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Quantum Nonlocality: Quantum Rayleigh Scattering 

and Time-Dependent States of Independent Photons 
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 Fibre-Optic Transmission of Canberra, Canberra and Australia; andre_vatarescu@yahoo.com.au  

Abstract: The locality condition of probabilities underpinning the derivation of Bell inequalities can be violated 

classically. The wave function collapse of an entangled state of single photons results in the factorization of 

quantum probabilities. It is possible to differentiate, locally, between ensemble probabilities of single detections 

with and without wave function collapse for the alleged quantum nonlocality. The theoretical concept of 

photonic quantum nonlocality cannot be implemented physically because of the quantum Rayleigh scattering 

of single photons. A distinction needs to be made between the correlation of individual, single measurements 

of pure states and the correlation of the measurement ensemble of the mixed states. The correlation operator 

of Pauli vector operators delivers the same probabilities of correlated detections of photons for both 

independent and multi-photon states as for ‘entangled’ states of photons. As single-photon sources are not 

needed, the design and implementation of quantum computing operations and other devices will be 

significantly streamlined.  © 2024 The Author 

Keywords: quantum Rayleigh scattering; correlation of polarization states; quantum nonlocality  

 

1. Introduction 

Recent background briefing articles [1-2] reveal significant difficulties in the implementation of 

practical quantum computers based on the concepts of entangled states and quantum nonlocality-

related correlations of detected single photons [3-4] despite heavy resources having been invested in 

the last two decades. This is not surprising given the omissions of quantum physical processes and 

many physical contradictions that have been allowed to persist in the professional literature of 

leading journals. 

 The benchmark for quantum correlations takes the form of Bell-inequalities [3-4] which should 

be violated only by quantum probabilities calculated as the expectation values of a product of 

operators in the context of wavefunctions describing, e.g., polarization-entangled single photons. 

The effect of quantum nonlocality is meant to synchronize the detections recorded at the two 

locations A and B for polarization-entangled states of photons. In the caption to Fig.1 of [5],  one 

reads: “…if both polarizers area aligned along the same direction (a=b), then the results of A and B 

will be either (+1; +1) or (-1; -1) but never (+1; -1) or (-1; +1.); this is a total correlation as can be 

determined by measuring the four rates with the fourfold detection circuit.” Yet, the quantum 

correlation is supposed to take place at the level of each pair of entangled photons rather than 

between averaged values, or rates, of the two distributions; but such an outcome has never been 

reported. The maximal, experimentally measured probability of coincident counts reported in the 

landmark experiments of refs. [6-7] is 2x10--4 (or 0.0002) which was achieved with highly non-

entangled states and raising doubts about the existence of Bohr’s nonlocality. 

 Additionally, the Bell parameter 𝑆 = 〈𝑎0 𝑏0〉 + 〈𝑎0 𝑏1〉 + 〈𝑎1 𝑏0〉 − 〈𝑎1 𝑏1〉  of Eq (4) in [4] would 

actually vanish as 〈𝑎1 𝑏1〉 = 〈𝑎0 𝑏0〉 = −1  and 〈𝑎1 𝑏0〉 = 〈𝑎0 𝑏1〉 = 0  according to the expectation 

values [4; p. 422] of 〈𝑎𝑥 𝑏𝑦〉 = −𝑥⃗ ∙ 𝑦⃗ , for detection settings  𝑥⃗0;1 ∥ 𝑦⃗0;1, and  𝑥⃗0;1 ⊥ 𝑦⃗ 1;0 of the 

polarization states for coincident detections. Thus, 𝑆 = 0 , failing to violate the Clauser-Horne-
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Shimony-Holt (CSHS) inequality despite involving the strongest quantum correlations.  This fact 

should have rung alarm bells about the irrelevance of the Bell-type inequalities as an indicator of  

 

Figure 1. Schematic of one photon being randomly scattered inside a dielectric medium, while a 

group of identical photons propagates in a straight-line. 

strong correlations between the same order elements of two sequences. This shortcoming will 

be elaborated on in this article.    

From an experimental perspective, the correlation probability of simultaneous detections 

 𝑝𝑐(𝑎, 𝑏) between two binary-valued sequences is evaluated from a third sequential distribution 

𝑣𝐶(𝑎; 𝑏) calculated as the temporal vector or dot product of the two initial sequences 𝑣(𝑎, 𝑥) = {𝑎𝑚} 

and 𝑣(𝑏, 𝑦) = {𝑏𝑚}  leading to   𝑝𝑐(𝑎, 𝑏) = (∑ 𝑎𝑚
𝑁
𝑚=1  𝑏𝑚)/𝑁  where 𝑎, 𝑏 = 0 𝑜𝑟 1  are assigned 

binary values for no-detection or detection of an event, respectively.  For any two ensembles of 

measurements, the values of the correlation or joint probability  𝑝𝑐(𝑎, 𝑏)  will depend on the 

sequential orders of the two separate ensembles at locations A and B, and can exceed the product of 

the local probabilities, i.e., of   𝑝𝑐(𝑎, 𝑏) >  𝑝𝐴(𝑎)  𝑝𝐵( 𝑏) . Therefore, as the quantum formalism does 

not provide any information about those sequential orders, any artificial boundary such as Bell-

inequalities is physically meaningless, because for the same values of the local probabilities, 

 𝑝𝐴(𝑎) 𝑎𝑛𝑑  𝑝𝐵( 𝑏), the higher values of   𝑝𝑐(𝑎, 𝑏) will lead to a violation of the Bell inequality in the 

classical regime. Bell inequalities can be easily violated with independent photons [8-10]. 

Equally, the experimental results of ref. [11] alleging propagation of single photons through the 

atmosphere over a distance of more than 100 km are physically impossible because of the quantum 

Rayleigh scattering [12-13] of single photons which will prevent synchronized detections. A 

physically meaningful explanation was presented in refs. [14-15] and can be summarized as follows. 

The spontaneously emitted photons in the nonlinear crystal undergo parametric amplification 

forming a group of identical photons. This group of photons can overcome the quantum Rayleigh 

scattering through quantum Rayleigh stimulated emission. This is illustrated in Figure 1 of this article 

and detailed in refs. [14-15]. 

Additionally, a sub-section of ref. [4] headlined “More nonlocality with less entanglement” leads 

one to the anomaly of nonlocality. “Astonishingly, it turns out that in certain cases, and depending 

on which measure of nonlocality is adopted, less entanglement can lead to more nonlocality.” [4; p. 

442].  “Remarkably, it turns out that this threshold efficiency can be lowered by considering partially 

entangled states. ….This astonishing result was the first demonstration that sometimes less 

entanglement leads to more nonlocality “ [4; p. 464]. 

“Since it is expressed in terms of the probabilities for the possible measurement outcomes in an 

experiment, a Bell inequality is formally a constraint on the expected or average behavior of a local 

model. In an actual experimental test, however, the Bell expression is estimated only from a finite set 

of data and one must take into account the possibility of statistical deviations from the average 

behaviour” [4, p. 466]. For a distinction between probability and frequency of occurrence, the reader 

is directed to ref. [16] 

Experiments designed to close loopholes linked to hidden variables are based on statistical 

considerations of Bell inequalities. But these inequalities ignore loopholes arising from physical 

interactions such as the quantum Rayleigh scattering of single photons and the polarization 

correlations between Stokes vectors. Such physical contradictions and inconsistencies are outlined in 
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Section 2 of this article in relation to local measurements of polarization entangled photons. In Section 

3, a distinction is made between the correlation of coincident detections of photons and the 

correlation between ensembles of measurements, as well as pointing out the flaws of the Bell 

inequalities. Section 4 scrutinizes landmark experiments [6-7] in view of the analytic results of the 

previous sections, explaining the failure to develop practical quantum computers and putting 

forward practical ways of processing data states on the Poincaré sphere. Physical aspects of the 

possibility to achieve quantum-strong correlations with independent, multi-photon states facilitating 

qubit rotations will be discussed in Section 5, and final conclusions are listed in Section 6. 

2. Physically Meaningful Wavefunctions  

A series of contradictions and inconsistencies can be identified in the theory and experiments 

involving the concept of quantum nonlocality: 

1) Quantum Rayleigh scattering [12-13] prevents a straight-line propagation of a single photon, 

thereby ruling out coincident detections of the original pair of photons;  

2) Independent photons produce quantum-strong correlations of detected polarization states [8-

9];  

3) Polarimetric, local measurements of a maximally entangled photon result in a zero-

expectation value [10]. For a local measurement of the Pauli operators  𝜎̂𝐴 , in the context of a Bell 

state |ψ𝐴𝐵⟩ , the expectation values vanish, i.e., ⟨ψ𝐴𝐵 | 𝜎̂𝐴 ⨂ 𝐼𝐵 |ψ𝐴𝐵⟩ = 0 , ( 𝐼𝐵  being the identity 

operator) delivering no information for a comparison between the two pair ensembles at locations A 

and B; 

4) Experimental results alleging evidence of quantum nonlocality are obtained with low levels 

of entanglement instead of maximally entangled states [6-7];  

5) The quantum nonlocality is meant to operate between the two pair-photons but Bell 

inequalities deal with the correlation between ensemble averages [3-4];  

6) The wavefunction collapse upon the first measurement reduces the entangled state to a 

product state, with the probability of projective rotation of the polarization state being identical to 

that of an independent state.  

