unit graphs was obtained and it was

proved that if the unit graph of a quasilocal ring is planar, then the ring is finite. This was proved

by considering rings of two cases, where the first one is when the ring has exactly two maximal

ideals and the second case is when the quasilocal ring has more than two, but finitely many ideals.

These cases were investigated one each in [236,237] respectively.

In succession to the planar unit graphs, the non-planar unit graphs of finite commutative rings

that have genus 1 were investigated in [238], where all finite commutative rings with non-zero

identity whose unit graphs are toroidal were determined, up to isomorphism and it was proved

that for any positive integer k, the are finitely many number of finite commutative rings with

non-zero identity such that the genus of their unit graph is k. As a continuation of the study on
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the unit graphs of finite commutative rings with unit genus, the rings having unit graphs with

higher order genus were investigated in [239] and all finite rings with unit graphs having genus 1,

2 and 3 were characterised.

As the spectra of algebraic graphs are another area of keen interest to the researchers, the

adjacency spectrum of the closed unit graph was computed in [240], based on the properties of

the closed unit graphs obtained in [220]. The cases when the unit and closed unit graphs coincide

with each other as well as few structural properties of the closed unit graphs, when they do not

coincide with the unit graph of the corresponding ring were determined in [220]. Utilising these

results and properties from [220], especially the result that establishes that the closed unit graph

of product of two rings is the direct product of the closed unit graphs of the corresponding rings,

which arouse as a consequence of the structure theorem (refer to [26]), the spectra of the closed unit

graphs of arbitrary finite rings and their quotient rings R
JR

were determined. Using the spectral

values, it was shown that the unit graphs G+(R1) and G+(R2) of two arbitrary finite rings R1 and

R2 are isomorphic if and only if the unit graphs of their corresponding quotient rings G+( R1
JR1

) and

G+( R2
JR2

) are isomorphic.

As the closed unit graph and unit graph of rings coincide in a good number of cases, this

spectra can also be taken as the spectra of the unit graphs and based on that, the rings whose unit

graphs are Ramanujan graphs were determined, using which a necessary and sufficient condition

for the unit graph of a ring to be strongly regular was established in [240] as follows

Theorem 111. [240] For a ring R with the unit graph G+(R), the following statements are equivalent.

(i) G+(R) is a strongly regular graph.
(ii) R is a local ring with the maximal ideal M such that Char( R

M ) = 2 or R ∈ {Zt
2,F× F}, where F is

a field with |F|= 2k, where t, k ≥ 2.

A biclique is a complete bipartite subgraph of a graph G and a collection of subgraphs of G

is called a biclique partition covering of a graph G if every subgraph in the collection is a biclique

and for every edge in the graph, there exists exactly one biclique in the collection to which the

edge belongs to. The biclique partition number of a graph G, denoted by bp(G), is the minimum

cardinality among the biclique covers of the graph (refer to [241]). There are several applications

of this parameter in networks, but one of the main motivation to study this parameter in graphs

is to minimise the storage space, as listing the subgraphs in a minimum complete bipartite

decomposition of G consumes less space than the adjacency list representation.

If a+(G) and a−(G) denote the number of positive and negative eigenvalues in the adjacency

spectrum of the graph G, then the graph is said to be eigensharp (almost eigensharp) when

bp(G) = max{a+(G), a−(G)} (bp(G) = max{a+(G), a−(G)} + 1) (For more details on the eigensharp

properties of graphs, c.f. [242]). In [243], the rings that have eigensharp unit graphs were

investigated and by computing the adjacency spectrum and the corresponding biclique numbers,

using the structural properties of the rings determined in [220], it was found that for prime p, the

rings Zp, Z2p and
Zp[x]

〈x2〉 are eigensharp graphs. The authors had also posted the problem to check

if the unit graphs of rings Zpn , Zqp and
Zp[x]

〈xn〉 , for prime p and q are eigensharp, which still remains

unsolved.
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The other computational parameters that were determined for the unit graph of finite

commutative rings are the topological indices namely, the Wiener index and the hyper-Wiener

index. These topological indices were computed for the unitary addition Cayley graphs in[199]

and in [244] these results were extended to the unit graphs of all finite commutative rings and

from these results, the values of these indices for the graph X+
n were computed by considering the

finite commutative ring R as Zn.

The other graph properties like the well-coveredness, Hamiltonicity and chordality of the

unit graphs of rings were examined in [245,246] and [247], respectively. In [246], a necessary

and sufficient condition for the unit graph of a finite commutative ring to be Hamiltonian was

derived, by constructing a graph based on the structural properties of the rings whose unit graph

is connected as obtained in [220]. As connectedness of the unit graph of a ring was given based on

the unit sum number of the ring, a set of equivalent statements involving all these aspects of the

ring was given in [246] as follows.

Theorem 112. [246] Let R be a finite commutative ring R that is not isomorphic to Z2 and Z3, with unit

graph G+(R). Then, the following statements are equivalent.

(i) G+(R) is Hamiltonian.
(ii) The ring R cannot have Z2 ×Z2 as a quotient ring.

(iii) The R is generated by its units.
(iv) G+(R) is connected.

Followed by the study on Hamiltonicity, the chordality in the unit graphs of finite

commutative rings was studied in [247], where the rings having quotient ring R
JR

as a product of

fields were characterised based on the chordality of the unit graphs and in [245], a necessary and

sufficient condition under which the unit graphs of finite commutative rings are well-covered was

deduced, using which the unit graphs whose edge rings are Cohen–Macaulay and Gorenstein

were characterised as given in Theorem 113. This characterisation led to the identification of a

large class of non-Cohen–Macaulay graphs.

Theorem 113. [246] Let R be a finite commutative ring R with unit graph G+(R). Then,

(i) G+(R) is Cohen-Macaulay if and only if R is a field with characteristic 2 or R ∼= Z2 ×Z2 × . . . ×Z2.
(ii) G+(R) is Gorenstein if and only if R ∼= Z2 ×Z2 × . . . ×Z2.

A graph G is called realisable as an algebraic graph (unit graph) if it is isomorphic to the

algebraic graph defined (unit graph G+(R), for some ring R). As already mentioned, two prominent

problems that exists for any algebraic graph introduced are to analyse the graph parameters of the

newly introduced graph and to check if any given graph G can be realised as the defined algebraic

graph. A partial solution to the second problem of realising the given graph structure as a unit

graph of a ring was given in [248], where the classes of graphs which can be realised as a unit

graph were determined as given below.

