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Quantum Knowledge in Phase Space

Davi Geiger

Courant Institute of Mathematical Sciences New York University, New York, New York 10012, USA;

dg1@nyu.edu

Abstract: Quantum physics through the lenses of Bayesian statistics consider probabilities to be

degree of believes or knowledge and it is subjective. A Bayesian derivation of the probability density

function in phase space is presented and leads to the entropy proposed by Geiger and Kedem [1,2]. A

Kullback-Liebler divergence in phase space defines quantitatively interference and entanglement.

Comparisons between each of these two quantities and the entropy are made. A brief presentation

of entanglement in phase space to the spin degree of freedom and an extension to mixed states

completes the work.
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1. Introduction

This journal issue celebrates Claude Shannon’s 1948 formulation of ”lost information" in

phone-line signals [3]. It is curious that when von Neumann asked Shannon how he was getting on

with his information theory, Shannon replied (according to [4])

”The theory was in excellent shape, except that he needed a good name for "missing information".

"Why don’t you call it entropy", von Neumann suggested. "In the first place, a mathematical

development very much like yours already exists in Boltzmann’s statistical mechanics, and in the

second place, no one understands entropy very well, so in any discussion you will be in a position of

advantage."

The concept of Shannon entropy for pure states in quantum phase spaces can capture key physical

properties, interference and entanglement, that precedes von Neumann entropy for mixed states.

Interference is a key quantum phenomenon, present in one particle state, that is not conceptualized in

classical statistical physics[5,6]. The possibility of a superposition of states that yield a new state where

information can be destroyed has no part in classical statistical physics. Going beyond one particle

state, entanglement is a phenomenon in quantum physics without a parallel to classical statistical

physics. It has been the cornerstone of much advancement in quantum physics (e.g., [7–10] and

references). Despite these well known properties of quantum physics, a quantification of interference

and entanglement has been elusive.

A quantification of these concepts in quantum phase space for pure states is proposed through

Shannon entropy and related concepts (see Appendix B for a brief review).

A topic that has captivated much of quantum physics discussions since its first days, namely the

role of measurement in physics, is revisited. Measurements are associated with events in statistics,

since through measurements full knowledge of a physical variable is acquired. The role of knowledge

in quantum physics is then discussed.

1.1. Bayesian Knowledge in Quantum Physics

In the field of statistics two views offered by the Bayesian [11] and the frequentist [12,13] divide

the experts. Bayesian thinking is based on the idea that probabilities represent a degree of belief or

knowledge about the events while the frequentist approach is based on the idea that the probability of

an event occurring is equal to the long-run frequency with which that event occurs.

One goal here is to show that starting with a quantum state, and through a Bayesian view, one

can arrive to the joint probability density in phase space. This joint probability density has all the

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2023                   doi:10.20944/preprints202307.2026.v1

©  2023 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202307.2026.v1
http://creativecommons.org/licenses/by/4.0/


2 of 15

knowledge of such variables or all the knowledge associated with such a state. The conditional

probability P(X/Y) is interpreted as the knowledge we have about the random variable X given the

knowledge we have about the random variable Y. The knowledge about Y may exist in the form of a

prior Pprior(Y) and if a deterministic transformation from Y to X is given, we will know Pfrom-Y(X)

from Pprior(Y), i.e., we will have P(X|Y) = Pfrom-Y(X). Then, one can ask for an event probability

P(X = x|Y) without being given an event in Y. Note that conditional probabilities do not necessarily

describe a cause and consequence relation but rather they are knowledge or information relation.

The Bayesian view of quantum physics also says that knowledge associated with a state is

subjective to the observer. For example two observers conducting an experiment of quantum

teleportation[7,9,14,15] will have different knowledge about the experiment according to when

and where a measurement is obtained. According to the special theory of relativity information

or knowledge can not be transferred instantaneously and so observers of an entangled pair traveling

at long distances will possess different knowledge of the variables at the time one of them is measured

and so their predictions about the outcome of the other variable will differ, e.g., see [16,17]. These

experiments suggest that quantum physics is best described as a Bayesian theory. It is worth to stress

that a theory of knowledge is not necessarily a theory of cause and consequence.

Here knowledge and information are meant to be the same thing, so Shannon’s proposed entropy

to quantify loss of information is the same as to quantify loss of knowledge. There is much work

in information in quantum physics, e.g., [18,19] and references, but they use von Neumann mixed

states entropy as a starting point which attributes zero information content for all pure states. Here

our starting point is pure states, the core of quantum physics theory. The emphasis in using the term

knowledge is that it is the language used in Bayesian theory and it stresses that it is subjective. Yet,

the Bayesian view provides all the predictions quantum theory can make today and perhaps can be

expand it as presented in the next discussion.

1.2. Entropy, Interference, and Entanglement

Following the work [1,2] Shannon entropy of a state in phase space is adopted to be the loss of

knowledge or the loss of information such a state describes.

That work explores the possibility that knowledge (or information) can not be gained in a

closed quantum system. Here the objective is to quantify interference and entanglement in terms of

information loss or gained. The Kullback-Liebler divergence (reviewed in B) is employed to define

interference as a loss of information if one replaces the state probability density in phase space by a

”classical probability density" in phase space (to be made precise). The Kullback-Liebler divergence

is also employed to define entanglement as a loss of information if one replaces a state probability

density in phase space by a product of states probability density in phase space (to be made precise).

