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Abstract: BiosNaosTiOs-0.06BaTiOs (BNT-BT) thin films were prepared by both chemical solution (CSD) and
pulsed laser deposition (PLD). The structure, dielectric, and ferroelectric properties were investigated. High
stability of the dielectric permittivity (Ae/e(150°C) <+15%) over a wide temperature range from room
temperature to 300 °C was obtained. Distinctly, the CSD film showed high TCC stability with variation of + 5%
up to 250°C. Furthermore, the CSD film showed an unsaturated ferroelectric hysteresis loop characteristic of
the ergodic relaxor phase, however the PLD one exhibited almost saturated loop signature of the coexistence
of both ergodic and non-ergodic states. The energy storage properties of the prepared films were determined
using the P-E loops obtained at different temperatures. The results showed that these films exhibit stable and
improved energy storage density comparable to the ceramic capacitors. Moreover, the CSD film exhibited more
rigidity and better energy storage density that exceeds 1.3 J/cm® under low applied field of 317 KV/cm as well
as interesting efficiency in a large temperature range. The obtained results are very promising for energy
storage capacitors operating at high temperatures.

Keywords: BNT-BT thin films; chemical solution deposition; Pulse laser deposition; thermal
dielectric stability; ferroelectric properties; high energy storage property

1. Introduction

Recently, a considerable effort is reserved for the development of a new generation of dielectric
capacitors operating at high temperatures to meet the need of modern technologies [1-6].

It should be noted that the two standard capacitors COG and X7R, called type I and type II
respectively, operating at high temperature no longer meet current technology requirements, which
require more and more performance. Indeed, the COG, in spite of that offers a good stable capacity
in an extended range of temperature from -55°C to 125°C, but it has a very low variation of the
capacitance AC/C=+0.54% that limited its application to only in resonant circuit. Likewise, the
capacity of X7R drops at high temperature, although it offers a big AC/C=+15% compared to the
capacitor type I [7]. The ability of high charge-discharge of the dielectric capacitors makes X7R more
convenient for pulsed power applications. For instance, automotive and aerospace sectors need
power electronic that withstand very high temperatures. Lead- based antiferroelectric materials such
Pb(Zr,Ti)Os (PZT) [8,9] and PMN-PT [10], can perfectly meet this demand, but unfortunately the lead
is toxic and can harm human health and the environment [11]. Universal legislation like the European
Directive 2011/65/EU 2011 has restricted the use of these harmful compounds. As an alternative, lead-
free materials have attracted the attention of the scientific community with the challenge to shape a
material that can meet the demands of modern technologies, more especially for pulsed power
applications and in power electronic circuits [12].

Among the potential candidates, materials based on BaosNaosTiOs (BNT) emerge as an ideal
choice for the electrostatic energy storage capacitors. This interest is motivated by the BNT structural
properties in particular the presence of a modulated phase between 200 and 300°C in bulk material,
associated with the depolarization temperature (Ta) and a high Curie temperature around 325°C. In
fact, BNT is among the rare perovskite that exhibits A-site disorder with the simultaneous presence
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of Bi* and Na*. The local chemical order-disorder in the A-sites is reported to be responsible for this
modulation. Similarly, to PMN, BNT is considered as non- ergodic relaxor materials because the
applied electric field induces ferroelectricity in its matrix [13,14]. A polarization of 38 uC/cm? has
been reported for NBT ceramic as well as a good piezoelectric coefficient of 73 pC/N [15,16]. In
addition, the observation of a double pinched P-E hysteresis loop “Antiferroelectric- like (AFE)
behavior “was found very promising for the configuration of high temperature capacitors. NBT is
considered as a cubic symmetry with rhombohedral R3c and tetragonal P4bm polar nanoregions with
a domination of R3c at RT. However, the BNT is prone to high conductivity and large coercive field
that limit is application for energy storage capacitors. Thenceforth, the modulation of the composition
in BNT matrix was adopted as an appropriate way to overcome to these drawbacks. Zhenhao et al.
reported in the (1-x) NBT-xBaSnOs system low temperature thermal evolution of R3¢ and P4bm polar
nano-regions that promote relaxation behavior and lead to a slim P-E hysteresis loop [17]. Further,
Verma et al. on studying the 0.90(NaosBios)TiOs—AgNbOs solid solution, showed that the system
undergo a thermal stabilization of the capacity in a long temperature range compatible with X7R
behavior [18]. However, more interest has been devoted to the (1-x)(BiosNaos)TiOs-xBaTiOs system,
which endorses interesting morphotropic phase boundary zone(MPB) where the functional
properties seem to be interesting [19,20].

