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Abstract: The flat terrain in plain areas makes the land easily accessible for cultivation and farming, 

providing vast opportunities for agricultural development. Additionally, these areas are crucial for 

urban construction and economic growth. Soil mapping plays a crucial role in understanding soil 

characteristics and guiding land management practices. However, accurately mapping soils in plain 

regions can be challenging due to their low spatial variability and diverse land use types. This study 

focuses on the impact of land cover changes on the accuracy of soil mapping in plain areas, aiming 

to provide effective assistance in soil mapping through the analysis of their coupling relationship. 

Starting with a 20-year land cover change analysis, this study utilizes a unified approach that 

combines expert knowledge, mixed sampling methods, and random forest mapping techniques. 

The study incorporates environmental covariates that have minimal period influence and 

synergistically use NDVI (Normalized Difference Vegetation Index) and land cover data from the 

same year. The analysis is based on transition matrices, confusion matrices, and their derived 

indicators. The research findings indicate that Tongzhou District has experienced rapid 

development over the past 20 years, with the area of construction land nearly doubling. 29% of 

arable land has been converted into construction land, resulting in an increase in the accuracy of the 

soil map from 58.99% to 66.91% over the 20-year period. The soil change area during this period 

accounts for 16.5% of the total area, with 51.9% of the changed areas overlapping with land cover 

change areas. These overlapping regions are predominantly influenced by human activities. In 

terms of cultivated land types in the study area, the quantity of arable land has decreased by 

approximately 29% over the 20 years, while the proportion of sandy loam calcareous fluvo-aquic 

soil and light loam calcareous fluvo-aquic soil, which constitute nearly half of the soil types, has 

increased. These data demonstrate the coupling relationship between land cover changes and soil 

type variations, particularly the significant influence of human activities on soil structure. It is 

evident that on one hand, improving the extent of land use in plain areas enhances the credibility 

of soil mapping. On the other hand, human activities impact land cover, which in turn affects and 

reflects changes in the soil. 

Keywords: land cover changes; soil mapping; random forest; plain areas 

 

1. Introduction 

Soil mapping plays a significant role in agriculture, environmental protection, and land planning 

(Kristensen et al., 2019). By providing detailed information about soil characteristics and spatial 

distribution, soil mapping can guide farmers and land managers in developing rational land cover 

and crop cultivation strategies to maximize crop yield and quality (Dewage et al., 2019). In plain 

areas, the low spatial variability of soils and the subtle differences in soil types and properties pose 

challenges for accurate classification and mapping (De-Cai et al., 2019; Liu et al., 2012; Zhao et al., 
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2013). Human activities such as crop cultivation, irrigation, and fertilization can have complex 

impacts on soils, resulting in more intricate and irregular spatial distribution of soil properties 

(Rostaminia et al., 2021; Murray et al., 2017). Different land cover types have significant influences on 

soil formation, evolution, and properties (Adugna et al., 2016). For instance, different land cover types 

like cropland, grassland, forest, and wetland can lead to variations in soil texture, organic matter 

content, and water-holding capacity, which in turn affect the chemical, physical, and biological 

properties of soils (Hounkpatin et al., 2020; Papadopoulou-Vrynioti et al., 2014; Yang et al., 2021). 

These differences are reflected in soil mapping, with different land cover types often exhibiting 

distinct spatial distribution patterns in the soil (Chen et al., 2020). Studying the impact of land cover 

changes on soil mapping can help explore ways to improve mapping accuracy in plain areas and 

provide valuable guidance for land protection and management measures (Gan-Lin et al., 2017). 

Additionally, it contributes to optimizing land cover structure, enhancing the sustainability of 

agricultural production, and offering scientifically informed decision-making support for 

policymakers to promote sustainable development in plain regions (Wang et al., 2020). 

