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Abstract: Data-driven models (DDMs) are extensively used in environmental modeling but face 

challenges due to limited training data and potential results not adhering to physical laws. To 

address this challenge, this study developed a process-guided deep learning (PGDL) model, 

integrating a long short-term memory (LSTM) neural network and a process-based model (PBM), 

CE-QUAL-W2 (W2), to predict water temperature in a stratified reservoir. The PGDL included an 

energy constraint term from W2's thermal energy equilibrium into the cost function of the LSTM, 

besides the mean square error term. In PGDL, parameters were optimized by penalizing deviations 

from the energy law, ensuring adherence to physical constraints. Compared to LSTM, PGDL 

demonstrated enhanced satisfaction with the energy balance and superior performance in water 

temperature prediction. Even with less field data for training, PGDL outperformed both LSTM and 

calibrated W2 after pre-training with data generated using the uncalibrated W2. Therefore, 

integration of DDM with a PBM ensured physical consistency in water temperature prediction for 

complex stratified reservoirs with limited data. Moreover, pre-training the PGDL with PBM proved 

highly effective in mitigating bias and variance due to insufficient field measurement data. 

Keywords: CE-QUAL-W2; Daecheong Reservoir; long short-term memory; process guided deep 

learning; water temperature 

 

1. Introduction 

In recent years, the rapid advancements in data science technology have led to a significant 

increase in the utilization of data-driven models (DDMs) across various domains [1–4]. These 

innovative machine learning (ML) algorithms have expanded beyond their traditional role as 

scientific analytical tools and become integral components in fields like medicine, life sciences, and 

meteorology [5,6]. The water environment domain is no exception, with a growing demand for 

DDMs to enhance predictive performance and optimize the utility of monitoring data [7–9]. Notably, 

recent publications in water environment modeling revealed an interesting trend: since 2010, DDMs 

have become more prevalent than process-based models (PBMs) [10]. 

Compared to PBMs, DDMs can interpret data patterns and relationships without prior 

knowledge of the model. They offer a simpler structure, faster calculation, and excellent predictive 

performance [11,12]. Additionally, DDM allows easy quantification of model sensitivity and 

uncertainty, addressing a limitation of PBM [13–15]. However, despite their excellent predictive 

performance, DDM can suffer from poor interpretation of results due to overfitting and may not 

perform well with limited high-quality data [16,17]. Another limitation of DDM is their failure to 

consider classical energy, mass, and momentum conservation principles, resulting in predictions that 

do not capture the dynamic relationship of water quality kinetics, hydrodynamics, and ecological 

processes in real systems [18,19].  

To leverage the strengths of PBMs and DDMs while addressing their limitations, the 

development of a technology that combines the two models becomes necessary. Thus, a "theory-

guided" hybrid framework was developed and employed. Theory-guided data science (TGDS) 
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represents a novel modeling paradigm that integrates scientific knowledge and mechanical principles 

to enhance the effectiveness of DDMs for understanding and predicting various issues arising from 

direct and indirect human activities [20]. These models enable achieving consistency in outcomes by 

incorporating scientific data as a critical component, along with training accuracy and model 

complexity, which balance the bias and variance errors that commonly occur in generalized DDMs. 

Additionally, TGDS enables the identification and elimination of inconsistencies through the 

application of scientific knowledge, leading to a significant reduction in variance without affecting 

model bias [21,22]. 

The applicability of TGDS extends to numerous scientific domains due to its effectiveness in 

addressing problems in fields such as biomedical science [23,24], hydrology [25,26], climatology [27], 

quantum chemistry [28], and bio-marker discovery [29]. Karpatne et al. [20] introduced a TGDS 

model design that encompassed learning methods, data refinement, and model structure across five 

specific areas: turbulence modeling, hydrology, computational chemistry, mapping of water surface 

dynamics, and post-processing using elevation constraints. Furthermore, TGDS has applications in 

other areas such as civil engineering and geology [30], aerodynamics [31], fluid dynamics [32], and 

physics [33–35]. 

The application of TGDS is gaining traction in the realm of aquatic environments. Karpatne et 

al. [20] employed physics-guided neural networks to predict lake water temperature, considering 

empirical and structural errors and ensuring physical consistency within the DDM. Read et al. [18] 

and Jia et al. [36] predicted water temperature over time and depth in stratified lakes by combining 

the General Lake Model (GLM), a one-dimensional lake model based on dynamical theory, with a 

recurrent neural network (RNN) model. Hanson et al. [37] utilized a simple box-type phosphorus 

mass balance model in conjunction with an RNN to forecast phosphorus concentration in Lake 

Mendota, located in Wisconsin, USA. 

Although notable efforts have been made to develop and utilize TGDS in aquatic environments, 

these endeavors are still in their early stages. Most TGDS models developed for aquatic environments 

have primarily employed simple zero- or one-dimensional dynamic models. However, such models 

are not suitable for water bodies with significant spatial variations in temperature and water quality, 

such as large dam reservoirs. Therefore, further research is needed to explore the integration of 

multidimensional PBMs and DDMs to address these challenges. 

Consequently, the objective of this study was to develop a process-guided deep learning (PGDL) 

model that integrates a long short-term memory (LSTM) model with a two-dimensional process-

based (PB) mechanistic model, namely CE-QUAL-W2 (W2), to predict longitudinal and vertical water 

temperatures in the Daecheong Reservoir located in the temperate zone of the Republic of Korea. 

Furthermore, the study aimed to evaluate the predictive performance of the model in terms of 

satisfying the energy conservation law. The LSTM and W2 models were trained and calibrated 

individually using water temperature data and meteorological data collected from a thermistor chain 

in the Daecheong Reservoir between July 2017 and December 2018. To combine the two models, the 

PGDL model was trained by incorporating a penalty into the loss function of the LSTM model to 

address any violations of the energy balance. For different seasons and water depths, the accuracy of 

water temperature prediction for each model was assessed by comparing the errors against actual 

values, and thus, the satisfaction of the energy conservation law was evaluated. Furthermore, to 

examine the impact of the amount of measured data required for training, the performance of water 

temperature prediction was compared using a pre-training technique that utilized the uncalibrated 

results of the W2 model as training data. 

This study demonstrates the applicability of a novel modeling approach that integrates a deep 

learning model with a multidimensional PBM. Moreover, the findings highlighted the effectiveness 

of utilizing PBMs to generate essential training data for the development of deep learning models.  
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2. Materials and Methods 

2.1. Description of site  

In this study, Daecheong Reservoir was selected as the modeling target, which is located in the 

Geum River, one of the four major rivers in Korea. As shown in Figure 1, forest areas (78.3%) occupy 

most of the watershed land use attributes, followed by agriculture (13.8%), urban (3.4%), water 

(2.6%), grass (0.9%), barren (0.6%), and wetland (0.5%) areas. The total water storage capacity and 

surface area of the reservoir at normal water level (EL. 76.0 m) are 1,490 million m3 and 72.8 km2, 

respectively. The reservoir is 86 km long, and the dam basin area is 3,204 km2, accounting for 32.4% 

of the total basin area of the Geum River system. Daecheong Dam, built in 1981, is a multi-purpose 

dam used for water supply, hydroelectric power generation, flood control, and environmental flow 

supply. The annual water supply of Daecheong Dam is 1,649 million m3, of which 79% is used for 

municipal and industrial purposes and the remaining 21% for irrigation purposes. The main flow 

control facilities of the dam include a power outlet (EL. 52.0 m) for downstream water supply and 

hydroelectric power generation, six gated spillways (EL. 64.5 m) for flood control, and two intake 

towers (EL. 57.0 m) supplying water to Daejeon and Cheongju city areas.  

