

Communication

Not peer-reviewed version

---

# Mathematical Modeling for Infinite and Finite Dimensional Production-Inventory Systems Subject to Demand Fluctuation

---

[Yasser A. Davizón](#) <sup>\*</sup> , [Jesús Mateo Amillano-Cisneros](#) , [José Belisario Leyva Morales](#) , [Carlos Hernández-Santos](#) , [Eric D. Smith](#) , Jaime Sánchez-Leal , Blasioz Valenzuela-Saquelarez , [Elias Olivares-Benítez](#) , [Ricardo A. Ramírez-Mendoza](#) , Neale R. Smith

Posted Date: 1 August 2023

doi: 10.20944/preprints202307.2127v1

Keywords: production-inventory system; lyapunov stability; infinite dimensional system; finite dimensional system



Preprints.org is a free multidiscipline platform providing preprint service that is dedicated to making early versions of research outputs permanently available and citable. Preprints posted at Preprints.org appear in Web of Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Disclaimer/Publisher's Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content.

Communication

# Mathematical Modeling for Infinite and Finite Dimensional Production-Inventory Systems Subject to Demand Fluctuation

Yasser A. Davizón <sup>1,\*</sup>, Jesús Mateo Amillano-Cisneros <sup>1</sup>, José Belisario Leyva Morales <sup>1,7</sup>, Carlos Hernández-Santos <sup>2</sup>, Eric D. Smith <sup>3</sup>, Jaime Sanchez-Leal <sup>3</sup>, Blasioz Valenzuela-Saquearez <sup>4</sup>, Elías Olivares-Benítez <sup>5</sup>, Ricardo A. Ramírez-Mendoza <sup>6</sup> and Neale R. Smith <sup>6</sup>

<sup>1</sup> Universidad Politécnica del Mar y la Sierra, Potrerillos del Norote, Tayoltita 82740, Sinaloa, México; jamillano@upmys.edu.mx (J.M.A), bleyva@upmys.edu.mx (J.B.L.M)

<sup>2</sup> Tecnológico Nacional de México/IT de Nuevo León, México, Av. Eloy Cavazos 2001, Guadalupe 66170, Nuevo León, Mexico; carlos.hernandez@itnl.edu.mx (C.H.S).

<sup>3</sup> Industrial Manufacturing and Systems Engineering, University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA; esmith2@utep.edu (E.D.S), jsanchez21@utep.edu (J.S.L)

<sup>4</sup> Logicbus Inc; 863 Bowsprit Road, Chula Vista, CA 91914 USA; blasiozvalenzuela@logicbus.com (B.V.S)

<sup>5</sup> Facultad de Ingeniería, Universidad Panamericana, Zapopan 45010, Jalisco, Mexico; eolivaresb@up.edu.mx (E.O.B)

<sup>6</sup> Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, 64849, México; ricardo.ramirez@tec.mx (R.A.R.M), nsmith@tec.mx (N.R.S)

<sup>7</sup> Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Avenida Viel 1497, Santiago de Chile 8370993, Chile

\* Correspondence: ydavizón@upmys.edu.mx Tel.: +52-222-432-5953

**Abstract:** This research work aims to develop a mathematical modeling for production-inventory systems. Two mathematical models are present: An infinite dimensional, partial differential equation (PDE), production level modeling is present and a finite dimensional system for a coupled dynamic pricing, production rate and inventory level ordinary differential equations (ODE), integrating a proper Lyapunov stability analysis of the dynamical system and simulations.

**Keywords:** production-inventory system; Lyapunov stability; infinite dimensional system; finite dimensional system

**MSC:** 90B30

---

## 1. Introduction

Mathematical modeling plays an important role in industrial engineering, moreover in production-inventory systems, which is the case for high volume production systems that presents low variability. The application of PDE and ODE are important considering the greater amounts of data and business decisions, which are facing decision-makers. There is a growing interest in using real-time information to improve, support and validate business decision-making [1]. Today's enterprises work towards flexible, reliable and responsive business operations. Therefore, they need to implement systematic decision-making processes [2]. In production and logistics systems, supply chain management (SCM) and Industry 4.0 networks: Uncertainty, feedback cycles and system dynamics are mandatory goals [3]. This research work aims to explore the dynamic nature of a production-inventory system, via the development of infinite dimensional systems (PDEs) and finite dimensional systems, subject to demand fluctuations. Inventory management (IM) presents a crucial role in the operations and management sciences. SCM refers to the cooperation process management

of materials and information flows between supply chains partners [4]. A supply chain is a network of facilities and distribution entities such as: Suppliers, manufacturers, distributors, retailers [5].