Many scholars have dedicated their efforts to exploring the impact and correlations between 

land cover changes and soil properties. For example, Zhang et al. (2021) proposed a method to 

identify agricultural land cover history by overlaying land cover data from 1980 to 2018, and their 

model, which incorporates agricultural land cover history, improved the mapping accuracy of soil 

organic carbon compared to models that only utilized natural variables, providing more spatial 

details attributed to land development. Taveira et al. (2018) sampled and classified soil profiles from 

regional soil surveys and compared their land cover capabilities with different management levels 

displayed on maps. The results revealed that higher land cover capability in Minas Gerais state 

corresponded to higher accuracy in soil mapping. Due to the complex and diverse relationships 

between land cover changes and soil properties, as well as the interactions among different land cover 

types, geographic environments, and management practices, there are still research gaps and 

challenges in this field (Zhang et al., 2022). In this study, expert knowledge was used to extract virtual 

points and combined with other sampled points as mixed points. In addition to using consistent 

environmental covariates such as parent material, texture, groundwater depth, distance to water 

bodies, and elevation as auxiliary variables, random forest was employed for soil mapping from 2000 

to 2020 at 5-year intervals, ensuring the use of corresponding land cover types and NDVI as 

environmental covariates. The coupling relationship between land cover changes in plain areas and 

soil mapping was revealed through confusion matrices, derived evaluation indicators, and transition 

matrices. This study will provides new insights to enhance the accuracy of soil mapping in plain areas 

and address challenges such as rich land use types and low spatial variability, offering a reliable 

theoretical foundation for agricultural development, urban construction, and economic growth in 

plain regions. 

2. Material and Methods 

2.1. Overview of the Study Area 

Tongzhou District is located in the southeastern part of Beijing, China, with geographic 

coordinates ranging from 39°36ʹ to 40°02ʹ and 116°32ʹ to 116°56ʹ. The district covers an area of 903 

km², predominantly consisting of alluvial fans and floodplains formed by the Yongding River, 

Chaobai River, and Wenyu River (Cui et al., 2020). The land surface in Tongzhou District is covered 

by deep deposits of Quaternary sediments, forming modern alluvial fan plains and impact low 

plains. The land cover in Tongzhou District exhibits diversity, encompassing various land use types 

including agriculture, forestry, urbanization, industrialization, transportation, and water resources 

(Dai et al., 2022). According to available data, the land cover distribution in Tongzhou District is as 

follows: arable land covers 37.02%, orchards cover 3.81%, forests cover 8.62%, grassland covers 0.13%, 

urban and industrial land covers 33.43%, transportation land covers 5.31%, water resources and 

facilities cover 9.47%, and other land covers 2.21%. These surface characteristics and land use types 

provide essential baseline data and background information for soil mapping in Tongzhou District. 
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The district consists of 3 soil classes, 8 sub-classes, 13 soil orders, and 42 soil species, including alluvial 

soil, brown soil, and sandy soil, with alluvial soil being the dominant soil type in Tongzhou District. 

(The soil types mentioned in the text are named according to the Chinese soil classification system). 

 

Figure 1. Study Area and Soil Samples (Sampling Point Locations with Calibration Soil Map as the 

Base Map). 

2.2. Data Sources and Processing 

2.2.1. Handling Environmental Covariates 

Environmental covariates can help explain the spatial distribution of soil properties (Sun et al., 

2022). By collecting and analyzing environmental factors related to soil properties, such as 

topography, climate, vegetation, and land cover, the associations between soil properties and these 

environmental factors can be revealed (Poggio et al., 2021; Dong et al., 2014; Dunkl et al., 2020). As 

shown in Figure 2, to ensure data consistency, this study selects factors such as parent material, 

groundwater depth, land cover type, distance to water bodies, texture, and elevation that have not 

undergone significant changes over the past 20 years as environmental covariates. Based on this, 

when conducting soil mapping in different years in the study area, the corresponding NDVI and 

current land cover data are used for mapping, ensuring that the NDVI and land cover data are from 

the same data source to ensure the reliability and accuracy of the research results (Yang et al., 2021). 

Among them, the original soil map, texture, elevation, groundwater depth, and distance to water 

bodies are derived from the dataset of the National Earth System Science Center, and the parent 

material information is obtained from 1:25,000 geological maps of the region. NDVI data are sourced 

from Landsat series data in Google Earth Engine (GEE) after a series of processing steps. The current 

land cover data are collected from stable samples extracted from the Chinese Land Use/Land Cover 

Dataset (CLUD) using GEE, as well as visual interpretation samples from satellite time series data, 

Google Earth, and Google Maps. Multiple temporal indicators were constructed using all available 

Landsat data and fed into a random forest classifier to obtain the classification results. All the above 

data are processed with a resolution of 30m to ensure the uniformity of the data. 
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Figure 2. Set of Environmental Covariates (Images a-e represent the texture map, elevation map, 

groundwater depth map, distance from water bodies map, and parent material map, respectively. 