In the later years, a revival interest is devoted to improve BNT- properties for this soaring topic
[5-7,21-24]. Several substitutions in both A- and/or B-sites are tried, and interesting room energy
storage properties were reported for BNT-based systems. However, only a few works are interested
in high temperature applications [23-29]. In our previous work, we have shown that doping BNT
ceramics with rare earth elements induced a high dielectric stability with low dielectric losses as well
as improved energy storage at high temperature exceeded 200°C [27-29].

For the moment, the majority of studies have been focused on ceramic capacitors and few studies
concerned thin films, especially for high temperature capacitors [30,31].

In a recent study, we have demonstrated that BNT-0.06BaTiOs (BNT-BT) based thin films exhibit
very interesting energy storage properties at room temperature and high electric fields that exceeded
by several of magnitude those obtained for solid state ceramic capacitors [32].

In this present work, the emphasis is placed on how the preparation method of BNT-BT thin
film could influence the compositional modulation near the morphotropic phase boundary (MPB),
the temperature stability of the dielectric permittivity, and energy storage properties at low electric
field, in order to explore their potential application in miniaturized devices operating at low voltages
and high temperatures.

2. Materials and Methods

Two methods were used for the preparation of the studied BNT-BT thin films. The first one is
the chemical way using Bismuth acetate (III) (CsH9sBiOs), Sodium acetate (C2HsNaO2), Barium acetate
(Ba(C2Hs0z)2), and titanium isopropoxide (Ci12H2s04Ti) as starting precursors to prepare 0.3 mol/l of
the precursor solution. The First step was to dissolve Bi- Ba-, Na- acetates in acetic acid with
appropriate stoichiometry. Then, Ti- isopropoxide was dissolved in 2-Methoxyethanol and stabilized
with acetylacetone (AcAc). The two prepared solutions were mixed together and stirred at room
temperature for 24h to yield a stable solution. The final chemical solution was deposited onto Pt/SiN
substrate using spin-coating layer by layer to yield thin film fabrication. The pyrolysis of each layer
was done in a hotplate at 400°C for 10 min. The crystallization of the prepared films was carried out
in a tube furnace at 600 °C under an Oz atmosphere for 30 min. The final thickness was estimated
around 460 nm.

For the pulsed laser deposition (PLD) method, a 1 mol.% Manganese enriched BNT-BT target
was used. The films were grown at a temperature of 600 °C, in an oxygen pressure of 0.3 mbar on
(111)Pt/Ti/SiO2/Si substrate. A 248 nm KrF excimer laser was used. The laser beam was focused on
the BNT-BT target surface, at a 45° angle of incidence and the laser energy was adjusted in order to
produce a fluence of 2 J.cm™ and the laser pulse frequency was fixed at 2 Hz.
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The microstructure of the studied specimens was checked using an Environmental Quanta 200
FEG, FEI microscopy (SEM) and the phase formation was carried out with an Advance D8
diffractometer (Bruker Discover; CuKa = 1.5406 A. Raman spectroscopy was performed in a back-
scattering configuration using a micro-Raman Renishaw spectrometer under a green laser excitation
of 514.5 nm. The laser power was kept below 20 mW to avoid sample heating. The dielectric and
ferroelectric investigations were performed using a Solartron Impedance analyzer SI-12060 and TF
Analyzer 3000, aix-ACCT, respectively. A probe system attached to a Keithley 2611A source was used
to measure the leakage current properties.

3. Results and discussion

3.1. Microstructural and structural investigations

The microstructure analysis of the studied films is depicted in Figure 1. Both films were dense
and crack free as it is observed from SEM images. It seems that the average grain size decreases from
0.6 um for the film elaborated with the chemical deposition method to about 0.3 um for the sample
grown by PLD. The EDX spectra carried out on both films showed the expected starting elements Bi,
Na, Ba, Ti, and O. It has to be noted that for the PLD film the Manganese element is also detected,
since a Mn-enriched BNT-BT target was used for PLD film deposition.

@PLD [ @ CSD

Figure 1. SEM images showing the microstructure of the investigated thin films a. BNT-BT(PLD), b.
BNT-BT (CSD). The inset graph in each figure represents the average grain size distribution c. and d.
EDX spectra with atomic percentage of the investigated thin films.

The average thickness of the films, determined from the cross-sectional scanning electronic
microscopy measurements, was about 428 nm and 464 nm for PLD- and Sol gel respectively.

