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Abstract: The locality condition of probabilities underpinning the derivation of Bell inequalities can be violated
classically. The wave function collapse of an entangled state of single photons results in the factorization of
quantum probabilities. It is possible to differentiate, locally, between ensemble probabilities of single detections
with and without wave function collapse for the alleged quantum nonlocality. The theoretical concept of
photonic quantum nonlocality cannot be implemented physically because of the quantum Rayleigh scattering
of single photons. A distinction needs to be made between the correlation of individual, single measurements
of pure states and the correlation of the measurement ensemble of the mixed states. The correlation operator
of Pauli vector operators delivers the same probabilities of correlated detections of photons for both
independent and multi-photon states as for ‘entangled” states of photons. As single-photon sources are not
needed, the design and implementation of quantum computing operations and other devices will be
significantly streamlined. © 2024 The Author

Keywords: quantum Rayleigh scattering; correlation of polarization states; quantum nonlocality

1. Introduction

Recent background briefing articles [1-2] reveal significant difficulties in the implementation of
practical quantum computers based on the concepts of entangled states and quantum nonlocality-
related correlations of detected single photons [3-4] despite heavy resources having been invested in
the last two decades. This is not surprising given the omissions of quantum physical processes and
many physical contradictions that have been allowed to persist in the professional literature of
leading journals.

The benchmark for quantum correlations takes the form of Bell-inequalities [3-4] which should
be violated only by quantum probabilities calculated as the expectation values of a product of
operators in the context of wavefunctions describing, e.g., polarization-entangled single photons.

The effect of quantum nonlocality is meant to synchronize the detections recorded at the two
locations A and B for polarization-entangled states of photons. In the caption to Fig.1 of [5], one
reads: “...if both polarizers area aligned along the same direction (a=b), then the results of A and B
will be either (+1; +1) or (-1; -1) but never (+1; -1) or (-1; +1.); this is a total correlation as can be
determined by measuring the four rates with the fourfold detection circuit.” Yet, the quantum
correlation is supposed to take place at the level of each pair of entangled photons rather than
between averaged values, or rates, of the two distributions; but such an outcome has never been
reported. The maximal, experimentally measured probability of coincident counts reported in the
landmark experiments of refs. [6-7] is 2x10* (or 0.0002) which was achieved with highly non-
entangled states and raising doubts about the existence of Bohr’s nonlocality.

Additionally, the Bell parameter S = {aq by) + {ay b1) + {a; by) — {a, b;) of Eq(4) in [4] would
actually vanish as {a; b;) = (ay by) = —1 and {a; by) = {ay b;) = 0 according to the expectation
values [4; p. 422] of (a, b,) = —X-y, for detection settings Xy ll Yo,1, and Xo,q L ¥ 1,0 Of the
polarization states for coincident detections. Thus, S =0, failing to violate the Clauser-Horne-
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Shimony-Holt (CSHS) inequality despite involving the strongest quantum correlations. This fact
should have rung alarm bells about the irrelevance of the Bell-type inequalities as an indicator of

one photon
—-/‘/’/’-'

(1)
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Figure 1. Schematic of one photon being randomly scattered inside a dielectric medium, while a
group of identical photons propagates in a straight-line.

strong correlations between the same order elements of two sequences. This shortcoming will

be elaborated on in this article.

From an experimental perspective, the correlation probability of simultaneous detections
pc(a, b) between two binary-valued sequences is evaluated from a third sequential distribution
ve(a; b) calculated as the temporal vector or dot product of the two initial sequences v(a, x) = {a;;}
and v(b,y) = {b,,} leading to p.(a,b) = Xm=1am bn)/N where a,b=00r1 are assigned
binary values for no-detection or detection of an event, respectively. For any two ensembles of
measurements, the values of the correlation or joint probability p.(a,b) will depend on the
sequential orders of the two separate ensembles at locations A and B, and can exceed the product of
the local probabilities, i.e., of p.(a,b) > ps(a) pg(b) . Therefore, as the quantum formalism does
not provide any information about those sequential orders, any artificial boundary such as Bell-
inequalities is physically meaningless, because for the same values of the local probabilities,
pa(a) and pp(b), the higher values of p.(a, b) will lead to a violation of the Bell inequality in the
classical regime. Bell inequalities can be easily violated with independent photons [8-10].

Equally, the experimental results of ref. [11] alleging propagation of single photons through the
atmosphere over a distance of more than 100 km are physically impossible because of the quantum
Rayleigh scattering [12-13] of single photons which will prevent synchronized detections. A
physically meaningful explanation was presented in refs. [14-15] and can be summarized as follows.
The spontaneously emitted photons in the nonlinear crystal undergo parametric amplification
forming a group of identical photons. This group of photons can overcome the quantum Rayleigh
scattering through quantum Rayleigh stimulated emission. This is illustrated in Figure 1 of this article
and detailed in refs. [14-15].

Additionally, a sub-section of ref. [4] headlined “More nonlocality with less entanglement” leads
one to the anomaly of nonlocality. “Astonishingly, it turns out that in certain cases, and depending
on which measure of nonlocality is adopted, less entanglement can lead to more nonlocality.” [4; p.
442]. “Remarkably, it turns out that this threshold efficiency can be lowered by considering partially
entangled states. ....This astonishing result was the first demonstration that sometimes less
entanglement leads to more nonlocality “ [4; p. 464].

“Since it is expressed in terms of the probabilities for the possible measurement outcomes in an
experiment, a Bell inequality is formally a constraint on the expected or average behavior of a local
model. In an actual experimental test, however, the Bell expression is estimated only from a finite set
of data and one must take into account the possibility of statistical deviations from the average
behaviour” [4, p. 466]. For a distinction between probability and frequency of occurrence, the reader
is directed to ref. [16]

Experiments designed to close loopholes linked to hidden variables are based on statistical
considerations of Bell inequalities. But these inequalities ignore loopholes arising from physical
interactions such as the quantum Rayleigh scattering of single photons and the polarization
correlations between Stokes vectors. Such physical contradictions and inconsistencies are outlined in
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Section 2 of this article in relation to local measurements of polarization entangled photons. In Section
3, a distinction is made between the correlation of coincident detections of photons and the
correlation between ensembles of measurements, as well as pointing out the flaws of the Bell
inequalities. Section 4 scrutinizes landmark experiments [6-7] in view of the analytic results of the
previous sections, explaining the failure to develop practical quantum computers and putting
forward practical ways of processing data states on the Poincaré sphere. Physical aspects of the
possibility to achieve quantum-strong correlations with independent, multi-photon states facilitating
qubit rotations will be discussed in Section 5, and final conclusions are listed in Section 6.