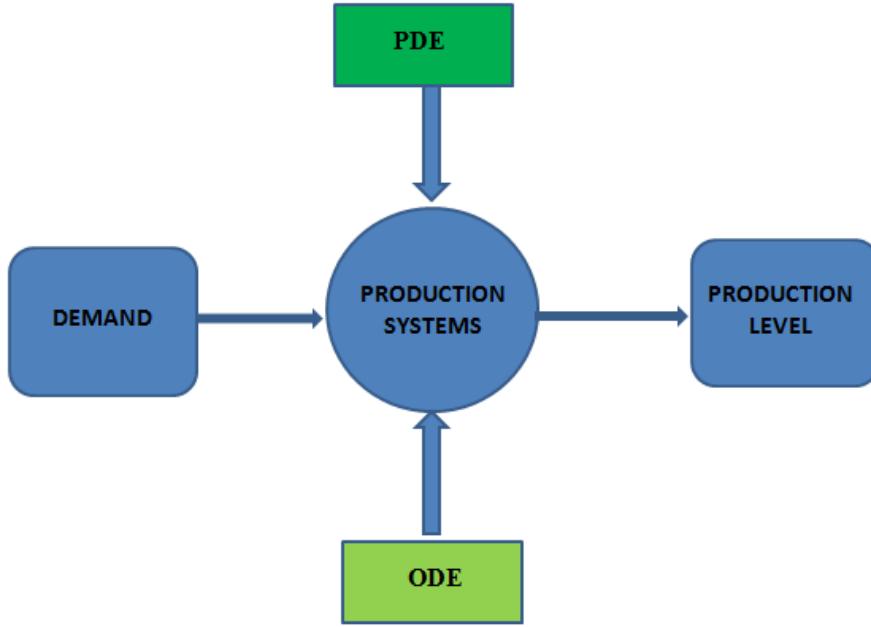
A supply chain is characterized by three flows: materials and cash (forward flow) and information (backward flow). By definition, IM is part of the SCM that plans, implements and controls the forward, and reverse flow of goods and services (as well as storage), in an efficient and effective way, between the point of origin and the point of consumption in order to meet customer requirements [6]. Inventories, in nature, are present all along the supply chain (SC) and inventory control is a crucial activity by a company's management [7]. To maintain appropriate inventory levels is crucial task for a company [8], considering that quick and positive response to customers are related to high inventory levels (which increase the cost), while low inventory levels might cause scarcity. In SCM systems there are disruption in: Supply, transportation, production and demand fluctuation [9]. In production-inventory systems some works analyzes supply disruption [10], with multi-echelon production-inventory system supply disruption [11]. In relation to production disruptions in [12] presents deteriorating items, while random disruptions are present in [13,14] and a system dynamics approach is developed for production process disruption in [15]. Supply chain dynamism builds the strategic orientation supply chain disruption orientation [16]. In a typical supply chain network efficient collaboration between all parts is vital, in times of uncertainty and unpredictable disruption [17]. Product demand variation, which is increased or decreased in a time horizon period corresponds to demand fluctuation. Table 1 summarizes a literature review in demand fluctuation with proper application sector.

**Table 1.** Demand Fluctuation Literature review.

| Paper               | Contribution                                                                                                                                                                                                                    | Application                    |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Morikawa [18]       | The aim of this paper presents evidence on the relationship between short-term demand fluctuations and the total factor productivity of service industries.                                                                     | Service industries             |
| Paul, et al [19]    | This paper considers a supplier-retailer system, with an imperfect production process and a possibility of having demand fluctuation. Also, a dynamic planning process is analyzed to deal with short-term demand fluctuations. | Supply chain                   |
| Tian, et al [20]    | This paper main contribution is the statistical physics method is applied to the demand fluctuation of two different bike sharing system.                                                                                       | Urban traffic                  |
| Yang, et al [21]    | This paper presents a comparison for two types of flexibility investment, which are flexible technology and flexible capacity, under demand fluctuations.                                                                       | Flexible manufacturing systems |
| Xiong and Helo [22] | This paper presents a fuzzy inventory model to counteract the demand fluctuation in supply demand networks, applying fuzzy logic controller.                                                                                    | Supply demand networks         |

Figure 1 presents a general taxonomy for production systems, from a mathematical modeling context, considering the demand profile and production level along this research work.

This technical note is integrated in section 2 by the mathematical formulation and solution of the infinite dimensional system for production level modeling, in section 3, a finite dimensional production-inventory system is analyzed with a proper stability analysis. Finally, conclusions and future work are present in section 4.