Figure 2 presents the X-ray diffractograms (XRD) of the studied samples. As reported in our
previous work, the film prepared by chemical method exhibits the coexistence of the rhombohedral
R3c and the tetragonal P4bm phases as expected with the bulk BNT-0.06BT composition in the
vicinity of the MPB region. A more detailed discussion could be found in ref. [23]. However, the film
prepared by PLD method is also polycrystalline with a dominant pseudo-cubic perovskite and a (001)
preferential orientation. Noting that a small fraction of the pyrochlore Bi:Ti2O7 secondary phase is
observed, similarly to the work of Yanjiang Xie et al [33].


https://doi.org/10.20944/preprints202308.0006.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 August 2023 doi:10.20944/preprints202308.0006.v1

T T T T T T T T T T T

* Pyrochlore phase

(111)pt
(004)g;

-

BNT-BT (PLD)

Intensity (a.u.)

~~--rTTTrTrrrrrrreo
20 25 30 35 40 45 50 55 60 65 70 75 80
26 ()

| (b) BNT-BT (CSD)

Substrate
Substrate

U Intensity (a.u.)

692

20°

BNT-BT (CSD)

Intensity (a.u.)

Substrate

[

— T T T T T T T T T T
20 25 30 35 40 45 50 55 60 65 70 75 80
20°

Figure 2. XRD patterns of BNT-BT thin films on Pt- substrates deposited by: (a) PLD; (b) CSD.

Complementary information about structure of the investigated film was given by Raman
spectroscopy investigation. Figure 3 shows the room-temperature Raman spectra of the two studied
NBT-BT thin films. The obtained Raman spectrum exhibit a relatively broad feature which are
comparable to the previously reported Raman studies on NBT-BT bulk materials. This broadening
could be attributed to the disorder on the A/B perovskite sites and the overlapping of Raman modes
(unpolarized Raman spectra). As shown in the figure, the Raman modes in NBT-BT samples can be
divided into four local vibrations involving the A-site cations displacements (modes below 100 cm™),
vibrations of both A- and B-site cations (in the range 100- 200 cm™), off-center shifts of the B-site
cations (100-200 cm?), and BOs octahedral tilts (400-1000 cm?) [34].
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Figure 3. Room temperature Raman spectra of BNT-BT thin films deposited by PLD and CSD.

3.2. Dielectric investigation and thermal permittivity stability

Figure 4 shows the thermal evolution of the dielectric constant and of the dielectric loss for the
studied BNT-BT based thin films. No clear dielectric anomalies were observed for the investigated
films. In contrast, a clear dielectric loss anomaly is observed around 120°C at 10 kHz for the prepared
by CSD method that correspond exactly at depolarization temperature localization. As shown in the
Figure 4b, this anomaly is frequency dependent that asserts the relaxor behavior of this film [32].
Such anomaly in the dielectric loss is not detected for the film prepared by PLD method, probably
because of the presence of a high leakage current and/or a rather low concentration of polar nano
clusters which could not give rise to such anomaly.

It is interesting to notice that the non-observation of any dielectric anomaly until 350°C
demonstrates the good dielectric temperature stability. The local stress between the substrate and
film can contribute to this behavior as it is reported in the literature [35,36].
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Figure 4. Thermal variation of the dielectric constant and losses: (a) and (b) CSD thin film; (c) and (d)
PLD thin film.

The thermal stability of the relative permittivity of the investigated samples was evaluated by
the temperature coefficient of capacitance (TCC), given by the following equation (1) [37]:
AC Aey ET—EBase Temp

TCC = = = , (1)

CBase Temp €Base Temp €Base Temp

Where (er) is the dielectric permittivity at a given temperature, (eBaseremp) is the dielectric
permittivity at the base temperature which is fixed at 150°C in this work. The value taken here for
the base temperature agrees with that one used for high temperature dielectric capacitors and has
been used also in several works dealing with BNT-based dielectrics materials [38,39].

The thermal evolution of TCC for both thin films is presented at some working frequencies in
Figure 5. The dashed lines denote the operational range limited to + 15% as type II capacitors. As it
can be shown from the plots, all samples show good permittivity stability over a large range of
temperature that exceeds 200 °C, better than the operating temperature region of X7R, especially for
high temperature. Interestingly, the film prepared by CSD method shows a better TCC stability that
doesn’t exceed a variation of + 15% and extended working domain exceeding 300 °C, throughout the
entire frequency range under investigation. For instance, at 10 kHz, the TCC exhibits excellent
stability with variation of + 5% up to 250°C. In addition, the dielectric losses remain below 9% for the
entire temperature range with a maximum obtained at the Ta anomaly.
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Figure 5. TCC of BNT-BT thin film prepared by (a) PLD, (b) CSD at different frequencies. The working
domain for each film is highlighted by a green rectangle.
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3.3. Leakage current, Ferroelectric and energy storage investigations

The current density (J) vs. electric field (E), for both films is displayed in Figure 6. The leakage
current curves are fairly symmetrical about E= 0 with a high resistivity. However, film prepared by
CSD method is less conductive than that one prepared by PLD as it is characterized by lower leakage
currents at high electric field. The obtained results corroborate the dielectric measurement where the
CSD film exhibit very low dielectric less comparing the PLD film.
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Figure 6. Room temperature | - E curve of a BNT thin films annealed under oxygen atmosphere.