These contradictions and inconsistencies are addressed in this article in the context of the 

following guidelines: 

(a) Reproducibility of experimental results is a basic principle of scientific methodology. Any 

apparent correlation between two measurements carried out with identical physical systems and 

under identical conditions is bound to produce identical distributions of outcomes, whether 

quantum or classical. Therefore, for any quantum effect of nonlocality between two single and 

entangled photons to be identified, the symmetry correlation needs to be removed from the 

picture; 

(b) The concept of wave function collapse involving an entangled state of photons upon a first 

measurement is analyzed based on the von Neumann’s projection postulate [3; eq. (C28)];  

(c) A second type of wave function collapse in the case of an entangled state composed of two 

product terms will lead, upon collapse through measurement, to only one product term, which 

actually eliminates the entanglement before the second measurement; and, 

(d) Each of the two separate detectors has only one setting or channel open for receiving the 

incoming photon. This configuration will remove the mix-up between two-channel detectors. 

2.1. Factorizing Quantum Probabilities Associated With Entangled States  

It is claimed [3; p.583] that “… the probability distribution defined by an entangled state does 

not satisfy the principle of statistical separability, even when the parts are far apart in space.” This 

statement is contradicted by the formalism of the wave function collapse, or reduction, upon a first 

measurement at location A, which is followed by a second one at location B, as analysed in [17] and 

expanded in this subsection. 

If the optical source emits a time-dependent stream of polarized pair-photons, only one term of 

the entangled state, e.g., either (|𝐻𝐴⟩ |𝐻𝐵⟩  or |𝑉𝐴⟩ |𝑉𝐵⟩  will be present at any given time for an 
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individual measurement but not both. This physical reality is disregarded by the mixed quantum 

state, but is reintroduced through the wave function collapse, breaking up the “entanglement” 

between the two photons and bringing a time-dependence into the process of individual 

measurements analogous to the time-resolved detection of single photons [17].  

A different approach would be to evaluate the probability of detection at location B in two 

possible circumstances: 

1. No detection takes place at location A, so that the projective measurement at location B 

involves the operator Π̂(𝛽) = |𝐻𝛽⟩ ⟨𝐻𝛽| acting on the initial state 

|𝜓𝐴𝐵⟩ = ( |𝐻𝐴⟩ |𝑉𝐵⟩ −  |𝑉𝐴⟩ |𝐻𝐵⟩)/√2                                                                                (1)  

and resulting in the probability of detection 

𝑃𝛽 = ⟨𝜓𝐴𝐵|𝐼𝐴⨂|𝐻𝛽⟩ ⟨𝐻𝛽|⨂ 𝐼𝐴 | 𝜓𝐴𝐵⟩ = (𝑐𝑜𝑠2 𝛽 + 𝑠𝑖𝑛2 𝛽)/2 = 1/2                        (2) 

after setting ⟨𝐻𝛽|𝐻𝐵⟩ = 𝑐𝑜𝑠 𝛽 and ⟨𝐻𝛽|𝑉𝐵⟩ = 𝑠𝑖𝑛 𝛽. An identical result is obtained for the first 

detection at location A, i.e., 𝑃𝛼 = 1/2 . 

2.  A first detection takes place at location A involving the projective operator Π̂(𝛼) = |𝐻𝛼⟩ ⟨𝐻𝛼|, 

which results in the intermediary state for the projective amplitudes ⟨𝐻𝛼|𝐻𝐴⟩ = 𝑐𝑜𝑠 𝛼 and  ⟨𝐻𝛼|𝑉𝐴⟩ =

𝑠𝑖𝑛 𝛼 , so that the reduced or collapsed wave function |𝜓𝐵|𝐴⟩ becomes: 

            |𝜓𝐵|𝐴⟩ = |𝐻𝛼⟩ ⟨𝐻𝛼|⨂ 𝐼𝐵|𝜓𝐴𝐵⟩  

=
1

√2
 (𝑐𝑜𝑠 𝛼 |𝑉𝐵⟩ − 𝑠𝑖𝑛 𝛼 |𝐻𝐵⟩) |𝐻𝛼⟩                      (3) 

|𝜓𝐵⟩ =
|𝜓𝐵|𝐴⟩

√ℕ
 =

|𝐻𝛼⟩⟨𝐻𝛼|⨂ 𝐼𝐵| 𝜓𝐴𝐵⟩

√ℕ
                                                                               (4) 

where |𝜓𝐵⟩  denotes the normalised wave function for the calculation of the detection 

probability at location B, conditional on a detection at location A. The normalization factor ℕ = 1/2 

for the collapsed wave function |𝜓𝐵|𝐴⟩ corresponds to the probability of detection 𝑃𝛼for the first 

measurement, and after substituting for |𝜓𝐵⟩ from Eq (4) we have: 

𝑃𝛼 = ⟨𝜓𝐴𝐵|𝐼𝐵⨂|𝐻𝛼⟩⟨𝐻𝛼|⨂ 𝐼𝐵|𝜓𝐴𝐵⟩ = |⟨𝐻𝛼|𝜓𝐴𝐵⟩|2 = ℕ ⟨𝜓𝐵|𝜓𝐵⟩

= 1/2                              (5) 

Based on the normalized state |𝜓𝐵⟩ , the probability of detection at location B following a 

detection at location A becomes in this case, for a projective measurement: 

𝑃𝛽|𝛼 = ⟨𝜓𝐵|𝐻𝛽⟩ ⟨𝐻𝛽|𝜓𝐵⟩ = | 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽|2 =  𝑠𝑖𝑛2(𝛽 − 𝛼)                      (6) 

This result which can be found in [3; Sec.19.5] implies that for 𝛽 − 𝛼 = ±𝜋/2, regardless of the 

values of  𝛽 𝑜𝑟 𝛼 , the local probability of detection could peak at unity. This theoretical outcome is 

easily testable experimentally for direct evidence of a quantum nonlocal effect influencing the second 

measurement after the wave function collapse. But this has never been done either because of the 

quantum Rayleigh scattering of a single-photon and/or the non-existence of such a nonlocal effect.  

The product of the local probabilities of Eqs. (2) and (6) equals the expression of the joint probability 

𝑃𝛼𝛽 for simultaneous detections at both locations A and B, that is: 

𝑃𝛼𝛽 = |⟨𝐻𝛽|⟨𝐻𝛼|
|𝜓𝐴𝐵⟩

√𝑃𝛼

|

2

𝑃𝛼 =  |⟨𝐻𝛽|𝜓𝐵⟩|
2

𝑃𝛼 = 𝑃𝛽|𝛼 𝑃𝛼                                                    (7𝑎) 

𝑃𝛼𝛽 = ⟨𝜓𝐴𝐵|𝐻𝛼⟩|𝐻𝛽⟩⨂⟨𝐻𝛽|⟨𝐻𝛼|𝜓𝐴𝐵⟩ = 0.5  𝑠𝑖𝑛2(𝛽 − 𝛼)                                                (7𝑏)  

𝑃𝛼𝛽 =  𝑃𝛼 𝑃𝛽|𝛼  ≤ 𝑃𝛼 𝑃𝛽                                                                                                               (7𝑐) 
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after inserting from Eqs. (4) and (5) in the equality (7a). The equality (7b) provides a direct calculation 

of the joint probability, confirming the validity of the derivation.  With the conditional probability 

of local detection 𝑃𝛽|𝛼 being, mathematically, lower than, or at best, equal to  the local probability 

of detection 𝑃𝛽 in the absence of a first detection, i.e., 𝑃𝛽|𝛼 ≤ 𝑃𝛽, the formalism of wave function 

collapse gives rise to a factorization of local probabilities and imposes an upper bound on the 

quantum joint probability, in clear contradiction to the conventional assumption [3; p.538], [4]. This 

formalism delivers average values of the ensembles rather than correlation between the sequential 

orders of the detections, as explained in the Introduction section and Appendix A. The possibility of 

factorizing the quantum probability for joint events as in (7a) is identical to the classical case of joint 

probabilities with the second local probability being conditioned on a first detection. This strong 

similarity between the classical and quantum joint probabilities renders the local condition of 

separability [3-4] irrelevant for the derivation of Bell inequalities.  

However, as local measurements at location B result in a difference between 𝑃𝛽 =1/2 and 

𝑃𝛽|𝛼 = 𝑠𝑖𝑛2(𝛽 − 𝛼) , experimental proof, or otherwise, of any quantum nonlocal effects can be verified 

by carrying out two ensembles of measurements, one with a prior detection at location A and the 

second one without such a detection. Additionally, by switching on and off the measurement at 

location A, a signal would be detected at location B between zero and non-zero probabilities, by 

simply coordinating the two filters’ angles to be equal 𝛽 = 𝛼  for the zero probability of joint 

detections. 

The use of a global quantum state which is time- and space-independent for the description of a 

time-dependent source output has led in many cases to physically impossible conclusions which 

were, nonetheless, taken as the “miracles” of quantum optics and quantum mechanics. In other 

words, even though information about the quantum system can be obtained from each individual 

measurement, the predictions of expected values of dynamic variables are based on global quantum 

states which discard a great deal of information.  

The analogous correlation function for independent photons evaluated through projective 

measurements is presented in Appendix B, to reveal the possibility of complete unity correlation 

between two one-setting detectors unlike Eqs. (7) which limit the correlation to a 0.5 value. 

2.2. System-Descriptive Wavefunctions For Time-Varying Inputs 

Our quest for a physically meaningful wave function is based on the first paragraph of the 

review [18] which reads:  

“A quantum state is what one knows about a physical system. The known information is codified in a state 

vector  | 𝜓⟩, or in a density operator  𝜌̂, in a way that enables the observer to make the best possible statistical 

predictions about any future interactions (including measurements involving the system). [ 18, p. 299]. 

