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Abstract: Cancer is a condition in which the body's cells proliferate unchecked. Skin cancer is one 

of the deadliest diseases that impacts the skin on many levels. There are several different types of 

the disease, including melanoma, basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and 

melanocytic nevus. Due to its increased prevalence, skin cancer, in particular melanoma, is be-

coming a serious health problem. Early identification of skin lesions is crucial for successful 

treatment. Due to their resemblance, many skin lesions are misclassified, which is a severe issue. 

Researchers seek computer-aided diagnostic tools for early malignant tumor detection. First, a new 

model based on the combination of "you only look once" (YOLOv5) and "ResNet50" is proposed for 

melanoma detection with its degree using humans against a machine with 10,000 training images 

(HAM10000). Second, feature maps integrate gradient change, which allows rapid inference, boosts 

precision, and reduces the number of hyperparameters in the model, making it smaller. Finally, to 

get the desired outcomes, the current YOLOv5 model is changed by adding new classes for 

dermatoscopic images of typical lesions with pigmented skin. The pro-posed approach improves 

melanoma detection with a real-time speed of 0.4 ms non-maximum suppression (NMS) per image. 

The performance metrics average is 99.0%, 98.6%, 98.8%, 99.5, 98.3%, and 98.7% for precision, recall, 

dice similarity coefficient (DSC), accuracy, mean average precision (MAP) from 0.0 to 0.5, and MAP 

from 0.5 to 0.95, respectively. Compared to cur-rent melanoma detection approaches, the provided 

approach is more efficient using deep fea-tures. 

Keywords: Skin cancer classification; melanoma detection; you only look once (YOLO); 

dermatoscopic im-ages analysis; ResNet50 network 

 

1. Introduction 

The skin is the outermost layer of the human body. The largest organ in the human integument 

structure, it comprises multiple layers. It also involves immune cells and cells that generate melanin 

to keep the body healthy from the carcinogenic potential of ultraviolet radiation [1]. Skin cancer arises 

when skin cells become disorganized and proliferate uncontrollably, potentially migrating to other 

body parts. Skin cancer is the most common type of cancer worldwide. Melanoma and non-

melanoma pigmented lesions are the two main forms of skin cancer. Melanoma is associated with 

melanocytes, influencing the color of malignant cells [2].  

In 2022, the American Cancer Society predicts that there will be about 99,780 new melanomas 

diagnosed in the country [3]. Melanoma is predicted to be fatal approximately 7,650 people (about 
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5,080 men and 2,570 women). Rates of melanoma have considerably increased in recent decades. On 

the other hand, it is more deadly since it has the ability to spread to many other areas of the body if 

it is not detected and treated promptly. Besides, it is associated with melanocytes, which cause 

malignant cells to change color, thus accounting for the bulk of pigmented skin cancer deaths [4]. 

Figure 1 depicts various types of skin cancer lesions, including common types detected.  

 

Figure 1. Skin lesions classification with common types. 

Due to the substantial similarities between the many forms of skin lesions, visual analysis is 

challenging, which can lead to incorrect choices [5]. The ABCD (asymmetry, border irregularity, color 

variation, and diameter) examination is commonly used to diagnose malignant melanoma. Patients 

with melanoma who are detected early have a greater chance of survival [6]. As digital computing 

capabilities progress, some researchers have developed computer-aided diagnosis (CAD) systems 

that integrate image processing, pattern recognition, and artificial neural networks to support 

physicians in diagnosing [7]. 

According to Figure 2, (a, c, e, g) are considered benign, but (b, d, f, h) are melanoma skin cancer. 

Because of the result of the ABCD examination:  

• Asymmetry: (A) both sides match the other, and (B) one side does not match the other. 

• Border: (C) Regular edges, (D) Irregular or Blurred. 

• Color: (E) Consistent shades, (F) Different shades. 

• Diameter: (G) lesion is smaller than 6mm, (H) lesion is larger than 6mm. 

The ABCD approach was utilized to distinguish malignant melanoma from benign lesions based 

on its ability to extract distinguishing morphological features. As a result, it is usually utilized in 

automated systems. This method's efficiency ranges from 85.0% to 91.0%. These low percentages 

inspire researchers to provide another approach, either by altering an existing method or developing 

a new approach to improve performance. 
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Deep learning (DL) techniques have to be the most effective, supervised, time and cost-efficient 

machine learning method. DL techniques have made substantial advances in automatically extracting 

characteristics across several deep layers, generating significant benefits [8,9]. DL has recently been 

successfully employed in visual tasks and object recognition by academics worldwide.  