2. Physically Meaningful Wavefunctions

A series of contradictions and inconsistencies can be identified in the theory and experiments
involving the concept of quantum nonlocality:

1) Quantum Rayleigh scattering [12-13] prevents a straight-line propagation of a single photon,
thereby ruling out coincident detections of the original pair of photons;

2) Independent photons produce quantum-strong correlations of detected polarization states [8-
9

3) Polarimetric, local measurements of a maximally entangled photon result in a zero-
expectation value [10]. For a local measurement of the Pauli operators &, , in the context of a Bell
state |Y4p), the expectation values vanish, ie., (Uu5 |6, ® I5 [Wap) =0, (I being the identity
operator) delivering no information for a comparison between the two pair ensembles at locations A
and B;

4) Experimental results alleging evidence of quantum nonlocality are obtained with low levels
of entanglement instead of maximally entangled states [6-7];

5) The quantum nonlocality is meant to operate between the two pair-photons but Bell
inequalities deal with the correlation between ensemble averages [3-4];

6) The wavefunction collapse upon the first measurement reduces the entangled state to a
product state, with the probability of projective rotation of the polarization state being identical to
that of an independent state.

These contradictions and inconsistencies are addressed in this article in the context of the
following guidelines:

(a) Reproducibility of experimental results is a basic principle of scientific methodology. Any
apparent correlation between two measurements carried out with identical physical systems and
under identical conditions is bound to produce identical distributions of outcomes, whether
quantum or classical. Therefore, for any quantum effect of nonlocality between two single and
entangled photons to be identified, the symmetry correlation needs to be removed from the
picture;

(b) The concept of wave function collapse involving an entangled state of photons upon a first
measurement is analyzed based on the von Neumann's projection postulate [3; eq. (C28)];

(c) A second type of wave function collapse in the case of an entangled state composed of two
product terms will lead, upon collapse through measurement, to only one product term, which
actually eliminates the entanglement before the second measurement; and,

(d) Each of the two separate detectors has only one setting or channel open for receiving the
incoming photon. This configuration will remove the mix-up between two-channel detectors.

2.1. Factorizing Quantum Probabilities Associated With Entangled States

It is claimed [3; p.583] that “... the probability distribution defined by an entangled state does
not satisfy the principle of statistical separability, even when the parts are far apart in space.” This
statement is contradicted by the formalism of the wave function collapse, or reduction, upon a first
measurement at location A, which is followed by a second one at location B, as analysed in [17] and
expanded in this subsection.

If the optical source emits a time-dependent stream of polarized pair-photons, only one term of
the entangled state, e.g., either (|H,) |Hg) or |V,)|Vg) will be present at any given time for an
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individual measurement but not both. This physical reality is disregarded by the mixed quantum
state, but is reintroduced through the wave function collapse, breaking up the “entanglement”
between the two photons and bringing a time-dependence into the process of individual
measurements analogous to the time-resolved detection of single photons [17].

A different approach would be to evaluate the probability of detection at location B in two
possible circumstances:

1. No detection takes place at location A, so that the projective measurement at location B
involves the operator T(8) = |Hﬁ) (Hﬁl acting on the initial state

[Yap) = (1Ha) IVs) = [Va) IHED/V2 €Y)
and resulting in the probability of detection
Pg = (1/JAB|iA®|H/3) (HB|® Iy 1 ap) = (cos? B +sin? B)/2 =1/2 2)

after setting (HﬁlHB) = cos B and (H,;|VB) = sin . An identical result is obtained for the first
detection at location A, ie.,, P, =1/2.

2. A first detection takes place at location A involving the projective operator T(a) = |H,) (H,|,
which results in the intermediary state for the projective amplitudes (H,|H,) = cosa and (H,|V,) =
sina , so that the reduced or collapsed wave function [y A) becomes:

|lpB|A) = |H,) (Ha|® Ig1Yap)

1 ,
=% (cosa |Vg) —sina |Hg)) |H,) (3)

|¢B|A> — |Ha)<Ha|® fBI l»l}AB)
VN VN

where |Yg) denotes the normalised wave function for the calculation of the detection
probability at location B, conditional on a detection at location A. The normalization factor N = 1/2
for the collapsed wave function [p)4) corresponds to the probability of detection P,for the first
measurement, and after substituting for |¢) from Eq (4) we have:

Py = <¢AB|iB®|Ha)<Ha|® iB|¢A3) = |<Ha|1/)AB>|2 = N (Yg|p)
=1/2 5)

Based on the normalized state [¢g), the probability of detection at location B following a
detection at location A becomes in this case, for a projective measurement:

Pgio = (Yg|Hp) (Hg|Yp) = | cos a sinB — sina cos B|* = sin*(B — a) (6)

This result which can be found in [3; Sec.19.5] implies that for § — a = +m/2, regardless of the
values of f or a , the local probability of detection could peak at unity. This theoretical outcome is
easily testable experimentally for direct evidence of a quantum nonlocal effect influencing the second
measurement after the wave function collapse. But this has never been done either because of the
quantum Rayleigh scattering of a single-photon and/or the non-existence of such a nonlocal effect.
The product of the local probabilities of Egs. (2) and (6) equals the expression of the joint probability
Pyp for simultaneous detections at both locations A and B, that is:

Paﬁ = ‘(Hﬁl(Halw

N>

Pag = (Yap|Ho) | Hp)®(Hp |(He W a5) = 0.5 sin?(B — a) (7b)
Paﬁ = Pa Pﬁ|a < Pa Pﬁ (7C)

[Wp) = (4)

2
Py = |(Hglws)| Py = Ppja P (7a)
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after inserting from Egs. (4) and (5) in the equality (7a). The equality (7b) provides a direct calculation
of the joint probability, confirming the validity of the derivation. With the conditional probability
of local detection Pg|, being, mathematically, lower than, or at best, equal to the local probability
of detection Py in the absence of a first detection, i.e., Pg|q < P, the formalism of wave function
collapse gives rise to a factorization of local probabilities and imposes an upper bound on the
quantum joint probability, in clear contradiction to the conventional assumption [3; p.538], [4]. This
formalism delivers average values of the ensembles rather than correlation between the sequential
orders of the detections, as explained in the Introduction section and Appendix A. The possibility of
factorizing the quantum probability for joint events as in (7a) is identical to the classical case of joint
probabilities with the second local probability being conditioned on a first detection. This strong
similarity between the classical and quantum joint probabilities renders the local condition of
separability [3-4] irrelevant for the derivation of Bell inequalities.

However, as local measurements at location B result in a difference between Pg =1/2 and
P = sin*(B — @) , experimental proof, or otherwise, of any quantum nonlocal effects can be verified
by carrying out two ensembles of measurements, one with a prior detection at location A and the
second one without such a detection. Additionally, by switching on and off the measurement at
location A, a signal would be detected at location B between zero and non-zero probabilities, by
simply coordinating the two filters’ angles to be equal f = a for the zero probability of joint
detections.

The use of a global quantum state which is time- and space-independent for the description of a
time-dependent source output has led in many cases to physically impossible conclusions which
were, nonetheless, taken as the “miracles” of quantum optics and quantum mechanics. In other
words, even though information about the quantum system can be obtained from each individual
measurement, the predictions of expected values of dynamic variables are based on global quantum
states which discard a great deal of information.

The analogous correlation function for independent photons evaluated through projective
measurements is presented in Appendix B, to reveal the possibility of complete unity correlation
between two one-setting detectors unlike Eqs. (7) which limit the correlation to a 0.5 value.