The maximally entangled state of |Φ𝐴𝐵⟩ = (|𝐻𝐴⟩ |𝐻𝐵⟩ + |𝑉𝐴⟩ |𝑉𝐵⟩ )/√2  is time-independent 

corresponding to a mixed quantum state composed of two pure product states. For only one pair of 

photons being generated at any given time [6-7], [11] the time-dependent wavefunction  |Φ𝐴𝐵(𝑡)⟩ =

𝑐1(𝑡) |𝐻𝐴⟩ |𝐻𝐵⟩ + 𝑐2(𝑡) |𝑉𝐴⟩ |𝑉𝐵⟩  will result in two data sets being measured at different times, one for 

each product term, with 𝑐1(𝑡) = 1 𝑎𝑛𝑑 𝑐2(𝑡) = 0  or  𝑐1(𝑡) = 0 𝑎𝑛𝑑 𝑐2(𝑡) = 1 , and the basis states 

|𝐻𝐴;𝐵⟩ 𝑎𝑛𝑑  |𝑉𝐴;𝐵⟩  being aligned with the x and y axes of the joint frame of coordinates in the 

measurement space.  

The following paragraph is highly indicative of the shortcomings associated with an approach 

or formalism that deliberately overlooks physical elements and aspects of experimental setups. This 

paragraph reads [18]:  

“In order to prepare a heralded photon, a parametric down-conversion (PDC) setup is pumped relatively 

weakly so it generates, on average, much less than a single photon pair per laser pulse (or the inverse PDC 

bandwidth). The two generated photons are separated into two emission channels according to their propagation 

direction, wavelength, and/or polarization. Detection of a photon in one of the emission channels (labelled 
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trigger or idler) causes the state of the photon pair to collapse, projecting the quantum state in the remaining 

(signal) channel into a single-photon state.”  [18, p. 311]. 

Experiments of correlated polarization states in the quantum regime would have one photon 

per radiation mode propagate in a straight-line in a dielectric medium in order to synchronize their 

detections. Yet, the quantum Rayleigh scattering [12-13] would prevent such a straight-line 

propagation, thereby making a synchronized detection impossible. 

As derived and explained in [14-15], the parametric amplification is unavoidable and is 

accompanied by a phase-pulling effect which leads to the optimal condition for amplification. The 

alleged collapse of the state of the pair of photons, upon detection of one of them, into a single-photon 

state of the photon assumes that a single photon per radiation mode can propagate across a dielectric 

medium in a straight-line to the target photodetector. As explained previously [12-13], this 

assumption is ruled out by the existence of the quantum Rayleigh scattering in dielectric media such 

as optical fibres and beam splitters.  But the parametrically amplified group of photons will 

propagate in a straight-line by recapturing an absorbed photon through the quantum Rayleigh 

stimulated emission [14-15]. Additionally, the formation in a beam splitter of groups of identical 

photons through quantum Rayleigh stimulated emission is presented in [14-15].  

2.3. The Quantum Case of Time-Dependent Correlation Functions 

The conventional interpretation of coincident detections of a pair of polarization-entangled 

photons would have one photon each reach photodetectors A and B, spatially separated. But the two 

possible polarization states of each photon are mutually exclusive in time so that two data sets are 

probed separately at the level of each individual quantum event, with the statistical distribution of 

the mixed state describing the overall two ensembles of events. Thus, a physically meaningful 

wavefunction describing the two data sets will have a time dependence of only one pair of photons 

being present at any given time, e.g.: 

|ψ𝐴𝐵(𝑡)⟩ =  𝑐1(𝑡) |𝐻𝐴⟩ |𝑉𝐵⟩ − 𝑐2(𝑡)  |𝑉𝐴⟩ |𝐻𝐵⟩                                                                    (8) 

   

where 𝑐1(𝑡) = 1 𝑎𝑛𝑑 𝑐2(𝑡) = 0  or 𝑐1(𝑡) = 0 𝑎𝑛𝑑  𝑐2(𝑡) = 1, and |𝐻𝐴⟩ 𝑎𝑛𝑑  |𝑉𝐵⟩ are aligned with 

the x and y axes of the joint frame of coordinates in the measurement space. The ensemble averages 

of the coefficients are: 𝑐1(𝑡) = 1/√2  𝑎𝑛𝑑 𝑐2(𝑡) = 1/√2  resulting, mathematically, in a maximally 

entangled state for an ensemble of measurements.  

The common approach [3, Sec.19.5] would have the input photon absorbed through the 

annihilation operator 𝑎̂ |𝐻 𝑜𝑟 𝑉⟩ = |0⟩ , followed by a rotation of the creation operator 𝑎̂†(𝛼) =

𝑐𝑜𝑠 𝛼  𝑎̂𝐻
† + 𝑠𝑖𝑛 𝛼 𝑎̂𝑉

†   and the appearance of the photon along the polarization filter’s orientation 

𝑎̂†(𝛼) |0⟩ = (𝑐𝑜𝑠 𝛼 + 𝑠𝑖𝑛 𝛼) |𝐻𝛼⟩ .  

For one photon projected onto the filter state |𝐻𝛼⟩ at location A, the detection probability 𝑃𝑃𝐷(𝛼) 

of one photon at orientation angle 𝛼, following the collapse of the wave function upon the first 

sequential measurement, introduces a time dependence of the two mutually exclusive terms. For the 

sum of the two terms, the probability of photodetection at location A is: 

                      𝑃𝑃𝐷(𝛼, 𝑡) = (⟨𝜓𝐴𝐵(𝑡)| 𝑎̂𝛼
† )( 𝑎̂𝛼|𝜓𝐴𝐵(𝑡)⟩ ) = 𝐴𝑃𝐷

∗  𝐴𝑃𝐷 = |𝐴𝑃𝐷(𝛼, 𝑡)|2 = 

= |𝑐1(𝑡) 𝑐𝑜𝑠 𝛼|2 + |𝑐2(𝑡) 𝑠𝑖𝑛 𝛼 |2                                                                             (9) 

And, similarly, for the location B: 

 

𝑃𝑃𝐷(𝛽, 𝑡) = |𝑐1(𝑡) 𝑠𝑖𝑛 𝛽|2 + |𝑐2(𝑡) 𝑐𝑜𝑠 𝛽 |2                                                                          (10) 

This time-dependence reproduces the time variation at the source output. Consequently, the 

entangled state plays no role in the detection processes of the two time-separated ensembles of 

measurements.  
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For two simultaneous detections, one each at A and B, the probability 𝑃𝛼𝛽  of coincident 

detections takes the form: 

𝑃𝛼𝛽(𝑡) = ⟨ψ𝐴𝐵(𝑡)| 𝑎̂𝛼
†  𝑎̂𝛽

†  𝑎̂𝛽 𝑎̂𝛼|ψ𝐴𝐵(𝑡)⟩

= |𝑐1(𝑡) 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛 𝛽 − 𝑐2(𝑡) 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽|2       (11) 

The time-separation at the source is given by  𝑐1(𝑡) = 1 𝑎𝑛𝑑 𝑐2(𝑡) = 0  or 𝑐2(𝑡) = 0 𝑎𝑛𝑑  𝑐2(𝑡) =

1 . This time-dependence is reproduced through the wavefunction collapse upon the first 

measurement. The first measurement returns a random detection, while the second measurement 

does not involve the original entangled state.   

Two data sets of measurements are recorded, one for each term of two photons in Eq (8), leading 

to the separate probabilities  𝑃𝛼𝛽;𝑗 =  |𝑐𝑗(𝑡)|
2

 𝑃𝛼;𝑗𝑃𝛽;𝑗  ( j =1 or 2). And the sum of probabilities 

obtained for the sum of the two data sets of pairs of photons becomes by combining Eqs. (9-11): 
𝑃𝛼𝛽 = 0.5 [𝑐𝑜𝑠2 𝛼 𝑠𝑖𝑛2 𝛽 + 𝑠𝑖𝑛2 𝛼 𝑐𝑜𝑠2 𝛽]                                                              (12) 

after setting for the statistical average of 𝑐𝑗(𝑡) = 1/√2  . As an example, we set 𝛼 = ±𝜋/4 𝑜𝑟 ±

3𝜋/4  to obtain that 𝑃𝛼𝛽 = 1/4 for any value of 𝛽, including 𝛽 = 𝛼,  in contrast to Eq (7b). 

The two ensembles of detections do not overlap temporally, and their correlation is determined 

by the sequential orders of the ‘1’s and ‘0’s and can vary from one ensemble to another.  The physical 

absence of the interference term is brought about by the two temporally non-overlapping detections 

[17, Eq (9)]. The two data sets occur at different times and any correlation can only be mathematical. 

The correlation probability calculated for the entangled state  |ψ𝐴𝐵⟩ = (|𝐻𝐴⟩ |𝑉𝐵⟩ − |𝑉𝐴⟩ |𝐻𝐵⟩)/

√2 is: 

 

𝑃𝛼𝛽 = ⟨ψ𝐴𝐵 | 𝑎̂𝛼
†  𝑎̂𝛽

†  𝑎̂𝛽 𝑎̂𝛼|ψ𝐴𝐵⟩ = 0.5 | 𝑐𝑜𝑠 𝛼  𝑠𝑖𝑛 𝛽 − 𝑠𝑖𝑛 𝛼 𝑐𝑜𝑠 𝛽|2

= 0.5 𝑠𝑖𝑛2(𝛽 − 𝛼)       (13) 

which appears to indicate a physical correlation of measured ensembles; however, all states need 

to be populated simultaneously, which experimentally happens, as a result of the parametric 

amplification of the spontaneously emitted photons [14-15]. The number of photons simultaneously 

present in the system is much larger than two. 

The correlation between quantum mixed states of polarizations can also be obtained between 

classical states of polarization in the Jones representation. The correlation function 𝐶(𝛼; 𝛽) is the 

overlap between two state vectors  𝒆𝛼 = cos 𝛼 𝒙 + sin 𝛼 𝒚     and   𝒆𝛽 = −sin 𝛽 𝒙 + cos 𝛽 𝒚    

leading to 𝐶 (𝛼; 𝛽) = |𝒆𝛼 ∙ 𝒆𝛽|
2

= 𝑠𝑖𝑛2 (𝛼 − 𝛽) . This result is equivalent to the correlation of 

polarization states on the the Poincaré sphere [10]. 