 

Figure 1. Location of the study site, water temperature monitoring station (open circle), and land 

cover maps. 

The average annual precipitation for the last 20 years (1999–2018) in the Daecheong Dam basin 

was 1,353.8 mm, with maximum and minimum values of 1,943.4 mm in 2011 and 822.7 mm in 2015, 

respectively, showing a large variation in annual precipitation. As 69.0% (934.0 mm) of the total 

annual precipitation was concentrated in the summer months (June–September), the seasonal 

variation in precipitation was also very large. The water temperature ranges (average values) of the 

surface, middle, and bottom layers for the last 15 years (2004–2018) at the monitoring station, located 

in front of the dam, were 4–38 °C (17.1 °C), 3–23 °C (11.3 °C), and 3–12 °C (6.4 °C), respectively. 

Considering the temperature difference between the surface and bottom layers of the reservoir was 

greater than 5 °C during the stratification period, stratification of water temperature began to form 

around April or May, and turn-over occurred in December due to vertical mixing of water bodies. 

On the other hand, according to the results of a modeling study [38] based on the future climate 

scenarios of Representative Concentration Pathways 2.6 and 8.5 (Intergovernmental Panel on Climate 

Change), the annual number of days of stratification and stability of the water body in the reservoir 

are predicted to increase. 
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2.2. Field monitoring and data collection 

The data utilized in this study, as well as the data flow and the development processes of the 

W2, LSTM, and PGDL models, are illustrated in Figure 2. Calibration (or training) data, consisting of 

water temperature measurements for various water depths in the reservoir, were essential for all 

models. The calibration data encompassed water temperature measurements obtained from the 

monitoring station located in front of the Daecheong Dam (Figure 1). For this purpose, the HoBO 

Water Temp Pro onset (Onset Computer Corporation, Bourne, USA), a water thermometer sensor, 

was employed. A thermistor chain was installed at intervals of 1–3 meters in the water column, and 

measurements were recorded every 10 minutes between July 2017 and August 2018. 

 

Figure 2. Schematic representation of data flow and model development processes. The shaded light-

gray, dark-gray, and black boxes represent process-based models (PBMs), data-driven models 

(DDMs), and process-guided deep learning (PGDL) models, respectively. The solid black lines 

indicate the flow of data into the PBM, while the solid gray line represents the data input for the DDM 

and PGDL models. The gray dotted line represents the pre-training of the long short-term memory 

(LSTM) using uncalibrated CE-QUAL-W2 (W2-gnr) results, and the black dotted line indicates the 

utilization of the temporally integrated energy (ETR) of W2-gnr as the error term in the cost function 

of PGDL and the pre-trained PGDL models. 

The PB model, W2, required flow rate, inflow water temperature, and meteorological data as 

boundary condition forcing data. Details on the collection of forcing data for the W2 model and the 

estimation of the inflow water temperature using the multiple regression equation are described in 

Section 2.3. The LSTM and PGDL models needed only meteorological data as input for training and 

testing. Meteorological data were collected from the Daejeon meteorological observatory and 

Cheongnamdae automated weather station (AWS) located near the study area (Figure 1). 

Temperature (°C), dew point temperature (°C), precipitation (mm), relative humidity (%), solar 

radiation (MJ m-2), wind direction (radian), and wind speed (m s-1) were collected from the Korea 

Meteorological Administration (http://data.kma,go.kr).  

2.3. Process-based model (CE-QUAL-W2 (W2)) 

The W2 model is a two-dimensional hydrodynamic and water-quality model that can simulate 

water temperature, velocity fields, water-level fluctuations, and associated water-quality variation in 

both vertical and horizontal directions. As the W2 model assumes complete mixing in the lateral 
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direction, it has been widely used for simulating narrow- and deep-water bodies such as Daecheong 

Reservoir [39,40]. 

For modeling Daecheong Reservoir, the numerical grid was constructed based on the digital 

topographic data collected in 2018 and reservoir bathymetry data surveyed in 2006 by Korea Water 

Resources Corporation (K-Water). The spatial range of the numerical grid was composed of six 

branches from Gadeok Bridge to Daecheong Dam, considering the shape of the reservoir (Figure 1 

and Figure A1). The numerical grid comprised 165 segments in the longitudinal direction (Δx = 0.2–

1.9 km) and 69 layers in the vertical direction (Δz = 0.5–2.0 m) for efficient and accurate calculations 

simultaneously. The reliability of the model numerical grid was evaluated by comparing the modeled 

water level-reservoir capacity curve with the measured one (www.wamis.go.kr). The simulation 

period was 24 months, from January 2017 to December 2018. For initial modeling conditions, the dam 

operation data provided by K-Water (http://www.water.or.kr) was used for the initial reservoir water 

level, and the Water Environment Information System data of the Korean Ministry of Environment 

(http://water.nier.go.kr) was used for the initial reservoir water temperature by depth.  

As the boundary conditions of the model, wind direction (radian), wind speed (m s-1), air 

temperature (°C), dew point temperature (°C), and cloud cover (%) were used to calculate the heat 

exchange flux between the air and water surfaces. The daily flow data collected from K-Water 

(http://www.water.or.kr) and the National Water Resources Management Information System 

(http://www.wamis.go.kr) were used for defining the flow boundary conditions for each inflow river 

and outflow structure. The water temperature of the inflow river (𝑇௜௡ ) was calculated using the 

multiple regression equation (Equation 1) developed by Chung and Oh [41].  𝑇௜௡ = −0.0021 Q + 0.88285 𝑇௔௜௥ + 0.1479 𝑇ௗ௘௪ + 1.3109  𝑟ଶ = 0.822  (1)

where 𝑇௔௜௥ is the air temperature (°C);  𝑇ௗ௘௪ is dew point temperature (°C); and Q is the flow rate 

(m3 s-1). 

2.4. Deep learning model (long short-term memory (LSTM)) 

The LSTM used in the development of PGDL is an algorithm that solves the long-term 

dependency problem of existing RNNs, where the predictive power of learning results decreases as 

the input sequence becomes longer. Consecutively, RNN has been developed to address the 

limitations of feedforward neural network models in sequential data prediction [42]. In the RNN 

algorithm, the output value of the current state (ℎ௧) is expressed as a function of the previous state 

(ℎ௧ିଵ) and current input value (𝑥௧) (Equation 2). The neural network structure in which the state is 

preserved over time is called a memory cell, and when the result is calculated through the activation 

function in the hidden state, it is transferred to the next time through the memory cell and used as an 

input value for recursive activity. ℎ௧ = 𝑡𝑎𝑛ℎ(𝑊௛ℎ௧ିଵ + 𝑊௫𝑥௧) + 𝑏௛  (2)

where ℎ௧  is hidden layer output of the current state; 𝑡𝑎𝑛ℎ  is the activation function; 𝑊௫  is the 

weight for input 𝑥௧; 𝑊௛ is the weight for hidden layer output of previous state (ℎ௧ିଵ); and 𝑏௛is the 

bias term.  