Theorem 114 ([248]).

(i) Pn is realisable as a unit graph if and only if n = 2, 3.
(ii) Cn is realisable as a unit graph if and only if n = 4, 6.
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(iii) Kn is realisable as a unit graph if and only if n = 2k, for some a positive integer k.
(iv) Ks1 ,s2 is realisable as a unit graph if and only if s1 = s2 = 2k, k ∈ N or s1 = 1 and s2 = 3.

It can be seen that the graph realisations in Theorem 114 is given based on the results

obtained in [220], where the rings were characterised based on the unit graph’s structure as given

in Theorems 102 and 103. While using Theorem 102 and Theorem 103 for obtaining further

realisations of the unit graphs, the authors of [248] observed that the characterisation of rings

whose unit graph is complete bipartite was incomplete, as there emerged an ambiguity if authors

of [220] have assumed that the ring R as a local ring with or without the condition | R
M |= 2, where

M is the maximal ideal of the local ring. On both the cases of this assumption, counterexamples of

rings with the corresponding properties were obtained in [248], which led to a modification of the

existing result.

In the case that such a ring for which | R
M |6= 2 was considered in [18] to prove the result that

was given in [18], a counterexample of a field with 4 elements, say F4, whose unit graph is K4,

which is not complete bipartite was given in [248], and on the other hand, if R was considered as

a local ring with condition | R
M |= 2, the result was proved to be incorrect because, if R ∼= Z3, then

G+(R) ∼= K1,2, which is a complete bipartite. Based on these observations, the result was modified

in [248], by including the condition | R
M |6= 2 or R ∼= Z3, along with the existing statement that was

given in [220].

Recollect that for a graph G, S ⊆ V(G) is a perfect code of the graph if S is an independent

set such that every vertex in V(G) − S is adjacent to exactly one vertex in S. A perfect code can

also be called as an efficient independent dominating set (c.f.[214]). By the definition of a perfect

code, the investigation of perfect codes can be seen as computing a variant of the domination

number of a graph and in [249], perfect codes in the unit graphs were examined, where the rings

were characterised first based on the existence of a perfect code in their unit graphs or their

complements, as finding whether a graph admits perfect code is also a question to be addressed.

Following this characterisation of rings, the commutative rings with identity in which their

associated unit graphs accept perfect codes of order 1 and 2 were characterised and few results

relating the structure of the perfect code and the structure of the rings were obtained.

This study was extended to investigate the perfect codes in the induced subgraph of the

unit graph of finite commutative rings in [250], where the subgraph of the unit graph of a ring

induced by the set of all vertices that represent the elements of the ring that are not units of the

ring was considered. Here, the commutative rings in which their associated induced subgraphs of

unit graphs admit the trivial and non-trivial perfect codes were classified and a characterisation

of rings that do not admit perfect codes in this induced subgraph of their unit graph was also

deduced. Furthermore, it was proved that the complement of this induced subgraph of the unit

graph of finite commutative rings admits only the trivial subring perfect code, where a subring

perfect code means the perfect code on a subgraph induced by a subring of the ring. A similar

investigation on some other induced subgraphs of the unit graph of commutative rings was

conducted in [251], whose results are analogous to the ones obtained in [250], even though the

vertex set of the subgraphs induced differ. This gives an underlying property of the unit graph of

the ring itself rather than the subgraphs.

A Boolean ring is a ring with identity in which every element is idempotent. Perfect codes in

the unit graph of Boolean rings were investigated in [252,253], where the existence of a subring

perfect code in the unit graphs associated with the finite Boolean rings was proved in [252], along
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with which a necessary and sufficient condition for a subring of an infinite Boolean ring to admit

a perfect code of size infinity in the unit graph was also obtained. In [253], the perfect codes in

spanning subgraphs of a unit graph associated with a Boolean ring R of order 2k, for some positive

integer k ≥ 1 was determined and as a consequence of it, sharp lower and upper bounds for the

cardinality of a subset of the vertex set to be a perfect code in spanning subgraphs of a unit graph

was established.

The line graph of a graph is a well-studied derived graph of a graph and as already known,

several properties of the line graph of a graph are interrelated with the properties of the graph.

In this regard, the line graph of the unit graphs associated with the finite commutative rings

was exclusively studied in [254–256]. The basic properties of the line graph of the unit graph

of finite commutative rings like the diameter, girth, clique, and chromatic number, along with

some classifications of rings whose unit graphs are planar and Hamiltonian were given in [255].

Observe that almost all the results in this article [255], are deduced based on the properties of the

unit graphs that were discussed in [220].

An extended investigation on the line graph of the unit graph associated with finite

commutative rings was done in [254], where characterisations of the line graphs of the unit

graphs of rings on the basis of their structural properties like the completeness, bipartiteness,

traversability, diameter, girth, and chromatic number were obtained. Also, the domination number

of this line graph of the unit graph of rings was computed in [229] along with the domination

number of the unit graphs of rings. Significant and curious problems of identifying the structure

of the unit graph of a given finite commutative ring as a line graph of some graph, as well as

identifying the finite commutative rings for which the complement of the unit graph can be

realised as a line graph of a graph was addressed in [256] and the list of rings of order 2, 3, and 4

with these realisation conditions were given.

For better understanding of the structure of the graph based on the structure of the ring, the

unit graphs of certain specific rings whose structures are well known were investigated in detail.

In [257], the unit graph of the ring Zr × Zs, for any r, s ∈ N, was discussed exclusively, where

the basic structural and traversal properties of the graph G+(Zr × Zs) and its graph invariants

were determined. Similarly, in [258], the rings of polynomials and power series over a ring were

examined and all standard properties and invariants of the unit graph of these rings were obtained,

along with some results on the planarity of the graph also.

In [259], the unit graphs of group rings were discussed, where if G is a group and R is a

ring, group ring of G over R, denoted by R[G], is a generalisation of a given multiplicative group,

by attaching to each element of the group a “weighting factor" from a given ring. It is a set of

mappings with certain properties involving module operations. The basic graph invariants and

certain structural properties of the unit graph of these rings were deduced in [259]. As a detailed

conceptual understanding of the group rings can be obtained, only with the knowledge on the

structure of modules, we refer the reader to [260,261], for more details on group rings.

