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Apoloniusz Tyszka
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Abstract: We assume that the current mathematical knowledge K is a finite set of statements which

is time-dependent. This set exists only theoretically. Ignoring K and its subsets, sets exist formally in

ZFC theory although their properties can be time-dependent (when they depend on K) or informal.

In every branch of mathematics, the set of all knowable truths is the set of all theorems. This set exists

independently of K. Algorithms always terminate. We explain the distinction between algorithms

whose existence is provable in ZFC and constructively defined algorithms which are currently known.

By using this distinction, we obtain non-trivial statements on decidable sets X ⊆ N that belong to

constructive and informal mathematics and refer to the current mathematical knowledge on X . This

and the next sentence justify the article title. For any empirical science, we can identify the current

knowledge with that science because truths from the empirical sciences are not necessary truths but

working models of truth from a particular context.

Keywords: conjecturally infinite sets X ⊆ N; constructive algorithms; current mathematical

knowledge; informal notions; known algorithms; known elements of N.

MSC: 03A05; 03F55

1. Introduction and Why Such Title of the Article

This article is a continuation of [14–16]. The main mathematical results of this article were

presented at the 25th Conference Applications of Logic in Philosophy and the Foundations of

Mathematics, see http://applications-of-logic.uni.wroc.pl/XXV-Konferencja-Zastosowania-Logiki-

w-Filozofii-i-Podstawach-Matematyki. We assume that the current mathematical knowledge K is a

finite set of statements which is time-dependent. This set exists only theoretically. Ignoring K and

its subsets, sets exist formally in ZFC theory although their properties can be time-dependent (when

they depend on K) or informal. In every branch of mathematics, the set of all knowable truths is the

set of all theorems. This set exists independently of K. Algorithms always terminate. We explain

the distinction between algorithms whose existence is provable in ZFC and constructively defined

algorithms which are currently known. By using this distinction, we obtain non-trivial statements on

decidable sets X ⊆ N that belong to constructive and informal mathematics and refer to the current

mathematical knowledge on X . This and the next sentence justify the article title. For any empirical

science, we can identify the current knowledge with that science because truths from the empirical

sciences are not necessary truths but working models of truth from a particular context, see [17, p. 610].

2. Summary of the Main Mathematical Results

For a set X ⊆ N whose infiniteness is false or unproven, we define which elements of X are

classified as known. No known set X ⊆ N satisfies Conditions (1)-(4) and is widely known in

number theory or naturally defined, where this term has only informal meaning.

(1) A known algorithm with no input returns an integer n satisfying card(X ) < ω ⇒ X ⊆ (−∞, n].
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(2) A known algorithm for every k ∈ N decides whether or not k ∈ X .

(3) No known algorithm with no input returns the logical value of the statement card(X ) = ω.

(4) There are many elements of X and it is conjectured, though so far unproven, that X is infinite.

(5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest definition

among known sets Y ⊆ N with the same set of known elements.

We prove that the set

X = {n ∈ N : the interval [−1, n] contains more than

11!

3n + 1
· sin(n) primes o f the f orm k! + 1}

satisfies Conditions (1)-(5) except the requirement that X is naturally defined. We present a table

that shows satisfiable conjunctions of the form

#(Condition 1) ∧ (Condition 2) ∧ #(Condition 3) ∧ (Condition 4) ∧ #(Condition 5)

where # denotes the negation ¬ or the absence of any symbol.

3. Basic Definitions and Examples

Algorithms always terminate. Semi-algorithms may not terminate. There is the distinction

between existing algorithms (i.e. algorithms whose existence is provable in ZFC) and known algorithms

(i.e. algorithms whose definition is constructive and currently known), see [2], [9], [11, p. 9]. A definition

of an integer n is called constructive, if it provides a known algorithm with no input that returns n.

Definition 1 applies to sets X ⊆ N whose infiniteness is false or unproven.

Definition 1. We say that a non-negative integer k is a known element of X , if k ∈ X and we know an

algebraic expression that defines k and consists of the following signs: 1 (one), + (addition), − (subtraction),

· (multiplication), ˆ (exponentiation with exponent in N), ! (factorial of a non-negative integer), ( (left

parenthesis), ) (right parenthesis).

The set of known elements of X is finite and time-dependent, so cannot be defined in the

formal language of classical mathematics. Let t denote the largest twin prime that is smaller than

((((((((9!)!)!)!)!)!)!)!)!. The number t is an unknown element of the set of twin primes.