 

Figure 2. The ABCD lesion diagnosis criteria focus on identifying specific. 

characteristics of lesions. 

The characteristics of melanoma have been used to construct certain machine learning 

approaches to identify the disease. CAD models involve effective algorithms to categorize and 

forecast melanoma. Algorithms like the adaptive histogram equalization approach, contrast 

stretching, and a median filter are used to improve the pictures. Following that, there are a variety of 

segmentation algorithms, including normalized Otsu's segmentation (NOS), which separates the 

damaged skin lesion from the normal skin and solves the issue of fluctuating illumination [6]. The 

segmented images are used to construct and extract features, which are then given to the various 

classifiers, including hybrid Adaboost, support vector machine (SVM), and DL neural networks [10-

14]. Various architectures such as ResNet, Dense Net, and Senet were used. Various methods are 

applied to deal with each class's unequal quantity of images, such as balanced batch sampling and 

loss weighting. 

In order to get an improved consistent skin lesions classification technique, the proposed system 

is pre-trained more than once with various hyperparameter settings. The suggested architecture uses 

a single stage to combine detection and classification instead of more conventional approaches. The 

proposed system has three significant benefits over previous computer-assisted skin cancer screening 

approaches :  

• The proposed method applies to any image (dermoscopy or photographic) of pigmented skin 

lesions using you only look once (YOLOv5) and ResNet50.  

• The suggested system classifies samples and determines each class with probability.  

• It interacted directly with the skin-color images that were obtained with different sizes.  

This study developed, implemented, and effectively assessed a novel DL-based skin lesion 

classification algorithm against a publicly available dermoscopy dataset based on utilizing seven 

categories of skin lesions (the HAM10000 dataset) [15,16]. 

The arrangement of the paper is outlined below. The second section offers a review of the related 

studies. Section 3 goes into detail about the suggested method and the datasets utilized. Section 4 

outlines the experimental setup and performance assessment of the suggested technique, and Section 

5, in the end, discusses the conclusions. 

2. Related Work      
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Early detection and treatment of melanoma frequently result in a cure. It becomes more 

dangerous and difficult to treat if it penetrates deeper into the skin or other body parts. Most 

melanoma classification algorithms currently in use contain custom-made characteristics such as 

measurements of lesion shape, distribution, and color, as well as measurements of texture and border 

irregularity [17]. After feature extraction, machine learning techniques such as artificial neural 

networks (ANNs), K-nearest neighbors (KNN) classification, SoftMax classification, SVM, and 

logistic regression can be used to successfully solve the classification problem [18]. Examples of 

relevant DL research include the following, which are summarized in Table 1. 

Using a contrast-constrained adaptive histogram equalization strategy, Premaladha et al. [6] 

improved the melanoma classification system. The images were enhanced before segmenting the 

filtered grayscale image using the Otsu normalized method. DL achieved 92.8% classification 

accuracy. A deep convolutional neural network (DCNN) divided color images of skin cancer into 

three groups: atypical nevus, melanoma, and typical nevus from Med node and PH2 datasets. This 

proposed system needs to add more classes for more accuracy. 

Table 1. Some examples of recent studies on related topics. 

Reference Proposed Technique Accuracy Limitation 

Premaladha et al. 

[6] 

Segmentation using Otsu's 

normalized algorithm and 

then classification 

SVM (90.44), DCNN 

(92.89), and Hybrid 

AdaBoost (91.73) 

Uses only three 

classes of skin cancer 

lesions 

Codella et al. 

[10] 

Melanoma recognition 

using DL, sparse coding, 

and SVM 

93.1% 

Need to deepen 

features and add 

more cases of 

melanoma. 

Waheed et al. 

[12] 

Diagnosing melanoma 

using the color and texture 

of different types of lesions 

SVM (96.0%) 
Need more attributes 

of skin lesions 

Hekler et al. 