LSTM is an algorithm that changes the recurrent connection for short-term memory of the 

existing RNN into a forget gate (𝑓௧), input gate (𝑖௧), and output gate (𝑜௧) to store the past memory, 

which controls the amount of memory to be sent to the next cell. In addition to the hidden vector ℎ௧, 

LSTM has a memory cell called 𝑐௧ that serves as a short-term memory store for the RNN model. 𝑐௧ 

contains all necessary information from the past to the present that serves long-term memory. Unlike ℎ௧, data is exchanged only within the LSTM cell and is not output outside the LSTM cell. Each gate 

function and memory cell function of the LSTM are described in Equations (3–8). 𝑐̃௧ = 𝑡𝑎𝑛ℎ(𝑊௛௖ℎ௧ିଵ + 𝑊௫௖𝑥௧) + 𝑏௖ (3)𝑓௧ = 𝜎൫𝑊௛௙ℎ௧ିଵ + 𝑊௫௙𝑥௧൯ + 𝑏௙ (4)
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𝑖௧ = 𝜎(𝑊௛௜ℎ௧ିଵ + 𝑊௫௜𝑥௧) + 𝑏௜ (5)𝑜௧ = 𝜎(𝑊௛௢ℎ௧ିଵ + 𝑊௫௢𝑥௧) + 𝑏௢ (6)𝑐௧ = 𝑓௧ × 𝑐௧ିଵ + 𝑖௧ × 𝑐̃௧ (7)ℎ௧ = 𝑜௧ × 𝑡𝑎𝑛ℎ(𝑐௧ ) (8)

where 𝑥௧  is input data; ℎ௧ିଵ  is the hidden layer output of the previous state; 𝜎  and 𝑡𝑎𝑛ℎ  are 

activation functions; 𝑐̃௧ is candidate values; 𝑊௫௜, 𝑊௫௙,𝑊௫௢, 𝑎𝑛𝑑 𝑊௫௖ are the weights of each gate and 

candidate values for input 𝑥௧; 𝑊௛௜, 𝑊௛௙,𝑊௛௢, 𝑎𝑛𝑑 𝑊௛௖ are the weights of each gate and candidate 

values for previous state ℎ௧ିଵ; and 𝑏௜, 𝑏௖ , 𝑏௙, 𝑎𝑛𝑑 𝑏௢ are the bias for each gate and candidate values.  

The LSTM water temperature model was developed using measured data, and prediction values 

(𝑦ොௗ,௧ ∶  𝑑 ∈ ሾ1, 𝑁ௗ ሿ, 𝑡 ∈ ሾ1, 𝑇ሿ) for each water depth (d) and time (t) (Equation 9). For the error of the 

LSTM model, the root mean square error (RMSE) was obtained from the square of the deviation 

between the simulated and measured values, considering the available number 𝑆 = ൛(𝑑, 𝑡): 𝑦ௗ,௧ൟ of 

the measured value (Equation 10).  𝑦ොௗ,௧ = 𝑊௬ ℎ௧  (9)

ℒ௅ௌ்ெ = ටଵௌ ∑ (𝑦ௗ,௧ − 𝑦ොௗ,௧)ଶ(ௗ,௧)∈ௌ   (10)

In this study, the LSTM model was constructed using the TensorFlow-Keras library of Python 

3.10.6. From a total of 399 data sets measured between July 2017 and October 2018, the data from July 

2017 to July 2018 (279 data sets) were used as a training dataset, and the data from July 2018 to October 

2018 (120 data sets) were used as a testing dataset.  

2.5. Development of the PGDL model 

Figure 2 illustrates the construction and development process of the PGDL models, including 

the pre-trained PGDL model, where the LSTM model is combined with the W2 model. The training 

data for the PGDL model consisted of the same meteorological data (relative humidity, dew point 

temperature, air temperature, precipitation, wind speed, short-wave radiation, and long-wave 

radiation) used in the W2 model for water temperature prediction, including the measured water 

temperature for each water depth in the reservoir. The water temperature data used for training and 

testing the PGDL model were identical to the data used for the LSTM model. 

The PGDL model wtheoped based on the LSTM model and trained by adding a penalty in the 

loss function to address energy balance violations. The performance of the PGDL model in water 

temperature prediction was evaluated by comparing the errors with the measured values, 

considering different seasons and water depths, and assessing satisfaction with the energy 

conservation law. Comparative models used for evaluation included the uncalibrated CE-QUAL-W2 

(W2-gnr), calibrated W2 (W2-calib), LSTM without energy conservation consideration, PGDL model 

incorporating the energy conservation term in the LSTM objective function (LSTMEC), and pre-trained 

PGDL model using W2-gnr (LSTMEC,p) (Figure 2). Additionally, LSTM, LSTMEC, and LSTMEC,p 

comprised various sub-models based on the ratio of field measurement data to the W2-gnr model 

results used in the training dataset. The percentage of field measurement data (p = 0.5%, 1%, 2%, 10%, 

20%, and 100%) in the pre-training dataset was determined according to a previous study by Read et 

al. [18]. The remaining training data (i.e., 1-p) for post-training were supplemented using W2-gnr. 

However, the number of testing data remained consistent across all cases. 

The parameters of the W2-gnr and W2-calib models for reservoir temperature calibration are 

provided in Table A1. The hyperparameters of the LSTM, LSTMEC, and LSTMEC,p models were set 

through the GridSearchCV and trial-and-error methods to converge to the minimum error. The final 

set of hyperparameters included 20 hidden units, 40,000–50,000 epochs, a batch size of 32–64, dropout 
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rates of 0.1–0.2, a learning rate of 0.0001–0.01, one LSTM layer, three dense layers, one dropout layer, 

and the Adam optimization algorithm (Table A2). 

2.6. Validation of energy conservation in the PGDL model 

Conservation of energy is a fundamental principle that plays a crucial role in water temperature 

predictions within PBMs. It holds significant importance in evaluating the physical validity of 

predicted outcomes. The conservation of thermal energy within a waterbody is essential for accurate 

temperature predictions, as the thermal energy flux through th’ waterbody's boundaries affects its 

temperature [36]. When the inflow heat flux exceeds the outflow heat flux, th’ waterbody's 

temperature increases, and vice versa.  

The validation of energy conservation within the PGDL model was performed by examining the 

energy exchanged through the reservoir boundary (𝐸𝑇𝑅௧) and the energy change resulting from 

spatial temperature variations within the reservoir ( 𝐸𝑆𝑅௧ ) during the computational period. 

Essentially, the total heat energy within the Daecheong Reservoir at a specific time t (𝐸𝑆𝑅௧) was 

calculated as the summation of the total heat energy from the previous time (𝐸𝑆𝑅௧ିଵ) and summation 

of heat energy contributions from each water layer, estimated using the water temperature (𝑇ௗ,௧) 

predicted by the LSTM model (as expressed in Equation 11). 𝐸𝑆𝑅௧ = 𝐸𝑆𝑅௧ିଵ + 𝐶௪ ∑ 𝜌ௗ,௧𝑇ௗ,௧𝑉ௗ,௧   (11)

where 𝐶௪ is the specific heat capacity of water (4,186 J kg-1 °C -1); 𝜌ௗ,௧, 𝑇ௗ,௧, and 𝑉ௗ,௧ correspond to 

the density (kg m-3), water temperature (°C), and water volume (m3), respectively, at time t and depth 

d.  