**Figure 1.** General taxonomy for production systems

## 2. Infinite dimensional production level modeling

In general, a production system combines humans, machinery and equipment that are next to common material and information flow [23]. In a previous work [24], a PDE for production level subject to dynamic pricing and time, was presented, with the form:

$$v_p \frac{\partial^2 \varphi(p, t)}{\partial p \partial t} + (\beta + a_p) \frac{\partial \varphi(p, t)}{\partial p} + \alpha \beta \frac{\partial \varphi(p, t)}{\partial t} + K \varphi(p, t) = D(p, t) \quad (1)$$

Where  $\varphi(p, t)$  is the production level subject to price and time,  $D(p, t)$  is the demand level,  $v_p$  is the price velocity,  $a_p$  is the price acceleration,  $\beta$  is the damping coefficient,  $\alpha$  is the scaling production factor and  $K$  is the production system resilience, with

$$\beta + a_p > 0.$$

Our aim is to solve equation (1) analytically, subject to similar conditions for which a production system approaches to demand levels near to zero.

**Theorem 1.** Considering the PDE in (1) assumming that:  $D(p, t) = wP'$ ,  $\beta + a_p = 1$  and  $\alpha \beta = 1$ , which gives the following solution:

$$\varphi(p, t) = e^{-\alpha p} \left( e^{-\left(\frac{K-\alpha}{1-\alpha v_p}\right)t} + \frac{\alpha w}{\alpha - K} \right)$$

Proof.

$$v_p \frac{\partial^2 \varphi(p, t)}{\partial p \partial t} + \frac{\partial \varphi(p, t)}{\partial p} + \frac{\partial \varphi(p, t)}{\partial t} + K \varphi(p, t) = wP' \quad (2)$$

Applying the separation of variables method, we have the following:

$$\varphi(p, t) = P(p)T(t). \quad (3)$$

Substituting equation (3) in the PDE (2):

$$v_p P' T' + P' T - w P' + P T' + K P T = 0. \quad (4)$$

Where:  $P' = \frac{dP}{dp}$  and  $T' = \frac{dT}{dt}$

Grouping terms from equation (4):

$$P' (v_p T' + T - w) = -P (T' + K T). \quad (5)$$

Separating terms in equation (5):

$$-\frac{P'}{P} = \frac{(T' + K T)}{v_p T' + T - w} = \alpha. \quad (6)$$

For separate ordinary differential equation (ODE), in time domain:

$$\frac{P'}{P} = -\alpha. \quad (7)$$

Therefore:

$$\frac{dP}{P} = -\alpha dp. \quad (8)$$

Solving equation (8):

$$P(p) = e^{-\alpha p}. \quad (9)$$

For the ODE, in time domain:

$$T' + K T = \alpha (v_p T' + T - w). \quad (10)$$

After some algebraic manipulation, equation (10) becomes:

$$T' + \left( \frac{K-\alpha}{1-\alpha v_p} \right) T = - \left( \frac{\alpha w}{1-\alpha v_p} \right). \quad (11)$$

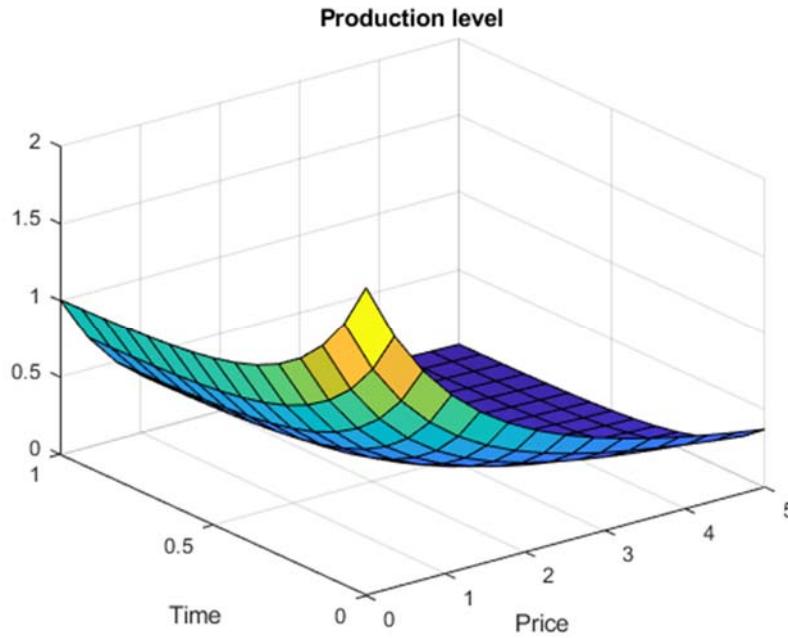
Solving the equation (11), we have:

$$T(t) = C e^{-\left( \frac{K-\alpha}{1-\alpha v_p} \right) t} + \frac{\alpha w}{K-\alpha}. \quad (12)$$

