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Abstract: Data-driven models (DDMs) are extensively used in environmental modeling but face
challenges due to limited training data and potential results not adhering to physical laws. To
address this challenge, this study developed a process-guided deep learning (PGDL) model,
integrating a long short-term memory (LSTM) neural network and a process-based model (PBM),
CE-QUAL-W2 (W2), to predict water temperature in a stratified reservoir. The PGDL included an
energy constraint term from W2's thermal energy equilibrium into the cost function of the LSTM,
besides the mean square error term. In PGDL, parameters were optimized by penalizing deviations
from the energy law, ensuring adherence to physical constraints. Compared to LSTM, PGDL
demonstrated enhanced satisfaction with the energy balance and superior performance in water
temperature prediction. Even with less field data for training, PGDL outperformed both LSTM and
calibrated W2 after pre-training with data generated using the uncalibrated W2. Therefore,
integration of DDM with a PBM ensured physical consistency in water temperature prediction for
complex stratified reservoirs with limited data. Moreover, pre-training the PGDL with PBM proved
highly effective in mitigating bias and variance due to insufficient field measurement data.

Keywords: CE-QUAL-W2; Daecheong Reservoir; long short-term memory; process guided deep
learning; water temperature

1. Introduction

In recent years, the rapid advancements in data science technology have led to a significant
increase in the utilization of data-driven models (DDMs) across various domains [1-4]. These
innovative machine learning (ML) algorithms have expanded beyond their traditional role as
scientific analytical tools and become integral components in fields like medicine, life sciences, and
meteorology [5,6]. The water environment domain is no exception, with a growing demand for
DDMs to enhance predictive performance and optimize the utility of monitoring data [7-9]. Notably,
recent publications in water environment modeling revealed an interesting trend: since 2010, DDMs
have become more prevalent than process-based models (PBMs) [10].

Compared to PBMs, DDMs can interpret data patterns and relationships without prior
knowledge of the model. They offer a simpler structure, faster calculation, and excellent predictive
performance [11,12]. Additionally, DDM allows easy quantification of model sensitivity and
uncertainty, addressing a limitation of PBM [13-15]. However, despite their excellent predictive
performance, DDM can suffer from poor interpretation of results due to overfitting and may not
perform well with limited high-quality data [16,17]. Another limitation of DDM is their failure to
consider classical energy, mass, and momentum conservation principles, resulting in predictions that
do not capture the dynamic relationship of water quality kinetics, hydrodynamics, and ecological
processes in real systems [18,19].

To leverage the strengths of PBMs and DDMs while addressing their limitations, the
development of a technology that combines the two models becomes necessary. Thus, a "theory-
guided" hybrid framework was developed and employed. Theory-guided data science (TGDS)
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represents a novel modeling paradigm that integrates scientific knowledge and mechanical principles
to enhance the effectiveness of DDMs for understanding and predicting various issues arising from
direct and indirect human activities [20]. These models enable achieving consistency in outcomes by
incorporating scientific data as a critical component, along with training accuracy and model
complexity, which balance the bias and variance errors that commonly occur in generalized DDMs.
Additionally, TGDS enables the identification and elimination of inconsistencies through the
application of scientific knowledge, leading to a significant reduction in variance without affecting
model bias [21,22].

The applicability of TGDS extends to numerous scientific domains due to its effectiveness in
addressing problems in fields such as biomedical science [23,24], hydrology [25,26], climatology [27],
quantum chemistry [28], and bio-marker discovery [29]. Karpatne et al. [20] introduced a TGDS
model design that encompassed learning methods, data refinement, and model structure across five
specific areas: turbulence modeling, hydrology, computational chemistry, mapping of water surface
dynamics, and post-processing using elevation constraints. Furthermore, TGDS has applications in
other areas such as civil engineering and geology [30], aerodynamics [31], fluid dynamics [32], and
physics [33-35].

The application of TGDS is gaining traction in the realm of aquatic environments. Karpatne et
al. [20] employed physics-guided neural networks to predict lake water temperature, considering
empirical and structural errors and ensuring physical consistency within the DDM. Read et al. [18]
and Jia et al. [36] predicted water temperature over time and depth in stratified lakes by combining
the General Lake Model (GLM), a one-dimensional lake model based on dynamical theory, with a
recurrent neural network (RNN) model. Hanson et al. [37] utilized a simple box-type phosphorus
mass balance model in conjunction with an RNN to forecast phosphorus concentration in Lake
Mendota, located in Wisconsin, USA.

Although notable efforts have been made to develop and utilize TGDS in aquatic environments,
these endeavors are still in their early stages. Most TGDS models developed for aquatic environments
have primarily employed simple zero- or one-dimensional dynamic models. However, such models
are not suitable for water bodies with significant spatial variations in temperature and water quality,
such as large dam reservoirs. Therefore, further research is needed to explore the integration of
multidimensional PBMs and DDMs to address these challenges.

Consequently, the objective of this study was to develop a process-guided deep learning (PGDL)
model that integrates a long short-term memory (LSTM) model with a two-dimensional process-
based (PB) mechanistic model, namely CE-QUAL-W2 (W2), to predict longitudinal and vertical water
temperatures in the Daecheong Reservoir located in the temperate zone of the Republic of Korea.
Furthermore, the study aimed to evaluate the predictive performance of the model in terms of
satisfying the energy conservation law. The LSTM and W2 models were trained and calibrated
individually using water temperature data and meteorological data collected from a thermistor chain
in the Daecheong Reservoir between July 2017 and December 2018. To combine the two models, the
PGDL model was trained by incorporating a penalty into the loss function of the LSTM model to
address any violations of the energy balance. For different seasons and water depths, the accuracy of
water temperature prediction for each model was assessed by comparing the errors against actual
values, and thus, the satisfaction of the energy conservation law was evaluated. Furthermore, to
examine the impact of the amount of measured data required for training, the performance of water
temperature prediction was compared using a pre-training technique that utilized the uncalibrated
results of the W2 model as training data.