The value of 𝐸𝑇𝑅௧ was obtained by summing the heat fluxes entering and exiting through 

different boundaries, as described in Equation (12). In this study, the heat fluxes considered for 

calculating 𝐸𝑇𝑅௧ included evaporation-induced heat outflow (TSSEV), heat inflow due to rainfall 

(TSSPR), heat inflow at the upstream boundary condition (TSSUH), heat outflow at the downstream 

boundary condition (TSSDH), heat exchange at the water surface (TSSS), and heat exchange at the 

bottom of the water body (TSSB). Other factors were not considered, assuming their impact was 

negligible. The heat exchanges between the atmosphere and water surface involved solar shortwave 

radiation, water longwave radiation, atmospheric longwave radiation, conduction, convection, and 

evaporation, and condensation. The calculation of 𝐸𝑇𝑅௧ was performed using the energy balance 

calculation (EBC) function provided by The W2 model. 𝐸𝑇𝑅௧ =  𝑇𝑆𝑆𝐸𝑉 +  𝑇𝑆𝑆𝑃𝑅 +  𝑇𝑆𝑆𝐷𝑇  +  𝑇𝑆𝑆𝑈𝐻  +  𝑇𝑆𝑆𝐷𝐻 +  𝑇𝑆𝑆𝑆 +  𝑇𝑆𝑆𝐵 + 𝑇𝑆𝑆𝐼𝐶𝐸  (12)

where TSSEV is evaporative heat loss; TSSPR is rainfall heat inflow; TSSDT is nonpoint source heat 

inflow; TSSUH is heat inflow at the upstream boundary; TSSDH is heat effluent at the downstream 

boundary; TSSS is heat exchange at the water surface; TSSB is heat exchange at the bottom of the 

waterbody; and TSSICE refers to heat exchange by freezing. 

To train the LSTMEC model to follow the principles of the physical laws, an algorithm was 

employed that incorporated a penalty into the cost function (also known as the objective function) 

whenever the energy conservation law was violated [20]. The total training error (ℒ) comprised two 

components: the error of the LSTM model (ℒ௅ௌ்ெ) and the error arising from the violation of the 

energy conservation law (ℒா஼) (as depicted in Equation 13). The performance of ℒ௅ௌ்ெwas evaluated 

by quantifying the difference between the measured and predicted values (as shown in Equation 10). 

To address the violation of the energy conservation law, ℒா஼  introduced a rectified linear unit 

(ReLU) activation function, which was integrated into the error function as a penalty when the 

disparity between 𝐸𝑇𝑅௧ and 𝐸𝑆𝑅௧ exceeded a certain threshold (𝜏ா஼) (as expressed in Equation 14). 

A coefficient  𝜆ா஼ was employed to adjust the weight of ℒா஼ within the total training error and was 

set to 0.01 based on a previous study by Jia et al. [36]. Smaller values of  𝜆ா஼ may compromise the 

satisfaction of energy conservation but can reduce training loss, while excessively large values of  𝜆ா஼ 

can force the LSTM model to strictly follow the physical relationship, potentially leading to 

suboptimal performance. 
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ℒ = ℒ௅ௌ்ெ +  𝜆ா஼ℒா஼ (13)ℒா஼ = ∑ 𝑅𝑒𝐿𝑈(௡௜ୀଵ |𝐸𝑆𝑅௜ − 𝐸𝑇𝑅௜| − 𝜏ா஼)  (14)

where 𝜏୉େ is a threshold value for loss of energy conservation, which was introduced to consider 

factors ignored in calculating the amount of heat exchange through boundary conditions and 

observation errors in meteorological data. For 𝜏୉େ, the maximum value of the absolute difference 

between daily averaged spatially integrated energy (ESR) and (ETR) (|𝐸𝑆𝑅௜ − 𝐸𝑇𝑅௜|) calculated in W2 

that satisfies the energy balance was used [18,43].  

2.7. Pre-training of LSTM using an uncalibrated W2 (W2-gnr) model 

In this study, a novel approach was employed to address the challenges posed by limited high-

quality data in water environment modeling. Pre-training of the LSTMEC,p model was conducted 

using the results of the W2-gnr model, which served as valuable data. Although these results were 

incomplete, they adhered to the energy conservation law and accurately captured the physical 

characteristics and meteorological conditions of the reservoir. By leveraging the mechanical 

principles embedded in the W2 model, the LSTMEC,p model generated water temperature predictions 

that reflected these principles [56]. Specifically, the spatiotemporal predictions of water temperature 

over time and depth from the W2 model were utilized as training data for the LSTMEC,p model. 

Through fine-tuning, the’LSTMEC,p model's parameters were adjusted across all layers of the LSTM 

model using available measured data, enabling the evaluation of its performance in predicting water 

temperature with limited measured data. This approach effectively combined the strengths of the 

pre-trained LSTMEC,p model and the available measured data to enhance prediction accuracy and 

overcome datmitations. 

2.8. Evaluation of model performance 

The evaluation of reservoir water temperature prediction performance involved assessing the 

satisfaction of the energy conservation law (ETR = ESR) and utilizing error indices to compare the 

measured and predicted values. The error indices employed for model evaluation included the 

absolute mean error (AME), RMSE, and Nash-Sutcliffe efficiency (NSE), as indicated in Equations 

(15)–(17). These error indices provided quantitative measures to assess the accuracy and reliability of 

the water temperature predictions. 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑀𝑒𝑎𝑛 𝐸𝑟𝑟𝑜𝑟 (𝐴𝑀𝐸) = ଵே ∑ |𝑂௜ − 𝑃௜|ே௜ୀଵ   (15)

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑀𝑆𝐸) = ටଵே ∑ |𝑂௜ − 𝑃௜|ଶே௜ୀଵ   (16)

𝑁𝑎𝑠ℎ − 𝑆𝑢𝑡𝑐𝑙𝑖𝑓𝑓𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝑁𝑆𝐸) = 1 − ∑ (ை೔ି௉೔)మ೔ಿసభ∑ (ை೔ିைത೔)మ೔ಿసభ × 100  (17)

where 𝑂௜ is the observed data; 𝑃௜ is the predicted data; 𝑂ത௜ is the average of observed data; and 𝑁 

is the number of data.  

3. Results 

3.1. Validation of the CE-QUAL-W2 model  

The W2 model employed in this study has a well-established history of being applied to water 

temperature prediction in the Daecheong Reservoir, and it has undergone sufficient calibration in 

previous studies [41,44,45]. Consequently, there was no need for additional calibration in this study. 

Instead, the performance of the W2 model in predicting water level and temperature during the 

simulation period was validated by quantifying the error between the predicted and measured 

values. For the PGDL and pre-trained PGDL models, the W2-gnr model provided the necessary data 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2023                   doi:10.20944/preprints202307.2161.v1

https://doi.org/10.20944/preprints202307.2161.v1


 9 

 

(ETR and pre-training data), eliminating the need for separate model calibration. Hence, the results 

of the W2-calib model were exclusively used for the purpose of comparing the performance of 

different models (Figure 2). 