2.2. System-Descriptive Wavefunctions For Time-Varying Inputs

Our quest for a physically meaningful wave function is based on the first paragraph of the
review [18] which reads:

“ A quantum state is what one knows about a physical system. The known information is codified in a state
vector | ), or in a density operator P, in a way that enables the observer to make the best possible statistical
predictions about any future interactions (including measurements involving the system). [ 18, p. 299].

The maximally entangled state of |®ug) = (|Hy) |Hg) + |V4) [Vg))/V2 is time-independent
corresponding to a mixed quantum state composed of two pure product states. For only one pair of
photons being generated at any given time [6-7], [11] the time-dependent wavefunction |®,p(t)) =
¢ (t) |Hp) |Hg) + () |Vy) [Vg) will result in two data sets being measured at different times, one for
each product term, with ¢,(t) = 1and c,(t) =0 or ¢;(t) = 0and c,(t) =1, and the basis states
|Hg, B) and |V, B) being aligned with the x and y axes of the joint frame of coordinates in the
measurement space.

The following paragraph is highly indicative of the shortcomings associated with an approach
or formalism that deliberately overlooks physical elements and aspects of experimental setups. This
paragraph reads [18]:

“In order to prepare a heralded photon, a parametric down-conversion (PDC) setup is pumped relatively
weakly so it generates, on average, much less than a single photon pair per laser pulse (or the inverse PDC
bandwidth). The two generated photons are separated into two emission channels according to their propagation

direction, wavelength, and/or polarization. Detection of a photon in one of the emission channels (labelled
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trigger or idler) causes the state of the photon pair to collapse, projecting the quantum state in the remaining

(signal) channel into a single-photon state.” [18, p. 311].

Experiments of correlated polarization states in the quantum regime would have one photon
per radiation mode propagate in a straight-line in a dielectric medium in order to synchronize their
detections. Yet, the quantum Rayleigh scattering [12-13] would prevent such a straight-line
propagation, thereby making a synchronized detection impossible.

As derived and explained in [14-15], the parametric amplification is unavoidable and is
accompanied by a phase-pulling effect which leads to the optimal condition for amplification. The
alleged collapse of the state of the pair of photons, upon detection of one of them, into a single-photon
state of the photon assumes that a single photon per radiation mode can propagate across a dielectric
medium in a straight-line to the target photodetector. As explained previously [12-13], this
assumption is ruled out by the existence of the quantum Rayleigh scattering in dielectric media such
as optical fibres and beam splitters. But the parametrically amplified group of photons will
propagate in a straight-line by recapturing an absorbed photon through the quantum Rayleigh
stimulated emission [14-15]. Additionally, the formation in a beam splitter of groups of identical
photons through quantum Rayleigh stimulated emission is presented in [14-15].

2.3. The Quantum Case of Time-Dependent Correlation Functions

The conventional interpretation of coincident detections of a pair of polarization-entangled
photons would have one photon each reach photodetectors A and B, spatially separated. But the two
possible polarization states of each photon are mutually exclusive in time so that two data sets are
probed separately at the level of each individual quantum event, with the statistical distribution of
the mixed state describing the overall two ensembles of events. Thus, a physically meaningful
wavefunction describing the two data sets will have a time dependence of only one pair of photons
being present at any given time, e.g.:

[Wap(©)) = () [Hp) [Vp) — c2(8) Vi) [Hp) (8)

where ¢;(t) = 1and c,(t) =0 orcy(t) =0and c,(t) =1, and |Hy) and |Vp) are aligned with
the x and y axes of the joint frame of coordinates in the measurement space. The ensemble averages
of the coefficients are: ¢,(t) = 1/v2 and c,(t) = 1/v2 resulting, mathematically, in a maximally
entangled state for an ensemble of measurements.

The common approach [3, Sec.19.5] would have the input photon absorbed through the
annihilation operator @ |H or V) = |0), followed by a rotation of the creation operator af(a) =
cosa d}; +sina d?; and the appearance of the photon along the polarization filter’s orientation
at(a) |0) = (cosa + sina) |Hy,).

For one photon projected onto the filter state |H,) atlocation A, the detection probability Ppp(a)
of one photon at orientation angle «, following the collapse of the wave function upon the first
sequential measurement, introduces a time dependence of the two mutually exclusive terms. For the
sum of the two terms, the probability of photodetection at location A is:

Pop(a,t) = ((Wap(®)| 81)(Qul¥ap())) = App App = |App(a, )]? =

= |c;(t) cos al? + |c,(t) sina | (9)
And, similarly, for the location B:

Ppp(B,t) = |e1(2) sin BI* + |c,(t) cos B | (10)

This time-dependence reproduces the time variation at the source output. Consequently, the

entangled state plays no role in the detection processes of the two time-separated ensembles of
measurements.
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For two simultaneous detections, one each at A and B, the probability P,; of coincident
detections takes the form:

Pap(t) = (Wap(D)| G% &) g Qa|Wap(t))

= |cy(t) cos a sin B — c,(t) sinacos B|?>  (11)

The time-separation at the source is given by ¢;(t) = land c;(t) =0 orc,(t) = 0and c,(t) =
1. This time-dependence is reproduced through the wavefunction collapse upon the first
measurement. The first measurement returns a random detection, while the second measurement
does not involve the original entangled state.

Two data sets of measurements are recorded, one for each term of two photons in Eq (8), leading
to the separate probabilities Pgp.;j = |c;(t) |2 Py;jPg;; (j =1 or 2). And the sum of probabilities
obtained for the sum of the two data sets of pairs of photons becomes by combining Egs. (9-11):

Py = 0.5 [cos? a sin® B + sin® a cos?® B] (12)

after setting for the statistical average of m =1/V2 .Asanexample, we set @ = +m/4 or +
3m/4 to obtain that P,z = 1/4 for any value of §, including f = @, in contrast to Eq (7b).

The two ensembles of detections do not overlap temporally, and their correlation is determined
by the sequential orders of the ‘1’s and ‘0’s and can vary from one ensemble to another. The physical
absence of the interference term is brought about by the two temporally non-overlapping detections
[17, Eq (9)]. The two data sets occur at different times and any correlation can only be mathematical.

The correlation probability calculated for the entangled state |y 5) = (|Ha) |Va) — Vo) |Hp))/
V2 is:

Pug = (W5 | a4 &2; g Gy|Pap) = 0.5 | cos a sin B — sina cos B|?

=0.5sin?(f—a) (13)
which appears to indicate a physical correlation of measured ensembles; however, all states need
to be populated simultaneously, which experimentally happens, as a result of the parametric
amplification of the spontaneously emitted photons [14-15]. The number of photons simultaneously
present in the system is much larger than two.
The correlation between quantum mixed states of polarizations can also be obtained between
classical states of polarization in the Jones representation. The correlation function C(a;f) is the
overlap between two state vectors e, =cosax+sinay and eg = —sinfx+cosfy

leading to C (a;fB) = |ea "eg |2 = sin® (¢ — B) . This result is equivalent to the correlation of
polarization states on the the Poincaré sphere [10].
3.Classical Joint Probabilities Exceeding the Product of Local Probabilities

As explained in the Introduction, a joint probability of coincident detections that is larger than
the product of the two local probabilities, i.e., pz (1,1) > p, (1) pg (1) can be easily obtained with
classical distributions of binary values of ‘1" and ‘0’.

