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Abstract: The flat terrain in plain areas makes the land easily accessible for cultivation and farming,
providing vast opportunities for agricultural development. Additionally, these areas are crucial for
urban construction and economic growth. Soil mapping plays a crucial role in understanding soil
characteristics and guiding land management practices. However, accurately mapping soils in plain
regions can be challenging due to their low spatial variability and diverse land use types. This study
focuses on the impact of land cover changes on the accuracy of soil mapping in plain areas, aiming
to provide effective assistance in soil mapping through the analysis of their coupling relationship.
Starting with a 20-year land cover change analysis, this study utilizes a unified approach that
combines expert knowledge, mixed sampling methods, and random forest mapping techniques.
The study incorporates environmental covariates that have minimal period influence and
synergistically use NDVI (Normalized Difference Vegetation Index) and land cover data from the
same year. The analysis is based on transition matrices, confusion matrices, and their derived
indicators. The research findings indicate that Tongzhou District has experienced rapid
development over the past 20 years, with the area of construction land nearly doubling. 29% of
arable land has been converted into construction land, resulting in an increase in the accuracy of the
soil map from 58.99% to 66.91% over the 20-year period. The soil change area during this period
accounts for 16.5% of the total area, with 51.9% of the changed areas overlapping with land cover
change areas. These overlapping regions are predominantly influenced by human activities. In
terms of cultivated land types in the study area, the quantity of arable land has decreased by
approximately 29% over the 20 years, while the proportion of sandy loam calcareous fluvo-aquic
soil and light loam calcareous fluvo-aquic soil, which constitute nearly half of the soil types, has
increased. These data demonstrate the coupling relationship between land cover changes and soil
type variations, particularly the significant influence of human activities on soil structure. It is
evident that on one hand, improving the extent of land use in plain areas enhances the credibility
of soil mapping. On the other hand, human activities impact land cover, which in turn affects and
reflects changes in the soil.

Keywords: land cover changes; soil mapping; random forest; plain areas

1. Introduction

Soil mapping plays a significant role in agriculture, environmental protection, and land planning
(Kristensen et al., 2019). By providing detailed information about soil characteristics and spatial
distribution, soil mapping can guide farmers and land managers in developing rational land cover
and crop cultivation strategies to maximize crop yield and quality (Dewage et al., 2019). In plain
areas, the low spatial variability of soils and the subtle differences in soil types and properties pose
challenges for accurate classification and mapping (De-Cai et al., 2019; Liu et al., 2012; Zhao et al,,
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2013). Human activities such as crop cultivation, irrigation, and fertilization can have complex
impacts on soils, resulting in more intricate and irregular spatial distribution of soil properties
(Rostaminia et al., 2021; Murray et al., 2017). Different land cover types have significant influences on
soil formation, evolution, and properties (Adugna et al., 2016). For instance, different land cover types
like cropland, grassland, forest, and wetland can lead to variations in soil texture, organic matter
content, and water-holding capacity, which in turn affect the chemical, physical, and biological
properties of soils (Hounkpatin et al., 2020; Papadopoulou-Vrynioti et al., 2014; Yang et al., 2021).
These differences are reflected in soil mapping, with different land cover types often exhibiting
distinct spatial distribution patterns in the soil (Chen et al., 2020). Studying the impact of land cover
changes on soil mapping can help explore ways to improve mapping accuracy in plain areas and
provide valuable guidance for land protection and management measures (Gan-Lin et al., 2017).
Additionally, it contributes to optimizing land cover structure, enhancing the sustainability of
agricultural production, and offering scientifically informed decision-making support for
policymakers to promote sustainable development in plain regions (Wang et al., 2020).