Definition 2. Conditions (1)-(5) concern sets X ⊆ N.

(1) A known algorithm with no input returns an integer n satisfying card(X ) < ω ⇒ X ⊆ (−∞, n].

(2) A known algorithm for every k ∈ N decides whether or not k ∈ X .

(3) No known algorithm with no input returns the logical value of the statement card(X ) = ω. (4) There are

many elements of X and it is conjectured, though so far unproven, that X is infinite.

(5) X is naturally defined. The infiniteness of X is false or unproven. X has the simplest definition among

known sets Y ⊆ N with the same set of known elements.

Condition (3) implies that no known proof shows the finiteness/infiniteness of X . No known

set X ⊆ N satisfies Conditions (1)-(4) and is widely known in number theory or naturally defined,

where this term has only informal meaning.

Example 1. The set X = Pn2+1 satisfies Condition (3).

Let [·] denote the integer part function.
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Example 2. The set X =

{

N, if [ ((((((((9!)!)!)!)!)!)!)!)!
π ] is odd

∅, otherwise
does not satisfy Condition (3) because we

know an algorithm with no input that computes [ ((((((((9!)!)!)!)!)!)!)!)!
π ]. The set of known elements of X is empty.

Hence, Condition (5) fails for X .

Example 3. ([2], [9], [11, p. 9]). The function

N ∋ n
h

−→

{

1, i f the decimal expansion o f π contains n consecutive zeros

0, otherwise

is computable because h = N× {1} or there exists k ∈ N such that

h = ({0, . . . , k} × {1}) ∪ ({k + 1, k + 2, k + 3, . . .} × {0})

No known algorithm computes the function h.

Example 4. The set

X =

{

N, i f the continuum hypothesis holds

∅, otherwise

is decidable. This X satisfies Conditions (1) and (3) and does not satisfy Conditions (2), (4), and (5). These

facts will hold forever.

4. Number-Theoretic Results

Edmund Landau’s conjecture states that the set Pn2+1 of primes of the form n2 + 1 is infinite, see

[12], [13], [19].

Statement 1. Condition (1) remains unproven for X = Pn2+1.

Proof. For every set X ⊆ N, there exists an algorithm Alg(X ) with no input that returns

n =

{

0, if card(X ) ∈ {0, ω}

max(X ), otherwise

This n satisfies the implication in Condition (1), but the algorithm Alg(Pn2+1) is unknown because its

definition is ineffective.

Statement 2. The statement

∃n ∈ N (card(Pn2+1) < ω ⇒ Pn2+1 ⊆ [2, n + 3])

remains unproven in ZFC and classical logic without the law of excluded middle.

Let f (1) = 106, and let f (n + 1) = f (n) f (n) for every positive integer n.

Statement 3. The set

X = {k ∈ N : (106
< k) ⇒ ( f (106), f (k)) ∩ Pn2+1 6= ∅}

satisfies Conditions (1)-(4). Condition (5) fails for X .
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Proof. Condition (4) holds as X ⊇ {0, . . . , 106} and the set Pn2+1 is conjecturally infinite. Due to

known physics we are not able to confirm by a direct computation that some element of Pn2+1 is

greater than f (106), see [7]. Thus Condition (3) holds. Condition (2) holds trivially. Since the set

{k ∈ N : (106
< k) ∧ ( f (106), f (k)) ∩ Pn2+1 6= ∅}

is empty or infinite, Condition (1) holds with n = 106. Condition (5) fails as the set of known elements

of X equals {0, . . . , 106}.

Statements 4 and 7 provide stronger examples.

Conjecture 1. ([1, p. 443], [4]). The are infinitely many primes of the form k! + 1.

For a non-negative integer n, let ρ(n) denote 29.5 + 11!
3n + 1

· sin(n).

Statement 4. The set

X = {n ∈ N : the interval [−1, n] contains more than ρ(n) primes o f the f orm k! + 1}

satisfies Conditions (1)-(5) except the requirement that X is naturally defined. 501893 ∈ X . Condition (1)

holds with n = 501893. card(X ∩ [0, 501893]) = 159827. X ∩ [501894, ∞) = {n ∈ N : the interval [−1, n]

contains at least 30 primes o f the f orm k! + 1}.