Figure 3 compares the measured and simulated water levels during the 2-year simulation period 

from 2017 to 2018. As a result of the comparative analysis, the W2 model properly reproduced the 

measured changes in the water level according to the temporal fluctuations of the inflow and 

discharge in Daecheong Reservoir and showed high prediction reliability with AME = 0.03 m, RMSE 

= 0.10 m, and NSE = 0.997. The simulated water level underestimated the measured value after 

September 2018 because of the uncertainty involved in calculating the inflow from the unmeasured 

surrounding tributaries using a simple basin area ratio. 

 

Figure 3. Comparison of simulated and observed reservoir water levels. NSE: Nash–Sutcliffe 

efficiency; AME: absolute mean error; RMSE: root mean square error; EL.m: height above mean sea 

level in meters. 

The water temperature prediction performance of the W2 model by water depth was validated 

by comparing the water temperature profile data measured at the monitoring station situated in front 

of the dam (Figure 1) and the simulation results (Figure 4). The errors between simulated water 

temperature (black line) and measured values (open circles) were AME = 0.45–1.31 °C, RMSE = 0.51–

1.43 °C for 279 training datasets, and AME = 0.52–2.43 °C, RMSE = 0.61–2.91 °C for 120 testing datasets. 

The simulation results showed that the seasonal changes in the thermal stratification structure were 

well reflected. During the 2-year simulation period, the W2 model reproduced the hydrothermal 

stratification process in summer, vertical mixing in autumn and winter, and hydrothermal 

stratification regeneration in the following year. However, in the training data, the model failed to 

accurately replicate the downward movement of the thermocline on Julian Day 294.5, while in the 

testing data, the model overestimated the surface water temperature on Julian Day 594.5 and also 

struggled to properly reproduce the thermocline on Julian Day 608.5. This error can be attributed to 

uncertainties in the input data and parameters of the process model, which made it difficult to 

accurately reproduce the density flow entering the middle layer during rainfall as well as the change 

in stratification structure caused by turbulent wind-driven mixing in the surface layer [46–48].  

The sources and sinks of the reservoir heat energy as calculated by W2 during the simulation 

period were analyzed (Figure A2). As a result of heat balance analysis, the net heat flux across the 

water surface (Hn) of Daecheong Reservoir was in the range of -389 to 942 (average -5.0) W m-2. Hn 

exhibited a high value in summer, a period of rising water temperature, and a negative value in 

winter, a period of decreasing water temperature. Evaporative heat loss due to water evaporation 

showed the highest value in summer when temperatures rose, and heat conduction (sensible heat 

loss) had the highest value in winter when temperatures decreased. 
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(a)Training phase 

 

 
(b) Testing phase 

Figure 4. Comparison of observed water temperature profiles with simulated results using calibrated 

CE-QUAL-W2 and energy conservation term in the long short-term memory objective function 

(LSTMEC) on selected Julian Day (Jday), (a) training phase, (b) testing phase (Jday 1 starts from 1 

January 2017 and ends on 31 December 20Jday 730). 

3.2. Prediction performance of PGDL model 

Table 1 shows the RMSE values of the W2-gnr and W2-calib models, LSTM, process-guided 

LSTM (LSTMEC), and pre-trained LSTM (LSTMEC,p). The samples were randomly selected from partial 

field data from the training dataset to use in training LSTM, LSTMEC, and LSTMEC,p; the test dataset 

remained unchanged. The error values presented in Table 1 correspond to the average and standard 

deviation of the RMSE for the results obtained by random sampling of training data. In other words, 

the reported results were obtained through 10-fold cross-validation, and the numbers within 

parentheses represent the standard deviation of the results from the 10 simulation runs.  

The predictive performance of LSTM, LSTMEC, and LSTMEC,p models all improved as the 

proportion of field data increased. When the ratio of field data w’s 100%, LSTMEC's RMSE was 0.042 

(±0.007) °C, showing 42.4 times and 1.5 times better prediction performance than W2-calib and LSTM, 

respectively. The predictive performance of W2-calib was superior to that of LSTMEC and LSTM 

developed using less than 2% of the total field data for training, but LSTMEC and LSTM showed better 

predictive performance than W2-calib when the field data ratio was ≥ 10%. In particular, LSTMEC 

showed better predictive performance than LSTM in all cases of the field data ratio (0.5% to 100%), 

and as the ratio increased, the difference in RMSE between LSTM and LSTMEC narrowed. These 

results are well consistent with the results of Jia et al. [36] and Read et al. [18].  
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Table 1. Comparison of performance of W2-gnr, W2-calib, LSTM, LSTMEC, and LSTMEC,p according 

to the percentage of field data used in model training phase. 

Model 

RMSE (℃) 

Proportion of field data used in model training phase (%) 

0 0.5 1 2 10 20 100 

W2-gnr - - - - - - 
1.930 

(±𝑁𝐴) 

W2-calib - - - - - - 
1.781 

(±𝑁𝐴) 

LSTM - 
15.978 

(±0.380) 

9.403 

(±0.284) 

2.432 

(±0.257) 

0.289 

(±0.113) 

0.131 

(±0.089) 

0.062 

(±0.010) 

LSTMEC - 
15.007 

(±0.319) 

8.915 

(±0.256) 

2.229 

(±0.212) 

0.243 

(±0.100) 

0.092 

(±0.033) 

0.042 

(±0.007) 

LSTMEC,p 
7.214 

(±0.327) 

3.007 

(±0.301) 

2.015 

(±0.156) 

1.160 

(±0.115) 

0.230 

(±0.088) 

0.078 

(±0.012) 

0.018 

(±0.001) 

W2-gnr: uncalibrated CE-QUAL-W2 model; W2-calib: calibrated CE-QUAL-W2 model; LSTM: long short-term 

memory (LSTM) model trained with field data without considering energy conservation; LSTMEC: LSTM model 

trained with field data with considering energy conservation; and LSTMEC,p: Pretrained LSTMEC model with W2-

gnr results and then gets fine-tuned using the field data; RMSE: root mean square error. 

To evaluate the water temperature prediction accuracy of LSTMEC by water depth, the simulated 

water temperatures using the LSTMEC (red line) and W2-calib model (black line) were compared with 

the measured water temperatures (open circles) in Figure 4. LSTMEC appropriately simulated the 

change in water temperature profile by water depth over time in both the training and testing phases. 

LSTMEC showed high prediction accuracy with error values of AME = 0.14–1.64 °C and RMSE = 0.16–

1.87 °C, which corresponds to better prediction performance than the W2-calib model (AME = 0.45–

2.43 °C, RMSE = 0.51–2.91 °C). In particular, when examining the substantial errors observed in the 

water temperature predictions near the thermocline zone as simulated by the W2 model, the LSTMEC 

model exhibited markedly improved outcomes. 