For most of the study on the unit graphs of rings that had been conducted, it can be seen that

the unit graphs of finite commutative rings were considered and in few instances, the unit graph of

an associative ring was considered. As already mentioned, this is because of the symmetric nature

of the commutative rings. In [262], the unit graph of a left Artinian ring was exclusively examined

and the connectedness, girth and the diameter of the unit graph of this ring were determined.

Also, the conditions under which the unit graph of any finite ring is Hamiltonian was obtained in
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[262] by providing an algorithm that finds a spanning cycle of the unit graph, which takes the

required end points as the input and provides the corresponding Hamiltonian cycle. In [263], a

short discussion on the unit graphs of non-commutative rings was given, wherein a very few

results of the unit graphs of commutative rings were extended by proving it without using the

commutative property of the ring. With this study, the challenge to investigate the unit graphs

associated with non-commutative rings was clearly visible.

The signed graph of the unit graph of rings was defined in [? ] as given in Definition 23

and an example of the graph is given in Figure 13. The rings for which this signed unit graph is

balanced were characterised in [? ] and the line signed graphs of these signed unit graphs were

investigated in [264], where the commutative rings with unity for which line signed graph of a

signed unit graph is balanced and consistent were characterised, by establishing some sufficient

conditions for balance and consistency of line signed graph of signed unit graphs.

Definition 23 ([? ]). The signed unit graph, denoted by S(G+(R)) = (G+(R), σ+), is a signed graph

whose underlying graph is the unit graph G+(R) of the ring R and the sign of an edge vivj ∈ E(G+(R)) is

assigned by the function σ+ : E(G+(R)) → {+,−} as follows. For an edge vivj in G+(R),

σ+(vivj)

{

+, if vi ∈ R∗ or vj ∈ R∗;

−, otherwise,

where R∗ denotes the group of units of the ring.

11 01

1000

Figure 13. The signed unit graph of Z2 ×Z2.

An independent investigation on the signed unit graphs of the rings of the form Zp1
×

Z
p

α1
1 p

α2
2 ...pαr

r
, where pi, 1 ≤ i ≤ r are prime numbers and r ∈ N, was done in [265]. In this article,

the sign compatibility, balance and clusterability of the unit graphs of these rings were discussed

and the rings were characterised according to the above mentioned properties.

It can be seen in the literature that several surveys and brief literature reviews of the

investigations on the unit graphs of rings had been done periodically from the time of introduction

of these graphs (c.f. [162,266,267]), to understand the dynamics of research problems proposed

and addressed on the unit graphs of rings. Further, since the unitary addition Cayley graphs also

possess the same definition, the unit graphs of some rings are sometimes addressed as the unitary

addition Cayley graphs of the respective ring, and are investigated along with the unitary Cayley

graphs and such articles, where more than one graph among the graphs given in the review
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are discussed are included in the section of the first graph that is discussed, with appropriate

explanation and cross-referencing. Also, it can be noticed that not several investigations have

been done on the closed unit graphs of rings, unlike the unit graphs. This provides an area to

explore on this pseudo-graph structure.

6. Other Cayley Graphs Defined on Rings

Towards the end of eighteenth century, the Cayley graph was defined on groups such that

the vertex set of the graph is the elements of the group and the adjacency condition was defined

with respect to a symmetric subset of the group. This was considered as an underlying principle

to define a Cayley graph on any algebraic structure, and multiple variations of Cayley graphs

were defined on algebraic structures, based on several of its well-known symmetric subsets. In

this article, as we deal with rings, we collect the literature on different Cayley graphs defined on

rings, based on various symmetric subsets of the ring and provide a brief review in this section.

As we can observe, Zn is one of the most comprehend-able ring structure and the properties

of any symmetric subset of this ring is related to the number theoretic properties of n. Owing

to this, it can be seen that several Cayley graph variations are defined on Zn and investigated

as the first step, following which, the definitions are extended to a general ring, based on the

feasibility of investigation. Though almost all the graph definitions on Zn can be extended to any

ring R, the process of investigating these graphs for any general ring is highly challenging as the

graph properties depend on the algebraic structure of the ring. Also, even in the articles where

the definitions are extended to a general ring R, it can be observed that the commutative ring with

unity, local rings, and rings that can be factorised into product of local rings are mainly considered

for determining the properties of these graphs.

In this section, we denote the different Cayley graphs graph by the notation ξ with an

appropriate suffix, corresponding to the property using which the graph is defined, for brevity

and uniformity. Also, the symmetric subset considered are denoted by S is all the subsections,

where in each subsection the set S corresponds to the symmetric subset considered to define the

corresponding graph in that subsection.

6.1. Absorption Cayley Graphs

The absorption Cayley graph of the ring Zn was introduced and studied in [268,269]. As the

name conveys, this variant of Cayley graph is defined based on the absorption property of the

elements in the ring as given below, following which an example of an absorption Cayley graph is

given in Figure 14.

Definition 24 ([269]). The Absorption Cayley graph, denoted by ξ
acg
n = Cay(Zn, S), is a graph with

the vertex set as the elements of the ring Zn; 0, 1, . . . , n − 1, and two vertices are adjacent if their sum

is an element of the set S, where S = {x ∈ Zn : xy = yx = x, and x 6= y, y ∈ Zn}. That is, for all

u, v ∈ V(ξ
acg
n ), uv ∈ E(ξ

acg
n ) when u + v ∈ S, where S is the set of all elements in the ring such that it

absorbs some element in the ring, except for itself.
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Figure 14. The absorption Cayley graph ξ
acg
8 .

As the graph is defined on the subset formed by all the elements of the ring that absorbs some

other element of the ring, the properties of this set was first discussed in [269]. The cardinality

of this set and the properties of the elements in the set were discussed and it was found that

for n = 2k, where k is odd, this subset S ⊆ Zn coincides with the set of zero-divisors of the ring.

Following this, the subset was proved to be a subgroup of the group Zn, which verified that the

graph defined is with respect to a symmetric subset of the ring Zn.

We know that both, the adjacency matrix of a graph as well as the Cayley table of a group

are symmetric, such that each entry in a particular row and the corresponding column is unique.