Many scholars have dedicated their efforts to exploring the impact and correlations between
land cover changes and soil properties. For example, Zhang et al. (2021) proposed a method to
identify agricultural land cover history by overlaying land cover data from 1980 to 2018, and their
model, which incorporates agricultural land cover history, improved the mapping accuracy of soil
organic carbon compared to models that only utilized natural variables, providing more spatial
details attributed to land development. Taveira et al. (2018) sampled and classified soil profiles from
regional soil surveys and compared their land cover capabilities with different management levels
displayed on maps. The results revealed that higher land cover capability in Minas Gerais state
corresponded to higher accuracy in soil mapping. Due to the complex and diverse relationships
between land cover changes and soil properties, as well as the interactions among different land cover
types, geographic environments, and management practices, there are still research gaps and
challenges in this field (Zhang et al., 2022). In this study, expert knowledge was used to extract virtual
points and combined with other sampled points as mixed points. In addition to using consistent
environmental covariates such as parent material, texture, groundwater depth, distance to water
bodies, and elevation as auxiliary variables, random forest was employed for soil mapping from 2000
to 2020 at 5-year intervals, ensuring the use of corresponding land cover types and NDVI as
environmental covariates. The coupling relationship between land cover changes in plain areas and
soil mapping was revealed through confusion matrices, derived evaluation indicators, and transition
matrices. This study will provides new insights to enhance the accuracy of soil mapping in plain areas
and address challenges such as rich land use types and low spatial variability, offering a reliable
theoretical foundation for agricultural development, urban construction, and economic growth in
plain regions.

2. Material and Methods

2.1. Overview of the Study Area

Tongzhou District is located in the southeastern part of Beijing, China, with geographic
coordinates ranging from 39°36' to 40°02' and 116°32' to 116°56'. The district covers an area of 903
km?, predominantly consisting of alluvial fans and floodplains formed by the Yongding River,
Chaobai River, and Wenyu River (Cui et al., 2020). The land surface in Tongzhou District is covered
by deep deposits of Quaternary sediments, forming modern alluvial fan plains and impact low
plains. The land cover in Tongzhou District exhibits diversity, encompassing various land use types
including agriculture, forestry, urbanization, industrialization, transportation, and water resources
(Dai et al., 2022). According to available data, the land cover distribution in Tongzhou District is as
follows: arable land covers 37.02%, orchards cover 3.81%, forests cover 8.62%, grassland covers 0.13%,
urban and industrial land covers 33.43%, transportation land covers 5.31%, water resources and
facilities cover 9.47%, and other land covers 2.21%. These surface characteristics and land use types
provide essential baseline data and background information for soil mapping in Tongzhou District.
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The district consists of 3 soil classes, 8 sub-classes, 13 soil orders, and 42 soil species, including alluvial
soil, brown soil, and sandy soil, with alluvial soil being the dominant soil type in Tongzhou District.
(The soil types mentioned in the text are named according to the Chinese soil classification system).
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Figure 1. Study Area and Soil Samples (Sampling Point Locations with Calibration Soil Map as the
Base Map).

2.2. Data Sources and Processing

2.2.1. Handling Environmental Covariates

Environmental covariates can help explain the spatial distribution of soil properties (Sun et al.,
2022). By collecting and analyzing environmental factors related to soil properties, such as
topography, climate, vegetation, and land cover, the associations between soil properties and these
environmental factors can be revealed (Poggio et al., 2021; Dong et al., 2014; Dunkl et al., 2020). As
shown in Figure 2, to ensure data consistency, this study selects factors such as parent material,
groundwater depth, land cover type, distance to water bodies, texture, and elevation that have not
undergone significant changes over the past 20 years as environmental covariates. Based on this,
when conducting soil mapping in different years in the study area, the corresponding NDVI and
current land cover data are used for mapping, ensuring that the NDVI and land cover data are from
the same data source to ensure the reliability and accuracy of the research results (Yang et al., 2021).
Among them, the original soil map, texture, elevation, groundwater depth, and distance to water
bodies are derived from the dataset of the National Earth System Science Center, and the parent
material information is obtained from 1:25,000 geological maps of the region. NDVI data are sourced
from Landsat series data in Google Earth Engine (GEE) after a series of processing steps. The current
land cover data are collected from stable samples extracted from the Chinese Land Use/Land Cover
Dataset (CLUD) using GEE, as well as visual interpretation samples from satellite time series data,
Google Earth, and Google Maps. Multiple temporal indicators were constructed using all available
Landsat data and fed into a random forest classifier to obtain the classification results. All the above
data are processed with a resolution of 30m to ensure the uniformity of the data.
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Figure 2. Set of Environmental Covariates (Images a-e represent the texture map, elevation map,
groundwater depth map, distance from water bodies map, and parent material map, respectively.
Images f-j depict land cover maps for every 5-year interval from 2000 to 2020, while images k-o
represent NDVI maps for the same time period.).