3.3. Prediction performance of the pre-trained PGDL model 

To overcome the problem of deteriorating prediction performance of the LSTMEC model due to 

the lack of training data, which is the major drawback of the deep learning (DL)  model, a pre-

training technique that can improve model prediction accuracy with a small amount of measured 

data was used, and the error for each model was compared according to the ratio of the measured 

data (Table 1). In the pre-training method, the neural network of the LSTMEC model was trained using 

the results of the W2-gnr model as training data. The hydraulic model parameters that affect water 

temperature prediction results in the W2 model include longitudinal eddy viscosity (AX), 

longitudinal eddy diffusivity (DX), Chezy coefficient (FRICT), wind sheltering coefficient (WSC), 

solar radiation absorbed in the surface layer (BETA), and extinction coefficient for pure water 

(EXH2O). The W2-gnr used the default values for all these coefficients. Consequently, the RMSE of 

W2-gnr was approximately 1.930 °C, which was higher than that of other models (Table 1). However, 

as the mechanical model was simulated based on physical laws, these results were learning results 

considering energy conservation. Therefore, by using the results of the W2-gnr model as training data 

for the LSTM model, it is possible to build a deep learning model that produces results that satisfy 

the physical laws inherent in the physical model. The LSTMEC,p model, which was pre-trained using 

100% of the W2-gnr results, had an average RMSE of 7.214 °C, which increased by 3.74 and 4.05 times 

compared to W2-gnr and W2-calib, respectively. In contrast, the LSTMEC,p model, pre-trained with 

98% of the W2-gnr prediction results and post-trained using 2% of the filed data, reduced RMSE by 

1.66 and 1.54 times, respectively, compared to W2-gnr and W2-calib. 

The standard deviation, centered root mean square difference (CRMSE), and correlation 

coefficient of the measured and simulated values for each model were simultaneously compared and 
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analyzed using a Taylor diagram (Figure 5). From the analysis, most of the LSTMEC, p and LSTMEC 

models except for LSTMEC, p, 0%, were found to be very close to the measured values, and the error 

values were also significantly reduced. In particular, the LSTMEC,p,10% model using only 10% of the 

field data showed a lower CRMSE value than the PBMs. 

 

Figure 5. Comparison of the water temperature simulation performance of each model using a Taylor 

diagram. RMS: root mean square; W2-gnr: uncalibrated CE-QUAL-W2 model; W2-calib: calibrated 

CE-QUAL-W2 model; LSTM: long short-term memory model trained with field data without 

considering energy conservation; LSTMEC: LSTM model trained with field data considering energy 

conservation; LSTMEC,p: Pre-trained LSTMEC model with W2-gnr results and later fine-tuned using 

field data. 

3.4. Evaluating the energy consistency of the PGDL model 

One of the strengths of the LSTMEC model is that it can secure physical law consistency, which 

is a weakness of the LSTM model. To evaluate the satisfaction of the energy conservation law in 

LSTMEC, the time series changes of ETR and ESR during the simulation period were compared along 

with the results of W2-calib and LSTM, as shown in Figure 6. The coincidence of ETR and ESR means 

that the conservation law of thermal energy changes along the reservoir boundary and inside the 

reservoir water body is satisfied. During the simulation period, the W2-calib model based on physical 

laws matched the changes in ETR and ESR very well (Figure 6a). The W2-calib model predicted 

reservoir water temperature by considering air-water heat exchange and heat flux at inflow and 

outflow interfaces. At each calculation time, the model checked the heat balance and thus satisfied 

the energy conservation law. However, in the case of LSTM, which is a DDM lacking physical laws, 

the discrepancy between ETR and ESR was confirmed in most periods, and the difference increased 

more in winter (Figure 6b). On the other hand, LSTMEC with the energy conservation term added to 

the objective function showed lower energy agreement than the W2-calib model but better energy 

agreement than the LSTM model (Figure 6c). From these results, it can be confirmed that the PGDL 

algorithm contributes to improving the limitations of deep learning models. 
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(a) W2-calib 

 
(b) LSTM 

 
(c) LSTMEC 

Figure 6. Comparison of temporally integrated energy (ETR) and spatially integrated energy (ESR) 

evolution for (a) calibrated CE-QUAL-W2, (b) long short-term memory (LSTM), and (c) LSTMEC 

(LSTM model trained with field data considering energy conservation). 

The relationship between the energy inconsistency (x-axis) and RMSE (y-axis) of W2-calib, 

LSTM, and LSTMEC is presented in Figure A3. The lengths of the LSTM and LSTMEC bars in the graph 

cover the 10-fold cross-validation results. The W2-calib corresponds to a model developed for 

satisfying the energy conservation law, and therefore, it showed an energy mismatch close to zero, 

but its RMSE showed an average of 42.4 times and 28.7 times greater than those of LSTMEC and LSTM, 

respectively. In contrast, the LSTMEC model demonstrated improved predictive performance 

compared to both the W2-calib and LSTM models and exhibited a lower degree of energy mismatch 

than the standalone LSTM, demonstrating the potential for enhancing the physical consistency of the 

LSTM model. 

Recently, the application of DDM techniques such as ML and deep learning has rapidly 

progressed in the field of water quality prediction [49–51]. However, owing to their lack of 

dependence on physical laws, these models may overlook important underlying mechanisms. The 

PGDL algorithm, demonstrated by the hybrid results of the W2 and LSTM models, has the potential 

to address these issues not only for predicting water temperature in stratified reservoirs but also for 

water quality prediction. 
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4. Discussion 

4.1. Comparative Analysis of Water Temperature Prediction Errors 

Figure 7 illustrates the water temperature prediction error (RMSE) at various water depths for 

the W2-gnr, W2-calib, LSTM, LSTMEC, and LSTMEC,p models. In the case of the W2 model, both the 

W2-gnr and W2-calib models showed similar RMSE values in the surface layer (EL. 63–75 m), but the 

error of the W2-calib model decreased with the increase in water depth. Overall, the LSTM, LSTMEC, 

and LSTMEC,p models exhibited lower RMSE values compared to the process-based W2-gnr and W2-

calib models across all depths. When comparing LSTMEC and LSTMEC,p, the RMSE values of LSTMEC,p, 

which was pre-trained using the simulation results of W2-gnr, were lower at all depths. These results 

highlight the significant impact of pre-training on reducing model error. Furthermore, the LSTMEC,p 

model demonstrated lower RMSE values than the W2-gnr and W2-calib models, with the difference 

being particularly prominent in the metalimnion layer (between 40 and 55 m). The increased error of 

the PBM in the thermocline, where water temperature changes rapidly, is not solely due to numerical 

diffusion issues but also due to the accurate representation of complex hydrodynamic processes such 

as density flow, turbulent mixing, and internal waves, which are crucial for reproducing the water 

temperature stratification phenomenon. In particular, reservoir stratification is influenced not only 

by temperature-related density differences but also by light attenuation caused by suspended matter, 

phytoplankton, and dissolved matter, contributing to the uncertainties associated with these 

parameters and resulting in erroneous water temperature prediction. Thus, accurately capturing the 

dynamic changes in thermal stratification structures in deep reservoirs remains challenging for most 

PBMs, including W2 [48,72]. However, data-based deep learning models demonstrate superior 

performance by learning from patterns in the training data rather than relying solely on physical 

processes. 