Proof. For every integer n > 11!, 30 is the smallest integer greater than ρ(n). By this, if

n ∈ X ∩ [11!, ∞), then n + 1, n + 2, n + 3, . . . ∈ X . Hence, Condition (1) holds with n = 11! − 1.

We explicitly know 24 positive integers k such that k! + 1 is prime, see [3]. The inequality

card({k ∈ N \ {0} : k! + 1 is prime}) > 24 remains unproven. Since 24 < 30, Condition (3) holds.

The interval [−1, 11! − 1] contains exactly three primes of the form k! + 1: 1! + 1, 2! + 1, 3! + 1. For

every integer n > 503000, the inequality ρ(n) > 3 holds. Therefore, the execution of the following

MuPAD code

m:=0:

for n from 0.0 to 503000.0 do

if n<1!+1 then r:=0 end_if:

if n>=1!+1 and n<2!+1 then r:=1 end_if:

if n>=2!+1 and n<3!+1 then r:=2 end_if:

if n>=3!+1 then r:=3 end_if:

if r>29.5+(11!/(3*n+1))*sin(n) then

m:=m+1:

print([n,m]):

end_if:

end_for:

displays the all known elements of X . The output ends with the line [501893.0, 159827], which proves

Condition (1) with n = 501893 and Condition (4) with card(X ) > 159827.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2023                   doi:10.20944/preprints202307.2063.v5

https://doi.org/10.20944/preprints202307.2063.v5


5 of 11

Statement 4 and its proof imply the following corollary.

Corollary 1. If we add to X the set

29⋃

i = 1

{11! · n : (n ∈ N) ∧ (n is the i − th prime o f the f orm k! + 1)}

then the following statements holds:

X does not satisfy Condition (1),

card(X ) < ω ⇒ card(X ) 6 159827 + 29,

according to the current knowledge, the above upper bound cannot be decreased,

X satisfies Conditions (2)-(4),

the infiniteness of X is false or unproven.

Definition 3. Conditions (1a)-(5a) concern sets X ⊆ N.

(1a) A known algorithm with no input returns a positive integer n satisfying card(X ) < ω ⇒ X ⊆ (−∞, n].

(2a) A known algorithm for every k ∈ N decides whether or not k ∈ X .

(3a) No known algorithm with no input returns the logical value of the statement card(X ) < ω.

(4a) There are many elements of X and it is conjectured, though so far unproven, that X is finite.

(5a) X is naturally defined. The finiteness of X is false or unproven. X has the simplest definition among

known sets Y ⊆ N with the same set of known elements.

Statement 5. The set

X =
{

n ∈ N : the interval [−1, n] contains more than

6.5 +
106

3n + 1
· sin(n) squares o f the f orm k! + 1

}

satisfies Conditions (1a)-(5a) except the requirement that X is naturally defined. 95151 ∈ X . Condition (1a)

holds with n = 95151. card(X ∩ [0, 95151]) = 30311. X ∩ [95152, ∞) = {n ∈ N : the interval [−1, n]

contains at least 7 squares o f the f orm k! + 1}.

Proof. For every integer n > 106, 7 is the smallest integer greater than 6.5 + 106

3n+1 · sin(n). By this,

if n ∈ X ∩ (106, ∞), then n + 1, n + 2, n + 3, . . . ∈ X . Hence, Condition (1a) holds with n = 106.

It is conjectured that k! + 1 is a square only for k ∈ {4, 5, 7}, see [18, p. 297]. Hence, the inequality

card({k ∈ N \ {0} : k! + 1 is a square}) > 3 remains unproven. Since 3 < 7, Condition (3a) holds. The

interval [−1, 106] contains exactly three squares of the form k! + 1: 4! + 1, 5! + 1, 7! + 1. Therefore, the

execution of the following MuPAD code

m:=0:

for n from 0.0 to 1000000.0 do

if n<25 then r:=0 end_if:

if n>=25 and n<121 then r:=1 end_if:

if n>=121 and n<5041 then r:=2 end_if:

if n>=5041 then r:=3 end_if:

if r>6.5+(1000000/(3*n+1))*sin(n) then

m:=m+1:

print([n,m]):
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end_if:

end_for:

displays the all known elements of X . The output ends with the line [95151.0, 30311], which proves

Condition (1a) with n = 95151 and Condition (4a) with card(X ) > 30311.