[19] 

Classifying 

histopathologic melanoma 

using DCNN 

68.0% 

Uses low resolution 

and can't differentiate 

between melanoma 

and nevi classes 

Pham et al. [20] Classification using DCNN AUC (89.2%) Less sensitivity 

Yu et al. [21] 

Segmentation and 

classification using DCNN 

and FCRN 

AUC (80.4 %) 
Insufficient training 

data 

Li and Shen [22] 

Two FCRN for melanoma 

segmentation and 

classification  

AUC (91.2%) 

Overfitting in AUC 

and low 

segmentation 

Seeja and Suresh 

[23] 

Segmenting data using 

form, color, and texture 

variables, then 

classification using SVM, 

RF, KNN, and NB 

SVM (85.1%), RF 

(82.2%), KNN(79.2%) 

and NB (65.9%) 

Low classification 

accuracy 

Nasiri et al. 

[24] 

Using the 19-layer model 

of CNN for melanoma 

classification 

75.0% 
Need to enhance 

accuracy  

Codella et al. [10] established a hybrid technique for melanoma categorization. A help vector 

was used in this method. A support vector machine (SVM), deep learning, and sparse coding were 

all used. 2624 clinical cases from the International Skin Imaging Collaboration were used as a dataset. 

When all the results were added together, the categorization efficiency was 93.1 percent. There is a 

need to deepen feature extraction and add more cases for the diagnosis of melanoma. 
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Gessert et al. [11] used a huge ensemble of state-of-the-art convolutional neural network (CNN) 

models to classify skin lesions. Various architectures such as ResNet, Dense net, and Senet were used. 

To deal with the unequal quantity of images for each class, they applied various methods, such as 

balanced batch sampling and loss weighting. Finally, the ensemble of multiple convolutional neural 

network architectures was fine-tuned utilizing their dataset. This task was correctly classified 85.1% 

of the time.  

Waheed et al. [12] constructed a model using machine learning for diagnosing melanoma 

depending on dermoscopy images from HAM10000 dataset.. It was based on distinguishing 

attributes such as the appearance and texture of many skin lesions. SVM was used in their research 

to distinguish melanoma images from all other classes. Their model correctly classified objects 96.0% 

of the time. There is a need for more attributes of skin lesions classification. 

In order to categorize skin lesion images into five diagnostic groups, Hekler et al. [19] used CNN. 

They applied their method to 300 test images from the HAM10000 dataset and discovered that it was 

82.9 percent accurate (60 percent for each of the five illness classifications). An invasive technique is 

demonstrated with a small number of low-resolution pictures. Their method's binary distinction 

between melanoma and nevi is another drawback. 

DCNN evaluation for melanoma categorization was given by Pham et al. [20]. Additionally, they 

helped with data improvement. Using CNN level layers at different levels, each feature was 

retrieved. Additionally, the dataset was probably altered in some way. The analysis was tested using 

the ISBI dataset, which had an area under the curve (AUC) of 89.2%. Because skin lesion images are 

identical, it was necessary to reuse network weights to increase sensitivity. 

Yu et al. [21] published a two-stage melanoma detection approach. They used a deep residual 

network (DRN) for classifying and a DCNN network with more than 50 layers for segmentation. 

Segmentation was performed using a fully convolutional residual network (FCRN), while 

classification was performed using a DRN. The ISBI dataset was used to evaluate the findings, and 

the AUC was 80.4%. It is vital to explore techniques to include Bayesian learning, particularly 

probabilistic graphical models, into networks in order to further increase the discrimination 

capability of the very deep CNNs and address the issue of insufficient training data. 

Li and Shen [22] proposed an automated melanoma detection method based on two deep 

learning techniques. They employed two FCRN simultaneously for a more thorough classification. 

The lesion feature network was used to extract dermoscopy features. The model used the 

International Skin Imaging Collaboration (ISIC 2017) dataset to test the performance. It produced 

2357 photos of both malignant and harmless oncological illnesses for this collection (ISIC). All 

pictures were sorted based on the categories were identified using ISIC, and the same number of 

photos were used to divide each subgroup. Model segmentation and classification results were 75.3% 

and 91.2%, respectively. There is overfitting in AUC, and the results of segmentation are low. 