 

Figure 7. Comparison of root mean square errors by reservoir water level for W2-gnr, W2-calib, 

LSTM, LSTMEC, and LSTMEC,p, W2-gnr: uncalibrated CE-QUAL-W2 model; W2-calib: calibrated CE-

QUAL-W2 model; LSTM: long short-term memory (LSTM) model trained with field data without 

considering energy conservation; LSTMEC: LSTM model trained with field data considering energy 

conservation; and LSTMEC,p: Pretrained LSTMEC model with W2-gnr results and later fine-tuned using 

the field data; RMSE: root mean square error; EL.m: height above mean sea level in meters. 

In the seasonal error analysis (Figures A4–A5), the water temperature prediction errors of the 

W2-calib model varied across different seasons and depths. Specifically, during the spring, when 

stratification started, the W2-calib model exhibited large errors in the surface layer. During summer 

and autumn, the errors were prominent in the middle and lower layers, respectively. The lowest 

errors were observed during the winter, when stratification was disrupted. In contrast, the LSTMEC,p 

model consistently showed significantly lower RMSE values compared to the W2-calib model across 

all seasons and depths. This indicates that the PGDL model has the potential to address critical 
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prediction challenges in the aquatic environment. Furthermore, the application of PGDL models can 

contribute to the convergence of deductive and inductive methods, theory, and experience, allowing 

for improved water temperature predictions [73–75]. These findings emphasize the effectiveness and 

versatility of the PGDL model in improving water temperature prediction accuracy in stratified 

reservoirs.  

4.2. Applicability of the PGDL model for water quality modeling 

The framework of the PGDL model developed in this study for water temperature prediction 

can be effectively extended to various water temperature and water quality modeling applications. 

Water temperature plays a crucial role in shaping the spatiotemporal distribution of physical, 

chemical, and ecological variables in aquatic ecosystems [52,53]. It strongly influences the 

concentration of dissolved oxygen, nutrient conversion rates, metabolic activities of aquatic 

organisms, phytoplankton productivity, and biochemical reactions. Notably, deviations from critical 

water temperature values can significantly impact fish populations, leading to increased mortality 

rates [54–57]. Additionally, accurate prediction of water temperature by depth in deep reservoirs is 

essential for managing selective discharge facilities and controlling downstream water temperature 

and quality [58,59]. Furthermore, PGDL models have proven to be highly effective in assessing the 

impacts of climate change on reservoir water temperatures and thermal stratification patterns over 

extended time periods, relying solely on weather data. 

Surface water temperature is influenced by various factors, including flow rate, solar radiation 

[60], air-water heat exchange, channel morphology [61], and point source emissions [62]. Therefore, 

predicting accurate water temperatures in space and time becomes challenging due to these complex 

interactions. PBMs leverage scientific principles and knowledge to predict water temperature based 

on physical laws that reflect water flow systems, river morphology, and heat changes in water bodies 

related to temperature [63,64]. However, for deep lakes and reservoirs, the model complexity 

increases, requiring multidimensional models that consider intricate mixing processes. This 

complexity introduces higher uncertainty in model structure and input data, as well as increased 

calibration and validation costs [65–67]. 

To date, most PGDL models in environmental studies have employed zero- or one-dimensional 

PBMs to predict variables such as water temperature [43] and evapotranspiration [68]. These PGDL 

models [18,43] have consistently outperformed standalone PBMs and DL models in water 

temperature prediction, exhibiting superior performance in meeting energy conservation 

requirements compared to the original DL models. Some studies have also used the GLM model, a 

dynamic PBM that accounts for vertical heat exchange in the water bodies that conform to this one-

dimensional assumption [69–71]. In this study, the PGDL is demonstrated to be a powerful algorithm 

for predicting water temperature stratification in artificial dam reservoirs with complex 

topographical features.  

Recently, limited efforts have been made to develop PGDL models capable of predicting lake 

water quality. Hanson et al. [37] employed the PGDL model to predict the phosphorus cycle and 

epilimnion phosphorus concentration in Lake Mendota, Wisconsin, USA. They demonstrated the 

potential of the PGDL model to enhance water quality predictions beyond just water temperature. 

To effectively utilize the PGDL model for water quality prediction, obtaining accurate and precise 

boundary condition data in time and space is essential. In many countries, hydraulic systems are 

frequently monitored, while water quality monitoring is conducted less frequently, typically on a 

weekly or monthly basis, due to cost considerations [76,77]. However, this data collection frequency 

is inadequate for capturing rapidly changing pollutant loads during rainfall events. High-quality, 

high-resolution data are crucial for reliable and accurate water quality modeling. 

The most common method used to obtain high-quality, high-resolution boundary condition data 

is in-situ monitoring. With advances in sensor technology, the use of automated online smart 

monitoring systems and mobile-based advanced environmental monitoring technologies is 

increasing and becoming more common. An alternative approach to obtaining high-frequency 

boundary condition data is to construct an ML model based on measured data and use the model's 
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predictions for boundary conditions in PBM and as training data for DDM [78]. Kim et al. [79] and 

Mahlathi et al. [80] are good examples of representative studies that applied DDM prediction results 

to PBM. 

In summary, obtaining high-frequency, high-resolution boundary condition data is crucial for 

expanding and implementing the PGDL model for water quality modeling. Furthermore, by 

incorporating physical laws such as conservation of mass into the cost function of the DL model, the 

PGDL model can serve as an effective tool for predicting water quality in rivers and reservoirs. 

4.3. Strengths of the PGDL model in the lack of data 

Generally, DDMs excellently discover new information and make accurate predictions with 

sufficient training data [81], but suffer from interpretability and generalization problems due to 

decreased predictive accuracy without quality data. Unfortunately, the collection of most 

environmental data is costly and time-consuming and there are only a limited number of appropriate 

monitoring sites. Moreover, collected data are frequently inappropriate as input for DDMs because 

unexpected circumstances often result in erroneous or missing data [82,83]. 

This study applied the thermistor chain to generate high-frequency water temperature data at 

10-min intervals but lacked sufficient training data for the PGDL model because of missing or 

suspected data points. This problem was addressed by using results from the W2-gnr model as pre-

training data for the PGDL model. The PBM reflects the actual physical environment of a target water 

body and produces predictions based on physical laws. Therefore, if the DDM is pre-trained because 

the PBM was retrained with a small amount of measurement data, the limitations of the short test 

period and insufficient training data can be resolved [18,84]. Pre-trained with W2-gnr, LSTMEC,p 

yielded better predictions than LSTM, LSTMEC, and W2-calib when only 2% of total field data were 

used. Comparative evaluation of prediction performance by water depth and season further 

demonstrated the predictive superiority of LSTMEC,p (Figure 6, Figures A4–A5). These results suggest 

that the hybrid PBM and DL models used in this study are a very economical method that improves 

predictions of water temperature even when field measurement data are insufficient. 

Transfer learning is an increasingly popular way of overcoming the lack of training data [20,85]. 

These methods use results from a previously learned model to train a new one. In other words, under 

conditions that require a certain threshold of labeled data, data obtained from an existing, related 

model are transferred to the target model [86,87]. Transfer learning enables fast and accurate 

predictions with a small amount of data, making it a valuable technique for various environmental 

fields, including air quality prediction. In particular, network pre-training (using part of a pre-trained 

network to train another network) greatly improves DDM’s predictive performance and speed 

[84,88]. Recent research in environmental sciences has begun to calibrate mechanistic models with 

monitoring data as a form of network pre-training. Using calibrated output results to train DDMs has 

seen success in hydrological applications [89,90]. For example, a study in Denmark accurately 

predicted runoff in 60 watersheds using an LSTM model trained using the results of the mechanistic 

Danish national water resources model [90]. 