Finally, the solution for the PDE production level subject to price and time is:

$$\varphi(p, t) = e^{-\alpha p} \left( e^{-\left( \frac{K-\alpha}{1-\alpha v_p} \right) t} + \frac{\alpha w}{\alpha - K} \right). \quad (13)$$

In Figure 2, a PDE production level normalized solution in function of price and time is present, considering a tendency to zero production level conforming price and time tends to infinity.



**Figure 2.** PDE production level solution in function of price and time

### 3. Finite dimensional production-inventory modeling

In [25] a dynamic production-inventory system is presented via optimal control theory. For mathematical modeling purposes an extension, of this previous work is present here, considering dynamic pricing and time delayed effects.

#### 3.1. Mathematical modeling

A time-delayed production inventory system is proposed via a set of coupled ordinary differential equations which are described as follows: In order to incorporate a dynamic pricing perspective in the production-inventory system, we propose:

$$\frac{dp}{dt} = u_1(t) - p(t) + k \frac{I(t)}{c} \quad (14)$$

Where from equation (14),  $u_1$ = denotes the purchase price level;  $p$  = denote the sales price level;  $I$ = inventory level;  $k$ = associated cost for inventory and  $C$ =Capacity level.

To develop the production-inventory system dynamics for production level and production rates, the following equation is proposed:

$$C \frac{d^2Q}{dt^2} + I(t) \frac{dQ}{dt} + \gamma Q(t - \theta) = d(t) \quad (15)$$

From equation (15),  $Q$ = production level;  $dQ/dt$ = production rate;  $d$ = demand level,  $\theta$ = lead time and  $\gamma$ = production resilience factor.

The following ODE describes the inventory level of the system:

$$\frac{dI}{dt} = \mu I(t - \theta) + \gamma Q(t) - d(t) \quad (16)$$

In order to provide a linear approximation, via Taylor series, for the time delay terms as in [26], and neglecting high order terms:

$$x(t - \tau) \approx x(t) - \tau \dot{x}(t) \quad (17)$$

Developing a state space formulation for the time delayed production inventory system from equations (14)-(16) and applying equation (17) our new state space system is:

$$\dot{x}_1(t) = -x_1(t) + k_1 x_4(t) \quad (18)$$

$$\dot{x}_2(t) = x_3(t) \quad (19)$$

$$\dot{x}_3(t) = -k_2 x_3(t) x_4(t) - k_3 x_2(t) + k_4 x_3(t) \quad (20)$$

$$\dot{x}_4(t) = k_5 x_2(t) + k_6 x_4(t) \quad (21)$$

Where  $x_1(t) = p(t)$ ,  $x_2(t) = Q(t)$ ,  $x_3(t) = dQ/dt$ ,  $x_4(t) = I(t)$  and the constants  $k_1 = k/C$ ,  $k_2 = 1/C$ ,  $k_3 = \gamma/C$ ,  $k_4 = \gamma\theta/C$ ,  $k_5 = \gamma/(1+\mu\theta)$ ,  $k_6 = \mu/(1+\mu\theta)$ .

### 3.2. Stability analysis

**Theorem 2.** In order to have a stability analysis, for the system of equation 18-21, the following conditions must be satisfied,  $\gamma\theta > 0$ ,  $\mu > 0$  and  $C > 1 + \mu\theta$ .

Proof.

In order to proof theorem 2, the following Lyapunov candidate function is proposed:

$$V(x_1, x_2, x_3, x_4) = \frac{1}{2}x_1^2 + \frac{1}{2}x_2^2 + \frac{1}{2}(x_3 - x_4)^2 \quad (22)$$

Applying the derivative with respect to time, to the Lyapunov candidate function:

$$\dot{V}(x_1, x_2, x_3, x_4) = x_1 \dot{x}_1 + x_2 \dot{x}_2 + (x_3 - x_4)(\dot{x}_3 - \dot{x}_4) \quad (23)$$

After some algebraic manipulation, and applying the LaSalle Theorem in the equilibrium point.

$$\dot{V}(x_1, x_2, x_3, x_4) < -x_1^2 + k_4 x_3^2 + k_6 x_4^2 - (k_3 - k_5 - 1)|Q|^2 - (k_4 + k_6)|O|^2 - (k_5 - k_3)|P|^2 \quad (24)$$