Seeja and Suresh [23] presented a DCNN for precise skin lesion segmentation using the U-net 

technique. To obtain their findings, they combined CNN and FCNN. The color, texture, and shape 

attributes were selected from the segmented images of ISBI 2016 dataset. The method used for texture 

analysis was local binary pattern (LBP). Form features were extracted using the edge histogram, 

Gabor, and histogram of oriented gradients (HOG) approaches. For classification, SVM, random 

forest (RF), K-nearest neighbor (KNN), and naïve Bayes (NB) classifiers were selected. The test results 

showed that the Dice co-efficiency value for image segmentation was 77.5%. The classification 

accuracy of the SVM classifier was 85.1%, 82.2 percent for RF, 79.2 percent for KNN, and 65.9 percent 

for NB. The proposed system needs to improve the result for classification. 

For the purpose of melanoma early detection, Nasiri et al. [24] created a method of case-based 

reasoning. DL algorithms were used to categorize skin lesions in their strategy. This investigation is 

a follow-up to their case-based learning assistant system study that looked at how to detect and 

predict melanoma from ISIC dataset. A 19-layer model of CNN, a deep learning method, was used 

in this work to categorize skin lesions. Three fully connected layers, three max-pooling layers, and 

eleven convolutional layers form the model. The proposed approach has a 75.0% success rate in the 

ISIC Melanoma Project, where it was tested. 
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S. Inthiyaz et al. [25] recently created an approach based on the combination of CNN and 

Softmax. Skin photographs were first filtered to remove unwanted noise from the image before being 

processed to improve the overall quality of the image. The presented work was based on extracting 

features from skin images, which were then classified using the Softmax classifier. It was accurate to 

87.0%. This model should be improved for greater accuracy by including more skin cancer classes 

and employing DL methods. 

M. Mohammed et al. [26] suggested model investigated the various forms of cancer. By 

examining, categorizing, and manipulating the multi-omics dataset in a fog cloud network. The study 

created hybrid cancer detection systems based on state action reward state action (SARSA) on-policy 

and multi-omics workload learning, which were made achievable by reinforcement learning. It has 

several layers, including the collection of clinical data through laboratories. To improve performance, 

this model needs many widely dispersed clinics for cancer categorization and prediction. 

In light of the importance of early melanoma identification, the visible similarity among 

melanoma and non-melanoma tumors, the absence of contrast between lesions and skin, and other 

considerations. Therefore, accurate automatic diagnosis of skin tumors is crucial to improving the 

precision and effectiveness of pathologists.  

According to previous studies, there are limitations in melanoma detection due to the small 

number of classes used and the need to determine the degree of classes. There is a need to deepen 

feature extraction and add more cases for the diagnosis of melanoma. The similarities between classes 

can't be determined. Recently, work has been based on two stages to determine melanoma 

(segmentation and classification). But there is overfitting in AUC, and the segmentation results are 

low. A system that relies on DL must be created in to obtain reliable melanoma classification. 

YOLOv5 relies on a single step for identifying and classifying skin lesions to determine the type of 

melanoma, in contrast to earlier DL studies for skin lesion classification that concentrated on 

employing specific layers. The core concept behind the YOLO technique is to employ an end-to-end 

convolutional neural network to predict the target's class and position. It used bounding boxes for 

detection and probabilities to determine an object's probability percent. The design is composed of 

an input layer, a convolutional layer, a layer for pooling, a layer for fully connecting, and a layer for 

the output. In the primary step, YOLO splits the input image into S × S grids. Each grid is diagnosed 

to check if it has any class of skin lesions. It then classifies each object and gives it its probability. 

Then, Resnet network is used to prevent gradient explosion issues. Because we have seven classes 

with multiple scales, it is employed as the image classification network. 

3. Proposed Melanoma Detection Technique     

3.1. Preprocessing 

The preprocessing step of melanoma detection aims to provide a suitable source for the model's 

appropriateness in actual time. Data augmentation is provided to increase the sample size for those 

imbalanced classes and prevent this imbalanced dataset from producing a biased or skewed 

prediction. Since an image could contain noise, preprocessing is necessary for detection algorithms 

[27,28]. Pictures of skin lesions often have uneven lighting, skin surface light reflection, and hair. 

These kinds of noises need to be reduced because they can impair segmentation performance. 