2.2.2. Source of Sampling Points

Due to the use of conventional environmental covariate-assisted sampling methods that require
real-time remote sensing data, the positions of sampling points may vary across different years (Yang
et al., 2020; Liu et al., 2020; Miller et al., 2015). To ensure data consistency, this study primarily relied
on a labor-intensive targeted sampling approach based on expert knowledge. Expert knowledge can
provide prior information about the distribution of soil properties and, guided by expert experience
and domain knowledge, enable the targeted selection of representative and critical sampling points,
thus improving sampling efficiency and cost-effectiveness (Zhang et al., 2021; Ng et al., 2020).

The calibration soil map was obtained by conducting indoor verification on the original soil map
to address issues related to inconsistent names for the same soil and identical names for different
soils. After overlaying the validated soil map with the land cover map and image, the boundary
divisions were further refined. In this study, a targeted sampling approach based on expert
knowledge was employed, where the validated soil map, current land cover map, and image map
were overlaid. Soil experts, using their knowledge in soil science, made judgments based on the
overlaid maps to identify virtual points that potentially represent regional environmental factors in
the vicinity of the plot center. Leaf vein structures were used for point selection in large plots,
ensuring that each plot obtained a representative virtual point for each soil type while guaranteeing
a minimum of five virtual points per plot. Ultimately, 1,564 virtual points representing plot
characteristics were obtained after manual screening. In addition to these virtual points, other sources
of sampling points included field validation points, third national soil survey profile points, historical
data collection points, and typical environmental factor-assisted points. Typical environmental
factor-assisted points were obtained by overlaying the input environmental covariates and mapping
the distribution of typical ranges of each environmental covariate in the same geographic space. Then,
the frequency distribution analysis of the environmental covariates was conducted after overlaying
them with the validated indoor soil map. The typical value ranges for each key environmental
covariate were derived. After outputting the distribution areas or multiple patches of typical
environmental conditions for each soil type, the center point of each patch was extracted as a typical
point for that soil type, resulting in a total of 41 typical environmental factor-assisted points. The third
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national soil survey profile points referred to the profile points collected during the unified third
national soil survey in China, totaling two points. Historical data collection points referred to 21
points obtained through query and processing of soil data from books such as the Soil of Tong
County, Soil Atlas of China, Soil of Beijing, and Soil Series of China (Beijing and Tianjin Volume).
Field validation points were obtained by conducting field sampling in key areas of doubt to update
the indoor validated soil map, totaling 95 sampling points. As shown in Figure 1, the soil information
from the validated soil map was extracted based on the information of the sampling points to obtain
the mapping points for this study.

2.3. Modeling and Mapping Methods

This study adopts the Random Forest model for soil mapping. Random Forest is a machine
learning algorithm based on ensemble learning, composed of multiple decision trees. Each decision
tree is independently generated and increases the diversity of the model through random sampling
with replacement and random feature selection on the input samples (Speiser et al., 2023; Moller A B
et al,, 2019). Random Forest can handle missing data and effectively capture the complex non-linear
relationships between soil properties and environmental factors. Its robustness allows it to handle
outliers and noise, improving the stability and reliability of soil mapping (Rostaminia M et al., 2021;
Abowarda A S et al., 2021). The training process of the Random Forest model includes the following
steps:

Data Preparation: Collecting and preparing soil sample data, including measured values of soil
properties and associated environmental variable data.

Feature Selection: Selecting a subset of available environmental variables as input features for
the decision trees. The feature selection in Random Forest is random, with each decision tree
considering only a subset of features.

Random Sampling: Conducting random sampling with replacement on the training data to
build training datasets for each decision tree. This allows each decision tree to be trained on different
subsets of samples.

Decision Tree Construction: Constructing multiple decision trees using the training datasets.
Each decision tree progressively splits the data based on feature selection and splitting criteria,
forming a tree structure.