An interesting relation was seen between the adjacency matrix of the absorption Cayley graph

of Zn and the Cayley table of Zn. That is, if each element a ∈ S is replaced with 1 in the Cayley

table and all the other elements, including the diagonals are given 0, the adjacency matrix for

the absorption Cayley graph of Zn could be obtained. As the absorption Cayley graph is defined

based on the sum of two elements belonging to the symmetric subset, an interesting relation

between the unitary addition Cayley graphs and the absorption Cayley graphs was given in [269]

as follows.

Theorem 115. [268,269] Let k be an odd integer. For n 6= 2k, the complement of the unitary addition

Cayley graphs X
+
n is isomorphic to the absorption Cayley graphs ξ

acg
n .

Several graph parameters of the graph ξ
acg
n were computed in [269] as given in Theorem 116,

along with the investigation on the connectedness, traversal properties, perfection and planarity of

the graph, as given below. Owing to the relation between the unitary addition Cayley graphs and

the absorption Cayley graphs, only the results on absorption Cayley graphs, which are not derived

exactly from the properties of the unitary addition Cayley graphs are stated in this subsection.

Theorem 116. [268,269] Let ξn
acg = Cay(Zn, S) be the absorption Cayley graph of the ring Zn. Then,

(i) The graph ξ
acg
n is either |S|−1-regular or (|S|, |S|−1)-semi regular.

(ii) |E(ξ
acg
n )|= k⌈ n−1

2 ⌉ + (|S|−k)

(

⌈ n−1
2 ⌉ − 1

)

, where k is the number of odd elements in S.

(iii) diam(ξ
acg
n ) = 2.

(iv) The edge connectivity of ξ
acg
n , when connected, is |S|−1.
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(v) The girth of ξ
acg
n (when connected) is 4, when n = 6 or 3, otherwise.

Theorem 117. [268,269]

(i) An absorption graph ξn
acg is connected if and only if n has at least two distinct prime factors.

(ii) An absorption graph ξn
acg is disconnected if and only if n = pk, where p is prime and k ≥ 1 is an

integer.
(iii) The number of components in a disconnected absorption Cayley graph ξ

acg
n is n−1

2 , when n is prime

and 2, otherwise.

Theorem 118. [268,269]

(i) An absorption Cayley graph is never Eulerian.
(ii) An absorption Cayley graph ξ

acg
n is Hamiltonian if |S|> n

2 , where n 6= 2k, for some odd integer k.

It can be observed that due to the strong perfect graph theorem that states that a graph is

perfect if and only if the graph as well as its complement does not contain any induced cycle

of odd length at least 5, and Theorem 115, the conditions for the perfection of the graph ξ
acg
n

coincides with that of the unitary addition Cayley graphs.

Theorem 119. [268,269] The absorption Cayley graph of the ring Zn is planar if and only if n ∈
{2, 4, 6, 8, p}, where p is a prime number.

An important question that arises on defining a new algebraic graph is the realisation of a

given graph as the defined algebraic graph; that is, in this context, the question will be, when can

a graph of order n be realised as an absorption Cayley graph of order n? This was answered in

[268,269] as follows.

Theorem 120. [268,269] A given graph G of order n is isomorphic to an absorption Cayley graph ξ
acg
n if

and only if there are |S| edge disjoint subgraphs of the graph G, say G1, G2, . . . , G|S|, whose union is the

graph G, such that the following conditions hold.

(i) ab ∈ E(Gi) if and only if a + b ≡ i mod n.
(ii) |E(Gi)|= ⌈ n−1

2 ⌉ − 1, when i is even and ⌈ n−1
2 ⌉, when n is odd.

Owing to Theorem 120 and the fact that the absorption Cayley graph is disconnected, the

structure of the components of a disconnected absorption Cayley graphs was also examined in

[269] and it was observed that these disconnected components are the union of subgraphs that

are generated by the prime factors of n, which are nothing but disjoint cliques. This gave rise to

the characterisation that an absorption Cayley graph ξ
acg
n is bipartite if and only if n is prime, as

S = {0}, when n is prime.

As the graph coincides with the unitary addition Cayley graph, in some cases and the

zero-divisor Cayley graphs (see Subsection 6.6), for some values of n, the existing literature on

these graphs determine most of the properties of them, which curtails the scope of unique study

on this graph. Also, in the remaining cases, it was seen that the graph was a union of disjoint

cliques, which also does not extend much scope for further exploration.
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6.2. Nilpotent Cayley Graphs

The nilpotent Cayley graph of the ring Zn was introduced in [270] and was studied in

[270,271]. As the name suggests, this variant of Cayley graph is defined based on the subset of

all nilpotent elements of the ring, as given below. Recall that an element x of a ring is said to

be nilpotent if there exists a positive integer k, called the index, such that xk = 0, where 0 is the

additive identity of the ring.

Note that there are different graphs defined as the nilpotent and non-nilpotent graph of a

ring having different vertex sets like the set of all nilpotent elements, non-nilpotent elements etc.

or they have been defined based on the product operation of the ring. We donot consider them

for the review because we restrict ourselves to the graphs defined on rings that are analogous to

Cayley graphs. In other words, the vertex set of the graph to be the elements of the rings, where

the adjacency condition is defined based on either the sum or the difference of two elements that

has to belong to a symmetric subset.

Definition 25 ([270]). The nilpotent Cayley graph of the ring Zn, denoted by ξnil
n = Cay(Zn, S), is a

graph with the vertex set as the elements of the ring Zn; 0, 1, . . . , n − 1, and two vertices are adjacent if

their difference is an element of the set S, where S = {x 6= 0 ∈ Zn : xk = 0, for some k ∈ N}. That is, for

all u, v ∈ V(ξnil
n ), uv ∈ E(ξnil

n ), when u − v ∈ S, where S is the set of all non-zero nilpotent elements of

the ring. An example of a nilpotent Cayley graph is given in Figure 15.
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Figure 15. The nilpotent Cayley graph ξnil
12 .