Such quantification of interference and entanglement could help our understanding of physical system

evolution, for example by restricting which physical phenomena are allowed according to the gain or

loss of interference or entanglement.

Position and spin are degrees of freedom required to specify a quantum state. This paper addresses

how knowledge in phase space is quantified for position and spin DOFs.

1.3. Paper Organization

In the next Section 2 the Bayesian formulation of probability density in position-momentum phase

space is developed. Section 3 proposes the quantification of interference in phase space and compares

it to the entropy in phase space. Section 4 proposes the quantification of entanglement in phase space

and compares it to the entropy in phase space. Section 5 expands the concept of phase space to spin

systems and proposes the quantification of entanglement for spin systems. Such quantification can

also be expanded to Qbit technology. We also briefly show the approach to mixed states and compare

it to von Neumann entropy. Section 6 concludes the paper.
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2. Quantum Phase Space Probabilities and Entropy

Given a state |Ψt〉 evolving in time, one constructs the density matrix ρt = |Ψt〉 〈Ψt|. Projecting

it simultaneously to the position basis |x〉 and momentum basis |p〉 (or spatial frequency basis |k〉 =
1
h̄ |p〉)) to obtain

ρx
t (x) = 〈x| ρt |x〉 = |ψt(x)|2

ρk
t (k) = 〈k| ρt |k〉 = |φt(k)|2 , (1)

which is Born’s rule applied to position space and momentum space respectively. For the entire

paper the chosen units set h̄ = 1. Then the spatial frequency variable k and the quantum momentum

variable p will have the same value. The presentation here is with the spatial frequency variable k as

it is meaningful in quantum mechanics and quantum field theory[20]. The work presented here is

applicable to both disciplines.

Let us first assume, there is a joint distribution in phase space ρ(x, k, t) and study properties of

such distribution and then derive its expression.

Early attempts to create a quantum state in phase space by Wigner [21] or by Husimi [22] ended

up with pseudo-distributions that fail Kolmogorov probability axioms and also have consistency

difficulties with special relativity. Thus, the pursue of this new approach.

While a distribution at any time t0 can be described by ρx
t0
(x) = δ(x − x0) or by ρk

t0
(k) = δ(k − k0),

where δ(.) is the Dirac delta distribution, one can not have at any time t0 the distribution ρ(x, k) 6=
δ(x − x0)δ(k − k0). This limitation is derived from the fact that ψ(x, t) = 〈x|Ψt〉 and φ(k, t) = 〈k|Ψt〉
are the Fourier transform of each other. If one acquires full knowledge of one of the variables at time t,

expressed by a Dirac delta distribution, then the other phase space variable must be described by a

uniform distribution, indicating maximum entropy in this other variable. It is this constraint of our

knowledge about the pair of variables x and k at time t that yields the uncertainty principle as clearly

formulated by Robertson[23].

In quantum physics ρt(x, k) represents knowledge of the variables and not a probability of

an outcome of a measurement, since it is not possible to measure both variables simultaneously.

Statistically, it is not feasible the event (x, k) at time t. For the Bayesian interpretation, it is not possible

to have full knowledge of the two variables simultaneously, but still, ρt(x, k) offers some knowledge

of the two variables. Note also that one may acquire empirically the full knowledge of one variable

for one particle without directly measuring it, for example via an entanglement scenario where the

measurement occurs for the other particle.

Geiger and Kedem [1] proposed a quantification of knowledge of a quantum state through

Shannon entropy associated to the phase space distribution, namely

St = −
∫

dx dk ρt(x, k) log ρt(x, k) . (2)

The two extreme scenarios of complete lack of knowledge of a state given by uniform distribution on

both variables or of complete knowledge of a state given by a Dirac delta function on both variables,

where the entropy diverges to ∞ or −∞ in Hilbert space, respectively, can not occur in quantum

physics. This is due to the Fourier property that links the quantum state projection in position space

and the projection in momentum space.

The Bayesian view to derive the expression for the joint distribution ρt(x, k) is now presented.

Theorem 1 (Joint Distribution in Phase Space). Given a state |Ψt〉, evolving in time according to some

Hamiltonian. Then, the joint distribution in phase space is ρt(x, k) = |ψt(x)|2 |φt(k)|2, where ψt(x) = 〈x|Ψt〉
and φt(k) = 〈k|Ψt〉 are the projection in position basis and spatial frequency basis.
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Proof. From Bayes’ theorem applied to the density ρt(x, k) we have ρt(x, k) = ρcond-x
t (k|x)ρx

t (x),

where ρx
t (x) = 〈x|Ψt〉 〈Ψt|x〉 = |ψt(x)|2 is thee prior over the variable x. The knowledge gained for

the variable k, given the prior knowledge over the variable x, leads to the conditional probability

distribution as follows

〈k|Ψt〉 =
∫

dx 〈k|x〉 〈x|Ψt〉

⇓

ρcond-x
t (k|x) =

∫

dx
∫

dx′ 〈k|x〉 〈x|Ψt〉 〈Ψt|x′〉 〈x′|k〉

=
1√
2π

∫

dx 〈x|Ψt〉 e−ikx 1√
2π

∫

dx′ 〈Ψt|x′〉 eikx′

= φt(k) φ∗
t (k) (3)

where 〈k|x〉 = 1√
2π

e−ikx. The same procedure applies if the starting point of Bayes theorem is

ρt(x, k) = ρcond-k
t (x|k)ρk

t (k) with the prior ρk
t (k) = |φt(k)|2.