Images f-j depict land cover maps for every 5-year interval from 2000 to 2020, while images k-o 

represent NDVI maps for the same time period.). 

2.2.2. Source of Sampling Points 

Due to the use of conventional environmental covariate-assisted sampling methods that require 

real-time remote sensing data, the positions of sampling points may vary across different years (Yang 

et al., 2020; Liu et al., 2020; Miller et al., 2015). To ensure data consistency, this study primarily relied 

on a labor-intensive targeted sampling approach based on expert knowledge. Expert knowledge can 

provide prior information about the distribution of soil properties and, guided by expert experience 

and domain knowledge, enable the targeted selection of representative and critical sampling points, 

thus improving sampling efficiency and cost-effectiveness (Zhang et al., 2021; Ng et al., 2020). 

The calibration soil map was obtained by conducting indoor verification on the original soil map 

to address issues related to inconsistent names for the same soil and identical names for different 

soils. After overlaying the validated soil map with the land cover map and image, the boundary 

divisions were further refined. In this study, a targeted sampling approach based on expert 

knowledge was employed, where the validated soil map, current land cover map, and image map 

were overlaid. Soil experts, using their knowledge in soil science, made judgments based on the 

overlaid maps to identify virtual points that potentially represent regional environmental factors in 

the vicinity of the plot center. Leaf vein structures were used for point selection in large plots, 

ensuring that each plot obtained a representative virtual point for each soil type while guaranteeing 

a minimum of five virtual points per plot. Ultimately, 1,564 virtual points representing plot 

characteristics were obtained after manual screening. In addition to these virtual points, other sources 

of sampling points included field validation points, third national soil survey profile points, historical 

data collection points, and typical environmental factor-assisted points. Typical environmental 

factor-assisted points were obtained by overlaying the input environmental covariates and mapping 

the distribution of typical ranges of each environmental covariate in the same geographic space. Then, 

the frequency distribution analysis of the environmental covariates was conducted after overlaying 

them with the validated indoor soil map. The typical value ranges for each key environmental 

covariate were derived. After outputting the distribution areas or multiple patches of typical 

environmental conditions for each soil type, the center point of each patch was extracted as a typical 

point for that soil type, resulting in a total of 41 typical environmental factor-assisted points. The third 
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national soil survey profile points referred to the profile points collected during the unified third 

national soil survey in China, totaling two points. Historical data collection points referred to 21 

points obtained through query and processing of soil data from books such as the Soil of Tong 

County, Soil Atlas of China, Soil of Beijing, and Soil Series of China (Beijing and Tianjin Volume). 

Field validation points were obtained by conducting field sampling in key areas of doubt to update 

the indoor validated soil map, totaling 95 sampling points. As shown in Figure 1, the soil information 

from the validated soil map was extracted based on the information of the sampling points to obtain 

the mapping points for this study. 

2.3. Modeling and Mapping Methods 

This study adopts the Random Forest model for soil mapping. Random Forest is a machine 

learning algorithm based on ensemble learning, composed of multiple decision trees. Each decision 

tree is independently generated and increases the diversity of the model through random sampling 

with replacement and random feature selection on the input samples (Speiser et al., 2023; Moller A B 

et al., 2019). Random Forest can handle missing data and effectively capture the complex non-linear 

relationships between soil properties and environmental factors. Its robustness allows it to handle 

outliers and noise, improving the stability and reliability of soil mapping (Rostaminia M et al., 2021; 

Abowarda A S et al., 2021). The training process of the Random Forest model includes the following 

steps: 

Data Preparation: Collecting and preparing soil sample data, including measured values of soil 

properties and associated environmental variable data. 

Feature Selection: Selecting a subset of available environmental variables as input features for 

the decision trees. The feature selection in Random Forest is random, with each decision tree 

considering only a subset of features. 

Random Sampling: Conducting random sampling with replacement on the training data to 

build training datasets for each decision tree. This allows each decision tree to be trained on different 

subsets of samples. 

Decision Tree Construction: Constructing multiple decision trees using the training datasets. 

Each decision tree progressively splits the data based on feature selection and splitting criteria, 

forming a tree structure. 