Statement 6. The set

X = {k ∈ N : card([−1, k] ∩ Pn2+1) < 1010000}

satisfies the conjunction

¬(Condition 1a) ∧ (Condition 2a) ∧ (Condition 3a) ∧ (Condition 4a) ∧ (Condition 5a)

To formulate Statement 7 and its proof, we need some lemmas. For a non-negative integer n, let

θ(n) denote the largest integer divisor of 101010
smaller than n. For a non-negative integer n, let θ1(n)

denote the largest integer divisor of 1010 smaller than n.

Lemma 1. For every integer j > 101010
, θ(j) = 101010

. For every integer j > 1010, θ1(j) = 1010.

Lemma 2. For every integer j ∈ (6553600, 7812500], θ(j) = 6553600.

Proof. 6553600 equals 218 · 52 and divides 101010
. 7812500 < 224. 7812500 < 510. We need to prove

that every integer j ∈ (6553600, 7812500) does not divide 101010
. It holds as the set

{
2u · 5v : (u ∈ {0, . . . , 23}) ∧ (v ∈ {0, . . . , 9})

}

contains 6553600 and 7812500 as consecutive elements.

Lemma 3. The number 65536002 + 1 is prime.

Proof. The following PARI/GP ([8]) command

isprime(6553600^2+1,{flag=2})

returns 1. This command performs the APRCL primality test, the best deterministic primality test

algorithm ([20, p. 226]). It rigorously shows that the number 65536002 + 1 is prime.

In the next lemmas, the execution of the command isprime(n,{flag=2}) proves the primality of

n. Let κ denote the function

N ∋ n
κ

−→ the exponent o f 2 in the prime f actorization o f n + 1
︸ ︷︷ ︸

∈ N

Lemma 4. The set X1 = {n ∈ N : (θ1(n) + κ(n))2 + 1 is prime} is infinite.

Proof. Let i = 142101504. By the inequality 2i > 2 + 1010 and Lemma 1, for every non-negative

integer m, the number

(

θ1

(

2i · (2m + 1)− 1
)

+ κ
(

2i · (2m + 1)− 1
))2

+ 1 =
(

1010 + i
)2

+ 1

is prime.
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Before Open Problem 1, X denotes the set {n ∈ N : (θ(n) + κ(n))2 + 1 is prime}.

Lemma 5. For every n ∈ X ∩

(

101010
, ∞

)

and for every non-negative integer j,

3j · (n + 1)− 1 ∈ X ∩

(

101010
, ∞

)

.

Proof. By the inequality 3j · (n + 1)− 1 > n and Lemma 1,

θ
(

3j · (n + 1)− 1
)

+ κ
(

3j · (n + 1)− 1
)

= 101010
+ κ(n) = θ(n) + κ(n)

Lemma 6. card(X ) > 629450.

Proof. By Lemmas 2 and 3, for every even integer j ∈ (6553600, 7812500], the number

(θ(j) + κ(j))2 + 1 = (6553600 + 0)2 + 1 is prime. Hence,

{2k : k ∈ N} ∩ (6553600, 7812500] ⊆ X

Consequently,

card(X ) > card({2k : k ∈ N} ∩ (6553600, 7812500]) =
7812500 − 6553600

2
= 629450

Lemma 7. 10242 ∈ X and 10242 6∈ X1.

Proof. The number 10240 = 211 · 5 divides 101010
. Hence, θ(10242) = 10240. The number

(θ(10242) + κ(10242))2 + 1 = (10240 + 0)2 + 1 is prime. The set

{
2u · 5v : (u ∈ {0, . . . , 10}) ∧ (v ∈ {0, . . . , 10})

}

contains 10000 and 12500 as consecutive elements. Hence, θ1(10242) = 10000. The number

(θ1(10242) + κ(10242))2 + 1 = (10000 + 0)2 + 1 = 17 · 5882353 is composite.

Statement 7. The set X satisfies Conditions (1)-(5) except the requirement that X is naturally defined.

Proof. Condition (2) holds trivially. Let δ denote 101010
. By Lemma 5, Condition (1) holds for

n = δ. Lemma 5 and the unproven statement Pn2+1 ∩
[
δ2 + 1, ∞

)
6= ∅ show Condition (3). The

same argument and Lemma 6 yield Condition (4). By Lemma 4, the set X1 is infinite. Since

Definition 1 applies to sets X ⊆ N whose infiniteness is false or unproven, Condition (5) holds

except the requirement that X is naturally defined.