The derivation of Bell inequalities is based on the locality assumption [3-4], that is: “The joint
probability distribution p(a, b|x,y; ) of obtaining outcomes a and b for measurements x and Y,
should factorize” [4] into:

p(a,blx,y; 1) = plalx; 2) p(bly; 1) (14)
where for local statistics, the probabilities for outcomes a and b are p(alx;A) and p(bly; 1),
respectively. The variable 1 is meant to provide a correlation between the two measurements as a
result of some past event involving the two separated systems of photons. The equality of Eq (14)
limits, arbitrarily or intentionally, the contribution of the ‘hidden variables’ in order to justify the
argument that any larger value of p(a,blx,y; 1) is due to the quantum effect of nonlocality.
Mathematically, the derivation of Bell inequalities would have “hidden’ variables impact the
statistical averages of simultaneous measurements. It is stated in [4; p.588] that: “In typical
experiments, the complete specification of the state represented by A is not available— for example,
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the values of the hidden variables cannot be determined —so the strong separability condition must
be averaged over a distribution p(A) that represents the experimental information that is available.”
Additionally, “...the condition for statistical independence” [4; p. 588] is:

p(a,bla, B) = p(ala) p(blB) (15)
“For the typical situation in which the complete state A is not known, the Bell parameter S (1)
should be replaced by the experimentally relevant quantity S = E(ay, ;) + E(ay, ;) + E(ay, 1) —
E(ay, B;) “ [4, p. 589] which leads to the Clauser-Horne-Shimony-Holt inequality. However, as
pointed out in the Introduction, the CHSH inequality does not capture the presence of maximally
entangled states, for which purpose it was derived, subject to the limitation of Eq (14). Further
shortcomings of Bell inequalities can be found in Appendix A.
The Clauser- Horne inequality used in [6-7] involves only joint probabilities of outcomes, and is
written for further consideration as:

p(LLap)—pALLa, B)<p@0a B)+p(01a,5) (16)

But, with only two photons present at any given time, this inequality requires four different
ensembles of measurements for the four pairs of settings which are probed at separate times. By
contrast, the quantum nonlocality is supposed to act at the level of each pair of photons [5]. In Eq
(16), e.g., p(1,0;a, B') stands for a detection at location A for setting @ and no detection at
location B for setting 8’. However, the inequality (16) cannot be violated even with optimal conditions
because of the opposite requirements for the difference and sum of probabilities as explained in the
next paragraph.

With identical devices and settings, the quantum effect of nonlocality should maximize the joint
probabilities on the left-hand side of Eq (16) and minimize the probabilities on its right-hand side.
For example, with a = §, the probabilities are set equal p(1l|la) = p(1|8) = 0.8 and p(1la’) =
p(1|B") = 0.2 , leading to maximal values of ppq,(1,1;,8) = 0.8 and p., (1,1, B) =0.2 . On
the right-hand side of Eq (16), minimal probability values for the detections of ‘1’s coinciding with
‘0’s are calculated by subtracting from the larger probability for ‘1’s the lower probability for ‘1’s, i.e.,
Pmin (LO;a, ) =p (L&) — p (1;5") = 0.8 — 0.2 = 0.6. Equally, pp, (0,1;a,8) =0.6. Inserting
these values into Eq (16), we have 0.8 — 0.2 < 2 (0.8 — 0.2) = 1.2, which does not violate the CH
inequality. Once again, as explained in the Introduction, the condition for the joint probability being
the product of local probabilities as the criterion above which quantum effects are meant to occur is
physically unsubstantiated, particularly so, in view of the product of local probabilities derived in
Egs. (7) and the experimental results of [8-9].

Experimentally, however, very low probabilities of detections are recorded because of the
quantum Rayleigh scattering of single photons. The experimental violation of Eq (16) in [6-7] is
possible because of the parametric amplification of the spontaneous emission in the original
nonlinear crystal, so that the presence of multiple photons per radiation modes enhances the
probability of coupling and detecting “1’s, which will be considered in the following sub-sections 3.1-
3.3.

Overall, the hidden variables of the Bell inequalities play no role in the derivation of the
inequalities. Physically, ‘hidden’ variables should be included in the wave functions associated with
physical processes and linked to the mechanisms, processes, effects, etc. that bring about those
detected outcomes. In this context, time-varying inputs, averaged over fluctuating local conditions,
lead to the existence of multi-photon wave fronts which are mistaken for single photons.

3.1. Physical Factors Reducing The Correlations Of Coincident Detections

For classical probabilities any hidden variable A will be set aside, and the following ratio
of classical probabilities can be obtained from Eq (14) with p(a, b|x,y) = p(bly)
p(ablx,y) 1
palx) p(bly) ~ p(alx)

>1 (17)
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This ratio can be larger than unity, indicating a stronger correlation between measurements than
the locality condition of Eq (14) which was arbitrarily defined. This will happen for two series of
individual binary outputs of ‘1" and ‘0’, with all the detections ‘1" of b coinciding with detections ‘1’
of a. For the same ensemble averages, the correlation value of the one-to-one same order component,
may vary from zero to the minimum of the two probabilities.

By contrast, for an input of multi-photon states, loss effects may not annihilate all the input
photons, so that the number of detections increases regardless of the projective probability p(a) =
cos? @ which provides a mathematical average. For a single-photon input, the density distribution
per solid angle AQ of the mixed quantum state arising from spontaneous emission that follows the
radiation pattern of an oscillating dipole is [19-20]:

cos? 6 A8 Ap
2m [* cos?0 do
—TT

p(0)AQ = (18)

where the solid angle of emission is AQ) , the polar angle between the electric dipole vector and
the polarization vector of the emitted photon is 8, and ¢ is the azimuthal angle in the plane
perpendicular to the dipole [19-20]. It is this distribution of the Rayleigh spontaneously emitted
photons over the range {—m, }, that randomly rotates the polarization state of the absorbed photons.

Physically, however, one single photon is scattered randomly by quantum Rayleigh photon-
dipole interactions. By contrast, a group of identical photons can propagate in a straight line inside a
dielectric medium through quantum Rayleigh stimulated emission. This process of stimulated
emission can also amplify a spontaneously emitted photon with a rotated polarization, particularly
so if the polarization modulator and analyser enable the propagation of a lossless mode [14-15].