3.Classical Joint Probabilities Exceeding the Product of Local Probabilities 

As explained in the Introduction, a joint probability of coincident detections that is larger than 

the product of the two local probabilities, i.e., 𝑝𝐴𝐵 (1,1) > 𝑝𝐴 (1) 𝑝𝐵 (1) can be easily obtained with 

classical distributions of binary values of ‘1’ and ‘0’. 

The derivation of Bell inequalities is based on the locality assumption [3-4], that is: “The joint 

probability distribution 𝑝(𝑎, 𝑏|𝑥, 𝑦; 𝜆) of obtaining outcomes a and b for measurements x and y, 

should factorize” [4] into: 

𝑝(𝑎, 𝑏|𝑥, 𝑦; 𝜆) =  𝑝(𝑎|𝑥; 𝜆) 𝑝(𝑏|𝑦; 𝜆)                                                                     (14) 

where for local statistics, the probabilities for outcomes a and b are 𝑝(𝑎|𝑥; 𝜆) 𝑎𝑛𝑑 𝑝(𝑏|𝑦; 𝜆) , 

respectively. The variable 𝜆 is meant to provide a correlation between the two measurements as a 

result of some past event involving the two separated systems of photons. The equality of Eq (14) 

limits, arbitrarily or intentionally, the contribution of the ‘hidden variables’ in order to justify the 

argument that any larger value of 𝑝(𝑎, 𝑏|𝑥, 𝑦; 𝜆) is due to the quantum effect of nonlocality. 

Mathematically, the derivation of Bell inequalities would have ‘hidden’ variables impact the 

statistical averages of simultaneous measurements. It is stated in [4; p.588] that: “In typical 

experiments, the complete specification of the state represented by λ is not available— for example, 
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the values of the hidden variables cannot be determined—so the strong separability condition must 

be averaged over a distribution ρ(λ) that represents the experimental information that is available.”  

Additionally, “…the condition for statistical independence” [4; p. 588] is: 

 

𝑝(𝑎, 𝑏|𝛼, 𝛽) =  𝑝(𝑎|𝛼) 𝑝(𝑏|𝛽)                                                                                (15) 

 “For the typical situation in which the complete state λ is not known, the Bell parameter S (λ) 

should be replaced by the experimentally relevant quantity 𝑆 ≡  𝐸(𝛼1, 𝛽1) +  𝐸(𝛼1, 𝛽2) +  𝐸(𝛼2, 𝛽1) −

 𝐸(𝛼2, 𝛽2) “ [4, p. 589] which leads to the  Clauser-Horne-Shimony-Holt inequality.  However, as 

pointed out in the Introduction, the CHSH inequality does not capture the presence of maximally 

entangled states, for which purpose it was derived, subject to the limitation of Eq (14). Further 

shortcomings of Bell inequalities can be found in Appendix A. 

The Clauser- Horne inequality used in [6-7] involves only joint probabilities of outcomes, and is 

written for further consideration as:  

𝑝 (1,1; 𝛼, 𝛽) −  𝑝 (1,1; 𝛼′,  𝛽′) ≤  𝑝 (1, 0; 𝛼,  𝛽′) + 𝑝 (0,1; 𝛼′, 𝛽)                        (16) 

But, with only two photons present at any given time, this inequality requires four different 

ensembles of measurements for the four pairs of settings which are probed at separate times. By 

contrast, the quantum nonlocality is supposed to act at the level of each pair of photons [5].  In Eq 

(16), e.g.,   𝑝 (1, 0; 𝛼,  𝛽′) stands for a detection at location A for setting  𝛼   and no detection at 

location B for setting 𝛽′. However, the inequality (16) cannot be violated even with optimal conditions 

because of the opposite requirements for the difference and sum of probabilities as explained in the 

next paragraph. 

With identical devices and settings, the quantum effect of nonlocality should maximize the joint 

probabilities on the left-hand side of Eq (16) and minimize the probabilities on its right-hand side.  

For example, with 𝛼 = 𝛽, the probabilities are set equal 𝑝(1|𝛼) =  𝑝(1|𝛽) = 0.8  and 𝑝(1|𝛼′) =

𝑝(1|𝛽′) = 0.2 , leading to maximal values of 𝑝𝑚𝑎𝑥(1,1; 𝛼, 𝛽) = 0.8 and  𝑝𝑚𝑎𝑥 (1,1; 𝛼′,  𝛽′) = 0.2 . On 

the right-hand side of Eq (16),  minimal probability values for the detections of ‘1’s coinciding with 

‘0’s are calculated by subtracting from the larger probability for ‘1’s the lower probability for ‘1’s, i.e., 

𝑝𝑚𝑖𝑛 (1, 0; 𝛼,  𝛽′) = 𝑝 (1; 𝛼) −  𝑝 (1; 𝛽′) = 0.8 − 0.2 = 0.6 . Equally, 𝑝𝑚𝑖𝑛 (0, 1; 𝛼′, 𝛽) = 0.6 .  Inserting 

these values into Eq (16), we have 0.8 − 0.2 < 2 (0.8 − 0.2) = 1.2, which does not violate the CH 

inequality. Once again, as explained in the Introduction, the condition for the joint probability being 

the product of local probabilities as the criterion above which quantum effects are meant to occur is 

physically unsubstantiated, particularly so, in view of the product of local probabilities derived in 

Eqs. (7) and the experimental results of [8-9].  

Experimentally, however, very low probabilities of detections are recorded because of the 

quantum Rayleigh scattering of single photons. The experimental violation of Eq (16) in [6-7] is 

possible because of the parametric amplification of the spontaneous emission in the original 

nonlinear crystal, so that the presence of multiple photons per radiation modes enhances the 

probability of coupling and detecting ‘1’s, which will be considered in the following sub-sections 3.1-

3.3.  

Overall, the hidden variables of the Bell inequalities play no role in the derivation of the 

inequalities. Physically, ‘hidden’ variables should be included in the wave functions associated with 

physical processes and linked to the mechanisms, processes, effects, etc. that bring about those 

detected outcomes. In this context, time-varying inputs, averaged over fluctuating local conditions, 

lead to the existence of multi-photon wave fronts which are mistaken for single photons. 

3.1. Physical Factors Reducing The Correlations Of Coincident Detections  

For classical probabilities any hidden variable 𝜆 will be set aside, and the following ratio 

of classical probabilities can be obtained from Eq (14) with 𝑝(𝑎, 𝑏|𝑥, 𝑦) =  𝑝(𝑏|𝑦) 

 
𝑝(𝑎, 𝑏|𝑥, 𝑦)

 𝑝(𝑎|𝑥)  𝑝(𝑏|𝑦)
=

1

 𝑝(𝑎|𝑥)  
> 1                                                                  (17) 
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This ratio can be larger than unity, indicating a stronger correlation between measurements than 

the locality condition of Eq (14) which was arbitrarily defined. This will happen for two series of 

individual binary outputs of ‘1’ and ‘0’, with all the detections ‘1’ of b coinciding with detections ‘1’ 

of a. For the same ensemble averages, the correlation value of the one-to-one same order component, 

may vary from zero to the minimum of the two probabilities. 

By contrast, for an input of multi-photon states, loss effects may not annihilate all the input 

photons, so that the number of detections increases regardless of the projective probability 𝑝(𝛼) =

𝑐𝑜𝑠2 𝛼 which provides a mathematical average. For a single-photon input, the density distribution 

per solid angle ∆Ω  of the mixed quantum state arising from spontaneous emission that follows the 

radiation pattern of an oscillating dipole is [19-20]: 

 

𝑝(𝜃)∆Ω =
𝑐𝑜𝑠2 𝜃 ∆𝜃 ∆𝜑

2𝜋 ∫ 𝑐𝑜𝑠2 𝜃  𝑑𝜃
𝜋

−𝜋

                                                                           (18) 

where the solid angle of emission is ∆Ω , the polar angle between the electric dipole vector and 

the polarization vector of the emitted photon is  𝜃 , and 𝜑  is the azimuthal angle in the plane 

perpendicular to the dipole [19-20]. It is this distribution of the Rayleigh spontaneously emitted 

photons over the range {−𝜋, 𝜋}, that randomly rotates the polarization state of the absorbed photons. 

Physically, however, one single photon is scattered randomly by quantum Rayleigh photon-

dipole interactions. By contrast, a group of identical photons can propagate in a straight line inside a 

dielectric medium through quantum Rayleigh stimulated emission. This process of stimulated 

emission can also amplify a spontaneously emitted photon with a rotated polarization, particularly 

so if the polarization modulator and analyser enable the propagation of a lossless mode [14-15].  