This study demonstrates the applicability of a novel modeling approach that integrates a deep
learning model with a multidimensional PBM. Moreover, the findings highlighted the effectiveness
of utilizing PBMs to generate essential training data for the development of deep learning models.
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2. Materials and Methods

2.1. Description of site

In this study, Daecheong Reservoir was selected as the modeling target, which is located in the
Geum River, one of the four major rivers in Korea. As shown in Figure 1, forest areas (78.3%) occupy
most of the watershed land use attributes, followed by agriculture (13.8%), urban (3.4%), water
(2.6%), grass (0.9%), barren (0.6%), and wetland (0.5%) areas. The total water storage capacity and
surface area of the reservoir at normal water level (EL. 76.0 m) are 1,490 million m3 and 72.8 km?,
respectively. The reservoir is 86 km long, and the dam basin area is 3,204 km?, accounting for 32.4%
of the total basin area of the Geum River system. Daecheong Dam, built in 1981, is a multi-purpose
dam used for water supply, hydroelectric power generation, flood control, and environmental flow
supply. The annual water supply of Daecheong Dam is 1,649 million m?3, of which 79% is used for
municipal and industrial purposes and the remaining 21% for irrigation purposes. The main flow
control facilities of the dam include a power outlet (EL. 52.0 m) for downstream water supply and
hydroelectric power generation, six gated spillways (EL. 64.5 m) for flood control, and two intake
towers (EL. 57.0 m) supplying water to Daejeon and Cheongju city areas.
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Figure 1. Location of the study site, water temperature monitoring station (open circle), and land
cover maps.

The average annual precipitation for the last 20 years (1999-2018) in the Daecheong Dam basin
was 1,353.8 mm, with maximum and minimum values of 1,943.4 mm in 2011 and 822.7 mm in 2015,
respectively, showing a large variation in annual precipitation. As 69.0% (934.0 mm) of the total
annual precipitation was concentrated in the summer months (June-September), the seasonal
variation in precipitation was also very large. The water temperature ranges (average values) of the
surface, middle, and bottom layers for the last 15 years (2004-2018) at the monitoring station, located
in front of the dam, were 4-38 °C (17.1 °C), 3-23 °C (11.3 °C), and 3-12 °C (6.4 °C), respectively.
Considering the temperature difference between the surface and bottom layers of the reservoir was
greater than 5 °C during the stratification period, stratification of water temperature began to form
around April or May, and turn-over occurred in December due to vertical mixing of water bodies.
On the other hand, according to the results of a modeling study [38] based on the future climate
scenarios of Representative Concentration Pathways 2.6 and 8.5 (Intergovernmental Panel on Climate
Change), the annual number of days of stratification and stability of the water body in the reservoir
are predicted to increase.
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2.2. Field monitoring and data collection

The data utilized in this study, as well as the data flow and the development processes of the
W2, LSTM, and PGDL models, are illustrated in Figure 2. Calibration (or training) data, consisting of
water temperature measurements for various water depths in the reservoir, were essential for all
models. The calibration data encompassed water temperature measurements obtained from the
monitoring station located in front of the Daecheong Dam (Figure 1). For this purpose, the HoBO
Water Temp Pro onset (Onset Computer Corporation, Bourne, USA), a water thermometer sensor,
was employed. A thermistor chain was installed at intervals of 1-3 meters in the water column, and
measurements were recorded every 10 minutes between July 2017 and August 2018.
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Figure 2. Schematic representation of data flow and model development processes. The shaded light-
gray, dark-gray, and black boxes represent process-based models (PBMs), data-driven models
(DDMs), and process-guided deep learning (PGDL) models, respectively. The solid black lines
indicate the flow of data into the PBM, while the solid gray line represents the data input for the DDM
and PGDL models. The gray dotted line represents the pre-training of the long short-term memory
(LSTM) using uncalibrated CE-QUAL-W2 (W2-gnr) results, and the black dotted line indicates the
utilization of the temporally integrated energy (ETR) of W2-gnr as the error term in the cost function
of PGDL and the pre-trained PGDL models.

The PB model, W2, required flow rate, inflow water temperature, and meteorological data as
boundary condition forcing data. Details on the collection of forcing data for the W2 model and the
estimation of the inflow water temperature using the multiple regression equation are described in
Section 2.3. The LSTM and PGDL models needed only meteorological data as input for training and
testing. Meteorological data were collected from the Daejeon meteorological observatory and
Cheongnamdae automated weather station (AWS) located near the study area (Figure 1).
Temperature (°C), dew point temperature (°C), precipitation (mm), relative humidity (%), solar
radiation (M] m?), wind direction (radian), and wind speed (m s') were collected from the Korea
Meteorological Administration (http://data.kma,go.kr).

2.3. Process-based model (CE-QUAL-W2 (W2))

The W2 model is a two-dimensional hydrodynamic and water-quality model that can simulate
water temperature, velocity fields, water-level fluctuations, and associated water-quality variation in
both vertical and horizontal directions. As the W2 model assumes complete mixing in the lateral
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direction, it has been widely used for simulating narrow- and deep-water bodies such as Daecheong
Reservoir [39,40].

For modeling Daecheong Reservoir, the numerical grid was constructed based on the digital
topographic data collected in 2018 and reservoir bathymetry data surveyed in 2006 by Korea Water
Resources Corporation (K-Water). The spatial range of the numerical grid was composed of six
branches from Gadeok Bridge to Daecheong Dam, considering the shape of the reservoir (Figure 1
and Figure A1). The numerical grid comprised 165 segments in the longitudinal direction (Ax = 0.2—-
1.9 km) and 69 layers in the vertical direction (Az = 0.5-2.0 m) for efficient and accurate calculations
simultaneously. The reliability of the model numerical grid was evaluated by comparing the modeled
water level-reservoir capacity curve with the measured one (www.wamis.go.kr). The simulation
period was 24 months, from January 2017 to December 2018. For initial modeling conditions, the dam
operation data provided by K-Water (http://www.water.or.kr) was used for the initial reservoir water
level, and the Water Environment Information System data of the Korean Ministry of Environment
(http://water.nier.go.kr) was used for the initial reservoir water temperature by depth.

As the boundary conditions of the model, wind direction (radian), wind speed (m s7), air
temperature (°C), dew point temperature (°C), and cloud cover (%) were used to calculate the heat
exchange flux between the air and water surfaces. The daily flow data collected from K-Water
(http://www.water.or.kr) and the National Water Resources Management Information System
(http://www.wamis.go.kr) were used for defining the flow boundary conditions for each inflow river
and outflow structure. The water temperature of the inflow river (T;,) was calculated using the
multiple regression equation (Equation 1) developed by Chung and Oh [41].

T;, = —0.0021 Q + 0.88285 Ty, + 0.1479 Typy, + 1.3109 72 = 0.822 1)

where Ty, is the air temperature (°C); Ty, is dew point temperature (°C); and Q is the flow rate
(m3 sT).