Clearly, ρt(x, k) = ρx
t (x) ρk

t (k) is not the product of two independent random variables due to the

Fourier transform constraint between the two density functions.

3. Interference

Given two states |ΨA〉 and |ΨB〉 and a general superposition of these two states as in (A2). The

projection of this state superposition to phase space written in polar coordinates is

ψ(x) = 〈x|Ψ〉 = eiν

√
ZP

(

cos θ1 |ψA(x)| eiξA(x) + sin θ1 |ψB(x)| ei(ξB(x)−ϕ1)
)

(4)

φ(k) = 〈k|Ψ〉 = eiν

√

ZQ

(

cos θ1 |φA(k)| eiχA(k) + sin θ1 |φB(k)| ei(χB(k)+ϕ1)
)

(5)

where |.| is the magnitude value, ξA,B(x) are the complex phases associated to the wave functions

ψA,B(x) and similarly χA,B(k) are the complex phases associated to the wave functions φA,B(k).

The probability densities are written as

p(x) = |ψ(x)|2 =
1

ZP

(

pc(x) + |ψA(x)| |ψB(x)| sin 2θ1 cos(ξA(x)− ξB(x)− ϕ1)
)

,

q(k) = |φ(k)|2 =
1

ZQ

(

qc(k) + |φA(k)| |φB(k)| sin 2θ1 cos(χA(k)− χB(k)− ϕ1)
)

(6)

where the normalization constants are ZP = 1+ sin 2θ1

∫

dx
(

|ψA(x)| |ψB(x)| cos(ξA(x)− ξB(x)− ϕ1)
)

and ZQ = 1 + sin 2θ1

∫

dk|φA(k)| |φB(k)| cos(χA(k)− χB(k)− ϕ1), and

pc(x) = cos2θ1 |ψA(x)|2 + sin2 θ1 |ψB(x)|2

qc(k) = cos2 θ1 |φA(x)|2 + sin2 θ1 |φB(x)|2 (7)

are probability densities without the interference terms. The upper-index c refers to these probability

densities also representing classical statistical combination (weighted average) of probability densities

associated to the quantum states A and B.

There is no interference when
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1. the functions’ support in phase space do not overlap, i.e.,

|ψA(x)| |ψB(x)| = 0; ∀x , and |φA(k)| |φB(k)| = 0; ∀k , (8)

2. the complex phases are aligned up to a constant multiple of π
2 , i.e.,

ξA(x)− ξB(x)− ϕ1 = n
π

2
; n ∈ Z+ , and χA(k)− χB(k)− ϕ1 = m

π

2
; m ∈ Z+ , (9)

3. either θ1 = 0, π
2 , since then there is no superposition of states. This will effectively occur when

ψA(x) = ψB(x).

Also, IFF there is no interference, P(x) = pc(x) and Q(x) = qc(x). Figure 2 illustrates some

scenarios with each state being a coherent state and for some parameters these conditions occur.

Definition 1 (Interference:). Given two states |ΨA〉, |ΨB〉 and their linear superposition |Ψ〉 given by

(A2). Interference, I , is the amount of information lost when ρc(x, k) = pc(x)qc(k) is used to approximate

ρ(x, k) = p(x)q(k). It is calculated via the Kullback-Liebler divergence between the phase space probability

densities ρ(x, k) and ρc(x, k). More formally,

I(θ1, ϕ1, |ΨA〉 , |ΨB〉) = DKL (p(x)q(k)||pc(x)qc(k)) (10)

= CrossS(p(x), pc(x))− S(P(x)) + CrossS(q(k), qc(k))− S(q(k))

=
∫

dx |ψ(x)|2 log

(

1 +
|ψA(x)| |ψB(x)| sin 2θ1 cos(ξA(x)− ξB(x)− ϕ1)

cos2 θ1 |ψA(x)|2 + sin2 θ1 |ψB(x)|2
)

+
∫

dk |φ(k)|2 log

(

1 +
|φA(k)| |φB(k)| sin 2θ1 cos(χA(k)− χB(k)− ϕ1)

cos2 θ1 |φA(k)|2 + sin2 θ1 |φB(k)|2
)

,

where CrossS(p, q) is the cross entropy between probability distributions p and q (see (B3)). As one vary

the combination of the two states the larger is I the larger the interference contribution to the distribution

ρ(x, k) = p(x)q(k).

Clearly, one can consider the interference just in position representation or just in spatial frequency

representation. However, here, the quantification of the interference in phase space distinguish the

case (a) when a projection of superposition of two states in position space does not interfere but the

same state projection in spatial frequency does interfere, from the case (b) a superposition of two states

that do not interfere neither in position nor in spatial frequency.