3.2. Correlations of Coincident Detections of Independent Photons    

A series or an ensemble of detection measurements is mathematically cast into a temporal 

vector  𝑣(𝛼, 𝜃𝐴) along polarization output angle 𝛼 , and for a polarization input setting 𝜃𝐴 . The 

elements of the data vector are 𝑐𝑚 = 1 𝑜𝑟 0 for a detection event or no detection, respectively, of the 

m-th order element. Thus, 𝑣(𝛼, 𝜃𝐴) has the following averaged number of ‘1’ terms summed over the 

probing times 𝛿(𝑡 − 𝑡𝑚),  for one photon of polarization H or V in the measurement frame of 

coordinates:    

  𝑣 (𝛼; 𝜃𝐴) =
1

𝑁
 ∑ 𝑐𝑚;𝐻(𝛼, 𝜃𝐴)

𝑁𝐻

𝑚=1

 𝛿 (𝑡 − 𝑡𝑚;𝐻(𝛼, 𝜃𝐴))

+
1

𝑁
 ∑ 𝑐𝑚;𝑉(𝛼, 𝜃𝐴)

𝑁𝑉

𝑚=1

 𝛿 (𝑡 − 𝑡𝑚;𝑉(𝛼, 𝜃𝐴)) = 

  =  𝑃𝐻(𝛼, 𝜃𝐴) + 𝑃𝑉(𝛼, 𝜃𝐴)  =  0.5 𝜂 [𝑐𝑜𝑠2  (𝜃𝐴 − 𝛼) +  𝑠𝑖𝑛2  (𝜃𝐴 − 𝛼)] =  
1

2
 𝜂           (19) 

where 𝜂 specifies the quantum efficiency of cross-polarization coupling,  𝑁𝐻 = 𝑁𝑉 = 𝑁/2 , namely, 

the total number of events 𝑁 is split equally between the two input H or V polarizations, 𝛼  is the 

polarization angle of the analysing filter at location A,  𝜃𝐴 is a rotation setting of the electro-optic 

modulator, the probing times are 𝑡𝑚;𝐻(𝜃𝐴) ≠  𝑡𝑚;𝑉(𝜃𝐴) and 𝑃𝐻;𝑉(𝜃𝐴) is the probability of detecting a 

pulse, for input H or V and polarization filter rotated by 𝜃𝐴. For input polarization V, orthogonal to 

H, the rotation angle is:  𝜋/2 − 𝜃𝐴  and the probability of detection along 𝜃𝐴   is  𝑃𝑉(𝛼) =

𝑠𝑖𝑛2  (𝜃𝐴 − 𝛼).  The average number of ‘0’s is found from the expression:  𝑣0 (𝛼, 𝜃𝐴) = 1 − 𝑣1 (𝛼, 𝜃𝐴) 

.   

The correlation vector 𝑣𝐶(𝛼; 𝛽) of simultaneous detections between two arbitrary and random 

series 𝑣(𝛼)  and 𝑣(𝛽)  or ensembles, at locations A and B, respectively, is expressed as the product 
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of the two m-th order terms, of simultaneous or coincident detections 𝑣𝐶(𝛼; 𝛽) = 𝑣(𝛼) ∙  𝑣(𝛽) leading 

to 

an average 𝑣𝐶(𝛼; 𝛽) of ’1’s or joint probability of simultaneous detections: 

𝑣𝐶(𝛼; 𝛽) = 𝑣(𝛼) ∙  𝑣(𝛽) ⇒ 𝑃(𝛼; 𝛽) =
1

𝑁
∑ 𝑐𝑚(𝛼)

𝑁

𝑚=1

 𝑐𝑚(𝛽)                                        (20) 

By considering all possible combinations in Eq. (20), it is obvious that the order of the random 

distributions of the two sequences will determine the value of the joint probability of correlation 

𝑃(𝛼; 𝛽) whose maximal value equals the lowest of the two local probabilities 𝑃(𝛼) 𝑎𝑛𝑑 𝑃(𝛽). The 

values of 𝑃(𝛼; 𝛽) may exceed the definition of the local condition for independent probabilities, i.e., 

𝑃(𝛼; 𝛽) = 𝑃(𝛼) 𝑃(𝛽) where 𝑃(𝛼) = (∑ 𝑐𝑚(𝛼)𝑁
𝑚=1  )/𝑁 and 𝑃(𝛽) = (∑ 𝑐𝑚(𝛽)𝑁

𝑚=1  )/𝑁. 

A distinction needs to be made between the probability of coincident events at the level of each 

individual event, and the product of probabilities of ‘1’s in each ensemble of measurements which is, 

in fact, the product of the averaged values of detections in the polarization states.   

From a physical perspective, identical systems operated in identical ways will yield identical 

distributions of outcomes, which is critical in the reproduction of experimental results. Given the low 

quantum efficiencies of ‘single-photon’ detections, the performance of correlated outputs can be 

significantly increased by launching, into the two systems, groups of identical photons as generated 

by the parametric amplification in the original crystal [10], [14-15], or externally controlled number 

of photons [8-9]. In such circumstances, the likelihood of a few photons reaching the output 

photodetectors simultaneously will be even larger than the probability of Eq. (20).  

3.2. Polarization-Controlled Correlated Output Of Multi-Photon States 

With multiple photons propagating in both input orthogonal states of polarization H and V, one 

can control the output intensity through interference of the intrinsic fields of groups of identical 

photons coupled onto the filter’s polarization state of rotation angle 𝜃𝐴 . Following the results of [14-

15] that identified dynamic and coherent number states |Ψn(𝜔, 𝑡)⟩ = ( |n(𝑡)⟩ + |n(𝑡) − 1⟩ )/√2, and 

recalling the non-Hermicity of the field operators [15], we find that 𝑎̂ |n ⟩ = √𝑛 𝑒−𝑖 𝜑|n − 1 ⟩ , which 

provides a complex field amplitude [15], for the time-dependent evolutions of photonic beam fronts. 

The output intensity, for fluctuating numbers of photons  𝑁𝑝ℎ(𝜃𝐴, 𝑡) and the expectation number 

〈𝑁𝑝ℎ(𝜃𝐴, 𝑡)〉 of the interference between pure states, take the forms: 

𝑁𝑝ℎ(𝜃𝐴, 𝑡) = 𝜂 0.5[ 𝑁𝐻(𝑡) 𝑐𝑜𝑠2(𝜃𝐴) +  𝑁𝑉(𝑡) 𝑠𝑖𝑛2(𝜃𝐴) + 

 

+2 Γ(𝜏) √𝑁𝐻(𝑡)𝑁𝑉(𝑡) 𝑠𝑖𝑛 ( 𝜃𝐴) 𝑐𝑜𝑠( 𝜃𝐴) 𝑐𝑜𝑠(𝜉𝐻(𝑡) − 𝜉𝑉(𝑡))]                       (21) 

〈𝑁𝑝ℎ(𝜃𝐴, 𝑡)〉 = η 0.5 ⟨ 𝑁𝑡𝑜𝑡(𝑡) [1

+  σ(𝑡,  𝜃𝐴) Γ(𝜏)  𝑐𝑜𝑠(𝜉𝐻(𝑡) − 𝜉𝑉(𝑡))] ⟩                                          (22) 

where σ(𝑡,  𝜃𝐴) = 𝑠𝑖𝑛 (2 𝜃𝐴)√ 𝑁𝐻(𝑡) 𝑁𝑉(𝑡)/ 𝑁𝑡𝑜𝑡(𝑡)  is the visibility with  𝑁𝑡𝑜𝑡(𝑡) = 𝑁𝐻(𝑡) 𝑐𝑜𝑠2(𝜃𝐴) +

𝑁𝑉(𝑡) 𝑠𝑖𝑛2(𝜃𝐴) ) , and Γ(𝜏) is the temporal overlap between the intrinsic optical fields of the photons 

whose derivation is available in [15]. The time-varying phases of the two polarization states are 

𝜉𝐻  𝑎𝑛𝑑 𝜉𝑉, and the time-average is indicated by the angled brackets.  

By varying parameters in Eq (22), the lowest number of photons can become larger than zero, 

which increases the probability of detection. Overall, the more photons are trapped in the system 

through quantum Rayleigh spontaneous emission [14-15], the more likely it is for groups of identical 

photons to form through quantum Rayleigh stimulated emission. As a result, single photons coalesce 

into groups of multi-photon states, thereby changing the statistical outcomes.  
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4. A Scrutiny of Landmark Experiments 

The concept of quantum nonlocality emerged from the mathematical formalism of quantum 

mechanics, but its practical implementation in quantum optics needs to comply with the well-

established processes involving light-matter interactions. Yet, in order to push through the concept 

of photonic quantum nonlocality, various researchers chose to ignore the basics of optical physics, 

and, instead invoked statistical calculations which are contradicted by the physical reality, as 

demonstrated in the Introduction and Section 2 of this article.  

Significant physical contradictions have been overlooked in the opinion article by Aspect [5] 

hailing the results of refs. [6] and [7] as “definitive proof” of one measurement influencing remotely 

another measurement, bringing about the end of the Einstein-Bohr debate. However, in this Section 

a scrutiny of these landmark experiments [6-7] disproves the existence of photonic quantum 

nonlocality as its theory is riddled with physical contradictions and inconsistencies as outlined in 

Section 2 of this article. 

Experimental evidence of strong-quantum correlations obtained with non-entangled photons [8] 

were published in early 2020 but were overlooked because they did not fit the prevailing 

interpretation [5]. Equally, a growing body of analytic developments before and after 2015 have 

repeatedly demonstrated the statistical nature [21-26] of quantum nonlocality experiments. Recently, 

the quantum Rayleigh scattering of single photons [12] has been identified as a physical mechanism 

undermining the implementation of the concept of quantum nonlocality.  

The concept of quantum nonlocality was summarized by Aspect in the first paragraph of ref. [5] 

as “the idea that a measurement on one particle in an entangled pair could affect the state of the 

other—distant—particle.” The alleged physical effect was illustrated for the entangled state 

| ψ𝐴𝐵⟩ = (|𝑥⟩𝐴 |𝑥⟩𝐵 + |𝑦⟩𝐴 |𝑦⟩𝐵)/ √2                                                                       (23) 
of two polarized photons shown in the inset to Fig. 1 of [5] for which “quantum mechanics predicts 

that the polarization measurements performed at the two distant stations will be strongly correlated“.  