Prediction Ensemble: For new input samples, each decision tree independently predicts the
outcome, and the final prediction result is obtained through voting or averaging the predictions from
the decision trees. This ensemble approach reduces the risk of random errors and overfitting.

The Random Forest modeling in this study was implemented by calling the randomForest
package in the R programming language.

2.4. Evaluation Methods for Mapping Results

The Confusion Matrix is a tool used in machine learning and statistics to evaluate the
performance of classification models (Sun H W D et al., 2021). It visualizes and summarizes the
relationship between the predicted results of a classification model and the true labels (Wang et al.,
2021). The Confusion Matrix and its derived evaluation metrics provide a comprehensive way to
assess the performance of classification models (Zeng G et al., 2019). In soil mapping, classification
models are used to classify soil types in different regions, making the evaluation of classification
model accuracy crucial for determining the correctness of soil types (Fromm S F V et al., 2020). The
following are derived evaluation metrics:

Precision is the most commonly used performance metric for classification. It represents the
accuracy of the model, i.e., the number of correctly identified instances divided by the total number
of samples. Generally, higher precision indicates better model performance (BS L A et al., 2019).

Accuracy = (TP+TN)/(TP+FN+FP+TN) (1)

True Positive (TP): The model correctly predicts positive instances as positive.

False Negative (FN): The model incorrectly predicts positive instances as negative.

False Positive (FP): The model incorrectly predicts negative instances as positive.
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True Negative (TN): The model correctly predicts negative instances as negative.

In statistics, a Confidence Interval (CI) is used to estimate the range of a population parameter,
and the 95% CI is a commonly used interval (Wang M et al., 2023). A 95% CI indicates a 95%
confidence level for the estimated parameter, meaning that in repeated sampling, about 95% of the

confidence intervals will contain the true parameter value. It is expressed as follows:
o

0 i SV 2 9
95% Cl=[a — 196 + =, @ +1.96+ = 2)

where a is the mean, o is the standard deviation, and n is the sample size of a single experiment.

No Information Rate (NIR), also known as the baseline accuracy or random accuracy, refers to
the accuracy achieved when making predictions based solely on the majority class in a classification
task (Asa et al., 2018). NIR is useful in evaluating classification models because it provides a baseline
reference for comparing whether the model's accuracy has substantially improved. If the model's
accuracy is significantly lower than the NIR, further model optimization or considering improved
data processing methods may be necessary to enhance the model's performance.

P-Value [Acc > NIR] refers to the probability of the observed accuracy being significantly higher
than the NIR when conducting a hypothesis test. P-Value is a statistical measure used to assess the
significance of the difference between the observed sample data or statistics and the null hypothesis
under the assumption that the null hypothesis is true (Zhang J et al., 2021). If the P-Value is smaller
than a pre-defined significance level (usually 0.05), the null hypothesis can be rejected, and it can be
concluded that the accuracy is significantly higher than the NIR. Conversely, if the P-Value is greater
than the significance level, the null hypothesis cannot be rejected, indicating that the difference
between the accuracy and the NIR may be due to random factors rather than a true improvement in
model performance (Feyisa G L et al., 2013).

Kappa (Cohen's Kappa) is a statistical measure used to assess the performance of a classification
model, particularly for evaluating the consistency between observers or the consistency between a
model and observers in a classification task (Zou D et al., 2017). The formula is as follows:

K= (3)
where p, is the sum of the number of correctly classified samples for each class divided by the total

number of samples, representing the overall classification accuracy.

LT

p, =20t (4)
i aih;

Pe = Inz (5)

where C is the total number of categories, T; represents the number of samples correctly classified
for each category, a; represents the number of true samples for each category, b; represents the
number of predicted samples for each category, and n is the total number of samples.