3.2. Correlations of Coincident Detections of Independent Photons

A series or an ensemble of detection measurements is mathematically cast into a temporal
vector v(a, 8,) along polarization output angle «, and for a polarization input setting 6,. The
elements of the data vector are c,, = 1 or 0 for a detection event or no detection, respectively, of the
m-th order element. Thus, v(a, 8,) has the following averaged number of ‘1’ terms summed over the
probing times &(t —t,,), for one photon of polarization H or V in the measurement frame of
coordinates:

Ny

% (a; 6,) =% > cmin (@0, 8 (£ = (@, 6)

m=1
Ny
1
+ N Zl Cm;V(Ol, QA) 6 (t - tm;V(a, QA)) =
m=

1
= Py(a,0,) + Py(a,0,) = 0.57n [cos? (04 —a) + sin? (0, —a)] = 5 (19)

where i specifies the quantum efficiency of cross-polarization coupling, Ny = Ny = N/2 , namely,
the total number of events N is split equally between the two input H or V polarizations, a is the
polarization angle of the analysing filter at location A, 8, is a rotation setting of the electro-optic
modulator, the probing times are t,,.;(04) # tp.y(04) and Py, (6,) is the probability of detecting a
pulse, for input H or V and polarization filter rotated by 6,. For input polarization V, orthogonal to
H, the rotation angle is: m/2—6, and the probability of detection along 6, is Py(a)=
sin? (84, — a). The average number of ‘0’s is found from the expression: v, (a,0,) =1 -7, (@, 6,)

The correlation vector vq(a; ) of simultaneous detections between two arbitrary and random
series v(a) and v(B) or ensembles, at locations A and B, respectively, is expressed as the product
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of the two m-th order terms, of simultaneous or coincident detections v¢(a; 8) = v(a) - v(B) leading
to

an average v¢(a; ) of "1’s or joint probability of simultaneous detections:

N
1
ve@ ) = v@ - v(®) = P@h) =1 ) en(@ cn() (20)
m=1

By considering all possible combinations in Eq. (20), it is obvious that the order of the random
distributions of the two sequences will determine the value of the joint probability of correlation
P(a; B) whose maximal value equals the lowest of the two local probabilities P(a) and P(f). The
values of P(a; ) may exceed the definition of the local condition for independent probabilities, i.e.,
P(a; B) = P(a) P(B) where P(a) = (Z=1cm(@) )/N and P(B) = (Xh=16m(B) )/N.

A distinction needs to be made between the probability of coincident events at the level of each
individual event, and the product of probabilities of “1’s in each ensemble of measurements which is,
in fact, the product of the averaged values of detections in the polarization states.

From a physical perspective, identical systems operated in identical ways will yield identical
distributions of outcomes, which is critical in the reproduction of experimental results. Given the low
quantum efficiencies of ‘single-photon’ detections, the performance of correlated outputs can be
significantly increased by launching, into the two systems, groups of identical photons as generated
by the parametric amplification in the original crystal [10], [14-15], or externally controlled number
of photons [8-9]. In such circumstances, the likelihood of a few photons reaching the output
photodetectors simultaneously will be even larger than the probability of Eq. (20).

3.2. Polarization-Controlled Correlated Output Of Multi-Photon States

With multiple photons propagating in both input orthogonal states of polarization H and V, one
can control the output intensity through interference of the intrinsic fields of groups of identical
photons coupled onto the filter’s polarization state of rotation angle 8, . Following the results of [14-
15] that identified dynamic and coherent number states |¥,(w,t)) = (|n()) + |n(t) —1))/V2, and
recalling the non-Hermicity of the field operators [15], we find thatd |n) = Vne™?|n—1) , which
provides a complex field amplitude [15], for the time-dependent evolutions of photonic beam fronts.
The output intensity, for fluctuating numbers of photons Np,(8,,t) and the expectation number
(Npp(84,t)) of the interference between pure states, take the forms:

Npn(84,t) =1 0.5[ Ny(t) cos?*(6,) + Ny (t) sin®(8,) +

+2 T(7) /Ny (N, (t) sin (8,) cos(8,) cos(&x(t) — & (1))] (21)

(Npp(84,8)) =1 0.5 ( N (8) [1

+ 0(t, 64) T'(7) cos($u(t) — Sy ()]) (22)
whereao(t, 6,) = sin (2 84)y/ Ny(t) Ny(t)/ Npoe (t) is the visibility with N, (t) = Ny (t) cos?(6,) +
Ny (t) sin?(8,) ), and T(7) is the temporal overlap between the intrinsic optical fields of the photons
whose derivation is available in [15]. The time-varying phases of the two polarization states are
¢y and &, and the time-average is indicated by the angled brackets.

By varying parameters in Eq (22), the lowest number of photons can become larger than zero,
which increases the probability of detection. Overall, the more photons are trapped in the system
through quantum Rayleigh spontaneous emission [14-15], the more likely it is for groups of identical
photons to form through quantum Rayleigh stimulated emission. As a result, single photons coalesce
into groups of multi-photon states, thereby changing the statistical outcomes.
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4. A Scrutiny of Landmark Experiments

The concept of quantum nonlocality emerged from the mathematical formalism of quantum
mechanics, but its practical implementation in quantum optics needs to comply with the well-
established processes involving light-matter interactions. Yet, in order to push through the concept
of photonic quantum nonlocality, various researchers chose to ignore the basics of optical physics,
and, instead invoked statistical calculations which are contradicted by the physical reality, as
demonstrated in the Introduction and Section 2 of this article.

Significant physical contradictions have been overlooked in the opinion article by Aspect [5]
hailing the results of refs. [6] and [7] as “definitive proof” of one measurement influencing remotely
another measurement, bringing about the end of the Einstein-Bohr debate. However, in this Section
a scrutiny of these landmark experiments [6-7] disproves the existence of photonic quantum
nonlocality as its theory is riddled with physical contradictions and inconsistencies as outlined in
Section 2 of this article.

Experimental evidence of strong-quantum correlations obtained with non-entangled photons [8]
were published in early 2020 but were overlooked because they did not fit the prevailing
interpretation [5]. Equally, a growing body of analytic developments before and after 2015 have
repeatedly demonstrated the statistical nature [21-26] of quantum nonlocality experiments. Recently,
the quantum Rayleigh scattering of single photons [12] has been identified as a physical mechanism
undermining the implementation of the concept of quantum nonlocality.

The concept of quantum nonlocality was summarized by Aspect in the first paragraph of ref. [5]
as “the idea that a measurement on one particle in an entangled pair could affect the state of the
other —distant—particle.” The alleged physical effect was illustrated for the entangled state

| Wag) = (1%)a [X)s + [¥)a 1¥)5)/ V2 (23)
of two polarized photons shown in the inset to Fig. 1 of [5] for which “quantum mechanics predicts
that the polarization measurements performed at the two distant stations will be strongly correlated”.
Another quotation of interest is: “In what are now known as Bell’s inequalities, he showed that, for
any local realist formalism, there exist limits on the predicted correlations.” However, independent
photons or multi-photon states also deliver quantum-strong correlation functions because the Pauli
spin operators act on the polarization state regardless of the number of photons it carries. In this
context, the overlap, in the measurement Hilbert space, between two polarization Stokes vectors
measured separately at two distant locations generate the same correlation functions [8-10], thereby
explaining the comparison of the experimental outcomes without invoking ‘quantum nonlocality’.