Another quotation of interest is: “In what are now known as Bell’s inequalities, he showed that, for 

any local realist formalism, there exist limits on the predicted correlations.” However, independent 

photons or multi-photon states also deliver quantum-strong correlation functions because the Pauli 

spin operators act on the polarization state regardless of the number of photons it carries. In this 

context, the overlap, in the measurement Hilbert space, between two polarization Stokes vectors 

measured separately at two distant locations generate the same correlation functions [8-10], thereby 

explaining the comparison of the experimental outcomes without invoking ‘quantum nonlocality’.   

4.1. The Quantum Rayleigh Scattering of Single Photons  

Although well-documented, e.g., [19-20] four decades ago, the physical process of quantum 

Rayleigh scattering has been consistently ignored in the conventional theory of quantum optics [3]. 

A single photon cannot propagate in a straight-line inside a dielectric medium because of the 

quantum Rayleigh scattering associated with photon-dipole interactions. Groups of photons are 

created through parametric amplification in the nonlinear crystal in which spontaneous emissions 

first occur, generating pair photons from a pump photon. Such a group of photons will maintain a 

straight line of propagation by recapturing an absorbed photon through stimulated Rayleigh 

emission [14-15]. The assumption that spontaneously emitted, parametrically down-converted 

individual photons cannot be amplified in the originating crystal because of a low level of pump 

power would, in fact, prevent any sustained emission in the direction of the phase-matching 

condition because of the Rayleigh spontaneous scattering [14-15]. As pointed out in Eq (18), the 

spatial distribution of the spontaneously emitted photons spans a broad solid angle, not only the 

direction of the phase-matching condition. 

Evidence of single-photon scattering can be found in ref. [7], in the Supplemental Material 

reporting that “In our experiment no photons are detected during a large number of trials, and these 

trials contribute little to the Bell violation.” Equally, the experiments of [7] “… employed single-

photon optical time domain reflectometry (OTDR) to measure the transit time of light through all the 

optical fibers and some of the free-space optical paths in the experimental setup.” 
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The probability of detecting a photon and its quantum effect is reported in Table S-II on page 16 

[7], to be less than 0.001%. This extremely low level of maximal detection probability is also reported 

in Fig. 3 of ref. [6]. It should be obvious that such extremely low probabilities cannot describe the 

presence of a physical phenomenon. Rather, these probabilities would indicate random statistical 

measurements which are consistent with the statistical explanation for measurements of correlated 

outputs [21-26].    

Physically, quantum entanglement of photonic states implies a strong correlation between the 

same properties of the same variable or degree of freedom measured separately on each of the two 

entangled photons. These properties are the consequence of a common past interaction between these 

photons and those properties generated in the common interaction can be carried away from the 

position and time of that interaction.  

Even recent experiments [27] using optically nonlinear crystals for parametric down-conversion 

of photons, report detection probabilities lower than 0.1%, pointing out that “The raw data are sifted” 

for a particular purpose. All these bring to the fore the unavoidable amplification of spontaneously 

emitted photons [14-15]. An indication of the existence of the quantum Rayleigh scattering can be 

seen from the extensive loss of photons that has been a constant feature of photon coincidence 

counting. For example, ref. [27] reports on page 3 of the Supplementary Information: “The success 

probability of the entanglement generation process, i.e. detection of a photon after an excitation pulse, 

equals 5.98 ×10−3 and 1.44 × 10−3 for Alice’s device and Bob’s device, respectively”.  A typical 

percentage of lost photons is, at least, 99.9% as mentioned independently.  

4.2. The Absence of Quantum Nonlocality Upon Sequential Measurements  

The joint probability of detecting simultaneous photons depends on the random orders in the 

locally detected sequences, as explained in Section 3. Classical distributions of joint probabilities can 

easily exceed the value of their products as explained in the Introduction and Appendix A. A 

formalism based on wave function collapse – requiring a first detection followed by a second one – 

leads to the possibility of detecting locally the assumed existence of the quantum nonlocality effect, 

as described by Eqs. (7). 

Quantum nonlocality is claimed to influence the measurement of the polarization state of one 

photon at location B, which is paired with another photon measured at location A. The two photons 

are said to be components of the same entangled state. Maximally entangled states, such as | ψ𝐴𝐵⟩ of 

Eq. (23), represented in the same frame of coordinates of horizontal (x) and vertical (y) polarizations, 

would deliver the strongest correlation values between separate measurements of polarization states 

recorded at the two locations A and B.   

Nevertheless, the experimental results of refs. [6] and [7] revealed a low level of entanglement, 

with the reported mixed states having one component much larger than the other, thereby allowing 

for measurements of non-entangled product states. From equations (2) of both references [6-7], their 

experimental optimal ratios of the two amplitudes are 2.9 and 0.961/0.276, respectively, in [6] and [7]. 

If a collapse of the wave function is to take place for entangled photons upon detection of a 

photon at either location, then the two separate measurements do not coincide. In this case, a 

polarimetric local measurement vanishes for the maximally entangled Bell states, e.g., 

⟨ψ𝐴𝐵 | 𝜎̂ 𝐴 ⨂ 𝐼 𝐵 |ψ𝐴𝐵⟩ = 0 , with  𝐼 𝐵 = | 𝑥 ⟩⟨ 𝑥 |+|𝑦 ⟩⟨ 𝑦 |  being the identity operator, and the 

projecting Pauli operators are in this case 𝜎̂1  =  | 𝑥 ⟩⟨ 𝑦 |+|𝑦 ⟩⟨ 𝑥 |   and  𝜎̂3  =

 | 𝑥 〉〈 𝑥 |−|𝑦 〉〈 𝑦 | . Thus, a physical contradiction arises as local experimental outcomes determine the 

mixed quantum state of polarization of the ensemble to be compared with its pair quantum state. As 

a matter of physical measurement, for the partially entangled state of | ψ𝐴𝐵,𝑎𝑏⟩ =  𝑎 |𝑥⟩𝐴 |𝑥⟩𝐵 +

𝑏 |𝑦⟩𝐴 |𝑦⟩𝐵), with |𝑎|2 + |𝑏|2 = 1,  the local measurement will deliver   ⟨ψ𝐴𝐵,𝑎𝑏 | 𝜎̂ 𝐴 ⨂ 𝐼 𝐵 |ψ𝐴𝐵,𝑎𝑏⟩ =

|𝑎|2 − |𝑏|2 indicating that the largest expectation value, i.e., will be achieved with pure states, for 

either 𝑎 = 1 and 𝑏 = 0, or 𝑎 = 0 and 𝑏 = 1. Upon comparison of the two separately measured data 

sets, the strongest correlation will be detected for pure product states which are, in fact, obtained 

theoretically by invoking wavefunction collapse upon measurement.   
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This overlooked feature of maximally entangled Bell states renders them incompatible with the 

polarimetric measurements carried out to determine the state of polarization of photons, thereby 

explaining the experimental results of ref. [8-9] which were obtained with independent photons, 

indicating the possibility of obtaining quantum-strong correlations without independent photons as 

pointed out in ref. [10]. The wave function collapse would bring about a product state as part of a 

time-dependent partial ensemble of measurements.  

The mixed quantum state  |ψ𝐴𝐵⟩ is space- and time-independent and considered to be a global 

state which can be used in any context, anywhere, and at any time.  Nevertheless, the Hilbert spaces 

of the two photons move away from each other and do not overlap spatially, so that any composite 

Hilbert space is mathematically generated by means of a tensor product at a third location where the 

comparison of data is performed. Even so, the absence of a Hamiltonian of interaction renders any 

suggestion of a mutual influence, during the probing, physically impossible [21].   

4.3. Correlation Functions 

Maximally entangled states, represented in the same frame of coordinates of horizontal and 

vertical polarizations, would deliver the strongest values of the correlation function for the Pauli spin 

vectors operators: 

𝐸𝑐 =  ⟨ψ𝐴𝐵 | 𝜎̂ 𝐴 ⨂ 𝜎̂ 𝐵 |ψ𝐴𝐵⟩ = 𝑐𝑜𝑠  [2 (𝜃𝐴 − 𝜃𝐵)]                                                 (24) 

for identical inputs to the two separate apparatuses, with the polarization filters rotated by an angle 

𝜃𝐴 𝑜𝑟 𝜃𝐵  , respectively, from the horizontal axis. However, quantum-strong correlations with 

independent photons have been demonstrated experimentally [8-9] but ignored by legacy journals 

because they did not fit in with the theory of quantum nonlocality. The same correlation function 

𝐸𝑐 = 𝑐𝑜𝑠  [2 (𝜃𝐴 − 𝜃𝐵)] is obtained ‘classically’, as a result of the overlap of two polarization Stokes 

vectors of the polarization filters on the Poincaré sphere [10]. The Stokes parameters correspond to 

the expectation values of the Pauli spin operators [10].  

The correlation function is a numerical calculation as opposed to a physical interaction. Thus, the 

numerical comparison of the data sets is carried out at a third location C where the reference system 

of coordinates is located for comparison or correlation calculations of the two sets of measured data, 

and does not require physical overlap of the observables whose operators are aligned with the system 

of coordinates of the measurement Hilbert space onto which the detected state vectors are mapped. 

In this case, the correlation operator  𝐶̂ = 𝜎̂ 𝐴 ⨂ 𝜎̂ 𝐵  can be reduced to [28; Eq. (A6)]: 

𝐶̂ = (𝒂 ∙  𝜎̂)(𝒃 ∙  𝜎̂) = 𝒂 ∙ 𝒃 𝐼 + 𝑖 ( 𝒂 × 𝒃 ) ∙ 𝜎̂                                                         (25) 

where the polarization vectors  𝒂 and 𝒃  identify the orientation of the detecting polarization filters 

in the Stokes representation, and 𝜎̂ = ( 𝜎̂1, 𝜎̂2 , 𝜎̂3 ) is the Pauli spin vector (with 𝜎̂2 = 𝑖 𝜎̂1 𝜎̂3). The 

presence of the identity operator in Eq. (25) implies that, when the last term vanishes for a linear 

polarization state, the correlation function is determined by the orientations of the polarization filters. 