2.4. Deep learning model (long short-term memory (LSTM))

The LSTM used in the development of PGDL is an algorithm that solves the long-term
dependency problem of existing RNNs, where the predictive power of learning results decreases as
the input sequence becomes longer. Consecutively, RNN has been developed to address the
limitations of feedforward neural network models in sequential data prediction [42]. In the RNN
algorithm, the output value of the current state (h,) is expressed as a function of the previous state
(h¢-1) and current input value (x,;) (Equation 2). The neural network structure in which the state is
preserved over time is called a memory cell, and when the result is calculated through the activation
function in the hidden state, it is transferred to the next time through the memory cell and used as an
input value for recursive activity.

ht = tanh(Whht_l + Vl/xxt) + bh (2)

where h; is hidden layer output of the current state; tanh is the activation function; W, is the
weight for input x,; W), is the weight for hidden layer output of previous state (h,_;); and bjis the
bias term.

LSTM is an algorithm that changes the recurrent connection for short-term memory of the
existing RNN into a forget gate (f;), input gate (i;), and output gate (0;) to store the past memory,
which controls the amount of memory to be sent to the next cell. In addition to the hidden vector h,,
LSTM has a memory cell called ¢, that serves as a short-term memory store for the RNN model. c;
contains all necessary information from the past to the present that serves long-term memory. Unlike
h;, data is exchanged only within the LSTM cell and is not output outside the LSTM cell. Each gate
function and memory cell function of the LSTM are described in Equations (3-8).

¢ = tanh(Wpche—y + Wyex,) + b, 3)

fe = U(thht—1 + foxt) + by “4)
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iy = c(Wyihey + Wyixe) + by @)
0 = 0(Whohe—q + Wyoxe) + by (6)
Ce = [t XCoq +ip X (7)

h; = o; X tanh(c;) (8)

where x, is input data; h,_; is the hidden layer output of the previous state; o and tanh are
activation functions; ¢ is candidate values; W,;, W,s,W,,, and W, are the weights of each gate and
candidate values for input x.; Wy;, Wy¢,Wp,, and W), are the weights of each gate and candidate
values for previous state h,_;; and b;, b, bs, and b, are the bias for each gate and candidate values.

The LSTM water temperature model was developed using measured data, and prediction values
(Yae: d € [1,Ny],t € [1,T]) for each water depth (d) and time (t) (Equation 9). For the error of the
LSTM model, the root mean square error (RMSE) was obtained from the square of the deviation
between the simulated and measured values, considering the available number S = {(d, t): yd_t} of
the measured value (Equation 10).

Var =W, hy )

1 ~
Lusu = [*EanesOac = ar)? (10)

In this study, the LSTM model was constructed using the TensorFlow-Keras library of Python
3.10.6. From a total of 399 data sets measured between July 2017 and October 2018, the data from July
2017 to July 2018 (279 data sets) were used as a training dataset, and the data from July 2018 to October
2018 (120 data sets) were used as a testing dataset.

2.5. Development of the PGDL model

Figure 2 illustrates the construction and development process of the PGDL models, including
the pre-trained PGDL model, where the LSTM model is combined with the W2 model. The training
data for the PGDL model consisted of the same meteorological data (relative humidity, dew point
temperature, air temperature, precipitation, wind speed, short-wave radiation, and long-wave
radiation) used in the W2 model for water temperature prediction, including the measured water
temperature for each water depth in the reservoir. The water temperature data used for training and
testing the PGDL model were identical to the data used for the LSTM model.

The PGDL model wtheoped based on the LSTM model and trained by adding a penalty in the
loss function to address energy balance violations. The performance of the PGDL model in water
temperature prediction was evaluated by comparing the errors with the measured values,
considering different seasons and water depths, and assessing satisfaction with the energy
conservation law. Comparative models used for evaluation included the uncalibrated CE-QUAL-W2
(W2-gnr), calibrated W2 (W2-calib), LSTM without energy conservation consideration, PGDL model
incorporating the energy conservation term in the LSTM objective function (LSTMEC), and pre-trained
PGDL model using W2-gnr (LSTMECr) (Figure 2). Additionally, LSTM, LSTM®C, and LSTMECr
comprised various sub-models based on the ratio of field measurement data to the W2-gnr model
results used in the training dataset. The percentage of field measurement data (p =0.5%, 1%, 2%, 10%,
20%, and 100%) in the pre-training dataset was determined according to a previous study by Read et
al. [18]. The remaining training data (i.e., 1-p) for post-training were supplemented using W2-gnr.
However, the number of testing data remained consistent across all cases.

The parameters of the W2-gnr and W2-calib models for reservoir temperature calibration are
provided in Table Al. The hyperparameters of the LSTM, LSTMEC, and LSTMECr models were set
through the GridSearchCV and trial-and-error methods to converge to the minimum error. The final
set of hyperparameters included 20 hidden units, 40,000-50,000 epochs, a batch size of 32-64, dropout
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rates of 0.1-0.2, a learning rate of 0.0001-0.01, one LSTM layer, three dense layers, one dropout layer,
and the Adam optimization algorithm (Table A2).

2.6. Validation of energy conservation in the PGDL model

Conservation of energy is a fundamental principle that plays a crucial role in water temperature
predictions within PBMs. It holds significant importance in evaluating the physical validity of
predicted outcomes. The conservation of thermal energy within a waterbody is essential for accurate
temperature predictions, as the thermal energy flux through th” waterbody's boundaries affects its
temperature [36]. When the inflow heat flux exceeds the outflow heat flux, th’ waterbody's
temperature increases, and vice versa.

The validation of energy conservation within the PGDL model was performed by examining the
energy exchanged through the reservoir boundary (ETR,) and the energy change resulting from
spatial temperature variations within the reservoir (ESR;) during the computational period.
Essentially, the total heat energy within the Daecheong Reservoir at a specific time t (ESR,) was
calculated as the summation of the total heat energy from the previous time (ESR;_;) and summation
of heat energy contributions from each water layer, estimated using the water temperature (T, )
predicted by the LSTM model (as expressed in Equation 11).

ESR, = ESRy_1 + C, X PacTatVar (11)

where C,, is the specific heat capacity of water (4,186 ] kg' °C-); pa., Tq. and Vg, correspond to
the density (kg m?), water temperature (°C), and water volume (m?), respectively, at time t and depth
d.