One comparison of interest is between the Kullback-Liebler divergence (KLD) (10) and the entropy

(2). Figure 2 illustrates some scenarios where these two quantities are evaluated and comparisons are

made. The entropy seems to capture better the notion of overlap of the superposition of states. The

classical addition of probability densities and the quantum superposition do occur when both states

are similar and superposed, then the KLD will be small and the entropy will be small. However, when

there is no overlap between the two states, again, the KLD will be small while the entropy will be large,

i.e., for scenarios where the classical weighted average distribution is a good approximation but the

states do not overlap, the entropy is large.

Both concepts may be helpful to characterize the knowledge one has about the superposition of

states. The KLD captures the distinction between classical probability and quantum probability, while

the entropy captures a balance between the KLD distinction and the concept of overlap of two states in

quantum phase space. For the entropy, the larger the overlap, the less entropy there is. One important

advantage of the entropy over the KLD is that one does not need to know the classical distribution to

evaluate the entropy. The entropy is only dependent on the probability density of the superposed state

and as such, it may play a role in creating predictions for quantum physics as proposed by Geiger and

Kedem [1], where they proposed that the time arrow is dictated by the entropy.
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a. b. c.

d. e. f.

g. h. i.

Figure 1. Probability densities in phase space for two coherent states, A and B with centers, variances

as follows. For all a., b., c. position space probabilities, with µA ≈ 27.8 with σA = 5.6 and for

a.µB ≈ 27.8, b. µB ≈ 34.8, c. µB ≈ 41.7, all with σB = 4.2 . Note that for each coherent state, the spatial

frequency value is the phase of the coherent state in position space. For d., e., f., Spatial frequency

space probabilities, with kA ≈ 0.35 and d.kB ≈ 0.35, e. kB ≈ 0.61, f. kB ≈ 0.87. For g., h., i., spatial

frequency space probabilities, with kA ≈ 1.04 and g.kB ≈ 1.04, h. kB ≈ 1.30, i. kB ≈ 1.56.

It is noticeable the role of the period associated to the phase differences, in position and in spatial

frequency, as per (9). For coherent states, the phase difference in position is the center differences in

the spatial frequency domain, and vice-versa, the phase difference in spatial frequency is the center

difference in the position domain. The periodic range for ∆µ is reduced for Figure 2c,d creating the

oscillations in the KLD and entropy.

a. b.

Figure 2. Cont.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2023                   doi:10.20944/preprints202307.2026.v1

https://doi.org/10.20944/preprints202307.2026.v1


7 of 15

c. d.

Figure 2. Interference Simulations for a superposition of two coherent states as shown in Figure 1.

One coherent state has µA = 27.8, σA = 5.6, and for a.,b., the phase is kA = 0.3472 while for c.,d.,

the phase is kA = 1.0417. Varying the other state with fixed σB = 4.1667 in 48 × 48 increments from

µB = [µA, . . . , 41.6667], and for a.,b., the phase varies as kB = [kA, . . . , 0.8681], while for c.,d., the phase

varies as kB = [kA, . . . , 1.5625]. The plots are all with ∆µ = µB − µA vs ∆k = kB − kA. It is noticeable

how the KLD and the entropy become small as the two states closely overlap, i.e., where δµ ≈ δk ≈ 0.

However, the KLD becomes small as the states do not overlap while the entropy gets to be larger.

As the phase increases from (a. b.) to (c. d.) oscillation increases for both (KLD and Entropy) as

periods reduces.

4. Entanglement

Given two states |ΨA〉 and |ΨB〉 and a general two-state composed from these two states as in
(A3). Let the wave function given by (A5) be rewritten in polar coordinates as

ψ(x, y) = 〈x| 〈y| |Ψ〉2

=
eiν

√

Z2,P

(

cos θ2 |ΨA(x)| |ΨB(y)| ei(ξA(x)+ξB(y)) + sin θ2 |ΨA(y)| |ΨB(x)| ei(ξA(y)+ξB(x)+ϕ2)
)

φ(kx , ky) = 〈kx | 〈ky| |Ψ〉2

=
eiν

√

Z2,Q

(

cos θ2 |ΦA(kx)| |ΦB(ky)| ei(χA(kx)+χB(ky)) + sin θ2 |ΦB(kx)| |ΦA(ky)|ei(χA(ky)+χB(kx)+ϕ2)
)

(11)

where θ2 = π
4 and ϕ2 = 0, π describe bosons and fermions respectively. When expanding to Qbits,

this restriction is lifted.
The probability density in position space is

p(x, y) = |ψ(x, y)|2 =
1

Z2,P

(

cos2 θ2 |ΨA(x)|2 |ΨB(y)|2 + sin2 θ2 |ΨB(x)|2 |ΨA(y)|2

+ sin 2θ2 cos(ξA(x)− ξB(x) + ξB(y)− ξA(y)− ϕ2) |ΨA(x)| |ΨB(y)| |ΨA(y)| |ΨB(x)|
)

(12)

Similarly the probability density q(kx, ky) in spatial frequency space is

q(kx , ky) = |φ(kx , ky)|2 =
1

Z2,Q

(

cos2 θ2 |ΦA(kx)|2 |ΦB(ky)|2 + sin2 θ2 |ΦB(kx)|2 |ΦA(ky)|2

+ sin 2θ2 cos(χA(kx)− χB(kx) + χB(ky)− χA(ky)− ϕ2) |ΦA(kx)| |ΦB(ky)| |ΦA(ky)| |ΦB(kx)|
)