This can be easily done with independent and linearly polarized states, such as: 

| 𝜓𝑗  ⟩ = ( |𝑥⟩𝑗  + |𝑦⟩𝑗  )/ √2                                                                                       (26) 

where the index j= A or B identifies the photodetector. The same state reaches both detectors. 

The polarization operator 𝜎̂ projects the incoming states onto the measurement Hilbert space 

for comparison of the two separate data sets. The polarization measurement operators of  

𝜎̂(𝜃𝑗) = sin ( 2𝜃𝑗) 𝜎̂1 + 𝑐𝑜𝑠(2𝜃𝑗) 𝜎̂3   produce the output states 

  |Φ𝑗⟩ = sin ( 2𝜃𝑗) 𝜎̂1 | 𝜓𝑗  ⟩ + 𝑐𝑜𝑠(2𝜃𝑗) 𝜎̂3 | 𝜓𝑗  ⟩                                                      (27)             

which, analogously to the overlapping inner product of two state vectors, lead to the correlation 

function of [10]: 

𝐸𝑐 =  ⟨Φ𝐴 | Φ𝐵⟩ =  𝑐𝑜𝑠 2 (𝜃𝐴 − 𝜃𝐵)                                                                        (28)          

The quantum correlation function of Eq. (28) between two independent states of polarized 

photons is equivalent to the overlap of their Stokes vectors on the joint Poincaré sphere of the 
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measurement Hilbert space. Quantum-strong correlation are possible with independent states of 

photons [8-10] because the source of the correlation is the polarization states of the detecting filters 

or analyzers, making any claim of quantum nonlocality unnecessary. 

5. Physical Aspects and Discussion of Physical Processes 

At least three critical elements have been ignored in the interpretations of experimental results 

alleging proof of quantum nonlocality: 1) the quantum Rayleigh scattering involving photon-dipole 

interactions in a dielectric medium, which prevents a single photon from propagating in a straight-

line, thereby obstructing the synchronized detections of initially paired-photons; 2) the unavoidable 

parametric amplification of the spontaneously emitted photons in the nonlinear crystal of the original 

source; and 3) the experimental evidence of quantum-strong correlations between polarization states 

or statistical ensembles of multi-photon, independent states.      

The existence of the quantum Rayleigh (QR) scattering was well documented back in the 1970s 

in textbooks [19-20] and its absence from the theory of Quantum Optics developed since the early 

1980s is still a puzzling question. A possible answer would be that the “miracles” of quantum optics 

would have needed explaining by other physical means, requiring a multi-disciplinary approach. 

The concept of quantum nonlocality claims the existence of a strong correlation between 

measurements involving two entangled photons generated as a pair. The Bell inequalities impose a 

limit on the calculated correlation probabilities between ensembles of measurements involving an 

unlimited number of pairs of photons. But Bell inequalities can be experimentally violated with 

expectation values from independent and multi-photon states [8-9], because the correlations can also 

be generated classically [10] 

Equally, as explained in the Introduction and Appendix A, joint classical probabilities can exceed 

the value of their product.  There is no physical evidence of quantum non-locality for the simple 

reason that the Bell inequalities involve ensemble averages, whereas the quantum non-locality effect 

would act at the level of each qubit of photons or individual pairs of spatially separated, apparently 

entangled particles. As explained in Section 2, upon the first detection of an entangled pair of 

photons, the joint probability become factorized as the product of the two local probabilities, bringing 

about the possibility of local detection of an apparent quantum nonlocality. But such an experiment 

is yet to be carried out despite its simplicity.  

The theoretical concept of photonic quantum nonlocality cannot be implemented physically 

because of the quantum Rayleigh scattering of single photons. A physical scrutiny of landmark 

experiments [6-7] has been undertaken. These articles reported that measured outcomes were fitted 

with quantum states possessing a dominant component of non-entangled photons, thereby 

contradicting their own claim of quantum nonlocality. With probabilities of photon detections lower 

than 0.01 %, the alleged quantum nonlocality cannot be classified as a resource for developing 

quantum computing devices, despite recent publicity. Experimental evidence of a feasible process for 

quantum-strong correlations has been identified [8-9] in terms of correlations between independent 

and multi-photon states evaluated as Stokes vectors on the Poincaré sphere. As single-photon sources 

are not needed, the design and implementation of quantum computing operations and other devices 

will be significantly streamlined.   

It is a common practice among the proponents of quantum nonlocality to ignore any physically 

meaningful interpretation of the relevant experiments. For example, a special issue on Quantum 

Nonlocality [29] does not mention at all any articles which disprove the concept of quantum 

nonlocality. Instead, rather contradictory statements were presented: “The quantum nonlocality also 

has an operational meaning for us, local observers, who can live only in a single world. Given 

entangled particles placed at a distance, a measurement on one of the particles instantaneously 

changes the quantum state of the other, from a density matrix to a pure state“. “What seems to be an 

unavoidable aspect of nonlocality of the quantum theory—which is present even in the framework of all 

worlds together—is entanglement. Measurement on one system does not change the state of the other 

system in the physical universe, but in each world created by the measurement, the state of the remote 

system is different. The entanglement, that is, the nonlocal connection between the outcomes of 
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measurements shown to be unremovable using local hidden variables, is the ultimate nonlocality of quantum 

systems” [29].  Yet, all these statements have been proven to be unsubstantiated in the various Sections of 

this article, and in references [21-26], as well as experimentally [8-9]. 

 Equally, the popular promotion [27] of research articles makes rather exaggerated claims such 

as: “The phenomenon of quantum nonlocality defies our everyday intuition. It shows the strong 

correlations between several quantum particles some of which change their state instantaneously 

when the others are measured, regardless of the distance between them.” Such interpretations can be 

easily disproved [21-26].  

This misinformation of refs. [29-30] has not produced any quantum computer despite more than 

two decades of heavy investment as pointed out in refs. [1-2]. 

6. Conclusions 

This article identifies several physical omissions and contradictions which have been overlooked 

in the literature of photonic quantum nonlocality and which disprove the aspects or elements of 

quantum nonlocality. The propagation of single photons in a straight-line inside a dielectric medium 

is impossible because of the quantum Rayleigh scattering. The wave function collapse leads to a 

factorization of the quantum probability of joint detections, which has been ignored. Equally, the 

function reduction upon a first measurement, as required for a quantum ‘nonlocal’ interaction, leads 

to a vanishing expectation value for the Pauli operators in the context of a Bell-state, i.e., maximally 

entangled photons. The strong correlation functions can also be obtained with independent states of 

photons obviating the need for entangled photons. Overall, the locality condition underpinning Bell-

type inequalities is easily violated with non-entangled and classical states of polarization [8-10]. 

Finally, a distinction needs to be drawn between the mathematical formalism of quantum 

mechanics which allows for any assumption to be made, and its implementation subject to the 

physical processes of optical physics in which the field of quantum optics is grounded. The latter will 

limit the range of conclusions that can be inferred from the former. 

Overall, the editorial guidelines of legacy journals, e.g. Physical Review Letters, of rejecting 

outright and without any consideration, well-substantiated rebuttals of quantum non-locality led to 

the citation of the 2022 Nobel Prize Committee being incomplete and misleading, and its 

reconsideration will be appropriate, in view of the well-documented shortcomings of the Bell 

inequalities as far back as 1980, e.g., [31]. 

Appendix A – The physical irrelevance of Bell inequalities 

As pointed out in ref. [4], in typical experiments of correlated outputs, the results of the joint 

probability 𝑝(𝑎, 𝑏|𝑥, 𝑦) of simultaneous or synchronized detections of two sequential ensembles of 

binary values, do not equal the product of the two separate probabilities of detection 

 𝑝(𝑎|𝑥) 𝑎𝑛𝑑  𝑝(𝑏|𝑦) at locations A and B for outcome 𝑎 and 𝑏 corresponding to local settings 𝑥 and 

𝑦, respectively: 

𝑝(𝑎, 𝑏|𝑥, 𝑦) ≠  𝑝(𝑎|𝑥) 𝑝(𝑏|𝑦)                                                               (A1) 
where 𝑎, 𝑏 = 0 𝑜𝑟 1 are assigned binary values for no-detection or detection of an event, respectively.      

In an attempt to explain experimental outcomes obtained with quantum events, it was 

suggested to convert Eq. (A1) into an equality of local factors [4]: 

𝑝𝑓(𝑎, 𝑏|𝑥, 𝑦; 𝜆) =  𝑝(𝑎|𝑥; 𝜆) 𝑝(𝑏|𝑦; 𝜆)                                                 (A2) 

by introducing a “hidden” variable 𝜆 whose role would be to create a correlation between the 

two binary-valued sequences with randomly distributed terms of ‘0’s and ‘1’s, for probabilities of 

detection  𝑝(𝑎|𝑥; 𝜆) 𝑎𝑛𝑑  𝑝(𝑏|𝑦; 𝜆) . However, from a physical perspective, the correlation of 

simultaneous detections is evaluated from a third sequential distribution 𝑣𝐶(𝑎; 𝑏) calculated as the 

vector or dot product of the two initial sequences 𝑣(𝑎, 𝑥) = {𝑎𝑚} and 𝑣(𝑏, 𝑦) = {𝑏𝑚} :  

𝑣𝐶(𝑎; 𝑏) = 𝑣(𝑎) ∙  𝑣(𝑏)   ⇒   𝑝𝑐(𝑎, 𝑏) =
1

𝑁
∑ 𝑎𝑚

𝑁

𝑚=1

 𝑏𝑚                                   (A3) 
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with the values of the correlation or joint probability   𝑝𝑐(𝑎, 𝑏|𝑥, 𝑦; 𝜆)  ranging above and below 

the product  𝑝(𝑎|𝑥; 𝜆) 𝑝(𝑏|𝑦; 𝜆). For  𝑝𝑐(𝑎, 𝑏|𝑥, 𝑦) >  𝑝(𝑎|𝑥) 𝑝(𝑏|𝑦) the arbitrary upper limit of Eq 

(A2) renders any further derivation physically irrelevant as it is intentionally limited in value. 