The properties of the set of all nilpotent elements and the basic graph properties for the

nilpotent Cayley graphs of Zn were studied in [270], where the number of nilpotent elements in

the ring Zn was given, using which the regularity and size of the nilpotent Cayley graph was

determined. It was also proved that for any integer which is a product of distinct prime numbers,

the nilpotent Cayley graph is a null graph, which gave rise to the problem of investigating the

connectedness of the graph. On solving this problem, it was found that the nilpotent Cayley graph

is disconnected in some cases, for which the number of components in the graph was determined

in [270] and each component was proved to be a clique. This led to the result that the nilpotent

Cayley graph of Zn is a union of k disjoint cliques, where k is the product of all distinct prime

factors of n. The number of triangles in this graph was also enumerated in [270] based on the

number of nilpotent elements in the ring.
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The study on the nilpotent Cayley graph of Zn was extended in [271], by investigating the

neighborhood set and the neighborhood graph of the nilpotent Cayley graph. A subset S ⊆ V(G)

is called a neighborhood set of the graph G, if G =
⋃

v∈S
〈N[v]〉, where 〈N[v]〉 is the subgraph induced

by the closed neighborhood N[v] of the vertex v, and the cardinality of a minimum neighborhood

set is called the neighborhood number of the graph. The neighborhood graph N[G] of a graph G is

a graph with the same vertex as G and two vertices u and v are adjacent in N[G] if their closed

neighborhood does not intersect (see [271]).

The neighborhood number of the graph ξnil
n was determined as the number of distinct prime

factors of n in [271] and the structure of the neighborhood graph of the graph ξnil
n along with

the properties like regularity, Hamiltonicity of the graph N[ξnil
n ] were also discussed in [271]. It

is known that all nilpotent elements are the zero-divisors of the ring and the set of all non-zero

nilpotent elements form a symmetric subset of a ring. So, in several cases it can be seen that

the nilpotent Cayley graphs coincide with the zero-divisor Cayley graphs defined for a ring (see

Subsection 6.6).

Recall that an element x is idempotent when x2 = x. Usig this idempotent property of the

elements of a ring, the concept of the idempotent graph of a ring R is introduced in [272], whose

definition is given below, following which an example of an idempotent graph of a ring is given

below in Figure 16.

Definition 26 ([272]). The idempotent graph of a ring R is defined for all rings R with unity such that

the vertex set of the graph is the set of all elements of the ring R and two vertices u and v are adjacent if and

only if u + v is an idempotent element of the ring.

000

001

010

100

110

101

011

111

Figure 16. The idempotent graph of the ring Z2 ×Z2 ×Z2.

It can be seen that a slight modification of the ring considered and the binary operation of

addition in the definition makes the graph distinct from being a subgraph of the other Cayley

graphs defined of a ring. In [272], the structural properties of the idempotent graph of a finite

non-local commutative ring R with unity was investigated and a necessary and sufficient condition

on the ring R for its idempotent graph to be planar was obtained. Using this result, it was proven

that the idempotent graph of a ring can never be outerplanar. Moreover, on analysing the
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structure of the idempotent graphs of rings, all the finite non-local commutative rings having their

idempotent graph as cograph, split graph and threshold graph respectively were classified.

Note that a graph is said to be a cograph if it has no induced subgraph isomorphic to P4 and

a threshold graph if it does not contain an induced subgraph isomorphic to P4, C4 or 2K2. Graphs

whose vertex set can be partitioned into a clique and an independent set, where each vertex of the

independent set is adjacent to some vertices in the clique is a split graph. As the idempotent graphs

are very recently defined, several avenues like to investigate its relation with the other related

graphs like nilpotent Cayley graphs, zero-divisor graphs, etc., studying the traversal, structural

properties, graph invariants, etc. are open to explore further.

6.3. Mixed Unitary Cayley Graphs

A mixed graph is a graph that contains directed as well as undirected edges. In [273], the mixed

adjacency matrix M(G) of a graph G of order n is defined as an n × n matrix on the vertex set of the

graph such that

mij =







1, if (vi , vj) is an edge or arc;

−1, if (vj, vi) is an arc;

0, otherwise.

From this, the mixed energy of the graph was defined as the sum of the absolute values of

eigenvalues of this mixed adjacent matrix. As it was seen that the unitary Cayley graphs have

significant spectral properties, investigating the mixed spectra of the unitary Cayley graphs was a

curious area to explore. Hence, the mixed Cayley graphs were defined in [273] and its spectra was

investigated. The definition of the mixed unitary Cayley followed by an example of the same is

given in Definition 27 and Figure 17.

Definition 27 ([273]). The mixed unitary Cayley graph, denoted by ξmix
n = Cay(Zn,Z+

n), is a graph whose

underlying graph is the unitary Cayley graph Xn and the conditions for an edge uv to be an arc or an edge

is defined based on the properties of the end vertices u and v of the edge considered as given below.

(i) uv is an edge if v−u
n = 1,

(ii) (u, v) is an arc if v−u
n = −1 and (j − i) < ⌈ n

2 ⌉,
(iii) (v, u) is an arc if v−u

n = −1 and (j − i) > ⌈ n
2 ⌉.

0 1

23

4

Figure 17. The mixed unitary Cayley graph of Z5.
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Using these definitions of the mixed unitary Cayley graph and the mixed adjacency matrix,

the spectra of the graph and the corresponding energy was determined in [274]. This investigation

on the mixed spectra was done for a few values of n, based on their number theoretic properties,

because a general structure of this mixed graph is yet to be studied in detail. As the structures are

determined more clearly, other studies can be taken up in future.

6.4. Divisor Cayley Graphs

The Cayley graph variation defined on the ring Zn with respect to the subset of all divisors of

n is called the divisor Cayley graphs, which were first introduced in [275]. An example of a divisor

Cayley graph following its definition is given in Figure 18.

Definition 28 ([275]). The divisor Cayley graphs, denoted by ξdiv
n = Cay(Zn, S), is a graph with the

vertex set as the elements of the ring Zn; 0, 1, . . . , n − 1, and two vertices are adjacent if their difference is

an element of the set S, where S = {x, n − x : x ∈ Zn}. That is, for all u, v ∈ V(ξdiv+
n ), uv ∈ E(ξdiv+

n ),

when u − v ∈ S, where S is the set of all divisors of n and its inverse in Zn.
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Figure 18. The divisor Cayley graph ξdiv
10 .

Note that the definition of the divisor Cayley graphs may seem like it is almost similar to

the gcd-graphs defined in Section 2, but the key difference between these graphs is that, in the

definition of a gcd-graph, the subset considered was not a symmetric subset, whereas the divisor

Cayley graphs are defined with respect to the symmetric subset of divisors and their inverses.