3. Results and Analysis

3.1. Analysis of Land Cover Changes

Since the reform and opening up, China has undergone rapid development, and the highly
accessible plain areas have experienced significant land cover changes under human influence. As
one of the key sub-centers of Beijing, Tongzhou District has expanded rapidly over the past 20 years.
With the increase in population and limited land resources in the central urban areas of Beijing,
Tongzhou District has become an important area for urbanization in Beijing (Song et al., 2020). The
government has increased investment in urban planning and infrastructure construction in
Tongzhou District, promoting its urbanization process. As shown in Figure 3, a large area of cropland
in the western part of Tongzhou District has been transformed into urban areas during the 20-year
urbanization process, and the new urban areas have become connected to the main urban areas.
Although there has been some expansion of built-up areas in the eastern part, the overall change is
not significant.
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Figure 3. Trend of Land Cover Changes in Tongzhou District from 2000 to 2020.

As indicated in Table 1, cropland is the largest land type in Tongzhou District and maintains a
leading position in terms of overall quantity. Although the cropland area has decreased by about 29%
in the past 20 years, it remains the primary land type in Tongzhou District. The area of impervious
surfaces has significantly increased over the past 20 years, from approximately 201.12 km? in 2000 to
around 387.33 km? in 2020, showing a growth of 92.59%. This increase is mainly due to the conversion
of cropland, reflecting the rapid development of urbanization in Tongzhou District. The forest area
has increased from approximately 1.09 km? in 2000 to around 14.98 km? in 2020. This indicates that
Tongzhou District has been working on the protection and increase of green spaces. The overall
changes in other land types are not significant, showing no clear trend of growth or decline. The areas
of these land types have remained relatively stable over the past 20 years. In summary, the land cover
changes in Tongzhou District over the past 20 years have shown a trend of decreasing cropland,
increasing impervious surfaces, and increasing forest area. This reflects the impact of urbanization
on land use and indicates that Tongzhou District has made efforts and achievements in pursuing
sustainable development and building a green and ecological city.

Table 1. 2000-2020 Land Cover Transfer Matrix (km?) .

2020 Barren Cropland  Forest  Grassland Impervious Water Total
2000

Barren 0.0055 0.0023 0.0000 0.0000 0.0759 0.0000 0.0837
Cropland 0.0045  476.4026  14.4315 0.0138 192.1693 5.3429  688.3646

Forest 0.0000 0.4103 0.3608 0.0000 0.0768 0.2408 1.0887

Grassland 0.0000 0.0095 0.0000 0.0005 0.0419 0.0019 0.0538
Impervious  0.0027 8.0304 0.0776 0.0000 191.6857 1.3196  201.1160
Water 0.0079 3.8467 0.1113 0.0001 3.2763 46823  11.9247
Total 0.0207  488.7018  14.9812 0.0144 387.3259 11.5876  902.6316

3.2. Soil Prediction Mapping and Accuracy Analysis in Different Years

According to Table 2, the accuracy varies among different years but remains at a relatively high
level. NIR (Normalized Improvement Ratio) represents the accuracy of predicting classifications
without any classification information. In this case, the NIR is 0.1871, indicating that the proportion
of accurately predicted classifications based solely on prior probabilities is 0.1871. This suggests that
the inclusion of environmental covariates effectively improves the predictive ability of the model,
demonstrating a significant impact of the selected environmental covariates on soil formation. The p-
value [Acc > NIR] < 2.2e-16 indicates that the actual accuracy is significantly higher than the accuracy
based solely on prior probabilities, and the difference is highly significant. This confirms that the
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difference between accuracy and NIR is not due to random factors but rather reflects a genuine
improvement in model performance.

Table 2. Index table of soil map in different years.

No
Year Ldex Accuracy 95% CI Information P_V:E;JR[]A e Kappa
Rate
2000 0.5899 (0.5296, 0.6483) 0.1871 <2.2e-16 0.5451
2005 0.6265 (0.5789, 0.6723) 0.1871 <2.2e-16 0.5876
2010 0.6043 (0.5442, 0.6622) 0.1871 <2.2e-16 0.5656
2015 0.6403 (0.5808, 0.6967) 0.1871 <2.2e-16 0.6046
2020 0.6691 (0.6104, 0.7241) 0.1871 <2.2e-16 0.6342