Figure 7 shows the temperature dependence of P-E hysteresis loop for the investigated
specimens. For the film prepared by PLD method, a clear ferroelectric hysteresis is observed at room
temperature, albeit it is not well saturated because the low applied electric field. However, for the
film prepared by chemical way, the obtained P-E loops have a slim shape with paraelectric-like
behavior. It is worth noting that the introduction of Ba in the BNT matrix induces different relaxation
states going from non-ergodic relaxor (NER) for the mother phase BNT until the paraelectric-like
state. It is reported, however, that for BNT-0.06BT both the ergodic (ER) and non-ergodic states are
present simultaneously because of the competition of R3c and P4mb nonpolar region, which is
promising for energy storage properties. Basing on the shape of the obtained hysteresis loop, we can
surmise that for the film prepared by PLD method both NER and ER coexist. Furthermore, the slim
hysteresis observed for CSD film confirms the achievement of the complete ergodic relaxor phase
[40].
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Figure 7. The evolution of the hysteresis loops vs temperature of BNT-BT (a) PLD film (b) CSD film.

Surprisingly, the increase of the temperature until 200°C doesn’t seem to affect considerably the
hysteresis loops as it is depicted from the temperature dependence of the ferroelectric hysteresis loop
in the Figure 7. On the contrary to normal ferroelectrics, we observe in both films an increase in
polarization with increasing temperature up to 200°C. This could be attributed to the presence of the
ergodic and/or non-ergodic relaxor phases. Recall that it is essential to maintain high polarization at
high temperatures as it plays a crucial role in achieving high energy performance in such conditions.

The energy storage properties can be calculated from the ferroelectric hysteresis loops using the
integration of the polarization (P) as a function of the electric field (E):

P
Wree = ,, EdP, @

Where (Wre) is the recoverable energy density

It is interesting to mention that for obtaining a high-energy storage density both the AP = Pm —
Pr value and the breakdown electric field should be high.

The energy loss density (Wiss) and the energy efficiency (n) are interesting to evaluate the
discharge property of the capacitor and are calculated by using the following equations:

Pmax
Wioss =f EdP — Wy, 3)
0
_ Wrec
= WrectWipss x 100, (4)
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The thermal evolution of the recoverable energy density (Wrc) and energy efficiency (1)) are
presented in Figure 8 in the temperature range from RT to 250°C.

As it is concluded from this figure, a quasi-constant evolution of the energy storage density as a
function of temperature is observed for both films. For the PLD thin film, Wre is around 0.8 ] cm™
and the maximum of the efficiency is 55% at RT, which drops to 38% at high temperature.
Interestingly, the CSD film showed improved energy storage properties with Wrec around 1.4 ] cm
and high efficiency around 76% at RT that decreased to 40% at 250°C. Furthermore, at the
temperature < 180°C the efficiency still very interesting (1>70%) and remains relatively stable. The
obtained values evidence better performances than some lead-free materials reported promising for
high temperature application [41-43].
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Figure 8. Recoverable energy density and efficiency of BNT-BT as a function of temperature of (a)
PLD thin film; (b) CSD thin film. The hatched rectangles showed the working domain of each film.

4. Conclusions

In summary, BNT-0.06BT thin films were elaborated by both physical and chemical methods.
SEM micrographs provided informations about homogeneity, density, and grain distribution in the
samples. X-ray diffractograms of the investigated films confirm the formation of BNT-BT pseudo
cubic perovskite and it was corroborated with Raman investigation. The temperature dielectric
stability was evaluated for the investigated samples using the temperature coefficient of capacitance
(TCC). Both films showed good stability of TCC in a wide temperature range exceeding 200 °C.
Particularly, the film prepared by CSD method shows a better TCC stability that doesn’t exceed a
variation of + 15% with and extended working domain reaching 300 °C. Besides, these films exhibit
also stable energy storage properties in a large temperature range with a supremacy of the film
prepared by the chemical method, whose performances are the best with a stable Wre=1.4 ] cm= and
high efficiency over a wide temperature range. This interesting result can be attributed to the
improvement of the CSD film resistivity, as it was highlighted by the obtained low leakage current
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density. This result makes the BNT-BT film prepared by the CSD, one of the best candidates for high
temperature energy storage capacitor.
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