Prediction Ensemble: For new input samples, each decision tree independently predicts the 

outcome, and the final prediction result is obtained through voting or averaging the predictions from 

the decision trees. This ensemble approach reduces the risk of random errors and overfitting. 

The Random Forest modeling in this study was implemented by calling the randomForest 

package in the R programming language. 

2.4. Evaluation Methods for Mapping Results 

The Confusion Matrix is a tool used in machine learning and statistics to evaluate the 

performance of classification models (Sun H W D et al., 2021). It visualizes and summarizes the 

relationship between the predicted results of a classification model and the true labels (Wang et al., 

2021). The Confusion Matrix and its derived evaluation metrics provide a comprehensive way to 

assess the performance of classification models (Zeng G et al., 2019). In soil mapping, classification 

models are used to classify soil types in different regions, making the evaluation of classification 

model accuracy crucial for determining the correctness of soil types (Fromm S F V et al., 2020). The 

following are derived evaluation metrics: 

Precision is the most commonly used performance metric for classification. It represents the 

accuracy of the model, i.e., the number of correctly identified instances divided by the total number 

of samples. Generally, higher precision indicates better model performance (B S L A et al., 2019). 

Accuracy = (TP+TN)/(TP+FN+FP+TN)                                (1) 

True Positive (TP): The model correctly predicts positive instances as positive. 

False Negative (FN): The model incorrectly predicts positive instances as negative. 

False Positive (FP): The model incorrectly predicts negative instances as positive. 
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True Negative (TN): The model correctly predicts negative instances as negative. 

In statistics, a Confidence Interval (CI) is used to estimate the range of a population parameter, 

and the 95% CI is a commonly used interval (Wang M et al., 2023). A 95% CI indicates a 95% 

confidence level for the estimated parameter, meaning that in repeated sampling, about 95% of the 

confidence intervals will contain the true parameter value. It is expressed as follows: 

95% CI=ቂ𝛼 − 1.96 ∗ ఙ√௡，𝛼 + 1.96 ∗ ఙ√௡ቃ                            (2) 

where α is the mean, σ is the standard deviation, and n is the sample size of a single experiment. 

No Information Rate (NIR), also known as the baseline accuracy or random accuracy, refers to 

the accuracy achieved when making predictions based solely on the majority class in a classification 

task (Asa et al., 2018). NIR is useful in evaluating classification models because it provides a baseline 

reference for comparing whether the modelʹs accuracy has substantially improved. If the modelʹs 

accuracy is significantly lower than the NIR, further model optimization or considering improved 

data processing methods may be necessary to enhance the modelʹs performance. 

P-Value [Acc > NIR] refers to the probability of the observed accuracy being significantly higher 

than the NIR when conducting a hypothesis test. P-Value is a statistical measure used to assess the 

significance of the difference between the observed sample data or statistics and the null hypothesis 

under the assumption that the null hypothesis is true (Zhang J et al., 2021). If the P-Value is smaller 

than a pre-defined significance level (usually 0.05), the null hypothesis can be rejected, and it can be 

concluded that the accuracy is significantly higher than the NIR. Conversely, if the P-Value is greater 

than the significance level, the null hypothesis cannot be rejected, indicating that the difference 

between the accuracy and the NIR may be due to random factors rather than a true improvement in 

model performance (Feyisa G L et al., 2013). 

Kappa (Cohenʹs Kappa) is a statistical measure used to assess the performance of a classification 

model, particularly for evaluating the consistency between observers or the consistency between a 

model and observers in a classification task (Zou D et al., 2017). The formula is as follows: 𝐾 = ௣೚ି௣೐
1ି௣೐                                             (3) 

where 𝑝௢ is the sum of the number of correctly classified samples for each class divided by the total 

number of samples, representing the overall classification accuracy. 𝑝௢ = ∑ ்೔಴೔స1௡                                              (4) 𝑝௘ = ∑ ௔೔∗௕೔಴೔స1௡2                                             (5) 

where C is the total number of categories, 𝑇௜ represents the number of samples correctly classified 

for each category, 𝑎௜  represents the number of true samples for each category, 𝑏௜  represents the 

number of predicted samples for each category, and n is the total number of samples. 

3. Results and Analysis 

3.1. Analysis of Land Cover Changes 

Since the reform and opening up, China has undergone rapid development, and the highly 

accessible plain areas have experienced significant land cover changes under human influence. As 

one of the key sub-centers of Beijing, Tongzhou District has expanded rapidly over the past 20 years. 