The value of ETR; was obtained by summing the heat fluxes entering and exiting through
different boundaries, as described in Equation (12). In this study, the heat fluxes considered for
calculating ETR, included evaporation-induced heat outflow (TSSEV), heat inflow due to rainfall
(TSSPR), heat inflow at the upstream boundary condition (TSSUH), heat outflow at the downstream
boundary condition (TSSDH), heat exchange at the water surface (TSSS), and heat exchange at the
bottom of the water body (TSSB). Other factors were not considered, assuming their impact was
negligible. The heat exchanges between the atmosphere and water surface involved solar shortwave
radiation, water longwave radiation, atmospheric longwave radiation, conduction, convection, and
evaporation, and condensation. The calculation of ETR, was performed using the energy balance
calculation (EBC) function provided by The W2 model.

ETR, = TSSEV + TSSPR + TSSDT + TSSUH + TSSDH + TSSS + TSSB + TSSICE (12)

where TSSEV is evaporative heat loss; TSSPR is rainfall heat inflow; TSSDT is nonpoint source heat
inflow; TSSUH is heat inflow at the upstream boundary; TSSDH is heat effluent at the downstream
boundary; TSSS is heat exchange at the water surface; TSSB is heat exchange at the bottom of the
waterbody; and TSSICE refers to heat exchange by freezing.

To train the LSTM®C model to follow the principles of the physical laws, an algorithm was
employed that incorporated a penalty into the cost function (also known as the objective function)
whenever the energy conservation law was violated [20]. The total training error (£) comprised two
components: the error of the LSTM model (£, s7y) and the error arising from the violation of the
energy conservation law (Lg) (as depicted in Equation 13). The performance of £;srywas evaluated
by quantifying the difference between the measured and predicted values (as shown in Equation 10).
To address the violation of the energy conservation law, Lg. introduced a rectified linear unit
(ReLU) activation function, which was integrated into the error function as a penalty when the
disparity between ETR, and ESR, exceeded a certain threshold (7z¢) (as expressed in Equation 14).
A coefficient Ag. was employed to adjust the weight of Lz, within the total training error and was
set to 0.01 based on a previous study by Jia et al. [36]. Smaller values of Azc may compromise the
satisfaction of energy conservation but can reduce training loss, while excessively large values of Ag¢
can force the LSTM model to strictly follow the physical relationship, potentially leading to
suboptimal performance.
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L=Lisrm+ ApcLic (13)
Ly = X1y ReLU( |ESR; — ETR;| — 75c) (14)

where tgc is a threshold value for loss of energy conservation, which was introduced to consider
factors ignored in calculating the amount of heat exchange through boundary conditions and
observation errors in meteorological data. For 7gc, the maximum value of the absolute difference
between daily averaged spatially integrated energy (ESR) and (ETR) (|ESR; — ETR;|) calculated in W2
that satisfies the energy balance was used [18,43].

2.7. Pre-training of LSTM using an uncalibrated W2 (W2-gnr) model

In this study, a novel approach was employed to address the challenges posed by limited high-
quality data in water environment modeling. Pre-training of the LSTMECr model was conducted
using the results of the W2-gnr model, which served as valuable data. Although these results were
incomplete, they adhered to the energy conservation law and accurately captured the physical
characteristics and meteorological conditions of the reservoir. By leveraging the mechanical
principles embedded in the W2 model, the LSTMECr model generated water temperature predictions
that reflected these principles [56]. Specifically, the spatiotemporal predictions of water temperature
over time and depth from the W2 model were utilized as training data for the LSTMECr model.
Through fine-tuning, the’LSTMECr model's parameters were adjusted across all layers of the LSTM
model using available measured data, enabling the evaluation of its performance in predicting water
temperature with limited measured data. This approach effectively combined the strengths of the
pre-trained LSTMECr model and the available measured data to enhance prediction accuracy and
overcome datmitations.

2.8. Evaluation of model performance

The evaluation of reservoir water temperature prediction performance involved assessing the
satisfaction of the energy conservation law (ETR = ESR) and utilizing error indices to compare the
measured and predicted values. The error indices employed for model evaluation included the
absolute mean error (AME), RMSE, and Nash-Sutcliffe efficiency (NSE), as indicated in Equations
(15)—(17). These error indices provided quantitative measures to assess the accuracy and reliability of
the water temperature predictions.

Absolute Mean Error (AME) = %Z{-‘LllOi - P (15)
Root Mean Square Error (RMSE) = %Zﬁ"zlloi —P;|? (16)
. .. ZN_ (0._P,)2
Nash — Sutclif fe ef ficiency (NSE) = 1 —Wx 100 (17)
i=1\Wi~Yi

where 0; is the observed data; P; is the predicted data; O; is the average of observed data; and N
is the number of data.

3. Results

3.1. Validation of the CE-QUAL-W2 model

The W2 model employed in this study has a well-established history of being applied to water
temperature prediction in the Daecheong Reservoir, and it has undergone sufficient calibration in
previous studies [41,44,45]. Consequently, there was no need for additional calibration in this study.
Instead, the performance of the W2 model in predicting water level and temperature during the
simulation period was validated by quantifying the error between the predicted and measured
values. For the PGDL and pre-trained PGDL models, the W2-gnr model provided the necessary data
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(ETR and pre-training data), eliminating the need for separate model calibration. Hence, the results
of the W2-calib model were exclusively used for the purpose of comparing the performance of
different models (Figure 2).

Figure 3 compares the measured and simulated water levels during the 2-year simulation period
from 2017 to 2018. As a result of the comparative analysis, the W2 model properly reproduced the
measured changes in the water level according to the temporal fluctuations of the inflow and
discharge in Daecheong Reservoir and showed high prediction reliability with AME = 0.03 m, RMSE
= 0.10 m, and NSE = 0.997. The simulated water level underestimated the measured value after
September 2018 because of the uncertainty involved in calculating the inflow from the unmeasured
surrounding tributaries using a simple basin area ratio.
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Figure 3. Comparison of simulated and observed reservoir water levels. NSE: Nash-Sutcliffe
efficiency; AME: absolute mean error; RMSE: root mean square error; EL.m: height above mean sea
level in meters.