(13)

The product of states, or the disentangled states, are described by the two-state (11) with θ2 = 0, π
2 ,

i.e.,

θ2 = 0 θ2 =
π

2

pD1(x, y) = |ΨA(x)|2 |ΨB(y)|2 pD2(x, y) = |ΨB(x)|2 |ΨA(y)|2

qD1(kx, ky) = |ΦA(kx)|2 |ΦB(ky)|2 qD2(kx, ky) = |ΦB(kx)|2 |ΦA(ky)|2 (14)
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where the upper index D1 and D2 indicate two different disentangle states.

Lemma 1. Given two states |ΨA〉, |ΨB〉 and the two-state |Ψ〉 per (A3). Refer by pD(x, y)qD(kx, ky) to any of

the disentangled states (14). The Kullback-Liebler divergence DKL

(

p(x, y)q(kx, ky)|| pD(x, y)qD(kx, ky)
)

for

bosons or fermions, where θ2 = π
4 and ϕ2 = 0, π respectively, is invariant to any choice of disentangled states.

Proof. The lemma follows from performing the decomposition of the logarithm of products into the

sum of logarithms and then using the symmetric properties of fermions and bosons. More precisely,

DD
KL = −S(p, q) +

∫

dx dy dkx dky p(x, y)q(kx, ky) log
(

pD(x, y)qD(kx, ky)
)

(15)

where DD
KL = DD

KL

(

p(x, y)q(kx, ky)|| pD(x, y)qD(kx, ky)
)

. Then, for D1 we get

DD1
KL = −S(p, q) +

∫

dx dy p(x, y) log
(

|ΨA(x)|2 |ΨB(y)|2
)

+
∫

dkx dky q(kx , ky) log
(

|ΦA(kx)|2 |ΦB(ky)|2
)

= −S(p, q) +
∫

dx p(x) log |ΨA(x)|2 +
∫

dy p(y) log |ΨB(y)|2

+
∫

dkx q(kx) log |ΦA(kx)|2 +
∫

dky q(ky) log |ΦB(ky)|2 (16)

where p(x) =
∫

dy p(x, y), p(y) =
∫

dx p(x, y), q(kx) =
∫

dky q(kx, ky), q(ky) =
∫

dkx q(kx, ky). Note

that the integrals yield the same functions p(.) and q(.) due to the symmetric properties for bosons

and fermions.

Similarly, for D2 we get

DD2
KL = −S(p, q) +

∫

dx p(x) log |ΨB(x)|2 +
∫

dy p(y) log |ΨA(y)|2

+
∫

dkx q(kx) log |ΦB(kx)|2 +
∫

dky q(ky) log |ΦA(ky)|2 (17)

and clearly every term here has a perfect match in (16), e.g.,
∫

dx p(x) log |ΨB(x)|2 =
∫

dy p(y) log |ΨB(y)|2 and so DD2
KL = DD1

KL.

Definition 2 (Entanglement:). Given two states |ΨA〉, |ΨB〉 and the two-state |Ψ〉, shown in (A3), that

when projected in phase space yields the probability density distribution ρ(x, y, kx, ky) = p(x, y)q(kx, ky).

Entanglement, E , is the amount of information lost when the product of states is used to approximate

ρ(x, y, kx, ky). More formally,

E(θ2, ϕ2, |ΨA〉 , |ΨB〉) = DKL

(

p(x, y)q(kx, ky)|| pD(x, y)qD(kx, ky)
)

(18)

= CrossS(p(x, y)q(kx, ky), pD(x, y)qD(kx, ky))− S(p(x, y)q(kx, ky))

The entanglement is reduced to the combination of the first two terms in (12) and (13), i.e., the

third term vanishes, when

1. the functions’ support in phase space do not overlap, i.e.,

|ψA(x)| |ψB(x)| = 0; ∀x , and |φA(k)| |φB(k)| = 0; ∀k , (19)

2. the complex phases are aligned up to a constant multiple of π
2 , i.e.,

ξA(x)− ξB(x) + ξB(y)− ξA(y)− ϕ2 = n
π

2
; n ∈ Z+ ,

and χA(kx)− χB(kx) + χB(ky)− χA(ky)− ϕ2 = m
π

2
; m ∈ Z+ , (20)

3. θ2 = 0, π
2 . This will effectively occur when ψA(x) = ψB(x), a symmetric combination.
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One comparison of interest is between the entanglement (18) and the entropy (2). Figure 3

illustrate some scenarios combining two coherent states where these two quantities are evaluated

and a comparisons is made. While the definition of entanglement is through the KLD, the entropy

captures a similar behavior and it can be evaluated from the state itself, without having to know what

the product of the states would be. For quantum predictions based on entanglement, the entropy may

be the best method to use.

The entanglement increases the further a part the two states are from each other, which is suitable

for teleportation experiments.

a. b.

c. d.

e. f.