With the increase in population and limited land resources in the central urban areas of Beijing, 

Tongzhou District has become an important area for urbanization in Beijing (Song et al., 2020). The 

government has increased investment in urban planning and infrastructure construction in 

Tongzhou District, promoting its urbanization process. As shown in Figure 3, a large area of cropland 

in the western part of Tongzhou District has been transformed into urban areas during the 20-year 

urbanization process, and the new urban areas have become connected to the main urban areas. 

Although there has been some expansion of built-up areas in the eastern part, the overall change is 

not significant. 
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Figure 3. Trend of Land Cover Changes in Tongzhou District from 2000 to 2020. 

As indicated in Table 1, cropland is the largest land type in Tongzhou District and maintains a 

leading position in terms of overall quantity. Although the cropland area has decreased by about 29% 

in the past 20 years, it remains the primary land type in Tongzhou District. The area of impervious 

surfaces has significantly increased over the past 20 years, from approximately 201.12 km² in 2000 to 

around 387.33 km² in 2020, showing a growth of 92.59%. This increase is mainly due to the conversion 

of cropland, reflecting the rapid development of urbanization in Tongzhou District. The forest area 

has increased from approximately 1.09 km² in 2000 to around 14.98 km² in 2020. This indicates that 

Tongzhou District has been working on the protection and increase of green spaces. The overall 

changes in other land types are not significant, showing no clear trend of growth or decline. The areas 

of these land types have remained relatively stable over the past 20 years. In summary, the land cover 

changes in Tongzhou District over the past 20 years have shown a trend of decreasing cropland, 

increasing impervious surfaces, and increasing forest area. This reflects the impact of urbanization 

on land use and indicates that Tongzhou District has made efforts and achievements in pursuing 

sustainable development and building a green and ecological city. 

Table 1. 2000-2020 Land Cover Transfer Matrix（𝒌𝒎𝟐）. 

 

Barren Cropland Forest Grassland Impervious Water Total 

Barren 0.0055  0.0023  0.0000  0.0000  0.0759  0.0000  0.0837  

Cropland 0.0045  476.4026  14.4315  0.0138  192.1693  5.3429  688.3646  

Forest 0.0000  0.4103  0.3608  0.0000  0.0768  0.2408  1.0887  

Grassland 0.0000  0.0095  0.0000  0.0005  0.0419  0.0019  0.0538  

Impervious 0.0027  8.0304  0.0776  0.0000  191.6857  1.3196  201.1160  

Water 0.0079  3.8467  0.1113  0.0001  3.2763  4.6823  11.9247  

Total 0.0207  488.7018  14.9812  0.0144  387.3259  11.5876  902.6316  

3.2. Soil Prediction Mapping and Accuracy Analysis in Different Years 

According to Table 2, the accuracy varies among different years but remains at a relatively high 

level. NIR (Normalized Improvement Ratio) represents the accuracy of predicting classifications 

without any classification information. In this case, the NIR is 0.1871, indicating that the proportion 

of accurately predicted classifications based solely on prior probabilities is 0.1871. This suggests that 

the inclusion of environmental covariates effectively improves the predictive ability of the model, 

demonstrating a significant impact of the selected environmental covariates on soil formation. The p-

value [Acc > NIR] < 2.2e-16 indicates that the actual accuracy is significantly higher than the accuracy 

based solely on prior probabilities, and the difference is highly significant. This confirms that the 

2020 

2000 
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difference between accuracy and NIR is not due to random factors but rather reflects a genuine 

improvement in model performance. 

Table 2. Index table of soil map in different years. 

 

Accuracy 95% CI 

No 

Information 

Rate 

P-Value [Acc 

> NIR] 
Kappa 

2000 0.5899 (0.5296, 0.6483) 0.1871 < 2.2e-16 0.5451 

2005 0.6265 (0.5789, 0.6723) 0.1871 < 2.2e-16  0.5876 

2010 0.6043 (0.5442, 0.6622) 0.1871 < 2.2e-16  0.5656 

2015 0.6403 (0.5808, 0.6967) 0.1871 < 2.2e-16  0.6046 

2020 0.6691 (0.6104, 0.7241) 0.1871 < 2.2e-16 0.6342 

In terms of trends, Tongzhou District has experienced an increasing level of land use intensity 

during the urbanization process. The impervious area has nearly doubled, and the Kappa value of 

the soil map has also increased, indicating an improvement in the consistency of soil map 

classification during this period. The accuracy has increased from 58.99% in 2000 to 66.91% in 2020. 