However, Clauser and Horne instead of correcting this mistake, adopted it and derived two Bell-type 

inequalities [4], [6-7],[11] in the form of functions of probabilities 𝑝𝑓(𝑎, 𝑏|𝑥, 𝑦) =

∫ 𝑞(𝜆) 𝑝(𝑎, 𝑏|𝑥, 𝑦; 𝜆)
⬚

Λ
 𝑑𝜆, with  𝑞(𝜆) being the normalized distribution of hidden variables. Those 

inequalities can be easily violated with classical probabilities  𝑝𝑐(𝑎, 𝑏|𝑥, 𝑦) of Eq (A3) which can be 

larger than the product of the separate probabilities [8-9]. Later on, neither Aspect, nor Zeilinger 

noticed the statistical problem of Eq (A2), with the landmark experiments of [6] and [7] employing 

strongly non-entangled photons to violate the Clauser-Horne inequality. 

The quantum correlation function 𝐸𝑐(1; 1|𝛼; 𝛽) for detecting one photon at location A and its 

pair-photon at location B, is defined in terms of four probabilities between two orthonormal 

detection-settings at each of the two locations A and B, for eigenvalues  +1 𝑜𝑟 − 1, respectively, of 

local settings 𝛼 𝑜𝑟 𝛼′ , and  𝛽 𝑜𝑟 𝛽′ leading to the linear combination of probabilities 𝑃𝑖𝑗 [3-4]: 

𝐸𝑐(1; 1|𝛼; 𝛽) = 𝑃++(𝛼; 𝛽) + 𝑃−−(𝛼′; 𝛽′) − 𝑃+−(𝛼; 𝛽′) − 𝑃−+(𝛼′; 𝛽)                   (𝐴4) 
where 𝛼′ = 𝛼 + 𝜋/2 and 𝛽′ = 𝛽 + 𝜋/2 . Fluctuations in the number of detections would give 

rise to a spread in the values of 𝑃𝑖𝑗 and  𝐸𝑐(1; 1|𝛼; 𝛽). This correlation function is normally linked to 

the polarimetric Stokes measurements or the quantum Pauli vector operators and has the same form 

in both the quantum and classical regimes [10], so that its use in the Clauser-Horne-Shimony-Holt 

(CHSH) inequality cannot discriminate between quantum and classical outcomes.  The quantum 

counting is sequential whereas the classical counting consists of only one sampling step.   

For the CHSH inequality [11], the correlation probability is 𝑃++(𝛼; 𝛽) = 𝑁++(𝛼; 𝛽)/ 𝑁𝑛𝑜𝑟𝑚 where 

𝑁++  is the number of coincident counts of photons and  𝑁𝑛𝑜𝑟𝑚  is the number of all coincident 

detections for all four settings 𝑁𝑛𝑜𝑟𝑚 = 𝑁++(𝛼; 𝛽) + 𝑁−−(𝛼′; 𝛽′) + 𝑁+−(𝛼; 𝛽′) + 𝑁−+(𝛼′; 𝛽). However, 

this normalization is mathematical because the physical number 𝑁𝑛𝑜𝑟𝑚 = 𝑁𝑖𝑛 of initiated photon-

pairs is very much larger as photons are lost between the source and the photodetectors, for various 

reasons, thereby throwing doubt about the real statistics. This normalization makes a violation of the 

CHSC impossible as  𝑁++/𝑁𝑖𝑛 ≪ 0.1.  

The Clauser-Horne (CH) inequality has arbitrary values for the two measurement settings, 

i.e., 𝛼 𝑎𝑛𝑑 𝛼′ as well as  𝛽 𝑎𝑛𝑑 𝛽′  are set separately. The CH inequality also contains correlations 

between ‘1’s and ‘0’s, so that, in terms of binary-valued probabilities  𝑝 (1,1; 𝛼, 𝛽) and similar forms, 

[6-7], the inequality is written as: 

𝑝 (1,1; 𝛼, 𝛽) −  𝑝 (1,1; 𝛼′,  𝛽′) ≤  𝑝 (1, 0; 𝛼,  𝛽′) + 𝑝 (0,1; 𝛼′, 𝛽)                                    (𝐴5) 
with the normalization factor 𝑁𝑖𝑛 of initiated events being used. But, as only one term of the 

four terms is measured in any given run, the linear combination would relate the maximal values on 

the left-hand side to the minimal values on the right-hand side. With such probabilities for all four 

terms, the opposite requirements of the inequality for the coincident detections of (1;1) on the left-

hand side, and for only one-location detection (1;0) or (0;1) on the right-hand side, make a violation 

impossible, mathematically, unless arbitrary values are selected from various data sets. In this case, 

the inequality becomes physically meaningless. 

Appendix B - Linking projective measurements to the theoretical correlation function of 

independent photons 

Quantum correlations are evaluated as the expectation values of a product of operators [3-4]. 

For the projective operators  𝛱̂(𝛼) = |𝐻𝛼⟩ ⟨𝐻𝛼| 𝑎𝑛𝑑 𝛱̂(𝛽) = |𝐻𝛽⟩ ⟨𝐻𝛽|   corresponding to the 

polarization filters with one detection setting at each of the two locations A and B, respectively, the 

probability of coincident detections has the form, cf. [4, Eq 13]: 

𝑝 (1,1; 𝛼, 𝛽) = |(⟨𝜓𝑖𝑛|𝛱̂(𝛼)) (𝛱̂(𝛽) |𝜓𝑖𝑛⟩)| = |⟨Φ𝛼|Φ𝛽⟩|                                                (𝐵1) 

with |𝐻𝛼⟩ and |𝐻𝛽⟩  identifying the states of the polarization filters, and ⟨Φ𝛼| = ⟨𝜓𝑖𝑛|𝛱̂(𝛼) for 

the Hermitian conjugate state.  For the polarization-entangled photons, the outcomes consist of the 
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overlap between two state vectors rotated on the Poincaré sphere and are defined as the correlation 

function 𝐶(𝛼; 𝛽)  between two (mixed) states; by contrast, experimentally, the probability of 

coincident detections is calculated from the sum of products of overlapping terms, i.e.,  𝑝𝑐(𝑎, 𝑏) =

(∑ 𝑎𝑚
𝑁
𝑚=1  𝑏𝑚)/𝑁  , as defined in the Introduction, and identifies the fraction of simultaneous 

detections at the level of each quantum event. This discrepancy is part of the disconnect between 

theory and measurement. 

For the basis states |𝐻⟩ 𝑎𝑛𝑑 |𝑉⟩  of the shared measurement Hilbert space, the projective 

amplitudes are ⟨𝐻𝛼|𝐻𝐴⟩ = 𝑐𝑜𝑠 𝛼 , ⟨𝐻𝛼|𝑉𝐴⟩ = 𝑠𝑖𝑛 𝛼 ,  ⟨𝐻𝛽|𝐻𝐵⟩ = 𝑐𝑜𝑠 𝛽  and  ⟨𝐻𝛽|𝑉𝐵⟩ = 𝑠𝑖𝑛 𝛽 . The 

correlation function 𝐶(𝛼; 𝛽) of magnitude |𝐶(𝛼; 𝛽)| =  𝑝 (1,1; 𝛼, 𝛽) between filter polarization states 

and for independent states of photons |𝜓𝑖𝑛⟩ becomes: 

𝐶(𝛼; 𝛽) = ⟨Φ𝛼|Φ𝛽⟩ = ⟨𝜓𝑖𝑛|𝐻𝛼⟩ ⟨𝐻𝛼|𝐻𝛽⟩⟨𝐻𝛽|𝜓𝑖𝑛⟩                                                        (𝐵2) 

|𝜓𝑖𝑛⟩ = ( |𝐻⟩  + |𝑉⟩ )/ √2                                                                                                   (𝐵3) 
|𝐻𝛼⟩ = cos 𝛼 |𝐻⟩  + sin 𝛼  |𝑉⟩    ;    |𝐻𝛽⟩ = cos 𝛽 |𝐻⟩ + sin 𝛽  |𝑉⟩                             (𝐵4) 

𝐶(𝛼; 𝛽) =  0.5[𝑐𝑜𝑠 𝛼 + sin 𝛼] [𝑐𝑜𝑠(𝛼 − 𝛽)] [cos 𝛽 + 𝑠𝑖𝑛 𝛽] =                                           

=  0.5 cos(𝛼 − 𝛽)[cos(𝛼 − 𝛽) + sin(𝛼 + 𝛽)]                                                (𝐵5) 
This correlation of Eq (B5) is composed of three terms. The projections of the input states onto 

the respective filters are given by the sum of the sine and cosine functions, while the term 𝑐𝑜𝑠(𝛼 − 𝛽)  

indicates the overlap between the two filters. The magnitude of this correlation function or 

probability of coincident detections can reach a peak of unity for the symmetric case of  𝛼 = 𝛽 =

𝜋/4 𝑜𝑟 𝜋/4 ± 𝜋  , outperforming the coincidence values of 0.5 obtained with entangled states of 

photons as presented in Section 2.1. 

The possibility of achieving strong correlations with independent photons has, once again, been 

demonstrated experimentally recently [8-9]. 
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