In terms of trends, Tongzhou District has experienced an increasing level of land use intensity
during the urbanization process. The impervious area has nearly doubled, and the Kappa value of
the soil map has also increased, indicating an improvement in the consistency of soil map
classification during this period. The accuracy has increased from 58.99% in 2000 to 66.91% in 2020.
The 95% CI represents the range of uncertainty for estimating accuracy. Each confidence interval is a
range, with the lower and upper limits representing the estimated lower and upper bounds of
accuracy. To avoid the influence of chance and randomness, the observation of the 95% CI intervals
reveals that the overall accuracy of the soil map is also on an upward trend. This suggests a positive
correlation between land use intensity and soil mapping accuracy. As the land use intensity in the
study area strengthens, the accuracy of soil mapping in the study area will also increase. This is
because human activities tend to develop land in a way that is most suitable for human use, and the
utilization patterns indirectly reflect the properties of the soil, which are ultimately manifested in
land cover.Table 2 Index table of soil map in different years.

According to Figure 4, over the past 20 years, there have been some changes in the soil of
Tongzhou District, but most areas have maintained a relatively stable soil type. The most significant
and drastic changes are mainly concentrated in the urban areas of Tongzhou and its surroundings,
indicating that human activities have had a certain impact on soil type changes. Overall, the epicenter
of the changing areas is located in the western part of Tongzhou District. This is because the western
region is closer to the center of Beijing and was the first to be affected by urban expansion. In the past
20 years, the government has continuously enhanced the utilization capacity of land (Xue Y, 2020).
For suitable arable land, the government designates the areas as cropland, while for unsuitable soils,
such as sandy soils and marshy soils, reasonable transformation measures have been taken to better
serve urban development (Lu Q et al., 2017). In the process of historical evolution, the sandy soil areas
have been largely afforested and transformed into forest land, which helps prevent sand erosion and
improve land quality. The former marshy areas have been completely integrated into the urban area
through land leveling and other engineering measures. These examples demonstrate that soil
changes in Tongzhou District are influenced to some extent by human activities, especially urban
expansion and adjustments in land use policies. By transforming and utilizing different types of soil,
the government adapts to the needs of urban development and improves land utilization efficiency.
These efforts contribute to the protection of land resources, improvement of the ecological
environment, and support for sustainable urban development. It also reflects the trend of soil cover
changes influencing soil changes under human influence.


https://doi.org/10.20944/preprints202308.0080.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2023 doi:10.20944/preprints202308.0080.v1

Figure 4. Soil Change Trend in Tongzhou District (a, b, ¢, e, f represent soil prediction maps for every
5 years from 2000 to 2020, while d shows the soil change regions in Tongzhou District from 2000 to
2020. Due to the large number of soil types (48) in Tongzhou District, it is not feasible to display all of
them in the legend. Therefore, the legend focuses on the five largest soil types and includes loam soil
and sandy soil.).

3.3. Coupling Analysis of Land Cover Changes and Soil Changes in the Same Space

According to Figure 5, analyzing from the same spatial location, the soil change area in
Tongzhou District from 2000 to 2020 accounts for 16.5% of the total area. Overall, there have not been
significant changes in soil types, and most of the soil has remained relatively stable. However, among
the 16.5% of soil areas that experienced changes, 51.9% of the areas overlap with land cover change
areas, indicating a certain degree of synergy between land cover change and soil change, suggesting
that changes in land cover have influenced soil types. Further observation of the overlapping areas
reveals that 48% of the changes are related to the changes in Impervious areas. Impervious areas are
typically the focus of human activities and show significant soil modifications. Therefore, nearly half
of the overlapping areas are associated with changes in built-up areas, demonstrating the significant
impact of construction and redevelopment on soil structure. Additionally, it is worth noting that
among all the land cover types transitioning to Impervious, cropland accounts for 47.6%. This means
that a portion of land previously used for agricultural cultivation has been converted into built-up
areas, and the remaining 52.4% mostly consists of pre-existing Impervious areas, indicating that
Tongzhou District has primarily chosen agricultural land parcels for urban expansion during its
development. These findings indicate the coupling between land cover change and soil type change,
particularly the significant impact of built-up area change on soil structure. The conversion of
cropland to impermeable surfaces represents a considerable proportion. These findings emphasize
the significant influence of human activities on soil and highlight the importance of considering soil
conservation and sustainable utilization in urban development and land use planning.
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Figure 5. Soil Change and Land Cover Change Coupling Analysis Percentage Map.