4.1. The Quantum Rayleigh Scattering of Single Photons

Although well-documented, e.g., [19-20] four decades ago, the physical process of quantum
Rayleigh scattering has been consistently ignored in the conventional theory of quantum optics [3].
A single photon cannot propagate in a straight-line inside a dielectric medium because of the
quantum Rayleigh scattering associated with photon-dipole interactions. Groups of photons are
created through parametric amplification in the nonlinear crystal in which spontaneous emissions
first occur, generating pair photons from a pump photon. Such a group of photons will maintain a
straight line of propagation by recapturing an absorbed photon through stimulated Rayleigh
emission [14-15]. The assumption that spontaneously emitted, parametrically down-converted
individual photons cannot be amplified in the originating crystal because of a low level of pump
power would, in fact, prevent any sustained emission in the direction of the phase-matching
condition because of the Rayleigh spontaneous scattering [14-15]. As pointed out in Eq (18), the
spatial distribution of the spontaneously emitted photons spans a broad solid angle, not only the
direction of the phase-matching condition.

Evidence of single-photon scattering can be found in ref. [7], in the Supplemental Material
reporting that “In our experiment no photons are detected during a large number of trials, and these
trials contribute little to the Bell violation.” Equally, the experiments of [7] “... employed single-
photon optical time domain reflectometry (OTDR) to measure the transit time of light through all the
optical fibers and some of the free-space optical paths in the experimental setup.”
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The probability of detecting a photon and its quantum effect is reported in Table S-1I on page 16
[7], to be less than 0.001%. This extremely low level of maximal detection probability is also reported
in Fig. 3 of ref. [6]. It should be obvious that such extremely low probabilities cannot describe the
presence of a physical phenomenon. Rather, these probabilities would indicate random statistical
measurements which are consistent with the statistical explanation for measurements of correlated
outputs [21-26].

Physically, quantum entanglement of photonic states implies a strong correlation between the
same properties of the same variable or degree of freedom measured separately on each of the two
entangled photons. These properties are the consequence of a common past interaction between these
photons and those properties generated in the common interaction can be carried away from the
position and time of that interaction.

Even recent experiments [27] using optically nonlinear crystals for parametric down-conversion
of photons, report detection probabilities lower than 0.1%, pointing out that “The raw data are sifted”
for a particular purpose. All these bring to the fore the unavoidable amplification of spontaneously
emitted photons [14-15]. An indication of the existence of the quantum Rayleigh scattering can be
seen from the extensive loss of photons that has been a constant feature of photon coincidence
counting. For example, ref. [27] reports on page 3 of the Supplementary Information: “The success
probability of the entanglement generation process, i.e. detection of a photon after an excitation pulse,
equals 5.98 x10% and 1.44 x 10 for Alice’s device and Bob’s device, respectively”. A typical
percentage of lost photons is, at least, 99.9% as mentioned independently.

4.2. The Absence of Quantum Nonlocality Upon Sequential Measurements

The joint probability of detecting simultaneous photons depends on the random orders in the
locally detected sequences, as explained in Section 3. Classical distributions of joint probabilities can
easily exceed the value of their products as explained in the Introduction and Appendix A. A
formalism based on wave function collapse — requiring a first detection followed by a second one —
leads to the possibility of detecting locally the assumed existence of the quantum nonlocality effect,
as described by Egs. (7).

Quantum nonlocality is claimed to influence the measurement of the polarization state of one
photon at location B, which is paired with another photon measured at location A. The two photons
are said to be components of the same entangled state. Maximally entangled states, such as | {r45) of
Eq. (23), represented in the same frame of coordinates of horizontal (X) and vertical (y) polarizations,
would deliver the strongest correlation values between separate measurements of polarization states
recorded at the two locations A and B.

Nevertheless, the experimental results of refs. [6] and [7] revealed a low level of entanglement,
with the reported mixed states having one component much larger than the other, thereby allowing
for measurements of non-entangled product states. From equations (2) of both references [6-7], their
experimental optimal ratios of the two amplitudes are 2.9 and 0.961/0.276, respectively, in [6] and [7].

If a collapse of the wave function is to take place for entangled photons upon detection of a
photon at either location, then the two separate measurements do not coincide. In this case, a
polarimetric local measurement vanishes for the maximally entangled Bell states, e.g,
(Wap |84® 15 W) =0, with [z=|xXx|+|ly)y| being the identity operator, and the
projecting Pauli operators are in this case & = |[x Xy |+|ly X x| and 65 =

[ x ¥ x |=ly ¥y |.Thus, a physical contradiction arises as local experimental outcomes determine the

mixed quantum state of polarization of the ensemble to be compared with its pair quantum state. As
a matter of physical measurement, for the partially entangled state of |Wagap) = @ |x)4 |x)5 +
b |y)a ly)s), with |a|? + |b|? = 1, the local measurement will deliver  (Wapap |64 @ 1 5 [Wapap) =
la]? — |b|* indicating that the largest expectation value, i.e., will be achieved with pure states, for
either a=1andb =0, or a = 0 and b = 1. Upon comparison of the two separately measured data
sets, the strongest correlation will be detected for pure product states which are, in fact, obtained
theoretically by invoking wavefunction collapse upon measurement.
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This overlooked feature of maximally entangled Bell states renders them incompatible with the
polarimetric measurements carried out to determine the state of polarization of photons, thereby
explaining the experimental results of ref. [8-9] which were obtained with independent photons,
indicating the possibility of obtaining quantum-strong correlations without independent photons as
pointed out in ref. [10]. The wave function collapse would bring about a product state as part of a
time-dependent partial ensemble of measurements.

The mixed quantum state |{45) is space- and time-independent and considered to be a global
state which can be used in any context, anywhere, and at any time. Nevertheless, the Hilbert spaces
of the two photons move away from each other and do not overlap spatially, so that any composite
Hilbert space is mathematically generated by means of a tensor product at a third location where the
comparison of data is performed. Even so, the absence of a Hamiltonian of interaction renders any
suggestion of a mutual influence, during the probing, physically impossible [21].

4.3. Correlation Functions

Maximally entangled states, represented in the same frame of coordinates of horizontal and
vertical polarizations, would deliver the strongest values of the correlation function for the Pauli spin
vectors operators:

Ec= (Yup164Q®6 5 |Wap)=cos [2(6, — 05)] (24)
for identical inputs to the two separate apparatuses, with the polarization filters rotated by an angle
0, 0r B , respectively, from the horizontal axis. However, quantum-strong correlations with
independent photons have been demonstrated experimentally [8-9] but ignored by legacy journals
because they did not fit in with the theory of quantum nonlocality. The same correlation function
E. = cos [2 (6, — 65)] is obtained ‘classically’, as a result of the overlap of two polarization Stokes
vectors of the polarization filters on the Poincaré sphere [10]. The Stokes parameters correspond to
the expectation values of the Pauli spin operators [10].

The correlation function is a numerical calculation as opposed to a physical interaction. Thus, the
numerical comparison of the data sets is carried out at a third location C where the reference system
of coordinates is located for comparison or correlation calculations of the two sets of measured data,
and does not require physical overlap of the observables whose operators are aligned with the system
of coordinates of the measurement Hilbert space onto which the detected state vectors are mapped.
In this case, the correlation operator € =6, ® 6 5 can be reduced to [28; Eq. (A6)]:

C=(a 6)b-6)=a-bi+i(axb) 6 (25)
where the polarization vectors a and b identify the orientation of the detecting polarization filters
in the Stokes representation, and & = (61,8, ,03 ) is the Pauli spin vector (with 6, = i 6; 63). The
presence of the identity operator in Eq. (25) implies that, when the last term vanishes for a linear
polarization state, the correlation function is determined by the orientations of the polarization filters.
This can be easily done with independent and linearly polarized states, such as:

|9 )= (1x); +1y);)/ V2 (26)

where the index j= A or B identifies the photodetector. The same state reaches both detectors.