Equation 24, can be simplified to:

$$\dot{V}(x_1, x_2, x_3, x_4) < -x_1^2 - (k_4 + k_6)|O|^2 - (k_5 - k_3)|P|^2 \quad (25)$$

In order to achieve stability, the following condition must be satisfied:

$$k_4 + k_6 > 0$$

$$k_5 - k_3 > 0$$

Therefore:  $k_4 > 0$  and  $k_6 > 0$

Considering that:  $k_4 = \frac{\gamma\theta}{C}$  and  $k_6 = \frac{\mu}{1+\mu\theta}$

Also,

$$k_5 > k_3$$

From which we can conclude that:

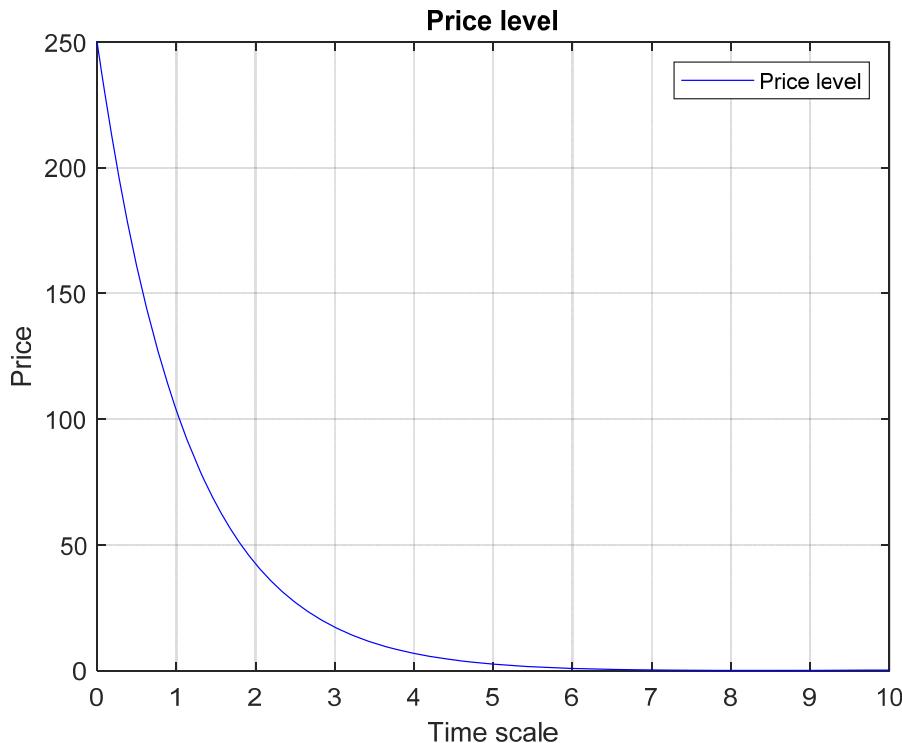
$$\gamma\theta > 0, \mu > 0 \text{ and } C > 1 + \mu\theta$$

### 3.3. Simulations

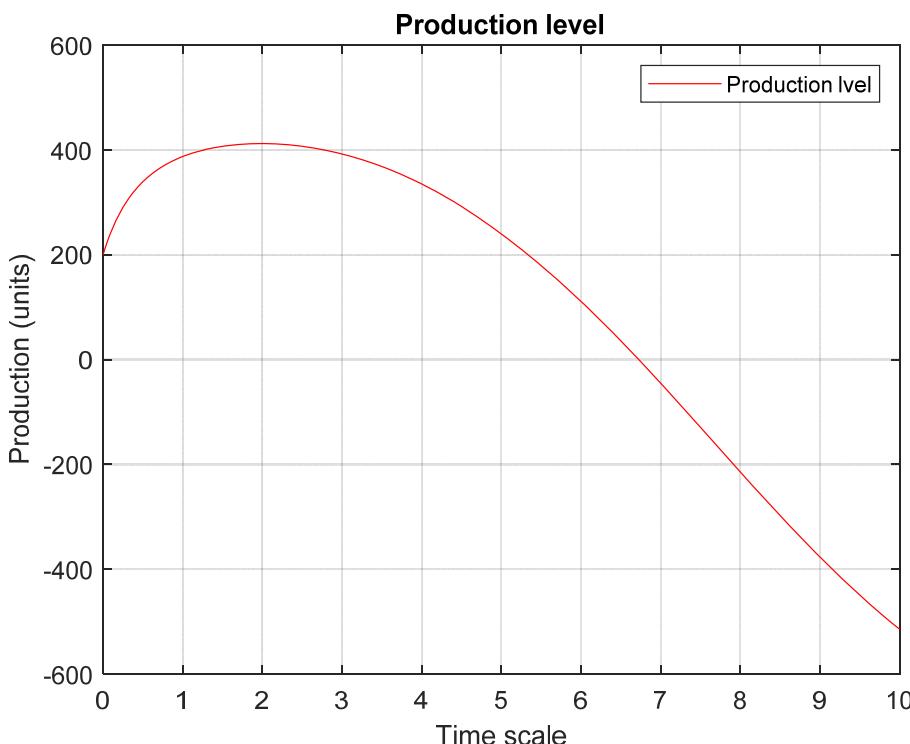
Simulations were developed applying MATLAB, for the equations (18)-(21), in which in Figure 3 presents a decaying performance for price level of the finite dimensional production system. This is considering the Equation 14, which presents the dynamic pricing analysis for production-inventory system. Conforme time increases the pricel level tends to zero.