The water temperature prediction performance of the W2 model by water depth was validated
by comparing the water temperature profile data measured at the monitoring station situated in front
of the dam (Figure 1) and the simulation results (Figure 4). The errors between simulated water
temperature (black line) and measured values (open circles) were AME = (0.45-1.31 °C, RMSE = 0.51-
1.43 °C for 279 training datasets, and AME =0.52-2.43 °C, RMSE = 0.61-2.91 °C for 120 testing datasets.
The simulation results showed that the seasonal changes in the thermal stratification structure were
well reflected. During the 2-year simulation period, the W2 model reproduced the hydrothermal
stratification process in summer, vertical mixing in autumn and winter, and hydrothermal
stratification regeneration in the following year. However, in the training data, the model failed to
accurately replicate the downward movement of the thermocline on Julian Day 294.5, while in the
testing data, the model overestimated the surface water temperature on Julian Day 594.5 and also
struggled to properly reproduce the thermocline on Julian Day 608.5. This error can be attributed to
uncertainties in the input data and parameters of the process model, which made it difficult to
accurately reproduce the density flow entering the middle layer during rainfall as well as the change
in stratification structure caused by turbulent wind-driven mixing in the surface layer [46-48].

The sources and sinks of the reservoir heat energy as calculated by W2 during the simulation
period were analyzed (Figure A2). As a result of heat balance analysis, the net heat flux across the
water surface (Hx) of Daecheong Reservoir was in the range of -389 to 942 (average -5.0) W m2. Hx
exhibited a high value in summer, a period of rising water temperature, and a negative value in
winter, a period of decreasing water temperature. Evaporative heat loss due to water evaporation
showed the highest value in summer when temperatures rose, and heat conduction (sensible heat
loss) had the highest value in winter when temperatures decreased.
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Figure 4. Comparison of observed water temperature profiles with simulated results using calibrated
CE-QUAL-W2 and energy conservation term in the long short-term memory objective function
(LSTMEFC) on selected Julian Day (Jday), (a) training phase, (b) testing phase (Jday 1 starts from 1
January 2017 and ends on 31 December 20]day 730).

3.2. Prediction performance of PGDL model

Table 1 shows the RMSE values of the W2-gnr and W2-calib models, LSTM, process-guided
LSTM (LSTMEC), and pre-trained LSTM (LSTMECp). The samples were randomly selected from partial
field data from the training dataset to use in training LSTM, LSTMEFC, and LSTMECp; the test dataset
remained unchanged. The error values presented in Table 1 correspond to the average and standard
deviation of the RMSE for the results obtained by random sampling of training data. In other words,
the reported results were obtained through 10-fold cross-validation, and the numbers within
parentheses represent the standard deviation of the results from the 10 simulation runs.

The predictive performance of LSTM, LSTMEC, and LSTMECr models all improved as the
proportion of field data increased. When the ratio of field data w’s 100%, LSTM®"'s RMSE was 0.042
(#0.007) °C, showing 42.4 times and 1.5 times better prediction performance than W2-calib and LSTM,
respectively. The predictive performance of W2-calib was superior to that of LSTMEC and LSTM
developed using less than 2% of the total field data for training, but LSTMEC and LSTM showed better
predictive performance than W2-calib when the field data ratio was > 10%. In particular, LSTM®C
showed better predictive performance than LSTM in all cases of the field data ratio (0.5% to 100%),
and as the ratio increased, the difference in RMSE between LSTM and LSTMEC narrowed. These
results are well consistent with the results of Jia et al. [36] and Read et al. [18].
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Table 1. Comparison of performance of W2-gnr, W2-calib, LSTM, LSTMEFC, and LSTMECr according
to the percentage of field data used in model training phase.
RMSE (°C)
Model Proportion of field data used in model training phase (%)
0 0.5 1 2 10 20 100
1.930
W2-gnr - - - - - - (£NA)
. 1.781
W2-calib - - - - - - (+N4)
LSTM 15.978 9.403 2432 0.289 0.131 0.062
(£0.380) (£0.284) (£0.257) (£0.113) (£0.089) (£0.010)
LSTMEC ) 15.007 8.915 2.229 0.243 0.092 0.042
(£0.319) (£0.256) (£0.212) (£0.100) (£0.033) (£0.007)
LSTMECH 7.214 3.007 2.015 1.160 0.230 0.078 0.018

(£0.327) (£0.301) (£0.156) (£0.115) (£0.088) (£0.012) (£0.001)
W2-gnr: uncalibrated CE-QUAL-W2 model; W2-calib: calibrated CE-QUAL-W2 model; LSTM: long short-term
memory (LSTM) model trained with field data without considering energy conservation; LSTMEC: LSTM model

trained with field data with considering energy conservation; and LSTMECP: Pretrained LSTMEC model with W2-
gnr results and then gets fine-tuned using the field data; RMSE: root mean square error.

To evaluate the water temperature prediction accuracy of LSTMEC by water depth, the simulated
water temperatures using the LSTMEC (red line) and W2-calib model (black line) were compared with
the measured water temperatures (open circles) in Figure 4. LSTMEC appropriately simulated the
change in water temperature profile by water depth over time in both the training and testing phases.
LSTMEC showed high prediction accuracy with error values of AME =0.14-1.64 °C and RMSE =0.16—
1.87 °C, which corresponds to better prediction performance than the W2-calib model (AME = 0.45-
2.43 °C, RMSE = 0.51-2.91 °C). In particular, when examining the substantial errors observed in the
water temperature predictions near the thermocline zone as simulated by the W2 model, the LSTMEC
model exhibited markedly improved outcomes.

3.3. Prediction performance of the pre-trained PGDL model

To overcome the problem of deteriorating prediction performance of the LSTMEC model due to
the lack of training data, which is the major drawback of the deep learning (DL) model, a pre-
training technique that can improve model prediction accuracy with a small amount of measured
data was used, and the error for each model was compared according to the ratio of the measured
data (Table 1). In the pre-training method, the neural network of the LSTMFEC model was trained using
the results of the W2-gnr model as training data. The hydraulic model parameters that affect water
temperature prediction results in the W2 model include longitudinal eddy viscosity (AX),
longitudinal eddy diffusivity (DX), Chezy coefficient (FRICT), wind sheltering coefficient (WSC),
solar radiation absorbed in the surface layer (BETA), and extinction coefficient for pure water
(EXH20). The W2-gnr used the default values for all these coefficients. Consequently, the RMSE of
W2-gnr was approximately 1.930 °C, which was higher than that of other models (Table 1). However,
as the mechanical model was simulated based on physical laws, these results were learning results
considering energy conservation. Therefore, by using the results of the W2-gnr model as training data
for the LSTM model, it is possible to build a deep learning model that produces results that satisfy
the physical laws inherent in the physical model. The LSTMECr model, which was pre-trained using
100% of the W2-gnr results, had an average RMSE of 7.214 °C, which increased by 3.74 and 4.05 times
compared to W2-gnr and W2-calib, respectively. In contrast, the LSTMFCr model, pre-trained with
98% of the W2-gnr prediction results and post-trained using 2% of the filed data, reduced RMSE by
1.66 and 1.54 times, respectively, compared to W2-gnr and W2-calib.