The 95% CI represents the range of uncertainty for estimating accuracy. Each confidence interval is a 

range, with the lower and upper limits representing the estimated lower and upper bounds of 

accuracy. To avoid the influence of chance and randomness, the observation of the 95% CI intervals 

reveals that the overall accuracy of the soil map is also on an upward trend. This suggests a positive 

correlation between land use intensity and soil mapping accuracy. As the land use intensity in the 

study area strengthens, the accuracy of soil mapping in the study area will also increase. This is 

because human activities tend to develop land in a way that is most suitable for human use, and the 

utilization patterns indirectly reflect the properties of the soil, which are ultimately manifested in 

land cover.Table 2 Index table of soil map in different years. 

According to Figure 4, over the past 20 years, there have been some changes in the soil of 

Tongzhou District, but most areas have maintained a relatively stable soil type. The most significant 

and drastic changes are mainly concentrated in the urban areas of Tongzhou and its surroundings, 

indicating that human activities have had a certain impact on soil type changes. Overall, the epicenter 

of the changing areas is located in the western part of Tongzhou District. This is because the western 

region is closer to the center of Beijing and was the first to be affected by urban expansion. In the past 

20 years, the government has continuously enhanced the utilization capacity of land (Xue Y, 2020). 

For suitable arable land, the government designates the areas as cropland, while for unsuitable soils, 

such as sandy soils and marshy soils, reasonable transformation measures have been taken to better 

serve urban development (Lu Q et al., 2017). In the process of historical evolution, the sandy soil areas 

have been largely afforested and transformed into forest land, which helps prevent sand erosion and 

improve land quality. The former marshy areas have been completely integrated into the urban area 

through land leveling and other engineering measures. These examples demonstrate that soil 

changes in Tongzhou District are influenced to some extent by human activities, especially urban 

expansion and adjustments in land use policies. By transforming and utilizing different types of soil, 

the government adapts to the needs of urban development and improves land utilization efficiency. 

These efforts contribute to the protection of land resources, improvement of the ecological 

environment, and support for sustainable urban development. It also reflects the trend of soil cover 

changes influencing soil changes under human influence. 

Year 
Index 
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Figure 4. Soil Change Trend in Tongzhou District (a, b, c, e, f represent soil prediction maps for every 

5 years from 2000 to 2020, while d shows the soil change regions in Tongzhou District from 2000 to 

2020. Due to the large number of soil types (48) in Tongzhou District, it is not feasible to display all of 

them in the legend. Therefore, the legend focuses on the five largest soil types and includes loam soil 

and sandy soil.). 

3.3. Coupling Analysis of Land Cover Changes and Soil Changes in the Same Space 

According to Figure 5, analyzing from the same spatial location, the soil change area in 

Tongzhou District from 2000 to 2020 accounts for 16.5% of the total area. Overall, there have not been 

significant changes in soil types, and most of the soil has remained relatively stable. However, among 

the 16.5% of soil areas that experienced changes, 51.9% of the areas overlap with land cover change 

areas, indicating a certain degree of synergy between land cover change and soil change, suggesting 

that changes in land cover have influenced soil types. Further observation of the overlapping areas 

reveals that 48% of the changes are related to the changes in Impervious areas. Impervious areas are 

typically the focus of human activities and show significant soil modifications. Therefore, nearly half 

of the overlapping areas are associated with changes in built-up areas, demonstrating the significant 

impact of construction and redevelopment on soil structure. Additionally, it is worth noting that 

among all the land cover types transitioning to Impervious, cropland accounts for 47.6%. This means 

that a portion of land previously used for agricultural cultivation has been converted into built-up 

areas, and the remaining 52.4% mostly consists of pre-existing Impervious areas, indicating that 

Tongzhou District has primarily chosen agricultural land parcels for urban expansion during its 

development. These findings indicate the coupling between land cover change and soil type change, 

particularly the significant impact of built-up area change on soil structure. The conversion of 

cropland to impermeable surfaces represents a considerable proportion. These findings emphasize 

the significant influence of human activities on soil and highlight the importance of considering soil 

conservation and sustainable utilization in urban development and land use planning. 
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Figure 5. Soil Change and Land Cover Change Coupling Analysis Percentage Map. 