The set X satisfies Condition (5) except the requirement that X is naturally defined. It is true

because X1 is infinite by Lemma 4 and Definition 1 applies only to sets X ⊆ N whose infiniteness

is false or unproven. Ignoring this restriction, X still satisfies the same identical condition due to

Lemma 7.

Proposition 1. No set X ⊆ N will satisfy Conditions (1)-(4) forever, if for every algorithm with no input, at

some future day, a computer will be able to execute this algorithm in 1 second or less.
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Proof. The proof goes by contradiction. We fix an integer n that satisfies Condition (1). Since

Conditions (1)-(3) will hold forever, the semi-algorithm in Figure 1 never terminates and sequentially

prints the following sentences:

n + 1 6∈ X , n + 2 6∈ X , n + 3 6∈ X , . . . (T)

Figure 1. Semi-algorithm that terminates if and only if X is infinite.

The sentences from the sequence (T) and our assumption imply that for every integer m > n computed

by a known algorithm, at some future day, a computer will be able to confirm in 1 second or less that

(n, m] ∩ X = ∅. Thus, at some future day, numerical evidence will support the conjecture that the set

X is finite, contrary to the conjecture in Condition (4).

The physical limits of computation ([7]) disprove the assumption of Proposition 1.

Openproblem 1. Is there a set X ⊆ N which satisfies Conditions (1)-(5)?

Open Problem 1 asks about the existence of a year t > 2023 in which the conjunction

(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)

will hold for some X ⊆ N. For every year t > 2023 and for every i ∈ {1, 2, 3}, a positive solution to

Open Problem i in the year t may change in the future. Currently, the answers to Open Problems 1–5

are negative.

5. Satisfiable Conjunctions Which Consist of Conditions (1)-(5) and Their Negations

The set X = Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ (Condition 5)

The set X = {0, . . . , 106} ∪ Pn2+1 satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ (Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

The numbers 22k
+ 1 are prime for k ∈ {0, 1, 2, 3, 4}. It is open whether or not there are infinitely

many primes of the form 22k
+ 1, see [6, p. 158] and [10, p. 74]. It is open whether or not there
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are infinitely many composite numbers of the form 22k
+ 1, see [6, p. 159] and [10, p. 74]. Most

mathematicians believe that 22k
+ 1 is composite for every integer k > 5, see [5, p. 23]. The set

X =







N, i f 22 f (99)
+ 1 is composite

{0, . . . , 106}, otherwise

satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Openproblem 2. Is there a set X ⊆ N that satisfies the conjunction

(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

The set

X =







N, i f 22 f (99)
+ 1 is composite

{0, . . . , 106}∪

{n ∈ N : n is the sixth prime number o f the f orm 22k
+ 1}, otherwise

satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ ¬(Condition 5)

Openproblem 3. Is there a set X ⊆ N that satisfies the conjunction

¬(Condition 1) ∧ (Condition 2) ∧ ¬(Condition 3) ∧ (Condition 4) ∧ (Condition 5)?

It is possible, although very doubtful, that at some future day, the set X = Pn2+1 will solve Open

Problem 2. The same is true for Open Problem 3. It is possible, although very doubtful, that at some

future day, the set X = {k ∈ N : 22k
+ 1 is composite} will solve Open Problem 1. The same is true for

Open Problems 2 and 3.

Table 1 shows satisfiable conjunctions of the form

#(Condition 1) ∧ (Condition 2) ∧ #(Condition 3) ∧ (Condition 4) ∧ #(Condition 5)

where # denotes the negation ¬ or the absence of any symbol.
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Table 1. Five satisfiable conjunctions.

Definition 4. We say that an integer n is a threshold number of a set X ⊆ N, if

card(X ) < ω ⇒ X ⊆ (−∞, n].

If a set X ⊆ N is empty or infinite, then any integer n is a threshold number of X . If a set X ⊆ N

is non-empty and finite, then the all threshold numbers of X form the set [max(X ), ∞) ∩N.

Openproblem 4. Is there a known threshold number of Pn2+1?

Open Problem 4 asks about the existence of a year t > 2023 in which the implication

card(Pn2+1) < ω ⇒ Pn2+1 ⊆ (−∞, n] will hold for some known integer n.

Let T denote the set of twin primes.

Openproblem 5. Is there a known threshold number of T ?

Open Problem 5 asks about the existence of a year t > 2023 in which the implication

card(T ) < ω ⇒ T ⊆ (−∞, n] will hold for some known integer n.
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