Figure 3. Entanglement simulations from two coherent states shown in Figure 1. Note that the phase of

the coherent state projected to position space is the center of the coherent state projected in the spatial

frequency space, and vice-versa. Coherent state |ΨA〉 has a fixed set of parameters, µA = 27.8, σA = 5.6

in position space, and for a. & b. the phase is kA = 0.3 while for c. & d & e. & f. the phase is kA = 1.0.

Coherent state |ΨB〉 in position has fixed σB = 4.1667 but the center and phase vary in 48 increments

each, as follows: µB ∈ [µA, . . . , 41.7], and for a. & b. kB ∈ [kA, . . . , 0.9], while for c. & d & e. & f. the
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phase varies as kB ∈ [kA, . . . , 1.6]. When combining the two states θ2 =
pi
4 is fixed. Cases a. & b. & c. &

d. show KLD and Entropy, respectively, for a symmetric entanglement where phase ϕ2 = 0. Cases e.

& f. show KLD and Entropy, respectively, for an anti-symmetric entanglement where phase ϕ2 = π.

The effect of the phase ϕ2 is only noticeable when the two states are very similar to each other and

then both, KLD and entropy, yield large values for the anti-symmetric case (after all anti-symmetric

functions must vanish in these cases, while the product of states does not). While the KLD has a more

smooth behavior, both of them increase as the separation of the two coherent state parameters increases.

The larger values of the phase parameters in c. & d & e. & f. clearly cause a periodic behavior following

the prediction from the phase parameter (20) though the entropy is noticeably more sensitive to the

oscillation.

5. Entanglement for Spin or Qbit Phase Space

The degrees of freedom (DoFs) in quantum physics specify the wave function (projection of the

state in position space) and the spin. Thus, when quantifying our knowledge of a quantum system one

must also quantify our knowledge of a spin state. Qbits are similar to spin in formalism, but with less

constraints such as no need to obey Pauli exclusion principle. What follows also applies to Qbits.

Let us consider two spin states |ξA〉 and |ξB〉, each formed with NA and NB particles with

spin s, respectively. A spin state formed from these two states with well defined spin magnitude

s ∈ [sN , sN − 1, . . . , 1
2 mod (2 sN , 2)], where sN = Ns and N = NA + NB, is written as

|ξs〉 =
eiν2

√
Z2

(

cos θ2 |ξA〉 |ξB〉+ eiϕ2 sin θ2 |ξB〉 |ξA〉
)

. (21)

This state is an eigenstate of the operator S2 of N particles of spin s with eigenvalue s.

In the case of phase space of position and spatial frequency, the basis functions for a product of

N Hilbert spaces is given by |x1〉 . . . |xN〉 and |k1〉 . . . |kN〉. Note that these are the eigenstates of the

operators X = x1 . . . xN and K = k1 . . . kN . For the product of spin states, the space structure is more

complex and following Geiger and Kedem [2] the basis of the product of spin spaces is the common

eigenstates of the operators Sz and S2 for the entire space.

The operator Sz associated to |ξs〉 is given by

Sz = SA
z ⊗ I2NB + I2NA ⊗ SB

z (22)

where IN is the identity of dimension N and ⊗ is the exterior product. Let us refer to the eigenstates of

Sz and S2 as {|ξs,ms〉 ; s = sN , sN − 1, . . . 1
2 mod (2 ∗ sN , 2) , ms = −s, . . . , s}.

The phase space for the spin associated to the operators Sz and S2 is derived from quantizing the

sphere, the surface of the ball with a radius of the spin magnitude h̄ sN , as developed by the Geometric

Quantization (GQ) method, e.g., see [24–26]. Geiger and Kedem [2] have proposed this approach to

evaluate the entropy of a quantum state. Let us briefly summarize their work.

Given a spin state |ξs〉 as in (21), with N particles and a well defined spin magnitude s (an

eigenvector of the operator S2). Projecting in the basis of the eigenstates of Sz, {|ξs,m〉 ; m = −s, . . . , s},

to obtain

|ξs〉 =
s

∑
m=−s

αs,m |ξs,m〉 , (23)

where αs,m = 〈ξs,m| |ξs〉 ∈ C and 1 = ∑
s
m=−s |αs,m|2. The conjugate basis to {|ξs,m〉} is {|φ〉 ; [0, 2π]},

obtained by identifying the angle φ, the rotation angle around the z-axis of the operator e−iSz φ, as the

operator that commutes with Sz.
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In the basis of the conjugate operator φ, the spin state is

|ξs〉 =
∫ 2π

0
|φ〉 〈φ| |ξs〉dφ =

∫ 2π

0
λs(φ) |φ〉dφ , (24)

where

λs(φ) = 〈φ| |ξs〉 =
s

∑
m=−s

αs,m 〈φ| |ξs,m〉 =
s

∑
m−s

αs,mψs,m(φ) . (25)

and

ψs,m(φ) =

{

1√
2π

ei(s+m)φ, m ≥ 0 (northern hemisphere) ,
1√
2π

ei(−s+m)φ, m < 0 (southern hemisphere) .
(26)

The two solutions in (26) are periodic in φ and differ by a phase (gauge) transformation of e−i2sφ.