3.4. Analysis of Proportional Changes in Soil Types within Cropland over a 20-Year Period 

Cropland is the foundation of agricultural production and directly relates to food security and 

human survival and development. It is also an important component of ecosystems, contributing to 

maintaining healthy soil and sustainable utilization of water resources (Zhou Y et al., 2021; Liu Y et 

al., 2021). As shown in Figure 6, analyzing from the perspective of cropland, it can be observed that 

the quantity of cropland decreased by approximately 29% over the 20-year period, but the main soil 

types of cropland remained almost unchanged. Sandy loam calcareous fluvo-aquic soil and light 

loam calcareous fluvo-aquic soil accounted for almost half of the croplandʹs soil types, and their 

proportion increased during the evolution of the total cropland quantity reduction over the 20-year 

period. This is because sandy loam calcareous fluvo-aquic soil is widely distributed in Tongzhou 

District and is more likely to be utilized by farmers. Light loam calcareous fluvo-aquic soil has 

moderate permeability, strong capillary force, and certain drought resistance (Han Y et al., 2021). It 

is rich in soil nutrients and has good soil structure, allowing for coordinated development of water, 

nutrients, gases, and heat factors within the soil, thus exhibiting a high level of fertility suitable for 

high-yield crop growth (Ding S et al., 2022). Under the influence of human activities, the soil types of 

cropland gradually approach suitable types for cultivation. On one hand, farmers choose suitable 

land for cultivation, and on the other hand, land engineering transforms cropland soil into a suitable 

soil structure for cultivation (Hasan S S et al., 2020; Shen X et al., 2021). Human activities and 

environmental changes are the direct factors leading to land cover changes, and land cover changes 

can directly and indirectly impact soil changes. Taking cropland as an example, human activities act 

on cropland, causing its soil types to transition towards suitable types for cultivation, and over time, 

more soil types suitable for cultivation are used for cropland. This direct factor leads to changes in 

land cover, reflecting the coupling between land cover and soil changes. 
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Figure 6. Percentage of Top 10 Soil Types in Cropland for the 20-year Period. 

4. Discussion and Conclusion 

As a representative study area in plain regions, Tongzhou District exhibits characteristics such 

as diverse land use types, conflicts between agriculture and urbanization, the impact of human 

activities on land cover, and soil type diversity, making it representative of land cover and soil 

changes in plain regions (Li H et al., 2020). This study selected a 20-year time span to comprehensively 

reveal the land cover changes and soil map evolution in plain regions, aiming to obtain more 

comprehensive and accurate results. Under the condition of using the same treatment methods for 

corresponding years and consistent environmental covariates of the same type, a unified expert 

knowledge-assisted sampling method and random forest mapping method were adopted to enhance 

the uniformity and credibility of the soil mapping results. By inheriting the expert knowledge 

contained in the original soil map, the coupling and correlation between soil type changes and land 

cover changes were further analyzed. 

Based on the analysis and results of this study, the following conclusions can be drawn for the 

plain regions: 

1.There is a coupling relationship between land cover changes and soil type changes. Nearly half 

of the soil change areas overlap with land cover change areas, and human activities play a dominant 

role in the process of land cover changes. The urbanization process has a significant impact on land 

use and soil type changes. 

2.While human activities influence land cover changes, land cover also affects and reveals soil 

changes. Human activities tend to lead land use towards suitable soil types, and soil types guide 

human activities towards maximizing the value of land use. 

3.The accuracy of soil mapping in Tongzhou District has improved over the past 20 years, 

increasing from 58.99% to 66.91%. This indicates that the improvement in land use intensity in plain 

regions can enhance the credibility of soil mapping. 

In the future, further exploration of the driving factors of land coverʹs influence on soil changes 

can be conducted. To address the issue of low credibility in soil mapping in plain regions, it is 

recommended to consider using land cover-related environmental covariates in areas with high land 

use intensity. Additionally, the integration of high-resolution remote sensing data, ground-based 

observations, and advanced machine learning algorithms can be considered to improve the accuracy 

and detail of soil mapping. 
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