The standard deviation, centered root mean square difference (CRMSE), and correlation
coefficient of the measured and simulated values for each model were simultaneously compared and
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analyzed using a Taylor diagram (Figure 5). From the analysis, most of the LSTMEC p and LSTMEC
models except for LSTMEC p. 0%, were found to be very close to the measured values, and the error
values were also significantly reduced. In particular, the LSTMFCr10% model using only 10% of the
field data showed a lower CRMSE value than the PBMs.

Taylor Diagram
. . Legend
Correlation Coefficient
B Observation
20 02
Yo e m W2-gnr
® W2-calib
A LSTM
-0.9: : o
& A LSTMECP.0%
-0.95. ~0.95
EC,p,10%
-0.99 h.99 B LSTM
gl HHER I 4 & LSTMECP.100%
!9.5 71 47 24 0 24 1 95

Standard Deviation
Centered RMS Difference

Figure 5. Comparison of the water temperature simulation performance of each model using a Taylor
diagram. RMS: root mean square; W2-gnr: uncalibrated CE-QUAL-W2 model; W2-calib: calibrated
CE-QUAL-W2 model; LSTM: long short-term memory model trained with field data without
considering energy conservation; LSTMEC: LSTM model trained with field data considering energy
conservation; LSTMECP: Pre-trained LSTMFEC model with W2-gnr results and later fine-tuned using
field data.

3.4. Evaluating the energy consistency of the PGDL model

One of the strengths of the LSTMEC model is that it can secure physical law consistency, which
is a weakness of the LSTM model. To evaluate the satisfaction of the energy conservation law in
LSTMEC, the time series changes of ETR and ESR during the simulation period were compared along
with the results of W2-calib and LSTM, as shown in Figure 6. The coincidence of ETR and ESR means
that the conservation law of thermal energy changes along the reservoir boundary and inside the
reservoir water body is satisfied. During the simulation period, the W2-calib model based on physical
laws matched the changes in ETR and ESR very well (Figure 6a). The W2-calib model predicted
reservoir water temperature by considering air-water heat exchange and heat flux at inflow and
outflow interfaces. At each calculation time, the model checked the heat balance and thus satisfied
the energy conservation law. However, in the case of LSTM, which is a DDM lacking physical laws,
the discrepancy between ETR and ESR was confirmed in most periods, and the difference increased
more in winter (Figure 6b). On the other hand, LSTMEC with the energy conservation term added to
the objective function showed lower energy agreement than the W2-calib model but better energy
agreement than the LSTM model (Figure 6¢). From these results, it can be confirmed that the PGDL
algorithm contributes to improving the limitations of deep learning models.
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Figure 6. Comparison of temporally integrated energy (ETR) and spatially integrated energy (ESR)
evolution for (a) calibrated CE-QUAL-W2, (b) long short-term memory (LSTM), and (c) LSTMF¢
(LSTM model trained with field data considering energy conservation).

The relationship between the energy inconsistency (x-axis) and RMSE (y-axis) of W2-calib,
LSTM, and LSTMEC is presented in Figure A3. The lengths of the LSTM and LSTMEC bars in the graph
cover the 10-fold cross-validation results. The W2-calib corresponds to a model developed for
satisfying the energy conservation law, and therefore, it showed an energy mismatch close to zero,
but its RMSE showed an average of 42.4 times and 28.7 times greater than those of LSTMEC and LSTM,
respectively. In contrast, the LSTMEC model demonstrated improved predictive performance
compared to both the W2-calib and LSTM models and exhibited a lower degree of energy mismatch
than the standalone LSTM, demonstrating the potential for enhancing the physical consistency of the
LSTM model.

Recently, the application of DDM techniques such as ML and deep learning has rapidly
progressed in the field of water quality prediction [49-51]. However, owing to their lack of
dependence on physical laws, these models may overlook important underlying mechanisms. The
PGDL algorithm, demonstrated by the hybrid results of the W2 and LSTM models, has the potential
to address these issues not only for predicting water temperature in stratified reservoirs but also for
water quality prediction.
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4. Discussion

4.1. Comparative Analysis of Water Temperature Prediction Errors

Figure 7 illustrates the water temperature prediction error (RMSE) at various water depths for
the W2-gnr, W2-calib, LSTM, LSTMEC, and LSTMECr models. In the case of the W2 model, both the
W2-gnr and W2-calib models showed similar RMSE values in the surface layer (EL. 63-75 m), but the
error of the W2-calib model decreased with the increase in water depth. Overall, the LSTM, LSTMEC,
and LSTMECr models exhibited lower RMSE values compared to the process-based W2-gnr and W2-
calib models across all depths. When comparing LSTMEC and LSTMEC», the RMSE values of LSTMEC,
which was pre-trained using the simulation results of W2-gnr, were lower at all depths. These results
highlight the significant impact of pre-training on reducing model error. Furthermore, the LSTMFCr
model demonstrated lower RMSE values than the W2-gnr and W2-calib models, with the difference
being particularly prominent in the metalimnion layer (between 40 and 55 m). The increased error of
the PBM in the thermocline, where water temperature changes rapidly, is not solely due to numerical
diffusion issues but also due to the accurate representation of complex hydrodynamic processes such
as density flow, turbulent mixing, and internal waves, which are crucial for reproducing the water
temperature stratification phenomenon. In particular, reservoir stratification is influenced not only
by temperature-related density differences but also by light attenuation caused by suspended matter,
phytoplankton, and dissolved matter, contributing to the uncertainties associated with these
parameters and resulting in erroneous water temperature prediction. Thus, accurately capturing the
dynamic changes in thermal stratification structures in deep reservoirs remains challenging for most
PBMs, including W2 [48,72]. However, data-based deep learning models demonstrate superior
performance by learning from patterns in the training data rather than relying solely on physical
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Figure 7. Comparison of root mean square errors by reservoir water level for W2-gnr, W2-calib,
LSTM, LSTMEC, and LSTMECP, W2-gnr: uncalibrated CE-QUAL-W2 model; W2-calib: calibrated CE-
QUAL-W2 model; LSTM: long short-term memory (LSTM) model trained with field data without
considering energy conservation; LSTMFC: LSTM model trained with field data considering energy
conservation; and LSTMFCp: Pretrained LSTMEC model with W2-gnr results and later fine-tuned using
the field data; RMSE: root mean square error; EL.m: height above mean sea level in meters.