Thus, for a state |ξs〉 with density matrix ρs = |ξs〉 〈ξs|, the probabilities of the phase space

are the product of the probabilities {ρs,m = 〈ξs,m| ρs |ξs,m〉 = |αs,m|2} with the probability densities

{ρs(φ) = 〈φ| ρs |φ〉 = |λs(φ)|2}. Note that given {αs,m} one obtains {λs(φ)} via the predefined set of

functions (26), i.e., one can interpret ρs(φ) as a conditional probability density ρs(φ/{αs,m}).
Thus the entropy (2) of a spin state |ξs〉 with spin s in spin phase space is

S = Sz + Sφ = −
s

∑
m=−s

ρs,m ln ρs,m −
∫

ρs(φ) ln ρs(φ) dφ (27)

= −
s

∑
m=−s

|αs,m|2 ln |αs,m|2 −
∫

|λs(φ)|2 ln |λs(φ)|2 dφ . (28)

The first term is the Shannon entropy capturing the randomness of the spin value along the z-axis.

The second term is differential entropy capturing the randomness of the spin value in the plane

perpendicular to the z-axis, i.e., the entropy of the polarization angle φ.

Extending the work of [2] to also define the Kullback-Liebler divergence between a combination

of a state as described by (11) and the product of the states |ξA〉 |ξB〉. The densities in spin phase space

associated to the product state |ξA〉 |ξB〉 are derived from the projections

|ξA〉 |ξB〉 =
s

∑
m=−s

αA,B
s,m |ξs,m〉 ⇒ αA,B

s,m = 〈ξs,m| |ξA〉 |ξB〉 ⇒ λA,B
s (φ) =

s

∑
m−s

αA,B
s,m ψs,m(φ) , (29)

Definition 3 (Spin Entanglement:). Given two spin states |ξA〉 , |ξB〉 and the combination |ξs〉, shown in (30),

that when projected in spin phase space yields the probability density distribution ρs,m(φ) = |αs,m|2 |λs(φ)|2.

Spin entanglement, sE , is the amount of information lost when the product of states is used to approximate

ρs,m(φ). More formally,

E(θ2, ϕ2, |ξA〉 , |ξB〉) = DKL

(

|αs,m|2 |λs(φ)|2
∣

∣

∣
|αA,B

s,m |2 |λA,B
s (φ)|2

)

(30)

= CrossS
(

|αs,m|2 |λs(φ)|2, |αA,B
s,m |2 |λA,B

s (φ)|2
)

− S(|αs,m|2 |λs(φ)|2)

One comparison of interest to be made in the future is between spin entanglement (30) and spin

entropy (28).
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5.1. Expansion to Mixed States

One extension of this approach to mixed states starts from the density matrix derived from the

general state (21), namely

ρs = |ξs〉 〈ξs| =
1

Z2

(

cos2 θ2 |ξA〉 |ξB〉 〈ξB| 〈ξA|+ sin2 θ2 |ξB〉 |ξA〉 〈ξA| 〈ξB|

+
1

2
e−iϕ2 sin 2θ2 |ξA〉 |ξB〉 〈ξA| 〈ξB|+ 1

2
eiϕ2 sin 2θ2 |ξB〉 |ξA〉 〈ξB| 〈ξA|

)

. (31)

Then, tracing out the density matrix (and assuming the states |ξA〉 , |ξB〉 to be in orthogonal Hilbert

spaces to each other)

ρMixed
s = 〈ξA| |ξs〉 〈ξs| |ξA〉+ 〈ξB| |ξs〉 〈ξs| |ξB〉 = cos2 θ2 |ξB〉 〈ξB|+ sin2 θ2 |ξA〉 〈ξA| . (32)

Then, von Neumann entropy is the Shannon entropy of this mixed state. While this is of interest to

much research, it is clear that Shanon entropy of pure states precedes von Neumann entropy. Also,

von Neumann entropy obtained by tracing out pure states has some similarity to the the entropy of

the superposition of two states (A2), except it is not considering the conjugate variable of the phase

space. In the work of [1] they showed invariant properties of the Shannon entropy in phase space that

von Neumann entropy would not have.

6. Conclusion

The concept of Shannon entropy and Kullback-Liebler divergence for pure states in quantum

phase spaces can capture key physical properties, interference and entanglement, that precedes von

Neumann entropy for mixed states.

This work is much influenced by Geiger and Kedem [1,2], and here an introduction to the Bayesian

statistic view was made to construct the phase space probability density. The Bayesian approach sees

quantum physics as a theory of degree of knowledge or degree of belief that is subjective to the observer.

Through the Bayesian theory, and Fourier transform, one can describe the conditional probabilities in

phase space and infer the joint distribution in phase space. In this formulation, quantum physics is a

theory of information. However, one can not conclude that it is a causal theory.

The objective was to quantify interference and entanglement in terms of information loss or gain,

using the Kullback-Liebler divergence (rooted on Shannon entropy). A comparison to the Shannon

entropy of the state and some similarities between the two quantities were revealed. One advantage of

the entropy is that it can be inferred from the quantum state, without any reference to the two states

that were used to compute the divergence. This difference may be important if physical phenomena

are allowed or not according to the gain or loss of interference or entanglement. A brief presentation

extended to spin phase space the definition of entanglement.