The polarization operator & projects the incoming states onto the measurement Hilbert space
for comparison of the two separate data sets. The polarization measurement operators of
6(9]-) = sin (26;) 6; +cos(26;) 65 produce the output states

|®;) = sin (26,) 61| ¥, ) + cos(26,) 65 | ;) (27)

which, analogously to the overlapping inner product of two state vectors, lead to the correlation
function of [10]:

E.= (4| Pp) = cos2 (64— 6p) (28)

The quantum correlation function of Eq. (28) between two independent states of polarized

photons is equivalent to the overlap of their Stokes vectors on the joint Poincaré sphere of the
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measurement Hilbert space. Quantum-strong correlation are possible with independent states of
photons [8-10] because the source of the correlation is the polarization states of the detecting filters
or analyzers, making any claim of quantum nonlocality unnecessary.

5. Physical Aspects and Discussion of Physical Processes

At least three critical elements have been ignored in the interpretations of experimental results
alleging proof of quantum nonlocality: 1) the quantum Rayleigh scattering involving photon-dipole
interactions in a dielectric medium, which prevents a single photon from propagating in a straight-
line, thereby obstructing the synchronized detections of initially paired-photons; 2) the unavoidable
parametric amplification of the spontaneously emitted photons in the nonlinear crystal of the original
source; and 3) the experimental evidence of quantum-strong correlations between polarization states
or statistical ensembles of multi-photon, independent states.

The existence of the quantum Rayleigh (QR) scattering was well documented back in the 1970s
in textbooks [19-20] and its absence from the theory of Quantum Optics developed since the early
1980s is still a puzzling question. A possible answer would be that the “miracles” of quantum optics
would have needed explaining by other physical means, requiring a multi-disciplinary approach.

The concept of quantum nonlocality claims the existence of a strong correlation between
measurements involving two entangled photons generated as a pair. The Bell inequalities impose a
limit on the calculated correlation probabilities between ensembles of measurements involving an
unlimited number of pairs of photons. But Bell inequalities can be experimentally violated with
expectation values from independent and multi-photon states [8-9], because the correlations can also
be generated classically [10]

Equally, as explained in the Introduction and Appendix A, joint classical probabilities can exceed
the value of their product. There is no physical evidence of quantum non-locality for the simple
reason that the Bell inequalities involve ensemble averages, whereas the quantum non-locality effect
would act at the level of each qubit of photons or individual pairs of spatially separated, apparently
entangled particles. As explained in Section 2, upon the first detection of an entangled pair of
photons, the joint probability become factorized as the product of the two local probabilities, bringing
about the possibility of local detection of an apparent quantum nonlocality. But such an experiment
is yet to be carried out despite its simplicity.

The theoretical concept of photonic quantum nonlocality cannot be implemented physically
because of the quantum Rayleigh scattering of single photons. A physical scrutiny of landmark
experiments [6-7] has been undertaken. These articles reported that measured outcomes were fitted
with quantum states possessing a dominant component of non-entangled photons, thereby
contradicting their own claim of quantum nonlocality. With probabilities of photon detections lower
than 0.01 %, the alleged quantum nonlocality cannot be classified as a resource for developing
quantum computing devices, despite recent publicity. Experimental evidence of a feasible process for
quantum-strong correlations has been identified [8-9] in terms of correlations between independent
and multi-photon states evaluated as Stokes vectors on the Poincaré sphere. As single-photon sources
are not needed, the design and implementation of quantum computing operations and other devices
will be significantly streamlined.

It is a common practice among the proponents of quantum nonlocality to ignore any physically
meaningful interpretation of the relevant experiments. For example, a special issue on Quantum
Nonlocality [29] does not mention at all any articles which disprove the concept of quantum
nonlocality. Instead, rather contradictory statements were presented: “The quantum nonlocality also
has an operational meaning for us, local observers, who can live only in a single world. Given
entangled particles placed at a distance, a measurement on one of the particles instantaneously
changes the quantum state of the other, from a density matrix to a pure state”. “What seems to be an
unavoidable aspect of nonlocality of the quantum theory—which is present even in the framework of all
worlds together—is entanglement. Measurement on one system does not change the state of the other
system in the physical universe, but in each world created by the measurement, the state of the remote
system is different. The entanglement, that is, the nonlocal connection between the outcomes of
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measurements shown to be unremovable using local hidden variables, is the ultimate nonlocality of quantum
systems” [29]. VYet, all these statements have been proven to be unsubstantiated in the various Sections of
this article, and in references [21-26], as well as experimentally [8-9].

Equally, the popular promotion [27] of research articles makes rather exaggerated claims such
as: “The phenomenon of quantum nonlocality defies our everyday intuition. It shows the strong
correlations between several quantum particles some of which change their state instantaneously
when the others are measured, regardless of the distance between them.” Such interpretations can be
easily disproved [21-26].

This misinformation of refs. [29-30] has not produced any quantum computer despite more than
two decades of heavy investment as pointed out in refs. [1-2].

6. Conclusions

This article identifies several physical omissions and contradictions which have been overlooked
in the literature of photonic quantum nonlocality and which disprove the aspects or elements of
quantum nonlocality. The propagation of single photons in a straight-line inside a dielectric medium
is impossible because of the quantum Rayleigh scattering. The wave function collapse leads to a
factorization of the quantum probability of joint detections, which has been ignored. Equally, the
function reduction upon a first measurement, as required for a quantum ‘nonlocal’ interaction, leads
to a vanishing expectation value for the Pauli operators in the context of a Bell-state, i.e., maximally
entangled photons. The strong correlation functions can also be obtained with independent states of
photons obviating the need for entangled photons. Overall, the locality condition underpinning Bell-
type inequalities is easily violated with non-entangled and classical states of polarization [8-10].

Finally, a distinction needs to be drawn between the mathematical formalism of quantum
mechanics which allows for any assumption to be made, and its implementation subject to the
physical processes of optical physics in which the field of quantum optics is grounded. The latter will
limit the range of conclusions that can be inferred from the former.

Overall, the editorial guidelines of legacy journals, e.g. Physical Review Letters, of rejecting
outright and without any consideration, well-substantiated rebuttals of quantum non-locality led to
the citation of the 2022 Nobel Prize Committee being incomplete and misleading, and its
reconsideration will be appropriate, in view of the well-documented shortcomings of the Bell
inequalities as far back as 1980, e.g., [31].