In Figure 4 a production level achieves a maximum for the finite dimensional system which is based on the context that this is the level the production rate. From Figure 5, unproduce is related with a negative production rate performance. This effect is present around time unit two, and conforms tends to higher values the production rate decreases.

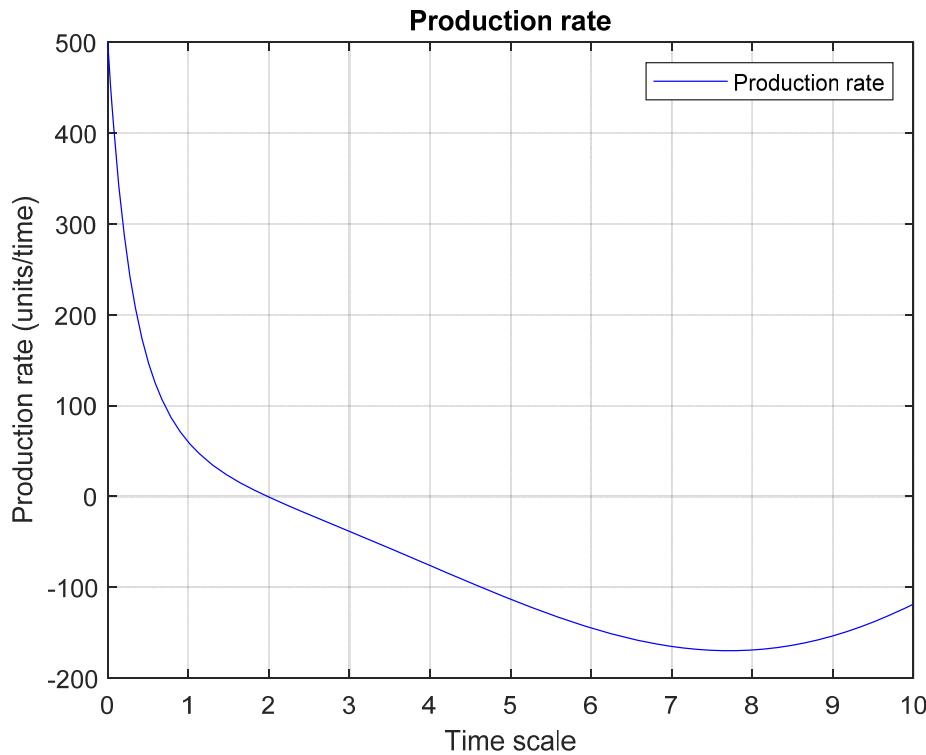
Figure 6 presents a decaying inventory level conforms production rate tends to a negative value, which is an effect of the relation of maximum production level towards lower levels for inventory. This is present from Equation 16, which presents a dynamic inventory level with time delaying.