4.4. Limitations of the PGDL model and scope for future studies 

The advantages of PGDL models are considerable, combining the strengths of PBM and DDM 

to improve predictive accuracy while ensuring physical consistency. Specifically, PGDL assumes that 

PBM can adequately capture the underlying physics of a given system and that any remaining, 

unknown physics can be captured by DDM. However, like any model, PGDL has its own limitations, 

notably in terms of data quality and quantity. If the training dataset is noisy, biased, or not 

representative of the underlying physics, PGDL cannot improve prediction accuracy. Additionally, 

PGDL requires significant computational resources and expertise for development, training, and 

validation. Its sensitivity to the choice of hyperparameters requires considerable trial and error for 

optimization. Furthermore, PGDL may not generalize well to systems that are significantly different 

from the training data, potentially limiting its applicability to novel problems. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2023                   doi:10.20944/preprints202307.2161.v1

https://doi.org/10.20944/preprints202307.2161.v1


 17 

 

Future studies should focus on addressing these limitations to enhance model performance and 

prediction reliability. First, the quality and quantity of training data should be improved to ensure 

better generalization of new problems. Second, the accuracy and reliability of PBMs should be 

increased to better capture a given system’s underlying physics. Third, increasing the efficacy of 

hyperparameter tuning will help lessen the need for trial and error and improve model accuracy and 

applicability. Fourth, the uncertainty associated with predictions should be quantified by 

incorporating uncertainty analysis. Finally, PGDL transferability to different systems and 

environments should be evaluated to determine its potential for broader applications and improve 

robustness. 

5. Conclusions 

In this study, a PGDL model was developed by adding a penalty term to the loss function of the 

LSTM model to resolve the violation of the law of conservation of energy, which is a limitation of 

LSTM, and the water temperature prediction performance in a stratified reservoir was compared and 

evaluated. Furthermore, by introducing a pre-training technique where the predicted results of the 

uncalibrated PBM were used as pre-training data, providing an economical modeling method that 

can secure water temperature prediction performance even with limited field measurement data. 

LSTMEC, a deep learning model trained to satisfy the law of conservation of energy, reproduced the 

principle of conservation of thermal energy for the W2 model based on the physical law to a certain 

extent, and showed improved prediction performance compared to LSTM. The LSTMEC,p model 

developed using the pre-training technique showed better predictive performance than the PBMs 

(W2-gnr and W2-calib) and DDMs (LSTM and LSTMEC) even when limited field data were used for 

training.  

The success of the PBM and DDM hybrid model verified the applicability of a new technique 

that combines the advantages of multidimensional mathematical models and data-based deep 

learning models. Furthermore, it was confirmed that if a PBM is used for pre-training a deep learning 

model, it is possible to develop a deep learning model capable of rapidly and accurately predicting 

water temperature based on physical laws even when the training data are insufficient. As the 

LSTMEC model developed in this study can quickly and accurately predict reservoir water 

temperature using only meteorological data, it can be effectively applied to predict reservoir water 

temperature and thermal structural changes according to future climate scenarios. 

In the future, PGDL accuracy, reliability, and generalizability can be improved, which will 

enhance the effectiveness of environmental modeling and decision-making. Continuous research is 

also needed to develop PGDL into a model capable of comprehensive water-quality predictions that 

include organic matter and nutrients.  
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Appendix A 

Table A1. Parameter values used for water temperature simulations in W2-gnr and W2-calib. 

Parameters Units Description 

The values of 

model parameters 

W2-gnr W2-calib 

AX m2 s-1 Horizontal eddy viscosity 1.0 1.0 

DX m2 s-1 Horizontal eddy diffusivity 1.0 1.0 

WSC - Wind sheltering coefficient 0.85 1.0-1.5 

FRICT m1/2 s-1 Chezy coefficient 70 70 

EXH2O m-1 Extinction coefficient for pure water 0.25 0.45 

BETA - Solar radiation absorbed in surface layer 0.45 0.45 

CBHE W m-2 s-1 Coefficient of bottom heat exchange 0.3 0.45 

Table A2. Hyperparameters of LSTM, LSTMEC, and LSTMEC,p used for reservoir water temperature 

prediction. 

Model Hyperparameters Definition 
Hyperparameter 

range 

Defined 

hyperparameters 

LSTM 

Learning rate 

Amount of change in weight 

that is  

updated during learning 

[0.0001, 0.1] [0.0001, 0.01] 

Batch size 

Group size to divide training 

data into  

several groups  

[32, 64] [32, 64] 

Epochs 
Number of learning 

iterations 
[1,000, 50,000] [40,000, 50,000] 

Optimizer 
Optimization algorithm used 

for training 

[SGD, RMSprop, 

Adam] 
Adam 

Dropout rate 
Dropout setting applied to 

layers 
[0, 1] [0.1, 0.2] 

LSTMEC 

Learning rate 

Amount of change in weight 

that is  

updated during learning 

[0.0001, 0.1] [0.0001, 0.01] 

Batch size 

Group size to divide training 

data into  

several groups  

[32, 64] [32, 64] 

Epochs 
Number of learning 

iterations 
[1,000, 50,000] [40,000, 50,000] 

Optimizer 
Optimization algorithm used 

for training 

[SGD, RMSprop, 

Adam] 
Adam 

Dropout rate 
Dropout setting applied to 

layers 
[0, 1] [0.1, 0.2] 

LSTMEC,p 

Learning rate 

Amount of change in weight 

that is  

updated during learning 

[0.0001, 0.1] [0.0001, 0.01] 

Batch size 

Group size to divide training 

data into  

several groups  

[32, 64] [32, 64] 

Epochs 
Number of learning 

iterations 
[1,000, 50,000] [40,000, 50,000] 
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Optimizer 
Optimization algorithm used 

for training 

[SGD, RMSprop, 

Adam] 
Adam 

Dropout rate 
Dropout setting applied to 

layers 
[0, 1] [0.1, 0.2] 

 

(a) 

 
(b) 

Figure A1. Finite difference grid system of the Daecheong Reservoir: (a) horizontal and vertical 

sections, and (b) cross sectional view of segment 59. 

 
(a) Short wave solar radiation 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 August 2023                   doi:10.20944/preprints202307.2161.v1

https://doi.org/10.20944/preprints202307.2161.v1


 20 

 

 
(b) Long wave radiation 

 
(c) Back radiation from the water surface 

 
(d) Evaporative heat loss 

(e) Heat conduction 

 
(f) The net rate of heat exchange across the water surface 

Figure A2. Estimated surface heat exchange components in Daecheong Reservoir during 2017–2018 

using CE-QUAL-W2. 
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Figure A3. Performance of calibrated CE-QUAL-W2, LSTM, and LSTMEC by RMSE and energy 

inconsistency. 

 
Figure A4. Comparison of seasonal performance of LSTMEC,p and W2-calib in water tempeature 

prediction. 
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Figure A5. Comparison of seasonal performance of W2-calib and LSTMEC,p by water level: (a) spring, 

(b) summer, (c) fall, and (d) winter. 
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