The graph properties of the divisor Cayley graphs like regularity, Eulerianness and

Hamiltonicity were examined in [275] and the number of triangles in the divisor Cayley graph

was also enumerated. The number of triangles in the divisor Cayley graph was enumerated by

partially following the technique that was used for the enumeration of triangles in the unitary

Cayley graphs in [34]. Here, the triangles with vertices {0, a, b} was given the term fundamental

triangles and first, the number of fundamental triangles was calculated as an intermediate step

to compute the total number of triangles in the graph. This result was substantiated by several

examples, which led to an interesting question to investigate the relationship between the number

of divisors of n and the number of triangles in the divisor Cayley graph of the corresponding Zn;

which still remains open.
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Following this, the problem of enumerating the disjoint Hamiltonian cycles in the divisor

Cayley graph was addressed in [276]. Using the previously determined properties of the divisor

Cayley graphs in [275], it was proved that a divisor Cayley graph ξdiv
n can be decomposed into

disjoint Hamiltonian cycles if and only if n is odd, and for this case, it was determined that the

graph ξdiv
n can be decomposed into k + 1 disjoint Hamiltonian cycles, where k is the number of

proper divisors of n.

In [276], an algorithm to find disjoint Hamiltonian cycles in the graph according to the

values of n and to enumerate them was also given. This was followed by computing the

domination number of the divisor Cayley graphs in [277], where an algorithm to construct

a minimal dominating set of the graph was given from which the domination number of the graph

was determined. Certain topological indices of the divisor Cayley graph was computed in [278].

Note that the divisor Cayley graphs are also known as the unitary divisor Cayley graphs and are

different from the difference divisor graphs which appear to be almost similar to these divisor

Cayley graphs (see [279]).

Based on the unitary divisor Cayley graph, the unitary divisor addition Cayley graph,

denoted by ξdiv+
n was introduced in [280] by modifying the adjacency relation in the unitary

divisor graphs to the sum of the elements to be a divisor. An example of a unitary divisor addition

Cayley graph is given in Figure 19, which succeeds the definition of the graph given as follows.

Definition 29 ([280]). The divisor addition Cayley graphs, denoted by ξdiv+
n = Cay+(Zn, S), is a graph

with the vertex set as the elements of the ring Zn; 0, 1, . . . , n − 1, and two vertices are adjacent if their

difference is an element of the set S, where S = {x, n − x : x ∈ Zn}. That is, for all u, v ∈ V(ξdiv
n ),

uv ∈ E(ξdiv
n ), when u + v ∈ S, where S is the set of all divisors of n and its inverse in Zn.
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Figure 19. The divisor addition Cayley graph ξdiv+
8 .

The article [280] is the only study available on the unitary divisor addition Cayley graph,

where the graph is defined and the basic invariants of the graph like the size, diameter, matching

number, and the degree of the vertices were computed. In addition to it, the unitary divisor

addition Cayley graphs were characterised based on their traversal properties, such that the graph

ξdiv+
n is Eulerian if and only if n = 2t, for some integer t > 1 and ξdiv+

n is Hamiltonian if and only
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if n is even. Several properties of the graph and its association with the other addition Cayley

graphs that are defined on Zn, the gcd-graphs,etc. can be explored further.

6.5. Involutory Cayley Graphs

In mathematics, the term involution means an entity which is its own inverse and the elements

of any algebraic structure which is its own inverse are called the involutory elements of the structure.

This set of all involutory elements of a ring is called the involution set of the ring, which is a

symmetric subset. With respect to this involution set, the involutory Cayley graph of the ring Zn,

denoted by ξ inv
n , was defined in [281] as follows.

Definition 30 ([281]). The involutory Cayley graph, denoted by ξ inv
n = Cay(Zn, S), is a graph with the

vertex set as the elements of the ring Zn; 0, 1, . . . , n − 1, and two vertices are adjacent if their difference

is an element of the set S, where S = {x 6= 0 ∈ Zn : x2 ≡ 1 mod n}. That is, for all u, v ∈ V(ξ inv
n ),

uv ∈ E(ξ inv
n ), when u − v ∈ S, where S is the set of all involutory elements in the ring.

Similarly, the addition variant of this Cayley graph, called the involutory addition Cayley graph

of the ring Zn, denoted by ξ inv+
n , was defined in [281], as given below. Illustrations of an involutory

Cayley graph and an involutory addition Cayley graph are given in Figure 20.

Definition 31 ([282]). The involutory addition Cayley graph, denoted by ξ inv+
n = Cay+(Zn, S), is a

graph with the vertex set as the elements of the ring Zn; 0, 1, . . . , n − 1, and two vertices are adjacent if

their difference is an element of the set S, where S = {x 6= 0 ∈ Zn : x2 ≡ 1 mod n}. That is, for all

u, v ∈ V(ξ inv+
n ), uv ∈ E(ξ inv+

n ), when u + v ∈ S, where S is the set of all involutory elements in the ring.
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(a) Involutory Cayley graph ξ inv
8 .
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(b) Involutory addition Cayley graph ξ inv+
8 .

Figure 20. Examples of involutory and involutory addition Cayley graphs.

The basic properties of the graphs ξ inv
n and ξ inv+

n were discussed in [281] and [282] respectively.

On comparing the graph properties that were obtained for both the graphs, the difference as

well as the similarities between the graphs and the values of n for which they coincide could be

obtained. The involutory Cayley graph is S-regular, where as the involutory addition Cayley

graphs can be |S|-regular or (|S|, |S|−1)-semi regular, depending on the value of n. As, the degree

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 August 2023                   doi:10.20944/preprints202308.0090.v1

https://doi.org/10.20944/preprints202308.0090.v1


77 of 94

of each vertex in the involutory addition Cayley graph and the diameter of the graph depends on

the value of n, the degree and the diameter of the graph were only explored in the article [282];

whereas, in [281] the apart from computing the degree of the vertices in the graph, it was proved

that the involutory Cayley graphs are connected, Eulerian and Hamiltonian. The domination

number and related parameters for the involutory Cayley graph was computed in [283], where

the parameters are computed for the involutory Cayley graphs that fall under the standard graph

classes using the exact values that had been obtained for these graph classes.