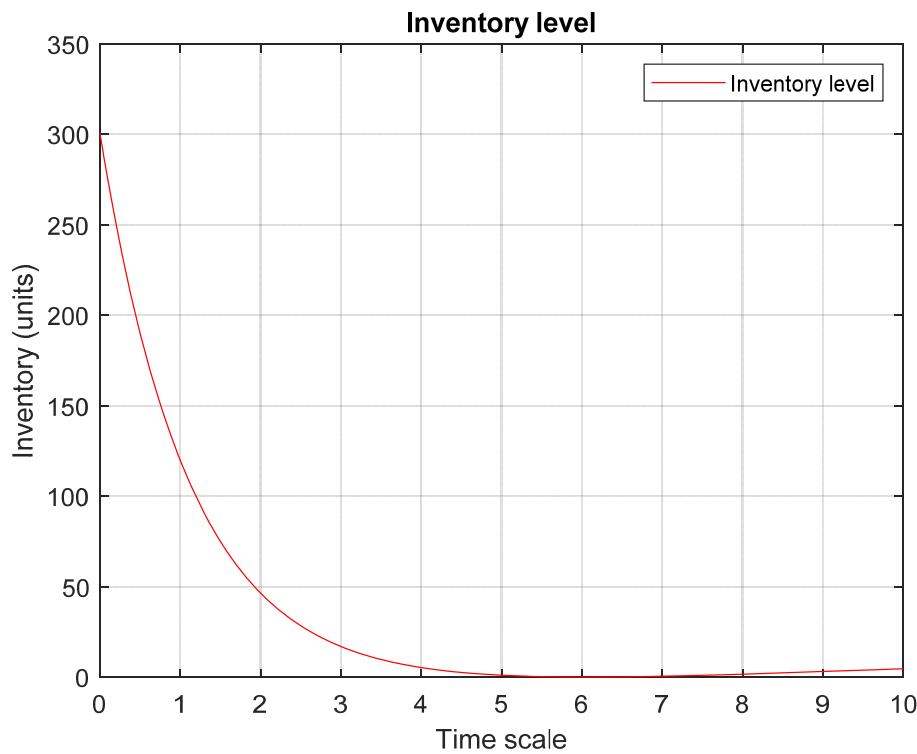
**Figure 3.** Price level for the finite dimensional production system



**Figure 4.** Production level for the finite dimensional production system



**Figure 5.** Production rate for the finite dimensional production system



**Figure 6.** Inventory level for finite dimensional production system

#### 4. Conclusions

This communication presents that mathematical modeling in high volume production systems, is important via the application of infinite and finite dimensional approaches, which corresponds to the use of partial differential equations (PDE) and ordinary differential equations (ODE), respectively.

This mathematical modeling considers low variability and cause-effect relation for deterministic approach in high volume production systems. This research work presents two novel approaches via PDE and ODE to model high volume production systems, with emphasis on demand fluctuation. In general, demand fluctuation corresponds to product demand variation, which is increased or decreased in a time horizon period.

In future work, our interest is to apply optimal control theory in order to extend the results based on mathematical modeling for both dynamical systems.

**Author Contributions:** Conceptualization, Y.Davizón, J.Amillano, and J. Leyva; methodology, C.Hernández, J.Sánchez and R. Ramírez; software, Y.Davizón and E. Olivares.; validation, B.Valenzuela and E.Smith ; formal analysis, C.Hernández and E. Olivares; investigation, Y.Davizón.; resources, B.Valenzuela, E. Olivares, R. Ramírez and N.Smith; writing—original draft preparation, Y.Davizón and J.Amillano; writing—review and editing, J.Sánchez, C.Hernández and J. Leyva; supervision, E. Olivares and E.Smith; funding acquisition, E.Olivares, J.Sánchez, E.Smith and N.Smith. All authors have read and agreed to the published version of the manuscript.

**Funding:** This research was funded by Universidad Panamericana (grant number UP-CI-2022-GDL-11-ING).

**Acknowledgments:** The authors are grateful and recognize the optimal feedback provided by Dr. Cesar Martínez-Olvera and Dr Carlos Hinojosa, for their comments and advising during the development of this research work.