3.4. Analysis of Proportional Changes in Soil Types within Cropland over a 20-Year Period

Cropland is the foundation of agricultural production and directly relates to food security and
human survival and development. It is also an important component of ecosystems, contributing to
maintaining healthy soil and sustainable utilization of water resources (Zhou Y et al., 2021; Liu Y et
al., 2021). As shown in Figure 6, analyzing from the perspective of cropland, it can be observed that
the quantity of cropland decreased by approximately 29% over the 20-year period, but the main soil
types of cropland remained almost unchanged. Sandy loam calcareous fluvo-aquic soil and light
loam calcareous fluvo-aquic soil accounted for almost half of the cropland's soil types, and their
proportion increased during the evolution of the total cropland quantity reduction over the 20-year
period. This is because sandy loam calcareous fluvo-aquic soil is widely distributed in Tongzhou
District and is more likely to be utilized by farmers. Light loam calcareous fluvo-aquic soil has
moderate permeability, strong capillary force, and certain drought resistance (Han Y et al., 2021). It
is rich in soil nutrients and has good soil structure, allowing for coordinated development of water,
nutrients, gases, and heat factors within the soil, thus exhibiting a high level of fertility suitable for
high-yield crop growth (Ding S et al., 2022). Under the influence of human activities, the soil types of
cropland gradually approach suitable types for cultivation. On one hand, farmers choose suitable
land for cultivation, and on the other hand, land engineering transforms cropland soil into a suitable
soil structure for cultivation (Hasan S S et al., 2020; Shen X et al., 2021). Human activities and
environmental changes are the direct factors leading to land cover changes, and land cover changes
can directly and indirectly impact soil changes. Taking cropland as an example, human activities act
on cropland, causing its soil types to transition towards suitable types for cultivation, and over time,
more soil types suitable for cultivation are used for cropland. This direct factor leads to changes in
land cover, reflecting the coupling between land cover and soil changes.
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Figure 6. Percentage of Top 10 Soil Types in Cropland for the 20-year Period.

4. Discussion and Conclusion

As a representative study area in plain regions, Tongzhou District exhibits characteristics such
as diverse land use types, conflicts between agriculture and urbanization, the impact of human
activities on land cover, and soil type diversity, making it representative of land cover and soil
changes in plain regions (Li H et al., 2020). This study selected a 20-year time span to comprehensively
reveal the land cover changes and soil map evolution in plain regions, aiming to obtain more
comprehensive and accurate results. Under the condition of using the same treatment methods for
corresponding years and consistent environmental covariates of the same type, a unified expert
knowledge-assisted sampling method and random forest mapping method were adopted to enhance
the uniformity and credibility of the soil mapping results. By inheriting the expert knowledge
contained in the original soil map, the coupling and correlation between soil type changes and land
cover changes were further analyzed.

Based on the analysis and results of this study, the following conclusions can be drawn for the
plain regions:

1.There is a coupling relationship between land cover changes and soil type changes. Nearly half
of the soil change areas overlap with land cover change areas, and human activities play a dominant
role in the process of land cover changes. The urbanization process has a significant impact on land
use and soil type changes.

2.While human activities influence land cover changes, land cover also affects and reveals soil
changes. Human activities tend to lead land use towards suitable soil types, and soil types guide
human activities towards maximizing the value of land use.

3.The accuracy of soil mapping in Tongzhou District has improved over the past 20 years,
increasing from 58.99% to 66.91%. This indicates that the improvement in land use intensity in plain
regions can enhance the credibility of soil mapping.

In the future, further exploration of the driving factors of land cover's influence on soil changes
can be conducted. To address the issue of low credibility in soil mapping in plain regions, it is
recommended to consider using land cover-related environmental covariates in areas with high land
use intensity. Additionally, the integration of high-resolution remote sensing data, ground-based
observations, and advanced machine learning algorithms can be considered to improve the accuracy
and detail of soil mapping.
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