In the seasonal error analysis (Figures A4—A5), the water temperature prediction errors of the
W2-calib model varied across different seasons and depths. Specifically, during the spring, when
stratification started, the W2-calib model exhibited large errors in the surface layer. During summer
and autumn, the errors were prominent in the middle and lower layers, respectively. The lowest
errors were observed during the winter, when stratification was disrupted. In contrast, the LSTMFEC»
model consistently showed significantly lower RMSE values compared to the W2-calib model across
all seasons and depths. This indicates that the PGDL model has the potential to address critical
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prediction challenges in the aquatic environment. Furthermore, the application of PGDL models can
contribute to the convergence of deductive and inductive methods, theory, and experience, allowing
for improved water temperature predictions [73-75]. These findings emphasize the effectiveness and
versatility of the PGDL model in improving water temperature prediction accuracy in stratified
reservoirs.

4.2. Applicability of the PGDL model for water quality modeling

The framework of the PGDL model developed in this study for water temperature prediction
can be effectively extended to various water temperature and water quality modeling applications.
Water temperature plays a crucial role in shaping the spatiotemporal distribution of physical,
chemical, and ecological variables in aquatic ecosystems [52,53]. It strongly influences the
concentration of dissolved oxygen, nutrient conversion rates, metabolic activities of aquatic
organisms, phytoplankton productivity, and biochemical reactions. Notably, deviations from critical
water temperature values can significantly impact fish populations, leading to increased mortality
rates [54-57]. Additionally, accurate prediction of water temperature by depth in deep reservoirs is
essential for managing selective discharge facilities and controlling downstream water temperature
and quality [58,59]. Furthermore, PGDL models have proven to be highly effective in assessing the
impacts of climate change on reservoir water temperatures and thermal stratification patterns over
extended time periods, relying solely on weather data.

Surface water temperature is influenced by various factors, including flow rate, solar radiation
[60], air-water heat exchange, channel morphology [61], and point source emissions [62]. Therefore,
predicting accurate water temperatures in space and time becomes challenging due to these complex
interactions. PBMs leverage scientific principles and knowledge to predict water temperature based
on physical laws that reflect water flow systems, river morphology, and heat changes in water bodies
related to temperature [63,64]. However, for deep lakes and reservoirs, the model complexity
increases, requiring multidimensional models that consider intricate mixing processes. This
complexity introduces higher uncertainty in model structure and input data, as well as increased
calibration and validation costs [65-67].

To date, most PGDL models in environmental studies have employed zero- or one-dimensional
PBMs to predict variables such as water temperature [43] and evapotranspiration [68]. These PGDL
models [18,43] have consistently outperformed standalone PBMs and DL models in water
temperature prediction, exhibiting superior performance in meeting energy conservation
requirements compared to the original DL models. Some studies have also used the GLM model, a
dynamic PBM that accounts for vertical heat exchange in the water bodies that conform to this one-
dimensional assumption [69-71]. In this study, the PGDL is demonstrated to be a powerful algorithm
for predicting water temperature stratification in artificial dam reservoirs with complex
topographical features.

Recently, limited efforts have been made to develop PGDL models capable of predicting lake
water quality. Hanson et al. [37] employed the PGDL model to predict the phosphorus cycle and
epilimnion phosphorus concentration in Lake Mendota, Wisconsin, USA. They demonstrated the
potential of the PGDL model to enhance water quality predictions beyond just water temperature.
To effectively utilize the PGDL model for water quality prediction, obtaining accurate and precise
boundary condition data in time and space is essential. In many countries, hydraulic systems are
frequently monitored, while water quality monitoring is conducted less frequently, typically on a
weekly or monthly basis, due to cost considerations [76,77]. However, this data collection frequency
is inadequate for capturing rapidly changing pollutant loads during rainfall events. High-quality,
high-resolution data are crucial for reliable and accurate water quality modeling.

The most common method used to obtain high-quality, high-resolution boundary condition data
is in-situ monitoring. With advances in sensor technology, the use of automated online smart
monitoring systems and mobile-based advanced environmental monitoring technologies is
increasing and becoming more common. An alternative approach to obtaining high-frequency
boundary condition data is to construct an ML model based on measured data and use the model's
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predictions for boundary conditions in PBM and as training data for DDM [78]. Kim et al. [79] and
Mabhlathi et al. [80] are good examples of representative studies that applied DDM prediction results
to PBM.

In summary, obtaining high-frequency, high-resolution boundary condition data is crucial for
expanding and implementing the PGDL model for water quality modeling. Furthermore, by
incorporating physical laws such as conservation of mass into the cost function of the DL model, the
PGDL model can serve as an effective tool for predicting water quality in rivers and reservoirs.

4.3. Strengths of the PGDL model in the lack of data

Generally, DDMs excellently discover new information and make accurate predictions with
sufficient training data [81], but suffer from interpretability and generalization problems due to
decreased predictive accuracy without quality data. Unfortunately, the collection of most
environmental data is costly and time-consuming and there are only a limited number of appropriate
monitoring sites. Moreover, collected data are frequently inappropriate as input for DDMs because
unexpected circumstances often result in erroneous or missing data [82,83].

This study applied the thermistor chain to generate high-frequency water temperature data at
10-min intervals but lacked sufficient training data for the PGDL model because of missing or
suspected data points. This problem was addressed by using results from the W2-gnr model as pre-
training data for the PGDL model. The PBM reflects the actual physical environment of a target water
body and produces predictions based on physical laws. Therefore, if the DDM is pre-trained because
the PBM was retrained with a small amount of measurement data, the limitations of the short test
period and insufficient training data can be resolved [18,84]. Pre-trained with W2-gnr, LSTMEC»
yielded better predictions than LSTM, LSTMFC, and W2-calib when only 2% of total field data were
used. Comparative evaluation of prediction performance by water depth and season further
demonstrated the predictive superiority of LSTMECr (Figure 6, Figures A4-Ab5). These results suggest
that the hybrid PBM and DL models used in this study are a very economical method that improves
predictions of water temperature even when field measurement data are insufficient.