6.5.1. Quadratic Unitary Cayley Graphs

The symmetric subset of the involutory elements of a ring is also called the quadratic units

modulo n, as the square of an element becomes the unit of the ring Zn, integers modulo n. So, the

involutory Cayley graphs of Zn were also studied independently in the name quadratic unitary

Cayley graphs for the ring Zn in [284]. For the values of n such that n ≡ 1 mod 4 and is prime, these

graphs were found to coincide with a class of graphs called the Paley graphs on n vertices (refer

to [285] for more details on Paley graphs). Some structural properties of the quadratic unitary

Cayley graphs of Zn were presented in [284], where the diameter of the graph was determined for

odd and even values of n, by analysing the paths of different lengths in the graph. This analysis

led to the examination of self-complementary quadratic unitary Cayley graph of Zn, from which

the following characterisation of perfect quadratic unitary Cayley graphs was obtained in [284].

Theorem 121. [284] The quadratic unitary Cayley graph of Zn is perfect if and only if n is even or n = pk,

for a prime p ≡ 3 mod 4.

The structural analysis of the graph also led to the characterisation of the quadratic unitary

Cayley graph of Zn that are decomposed into direct product of graphs (see Definition 6) over

relatively prime factors of n. Based on the proof techniques used to prove the results, a linear

operator called the sympletic operator was defined in [284] as a 2k × 2k matrix called the sympletic

form (modulo n),

σ2k =

(
0k −Ik

Ik 0k

)

,

where Ik and 0k denote the identity matrix and the zero matrix of order k respectively. It was

proven in [284] that the set of all these sympletic operators with coefficients in Zn form the sympletic

group modulo n. These sympletic operators were examined in [284] and a corollary regarding

the decomposition of sympletic matrices in terms of these row-operations was obtained. This

led to the final result that gave a bound on the complexity of decompositions of these sympletic

operators modulo n, which followed from the bounds on the diameter of the quadratic unitary

Cayley graph of Zn, that was obtained in the same article.

This notion of quadratic unitary Cayley graphs was extended to all finite commutative

rings R in [286] as the graph with the vertex set as the elements of the ring R and two vertices

are adjacent if their difference is an element of the set S, where S∗ = {x2 : x ∈ R − {0}} and

S = S∗ ∪ −S∗. In fact, it can be seen that when the ring is a finite field of prime order k such

that k ≡ 1 mod 4, the quadratic unitary Cayley graph of that field is a Paley graph, which by

definition is the graph with the vertex set as the elements of the field such that the vertices u and v

are adjacent if and only if u − v is a non-zero square of the field.
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For a finite commutative ring R that is decomposed as R = R1 × R2 × . . . × Rt, where each Ri,

1 ≤ i ≤ t is a local ring with the maximal ideal Mi and for a local ring R0 with the maximal ideal

M0 such that |R0|
|M0| ≡ 3 mod 4, the spectra of the quadratic unitary Cayley graphs of the ring R0

and R0 × R, with the condition that |Ri |
|Mi | ≡ 1 mod 4, 1 ≤ i ≤ t were determined along with their

energies. The spectral moments of the quadratic unitary Cayley graphs of the above mentioned

rings were also computed and the conditions under which these graphs are hyperenergetic or

Ramanujan graphs were determined. A prefatory study on the same graphs were done in [287],

where only a very few results on the structure of the graph and its eigenvalues were obtained.

6.5.2. Quadratic Residue Cayley Graphs

Another variant of the Cayley graphs similar to the involutory Cayley graphs are the

quadratic residue Cayley graphs. It can be seen as an extension of the quadratic residue property

to a prime number. So, these graphs are defined on the rings Zn, where n is an odd prime. If p is

an odd prime and n ∈ N, such that p divides n and the quadratic congruence x2 ≡ n mod p has

a solution, then n is called a quadratic residue mod p and the set of all quadratic residues mod p

along with their inverse is a symmetric subset of Zp. With respect to this symmetric subset, the

quadratic residue Cayley graph was defined in [288] exclusively for the rings Zp, where p is an odd

prime as given in Definition 32, that is followed an example of a quadratic residue Cayley graph

of a ring in Figure 21.

Definition 32 ([288]). For an odd prime integer p, the quadratic residue Cayley graph of Zp, denoted by

ξ
qrcg
n = Cay(Zp, S), is a graph with the vertex set as the elements of the ring Zp; 0, 1, 2, . . . , p, and two

vertices u and v are adjacent if their difference u − v ∈ S, where S the set of all quadratic residues mod p

along with their inverse elements.

0
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9 10

11
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Figure 21. The quadratic residue Cayley graph of the ring Z10.
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The studies on the quadratic residue Cayley graph of the ring Zp was mainly focused on

finding dominating functions and some variants of it for the graph. The graph was defined

and the basic invariants and properties like the degree, regularity, number of triangles, disjoint

Hamiltonian cycles were given in [288]. Following this, all the investigations were on different

dominating functions on the graph.

A function f : V(G) → [0, 1] is a dominating function of a graph G, if f (N[v]) = ∑
u∈N[v]

f (u) ≥ 1,

for every vertex v ∈ V(G) and the dominating function f is minimal if f (v) ≥ g(v), for all

v ∈ V(G), where g is also a dominating function. A minimal dominating function f is a basic

minimal dominating function if it cannot be expressed as a proper convex combination of two

distinct minimal dominating functions (see [289]). These definitions on replacing the vertex with

an edge gives the corresponding definitions of edge dominating functions.

The edge dominating functions, basic minimal edge dominating functions and the basic

minimal dominating functions of the quadratic residue Cayley graphs were computed in [289–291]

respectively. Different functions were proved to be the corresponding dominating functions for the

graph and several examples to convey the significance of the functions were also given. Following

this, the variations of the total dominating functions for the graph were explored in [292,293] in a

similar way.

In [294], the quadratic residue Cayley graph of the ring Z2k was exclusively studied. Only

for integers of the form 2k, the quadratic residue Cayley graph was constructed and investigated.

This was the earliest attempt known to define a Cayley graph based on quadratic residues. In this

article, it was shown that the diameter of these quadratic residue Cayley graphs defined on Z2k is

2, following which a recursive formula to determine the number of triangles in the graph was

obtained. In addition, a small discussion on the number of k residue modulo pr (prime p) was

also given in [294], to extend the defined quadratic residue Cayley graphs on Z2k .

6.6. Zero-Divisor Cayley Graphs

A symmetric subset of a ring which is highly significant in order to understand the structure

of the ring, is the set of all zero-divisors. The Cayley graph defined with respect to this symmetric

subset of zero-divisors is called the zero-divisor Cayley graphs. This graph was first defined on the

finite commutative rings in [158], followed by which it was defined on the rings of integer modulo

n, Zn in [295]. Illustrations of zero-divisor Cayley graphs of the integer modulo ring and that of a

ring R is given in Figure 22.