Appendix A - The physical irrelevance of Bell inequalities

As pointed out in ref. [4], in typical experiments of correlated outputs, the results of the joint
probability p(a,b|x,y) of simultaneous or synchronized detections of two sequential ensembles of
binary values, do not equal the product of the two separate probabilities of detection
p(alx) and p(bly) atlocations A and B for outcome a and b corresponding to local settings x and
y, respectively:

p(a,blx,y) # p(alx) p(bly) (A1)
where a,b = 0 or 1 are assigned binary values for no-detection or detection of an event, respectively.
In an attempt to explain experimental outcomes obtained with quantum events, it was

suggested to convert Eq. (A1) into an equality of local factors [4]:
pr(a,blx,y; 1) = p(alx; 1) p(bly; 1) (A2)

by introducing a “hidden” variable 4 whose role would be to create a correlation between the
two binary-valued sequences with randomly distributed terms of ‘0’s and ‘1’s, for probabilities of
detection p(alx; 1) and p(bly; 1) . However, from a physical perspective, the correlation of
simultaneous detections is evaluated from a third sequential distribution v(a; b) calculated as the
vector or dot product of the two initial sequences v(a,x) = {a,,} and v(b,y) = {b,,} :

L&
ve(a;b) =v(a) - v(b) = p.(a,b) = m z A by, (A3)

m=1


https://doi.org/10.20944/preprints202307.2077.v6

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 June 2024 d0i:10.20944/preprints202307.2077.v6

16

with the values of the correlation or joint probability  p.(a, blx,y; 1) ranging above and below
the product p(alx; 1) p(bly; ). For p.(a,bl|x,y) > p(alx) p(bly) the arbitrary upper limit of Eq
(A2) renders any further derivation physically irrelevant as it is intentionally limited in value.
However, Clauser and Horne instead of correcting this mistake, adopted it and derived two Bell-type
inequalities [4], [6-7][11] in the form of functions of probabilities ps(a,blx,y) =

) \ q(A) p(a, blx,y; 1) dA, with q(1) being the normalized distribution of hidden variables. Those
inequalities can be easily violated with classical probabilities p.(a, b|x,y) of Eq (A3) which can be
larger than the product of the separate probabilities [8-9]. Later on, neither Aspect, nor Zeilinger
noticed the statistical problem of Eq (A2), with the landmark experiments of [6] and [7] employing
strongly non-entangled photons to violate the Clauser-Horne inequality.

The quantum correlation function E.(1;1|a; ) for detecting one photon at location A and its
pair-photon at location B, is defined in terms of four probabilities between two orthonormal
detection-settings at each of the two locations A and B, for eigenvalues +1 or — 1, respectively, of
local settings a or a’, and f or B’ leading to the linear combination of probabilities P;; [3-4]:

E.(1;1]a; B) = Pr(a; B) + P-_(a’; B) = Pr—(a; B) — P_,.(a'; B) (44)

where a' = a+n/2 and B’ = f + n/2 . Fluctuations in the number of detections would give

rise to a spread in the values of P;; and E.(1;1|a; f). This correlation function is normally linked to

the polarimetric Stokes measurements or the quantum Pauli vector operators and has the same form

in both the quantum and classical regimes [10], so that its use in the Clauser-Horne-Shimony-Holt

(CHSH) inequality cannot discriminate between quantum and classical outcomes. The quantum
counting is sequential whereas the classical counting consists of only one sampling step.

For the CHSH inequality [11], the correlation probability is P, (a; ) = Ny (a; B)/ Nyorm Where
N, is the number of coincident counts of photons and Ny, is the number of all coincident
detections for all four settings Npgrm = Ny (a; 8) + N__(a; ) + Ny_(a; B') + N_, (a'; B). However,
this normalization is mathematical because the physical number N, 4., = Ny, of initiated photon-
pairs is very much larger as photons are lost between the source and the photodetectors, for various
reasons, thereby throwing doubt about the real statistics. This normalization makes a violation of the
CHSC impossible as N, /N;, < 0.1.

The Clauser-Horne (CH) inequality has arbitrary values for the two measurement settings,
ie,aand a' as well as fand B’ are set separately. The CH inequality also contains correlations
between ‘1’s and ‘0’s, so that, in terms of binary-valued probabilities p (1,1; a, ) and similar forms,
[6-7], the inequality is written as:

pALLap)—pALa, )< p(,0q B')+p(0,1;a’,p) (45)
with the normalization factor Ny, of initiated events being used. But, as only one term of the
four terms is measured in any given run, the linear combination would relate the maximal values on
the left-hand side to the minimal values on the right-hand side. With such probabilities for all four
terms, the opposite requirements of the inequality for the coincident detections of (1;1) on the left-
hand side, and for only one-location detection (1,0) or (0;1) on the right-hand side, make a violation
impossible, mathematically, unless arbitrary values are selected from various data sets. In this case,
the inequality becomes physically meaningless.

Appendix B - Linking projective measurements to the theoretical correlation function of
independent photons

Quantum correlations are evaluated as the expectation values of a product of operators [3-4].
For the projective operators [(«) = |H,) (H,| and I(B) = |Hﬁ) (Hﬁl corresponding to the
polarization filters with one detection setting at each of the two locations A and B, respectively, the
probability of coincident detections has the form, cf. [4, Eq 13]:

p (L1 aB) = |(YinlT(@) (T(B) [Yi))| = [(®alPp)] (B1)

with |H,) and |Hﬁ) identifying the states of the polarization filters, and (®,| = (| (a) for
the Hermitian conjugate state. For the polarization-entangled photons, the outcomes consist of the
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overlap between two state vectors rotated on the Poincaré sphere and are defined as the correlation
function C(a;B) between two (mixed) states; by contrast, experimentally, the probability of
coincident detections is calculated from the sum of products of overlapping terms, i.e., p.(a,b) =
&N _iam by)/N , as defined in the Introduction, and identifies the fraction of simultaneous
detections at the level of each quantum event. This discrepancy is part of the disconnect between
theory and measurement.

For the basis states |H)and |V) of the shared measurement Hilbert space, the projective
amplitudes are (H,|H,) = cosa, {H,|V,) =sina, (HB|H3> =cosf and (Hﬁ|VB) =sinf. The
correlation function C(a; 8) of magnitude |C(a;B)| = p (1,1; a, ) between filter polarization states
and for independent states of photons [¢;,) becomes:

C(a; B) = (Py|Dg) = (Yin|Ha) (Ho|Hg)(Hp Pin) (B2)
[Yim) = ([HY + [V))/V2 (B3)
|Hy) = cosa |[H) +sina |V) ; |Hg) =cosB|H) +sinp |V) (B4)
C(a; B) = 0.5[cos a + sin a] [cos(a — B)] [cos S+ sinf] =
= 0.5cos(a — B)[cos(a — B) + sin(a + B)] (B5)

This correlation of Eq (B5) is composed of three terms. The projections of the input states onto
the respective filters are given by the sum of the sine and cosine functions, while the term cos(a — )
indicates the overlap between the two filters. The magnitude of this correlation function or
probability of coincident detections can reach a peak of unity for the symmetric case of a =pf =
n/4orm/4 + m , outperforming the coincidence values of 0.5 obtained with entangled states of
photons as presented in Section 2.1.

The possibility of achieving strong correlations with independent photons has, once again, been
demonstrated experimentally recently [8-9].
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