Transfer learning is an increasingly popular way of overcoming the lack of training data [20,85].
These methods use results from a previously learned model to train a new one. In other words, under
conditions that require a certain threshold of labeled data, data obtained from an existing, related
model are transferred to the target model [86,87]. Transfer learning enables fast and accurate
predictions with a small amount of data, making it a valuable technique for various environmental
fields, including air quality prediction. In particular, network pre-training (using part of a pre-trained
network to train another network) greatly improves DDM’s predictive performance and speed
[84,88]. Recent research in environmental sciences has begun to calibrate mechanistic models with
monitoring data as a form of network pre-training. Using calibrated output results to train DDMs has
seen success in hydrological applications [89,90]. For example, a study in Denmark accurately
predicted runoff in 60 watersheds using an LSTM model trained using the results of the mechanistic
Danish national water resources model [90].

4.4. Limitations of the PGDL model and scope for future studies

The advantages of PGDL models are considerable, combining the strengths of PBM and DDM
to improve predictive accuracy while ensuring physical consistency. Specifically, PGDL assumes that
PBM can adequately capture the underlying physics of a given system and that any remaining,
unknown physics can be captured by DDM. However, like any model, PGDL has its own limitations,
notably in terms of data quality and quantity. If the training dataset is noisy, biased, or not
representative of the underlying physics, PGDL cannot improve prediction accuracy. Additionally,
PGDL requires significant computational resources and expertise for development, training, and
validation. Its sensitivity to the choice of hyperparameters requires considerable trial and error for
optimization. Furthermore, PGDL may not generalize well to systems that are significantly different
from the training data, potentially limiting its applicability to novel problems.
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Future studies should focus on addressing these limitations to enhance model performance and
prediction reliability. First, the quality and quantity of training data should be improved to ensure
better generalization of new problems. Second, the accuracy and reliability of PBMs should be
increased to better capture a given system’s underlying physics. Third, increasing the efficacy of
hyperparameter tuning will help lessen the need for trial and error and improve model accuracy and
applicability. Fourth, the uncertainty associated with predictions should be quantified by
incorporating uncertainty analysis. Finally, PGDL transferability to different systems and
environments should be evaluated to determine its potential for broader applications and improve
robustness.

5. Conclusions

In this study, a PGDL model was developed by adding a penalty term to the loss function of the
LSTM model to resolve the violation of the law of conservation of energy, which is a limitation of
LSTM, and the water temperature prediction performance in a stratified reservoir was compared and
evaluated. Furthermore, by introducing a pre-training technique where the predicted results of the
uncalibrated PBM were used as pre-training data, providing an economical modeling method that
can secure water temperature prediction performance even with limited field measurement data.
LSTMEC, a deep learning model trained to satisfy the law of conservation of energy, reproduced the
principle of conservation of thermal energy for the W2 model based on the physical law to a certain
extent, and showed improved prediction performance compared to LSTM. The LSTMECr model
developed using the pre-training technique showed better predictive performance than the PBMs
(W2-gnr and W2-calib) and DDMs (LSTM and LSTMEC) even when limited field data were used for
training.

The success of the PBM and DDM hybrid model verified the applicability of a new technique
that combines the advantages of multidimensional mathematical models and data-based deep
learning models. Furthermore, it was confirmed that if a PBM is used for pre-training a deep learning
model, it is possible to develop a deep learning model capable of rapidly and accurately predicting
water temperature based on physical laws even when the training data are insufficient. As the
LSTMEC model developed in this study can quickly and accurately predict reservoir water
temperature using only meteorological data, it can be effectively applied to predict reservoir water
temperature and thermal structural changes according to future climate scenarios.

In the future, PGDL accuracy, reliability, and generalizability can be improved, which will
enhance the effectiveness of environmental modeling and decision-making. Continuous research is
also needed to develop PGDL into a model capable of comprehensive water-quality predictions that
include organic matter and nutrients.
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Appendix A
Table Al. Parameter values used for water temperature simulations in W2-gnr and W2-calib.
The values of
Parameters Units Description model parameters
W2-gnr W2-calib
AX m2 st Horizontal eddy viscosity 1.0 1.0
DX m2 st Horizontal eddy diffusivity 1.0 1.0
WSC - Wind sheltering coefficient 0.85 1.0-1.5
FRICT ml2 gl Chezy coefficient 70 70
EXH20 m-! Extinction coefficient for pure water 0.25 0.45
BETA - Solar radiation absorbed in surface layer 0.45 0.45
CBHE W m?2s1 Coefficient of bottom heat exchange 0.3 0.45
Table A2. Hyperparameters of LSTM, LSTMEC, and LSTMFCP used for reservoir water temperature
prediction.
Model Hyperparameters Definition Hyperparameter Defined
range hyperparameters
Amount of change in weight
Learning rate thatis [0.0001, 0.1] [0.0001, 0.01]
updated during learning
Group size to divide training
Batch size  datainto [32, 64] [32, 64]
several groups
LSTM Number of learning
Epochs . . [1,000, 50,000] [40,000, 50,000]
iterations
Optimizer Opt1m'1z.at10n algorithm used [SGD, RMSprop, Adam
for training Adam]
Dropout rate Dropout setting applied to [0,1] (01,02]
layers
Amount of change in weight
Learning rate thatis [0.0001, 0.1] [0.0001, 0.01]
updated during learning
Group size to divide training
Batch size  datainto [32, 64] [32, 64]
several groups
LSTMEC ,
Epochs | umber of learning [1,000, 50,000] [40,000, 50,000]
iterations
Optimizer Optlm.lz'ahon algorithm used  [SGD, RMSprop, Adam
for training Adam]
D i li
Dropout rate  DroPOut setting applied to [0,1] [0.1,0.2]
layers
Amount of change in weight
Learning rate thatis [0.0001, 0.1] [0.0001, 0.01]
updated during learning
LSTMECH ' GrouP size to divide training
Batch size  datainto [32, 64] [32, 64]
several groups
Number of learning
Epochs [1,000, 50,000] [40,000, 50,000]

iterations
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Adam
for training Adam]
Dropout setting applied to
Dropout rate P & app [0, 1] [0.1,0.2]
layers
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Figure A1l. Finite difference grid system of the Daecheong Reservoir:
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