Definition 33 ([295]). The zero-divisor Cayley graph of a ring R, denoted by ξ
zdcg
R = Cay(R, Z(R)), is

defined as the graph whose vertex set is the set of all elements of the ring and two distinct vertices are

adjacent if their difference is a non-zero zero-divisor. That is, for all u, v ∈ V(ξ
Z(R)
R ), uv ∈ E(ξ

Z(R)
R ), when

u − v ∈ Z(R), where Z(R) is the set of all non-zero zero-divisors of the ring R. The zero-divisor Cayley

graph of the ring Zn is denoted by ξ
zdcg
n .
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(b) The zero-divisor Cayley graph of Z2 ×Z6.

Figure 22. Examples of zero-divisor Cayley graphs of rings.

In [158], the graph parameters like the clique number, chromatic number, edge chromatic

number, domination number, and the girth of the graph ξ
Z(R)
R were computed and the rings

for which the zero-divisor Cayley graphs are strongly regular and planar were characterised.

On restricting this definition to the ring Zn, more properties like the enumeration of triangles,

connectivity, etc. were explored in [296].

We know that any element in a ring is either a zero-divisor or a unit and the set of all

non-coprime integers to n are the zero-divisors in the ring Zn. Hence, in this zero-divisor Cayley

graphs of Zn, two vertices are adjacent if and only if their difference is not relatively prime to n,

precisely, it can be seen as the complement of the unitary Cayley graphs Xn defined on Zn. As

many properties of the unitary Cayley graphs and their complements are already studied in the

literature, only the basic invariants and the basic properties of the graph were studied in [295,296].

The number of triangles in the graph along with the traversal properties were studied in [295]

and the connectedness of the graph and the properties of the components when the zero-divisor

Cayley graphs are disconnected were investigated in [295].

Note that on modifying the adjacency condition of the zero-divisor Cayley graphs defined

on a ring R from the difference to the sum of two elements to be a zero divisor, the definition of a

total graph of a ring is obtained. As total graphs have a huge growing literature along with several

exclusive and detailed survey and review papers (For example, see [12,16]), we do not include

them in this review.

It can be noted that for all the variations of Cayley graphs that have been discussed in this

section, only a cursory investigation has been taken place in the literature. This can be seen

because of two reasons; one is while investigating the structure of the new graph defined, a high

similarity with the properties of an already defined, existing Cayley graphs were observed and

sometimes, the graphs may also coincide with them, leaving no scope for further study. The

other reason to not proceed further with the problem is because of the ambiguous structure of the

symmetric subset that is considered to define the Cayley graph or the realisation that the graph

structure might not reflect the important properties or the structure of the ring, failing to serve the

main purpose of the study.
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7. Conclusions

It can be seen that the introduction of the unitary Cayley graphs of the ring Zn provided a

new direction for research in algebraic graph theory, using the number theoretic properties of the

rings and to define variants of Cayley graphs with respect to different symmetric subsets of the

group, by considering both the operations of sum and difference, giving rise to twin-type variants

of such graphs. Apart from some specific open problems that were discussed in the respective

sections of the graphs, there are several other open problems that can be investigated with respect

to these algebraic graphs defined on rings that are discussed in the review, among which a few

are presented in this section.

It can be observed that there is an overall pattern of the investigations done on a particular

graph, when reviewing the literature as well as while reading this article. Before moving to the

open problems, it is important that this pattern is explicitly mentioned, for a better understanding.

As a new variant of Cayley graph is defined, its first property that is determined is the regularity,

the degree of the vertices, from which the size. Following this, the other parameters of diameter,

girth, chromatic number, clique number, etc. are computed. Connectedness, traversability,

planarity and perfection are significant properties through which characterisations of rings are

obtained. Investigating different matrices associated with the graph and their spectra, especially

the adjacency spectrum, the eigenvalues, energy of the graph is an inevitable problem. From these

spectra, different properties like hyperenergecity, realising the given graphs as Ramanujan graphs,

etc. are discussed.

Furthermore, several matrices are associated, corresponding to which the analogous

investigations are made. Realisation of the graph based on isomorphism and structural

characterisations of the graph are important problems to address. Apart from this, different

chromatic numbers, domination numbers, topological indices, centrality measures, covering

numbers, vulnerability parameters, etc. can be computed for the graph and the possibility of

characterisations of the graphs and the rings based on these parameters are also examined. All

possible studies are extended to the complements of these graphs, as they are also regular, in most

of the cases.

Moving on to further areas of exploration with respect to the graphs discussed in the review,

in most of the graphs that are given, not many studies on different types of domination and

coloring parameters are there, except for the unitary Cayley graphs of Zn. Computation of

different topological indices and centrality measures and associating different matrices to these

graphs and computing their energies, color energies, are also open, especially for the graphs

defined in Section 6 and different types of vertex partitioning of the algebraic graphs are also

promising problems to work on.

Similarly, several parameters like covering numbers, metric dimension, resolving sets, etc.

have not been computed so far for the graphs, computing them and to check the feasibility of

obtaining Nordhaus-Gaddum type inequalities is also an open avenue to explore. In terms of

signed graphs, the signed graph varieties have not been introduced for many Cayley graph

variations, and even for the ones that are introduced, properties apart from the properties of

balance, clusterability, sign-compatibilty and canonical consistence, can be studied and induced

sign graphs based on other properties of the ring elements can also be introduced, instead of

introducing modified definitions based on the existence of the end vertices of an edge in a subset

considered.
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Based on the definition of the variants of Cayley graphs presented in this review, it can be

seen that they are related to each other, in some aspect. Hence, chain-like inequalities of these

graphs can be identified for certain rings and characterisations of rings when the graphs are equal

or when one is a subgraph of another can also be presented. On the other hand, a similar type

of investigation can be done exclusively with respect to the complements of these graphs or by

considering both the graphs defined as well as their complements, as the complement of some

variants of Cayley graphs discussed in this article coincide with some graphs. Based on the huge

literature available on Cayley graphs of groups, power graphs, zero divisor graphs, and other

graphs derived from them, certain analogous studies can also be introduced to these types of

graphs.
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any competing interests regarding the publication of the paper.
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