Additionally, each of these photographs has been carefully scaled and smoothed. Normalizing 

the original image speeds up detection without sacrificing any data. This is an essential technique to 

guarantee that every image is annotated and to increase performance accuracy. For the necessary 

computation parameters, as well as for later implementation and detection, it is done. The DL 

architecture scales image pixels before the training process. In experiments, photos are scaled to (224, 

224, 3) using the ImageDataGenerator class and scaling methods. The image pixels are normalized to 

standardize the image samples. The [0, 255] range of possible values is replaced with the [0, 1] range. 

If images are not scaled, they will receive a lot of votes to update weights due to their wide pixel 

range. The YOLO model provides the output from the processed stage [29,30]. After combining the 
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detection model's anchor box size for classification, the preparation methods would be completed 

according to Figure 3. There are many models of YOLOv5.  

The proposed framework utilized a small model with only 7MB of memory. Here is a brief 

explanation of all the versions of YOLOv5, which is used for model configuration. First, YOLOv5n 

(the nano edition) is the smallest in the series, intended for Internet-of-Things data, and it also 

supports OpenCV Dl. In INT8 format, it weighs less than 2.5 MB, and in FP32 format, it is about 4 

MB. It's perfect for software devices. Second, YOLOv5s (the small edition) is the family's smallest 

model, with about 7.2 million parameters, making it perfect for inference to run on the CPU. Third, 

unlike YOLOv5m (the medium edition), which has 21.2 million parameters, this medium-sized 

version is of interest. Given that it offers a pretty good balance between speed and efficiency, it may 

be the model that is most suitable for many datasets and training. Fourth, YOLOv5l (the large edition) 

contains 46.5 million components; it is the biggest version in the YOLOv5 group. For datasets that 

necessitate us finding tiny things, it works perfectly. Finally, YOLOv5x (the extra-large edition) is the 

largest of the five and also has the greatest MAP, although it has 86.7 million parameters and 

therefore is slower than the others. 

 

Figure 3. The proposed framework for categorizing seven skin lesions. 

3.2. The Structure of the YOLOv5-S Model 

The YOLO model is a target detection method that uses regression. A regression model is created 

from the target detection problem. When photos of skin cancer are entered into a DNN by YOLO, the 

technique predicts the classification and localization information of the various skin lesion classes 

based on the computation of the loss function [31]. YOLOv5 is based on the YOLO detection 

architecture. It employs top-notch algorithm optimization techniques developed in recent years in 

convolutional neural networks, including auto mosaic data augmentation, learning bounding box 

anchors, Leaky Rectified Linear Unit (Leaky Relu) activation function, and others. They are in charge 

of various tasks in various parts of the YOLOv5 architecture. 

In the architecture, YOLOv5 comprises the dataset images, backbone, neck, and detection output 

components, as shown in Figure 4. The input is the preprocessing output according to the previous 

subsection. The second component is the backbone. This backbone eliminates the redundant gradient 

information present in large backbones. Gradient change is incorporated into feature maps, which 

speeds up inference, improves accuracy, and shrinks the model's size by reducing the number of 
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hyperparameters. It is a CNN that uses the Cross Stage Partial network (CSP) and focus interlaced 

sampling splicing structure as its core to produce significant features from provided pictures. The 

problem of recurring gradient information in large-scale networks is addressed by CSPNET [32]. 

Lowering model hyperparameters and FLOPS (floating-point operations per second) decreases 

calculations while increasing the speed and precision of inference and shrinking the model's size.  

 

Figure 4. The components of the YOLOv5 model used for melanoma classification. 

Second, feature pyramids are created using the Neck model. Models can achieve good object 

scaling generalization with the help of feature pyramids. It helps with object identification when it 

appears in different scales and sizes. The neck model of YOLOv5 is based on spatial pyramid pooling 

(SPP) and path aggregation network (PANET) [33,34]. It increases the utilization of precise location 

signals at lower layers and information flow, increasing the accuracy of object location. The spatial 

scale of the convolved information is decreased in this version due to the employment of a 

subsampling layer. By lowering dimensionality, the amount of computing required to process the 

data should be minimized. 