**Conflicts of Interest:** The authors declare no conflict of interest.

#### References

1. Sourirajan, K., Ramachandran, B. and An, L. Application of control theoretic principles to manage inventory replenishment in a supply chain. *International Journal of Production Research*. 2008. 46 (21). pp. 6163–6188.
2. Perea, E., Grossmann, I., Ydstie, E., and Tahmassebi, T. Dynamic modeling and classical control theory for supply chain management. 2000. *Computers and Chemical Engineering* 24 pp.1143-1149
3. Dolgui, A., Ivanov, D., Sethi, S. and Sokolov, B. Control theory applications to operations systems, supply chain management and Industry 4.0 networks. 2018. *IFAC PapersOnLine* 51-11 pp. 1536–1541
4. Sucky, E. Inventory management in supply chains: A bargaining problem. *International Journal of Production Economics*. 2005. 93-94. pp. 253-262.
5. Sarimveis, H., Patrinosa, P., Tarantilis, C.D. and Kiranoudisa, C.T. Dynamic modeling and control of supply chain systems: A review. 2008. *Computers & Operations Research* 35 pp. 3530–3561
6. Singh, D. and Verma, A. Inventory management in supply chain. *Materials Today: Proceedings* 5 (2018) 3867–3872
7. Bieniek, N. The ubiquitous nature of inventory: Vendor Managed Consignment Inventory in adverse market conditions. *European Journal of Operational Research*. 2019. In press.
8. Duan, L. and Ventura, J.A. A Dynamic Supplier Selection and Inventory Management Model for a Serial Supply Chain with a Novel Supplier Price Break Scheme and Flexible Time Periods. *European Journal of Operational Research*. (272) 2019.
9. Paul, S.K., Sarker, R. and Essam, D. Managing risk and disruption in production-inventory and supply chain systems: A review. *Journal of Industrial & Management Optimization*, 2016, 12 (3). pp.1009-1029. doi: 10.3934/jimo.2016.12.1009
10. Li, S., He, Y. and Lujie, C. Dynamic strategies for supply disruptions in production-inventory systems. *International Journal of Production Economics*.2017, 194. pp 88-101. doi: 10.1016/j.ijpe.2017.04.003
11. Pal, B., Sana, S.S. and Chaudhuri, K. A multi-echelon production–inventory system with supply disruption. *Journal of Manufacturing Systems*. 2014, 33(2), pp. 262-276. doi: 10.1016/j.jmsy.2013.12.010

12. He, Y. and He, J. A Production Model for Deteriorating Inventory Items with Production Disruptions. *Discrete Dynamics in Nature and Society*. 2010. Article ID 189017, doi:10.1155/2010/189017
13. Karim, R. and Nakade, K. A stochastic model of a production-inventory system with consideration of production disruption. *International Journal of Advanced Operations Management*, 2019. 11(4). pp.287-316 doi: 10.1504/IJAOM.2019.103152
14. Moinzadeh, K. and Aggarwal, P. Analysis of a Production/Inventory System Subject to Random Disruptions. *Management Science*, 1997. 43(11), pp.1577-1588. doi: 10.1287/mnsc.43.11.1577
15. Sánchez-Ramírez, C., Ramos-Hernández, R., Mendoza Fong, J.R., Alor-Hernández, G., and García-Alcaraz, J.L. A system dynamics model to evaluate the impact of production process disruption on order shipping. *Applied Sciences*, 2020, 10, 208; doi:10.3390/app10010208
16. Stephens, A.R., Kang, M. and Robb, C.A. Linking Supply Chain Disruption Orientation to Supply Chain Resilience and Market Performance with the Stimulus–Organism–Response Model. *Journal of Risk and Financial Management*. 2022.
17. Nunes, M., Abreu, A. Bagnjuk, J., Nunes, E. and Saraiva, C. A Strategic Process to Manage Collaborative Risks in Supply Chain Networks (SCN) to Improve Resilience and Sustainability. *Sustainability*, 2022.
18. Morikawa, M. Demand fluctuations and productivity of service industries. *Economics Letters*. 2012
19. Paul, S.K. , Sarker, R. and Essam, D. Managing real-time demand fluctuation under a supplier–retailer coordinated system. *Int. J. Production Economics*. 2014.
20. Tian, Z., Zhou, J. and Wang, M. Dynamic evolution of demand fluctuation in bike-sharing systems for green travel. *Journal of Cleaner Production*, 2019.
21. Yang, L., Ng, C.T. and Cheng, T.C.E. Optimal production strategy under demand fluctuations: Technology versus capacity. *European Journal of Operational Research*. 2011.
22. Xiong, G. and Helo, P. An application of cost-effective fuzzy inventory controller to counteract demand fluctuation caused by bullwhip effect, *International Journal of Production Research*, 2006.
23. Alexopoulos , K., Papakostas N. , Mourtzis D., Gogos, P. & Chryssolouris, G. Oscillator analogy for modelling the manufacturing systems dynamics, *International Journal of Production Research*, 2008, 46:10, 2547-2563
24. Davizón, Y.A., Soto, R., Rodríguez, J.J., Rodríguez-Leal, E., Martínez-Olvera, C. and Hinojosa, C. Demand management based on model predictive control techniques. *Mathematical Problems in Engineering*, 2014. Article ID 702642 doi: 10.1155/2014/702642
25. Davizón, Y.A.; Martínez-Olvera, C.; Soto, R.; Hinojosa, C.; Espino-Román, P. Optimal Control Approaches to the Aggregate Production Planning Problem. *Sustainability* 2015, 7, 16324-16339. <https://doi.org/10.3390/su71215819>
26. Insperger, T. On the Approximation of Delayed Systems by Taylor Series Expansion. *Journal of Computational and Nonlinear Dynamics*. 2015, Vol. 10

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.