Extrapolating to a philosophical interpretation, and revisiting the Bohr vs Einstein debate, e.g.,

see [27,28] and references, the view put forward here is similar to the epistemological view of Bohr:

quantum theory is today the best model for predictions. The view put forward here also resonates

with the ontological concern of Einstein adding the question: "Is quantum theory a causal theory ?"

If not, ”is there a causal theory to be discovered ?" After all, probabilistic models are not necessarily

causal models and according to the teleportation experiment an observer gaining knowledge from one

measurement can immediately infer the value of the other variable. This is a knowledge relation but

not a causal relation. Regarding the question ”Is there a causal theory to be discovered ?", it is beyond

the scope of this work. However, one must note that the unitary evolution of the quantum state is

described by a causal theory. The Hamiltonian does describe a causal relation by evolving the quantum

state through time. One may still ask if the knowledge of the state interfere with the state behavior

(as suggested by [1] to define the arrow of time) or to note that a complete description of the physical
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phenomena including the acquisition of knowledge (sometimes in the form of a measurements) cannot

be described by a causal theory.

The quest here was for a better understanding of quantum theory as a Bayesian theory and the

use of Shannon entropy and related concepts to characterize interference and entanglement. However,

by adopting the Bayesian theory view, the question of a complete causal theory was left open.

Acknowledgments: This paper is partially based upon work supported by both the National Science Foundation
under Grant No. DMS-1439786 and the Simons Foundation Institute Grant Award ID 507536 while the authors
were in residence at the Institute for Computational and Experimental Research in Mathematics in Providence, RI,
during the spring 2019 semester “Computer Vision” program.

Appendix A. Combining two states

Consider a quantum state |ΨA〉 in Hilbert space and its representation in phase space

ψA(x) = 〈x|ΨA〉 and φA(k) = 〈k|ΦA〉 (A1)

Here the time parameter is not shown for simplicity/clarity. Figure 1 show some scenarios of two

coherent states projected in one dimension position and spatial frequency.

Given two quantum states in Hilbert space, |ΨA〉 and |ΨB〉, are one can combine them as follows:

(i) a superposition of these two states or (ii) a sum of an exterior product of the two states (product of

the two Hilbert spaces). More precisely, a general quantum state formed from these two states can be

written as

(i) One-State Superposition: |Ψ〉 = eiν1

√
Z

(

cos θ1 |ΨA〉+ eiϕ1 sin θ1 |ΨB〉
)

(A2)

(ii) Two-State: |Ψ〉2 =
eiν2

√
Z2

(

cos θ2 |ΨA〉 |ΨB〉+ eiϕ2 sin θ2 |ΨB〉 |ΨA〉
)

(A3)

where ϕ1,2, ν1,2 ∈ [0, π], θ1,2 ∈ [0, π
2 ] and Z, Z2 are normalization constants. For bosons or fermions

there is the constraint θ2 = π
4 and ϕ2 = 0, π respectively, so these states will be either symmetric or

anti-symmetric. The special case when two boson states occupy the same state is also captured by

θ2 = 0, π
2 .

The projection to the spatial basis leads to the wave functions

(i) ψ(x) = 〈x|ψ〉 = eiν

√
Z

(

cos θ1 ψA(x) + eiϕ1 sin θ1 ψB(x)
)

(A4)

(ii) ψ(x, y) = 〈x| 〈y| |Ψ〉2 =
eiν

√
Z2

(

cos θ2 ψA(x)ψB(y) + eiϕ2 sin θ2 ψB(x)ψA(y)
)

(A5)

and similarly for scenario (i) φ(k) = 〈k|ψ〉 and for scenario (ii) φ(kx, ky) = 〈kx| 〈ky| |Ψ〉2. The phase

space entropy (2) for each of these scenarios is

(i) S(|Ψ〉) = −
∫ ∫

dx dk p(x)q(k) log (p(x)q(k)) (A6)

(ii) S(|Ψ〉2) = −
∫ ∫ ∫ ∫

dx dkx dy dky p(x, y) q(kx, ky) log
(

p(x, y), q(kx, ky)
)

(A7)

where p(x) = |ψ(x)|2, q(k) = |φ(k)|2, p(x, y) = |ψ(x, y)|2, q(kx, ky) = |φ(kx, ky)|2.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2023                   doi:10.20944/preprints202307.2026.v1

https://doi.org/10.20944/preprints202307.2026.v1


14 of 15

Appendix B. Entropy Concepts

The Rényi entropy of order α of a given continuous distribution P(x)

Hα(P) =
1

1 − α
log

(

∫

Pα(x) dx

)

(B1)

The work shown in this paper can be extended to Rényi entropy.

Shannon entropy can be derived from Rényi entropy as follows

S(P) = lim
α→1

Hα(P) = −
∫

P(x) log P(x) dµ(x) (B2)

where µ is some reference measure, usually a Lebesgue measure on a Borel σ-algebra.

The cross entropy of two probability distributions p(x) and q(x) on the variable x is given by

CrossS(p, q) = −
∫

p(x) log q(x) dµ(x) . (B3)

The Kullback-Liebler divergence between two probability distributions p(x) and q(x) is given by

DKL(p||q) = −
∫

p(x) log
q(x)

p(x)
dµ(x) = CrossS(p, q)− S(p). (B4)
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