The YOLO layer completes the last detection step, which is the head of YOLOv5. The method 

can simulate small, medium-sized, and large objects according to the generation of a multi-scale 

prediction for the anchor boxes. To optimize the overlap between the ground truth and the 

anticipated bounding box of the detected class, generalized intersection over union (GIOU-loss) is 

utilized [35]. Stochastic gradient descent (SGD) is used by default in the original version of YOLOv5 

[36]. It is a straightforward yet highly effective method for fitting linear classifiers with convex loss 

functions. SGD produced divergence at the specified learning rate of 0.0001 pretty rapidly. After 

training started, loss parameters grew significantly and eventually reached infinity after around ten 

batches. So, Adam is used as an optimizer in the training step since it consistently converges. With 

ADAM serving as the adaptive learning rate, it begins with an initial learning rate. 

In order to explain how a certain class is used, the network's final layer employs SoftMax. The 

training stage receives the detection stage's results after being altered. These findings include the 

bounding box coordinates 𝑏௫, 𝑏௬, 𝑏௪ , 𝑏௛ and 𝑐 is the class of the detected class and represented in 

vector as following [𝑝௖ , 𝑏௫, 𝑏௬, 𝑏௪, 𝑏௛, 𝑐] as well as the probability of each class 𝑝௖ for each detection. 

The intersection over union (IOU) represents the accuracy of the target skin cancer class anticipated 

and the actual skin cancer class. When there is no object in the target image, the probability of 

detecting an object is 0. When there is a complete object, the probability is equal to 1, and the IOU is 

calculated using the predicted target (p) and the real target (t) as Equation. (1). 
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IOU୮୲ = box୮ ⋂box୲ box୮ ⋃box୲  (1)

The real target boundary is box t, whereas the expected target is box p. As observed, the IOU is 

the ratio of the intersection of the predicted and real target frames to their union. Then each image's 

annotations are recorded in YOLO format in txt files, with each line containing a skin lesion bounding 

box description. The training stage is then conducted using YOLOv5. Once the Yolov5 original model 

has been applied, a particular additional layer is applied to increase efficiency. A new scale includes 

convolutional layers with activation functions to enhance object detection. 

Target classification uses Resnet as a tool. The issue of the network advancing in a deeper 

manner without gradient explosion is resolved by the formation of the ResNet network. As is well 

known, DCNN excels at extracting low-, medium-, and high-level characteristics from images. 

Accuracy is improved by stacking more layers. The residual module, which is made up of two dense 

layers and a skip connection, is the main point of ResNet. Each of the two dense layers has a different 

RELU function that activates it. 

4. Experimental Results 

4.1. Dataset 

If the dataset is limited and the data does not contain various images, i.e., photos of different 

classes, training neural networks on them is extremely difficult. If the dataset is heavily skewed, it 

will not meet the goal and may give us an incorrect impression of accomplishment. Fortunately, the 

HAM10000 dataset is utilized. The HAM10000 dataset has been made available to the general public 

to aid dermatoscopic image recognition research. 10015 dermatoscopic images from the ISIC 

collection make up the HAM dataset. Multiple procedures are used to obtain HAM dermatoscopic 

images from varied populations. This dataset can be used to identify benign keratosis lesions (BKL), 

melanoma (MEL), vascular lesions (VASC), basal cell carcinoma (BCC), actinic keratosis (AKIEC), 

dermatofibroma (DF), and melanocytic nevi (NV). These classes are added to the data configuration 

file, and the number of classes is changed to seven. Most of these lesions are confirmed by 

histopathology. The dataset is split into two sets, as listed in Table 2. 

Table 2. The distribution of the HAM10000 dataset for training and testing sets. 

 Vasc  Nv  Mel  Df  Bkl  Bcc  Akiec  

All images 142 6705 1113 115 1099 514 327 

Train 115 5360 891 92 879 300 262 

Test 27 1345 222 23 220 214 65 

4.2. Experimental Platform 

The YOLOv5 algorithm is trained using the HAM10000 datasets in Google Collaboratory 

(Google Colab), a free integrated development environment (IDE). Jupyter notebooks are hosted for 

machine learning and data science researchers to contribute to reproducible experiments and 

technique descriptions. The key advantage is that it enables researchers with the computational 

power to run recent DL approaches interactively, eliminating the need to configure software 

packages and dependencies separately. Tesla K80 with 2 core is utilizing Google Colab based on 

Linux platform with mostly 12GB for RAM, which Google gives to facilitate machine learning (ML) 

training and analysis. It is appealing because Google Colab has pre-installed libraries, as addressed 

in Table 3. It helps the DL model become more accurate and access larger datasets. 

Table 3. Google Colab software requirements and its versions. 

Requiremen

t 
Version  

Requiremen

t 
Version 
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Base 

matplotlib>=3.2.2 

opencv-

python>=4.1.1 

Pillow>=7.1.2 

PyYAML>=5.3.1 

requests>=2.23.0 

scipy>=1.4.1 

torch>=1.7.0   

tqdm>=4.64.0 

protobuf<=3.20.1   
 

Export 

coremltools>=6.0  # CoreML export 

onnx>=1.9.0  # ONNX export 

onnx-simplifier>=0.4.1  # ONNX simplifier 

Nvidia-pyindex  # TensorRT export 

nvidia-tensorrt  # TensorRT export 

scikit-learn<=1.1.2  # CoreML quantization 

tensorflow>=2.4. 

tensorflowjs>=3.9.0  # TF.js export 

openvino-dev  # OpenVINO export 
 

Plotting 
pandas>=1.1.4 

seaborn>=0.11.0 
 

Extras 

ipython  # interactive notebook 

psutil  # system utilization 

thop>=0.1.1  # FLOPs computation 

# albumentations>=1.0.3 

# pycocotools>=2.0   
 

Logging 
tensorboard>=2.4.1 

clearml>=1.2.0 
 

4.3. Performance Metrics 

The evaluation outcomes of the trained model are computed using several performance 

indicators. Precision, often referred to as positive predictive value, is defined in Equation. (2). It is a 

metric used in this study to show how well the model detects skin lesions. The recall rate in Equation. 

(3) is also called sensitivity. It is determined by dividing the number of skin lesions genuinely 

detected by the sum of skin lesions that are both indeed discovered and missed in each image. The 

harmonic mean of recall and precision is used to determine the dice similarity coefficient (DSC) using 

Equation. (4). Specificity is also calculated, which is the true negative rate using Equation. (5) and 

accuracy by using Equation. (6). As shown below, false negatives (FN), false positives (FP), true 

negatives (TN) and true positives (TP) are all used to calculate them. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ்௉்௉ାி௉  (2) 

𝑅𝑒𝑐𝑎𝑙𝑙/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (3) 

𝐷𝑆𝐶 = 2 ∗ 𝑇𝑃2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 (4) 

Specificity = 
்ே்ேାி௉ (5) 

Accuracy = 
்௉ା்ே௉ାே = ்௉ା்ே்௉ା்ேାி௉ାிே  (6) 

By averaging the average precision (AP) of each class, the mean average precision (MAP) is 

obtained using Equation. (7). It is frequently used to assess how well object detection algorithm’s 

function. The MAP formula comprises various submatrices, including the confusion matrix, GIOU, 

recall, and precision. The detection model's ground truth bounding boxes overlap the anticipated and 

actual objects, and GIOU measures this overlap. Each IOU threshold value results in a unique MAP. 

Therefore, this value needs to be provided. An IOU is compared to a defined threshold, and either a 

correct or incorrect detection is generated. The performance of the trained algorithm is assessed using 

GIOU criteria of 0.5 and 0.5:0.95 to examine the efficiency of the skin lesions model in a set of 

experiments. 𝑀𝐴𝑃 = ଵே ∑ 𝐴𝑃௞௞ୀଵே   (7) 

4.4. Results  
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Images are given learnable weights and biases in this stage of preprocessing. The YOLOv5 

algorithm is then utilized with the initial configuration as presented in Table 4. Because of its quick 

execution, it is possible to use the YOLO-trained model in real-time with a prediction in a split second. 

In the first run, the 12519 dermoscopy photos from seven different types of skin cancer in the 

HAM10000 dataset were split into training and testing sets, with training sets accounting for 80% of 

the dataset's total data and testing sets for 20%. The HAM dataset is tested over seven classes (BKL, 

AKIEC, VASC, BCC, DF, NV, and MEL) using 9514 dermoscopy images from the original training 

run and 3005 from the testing run. The network is trained for a total of 300 epochs. Six performance 

measures are generated separately for each class to assess the proposed method's performance. As a 

result, the average of these values is computed. The performance metrics average is 98.1%, 97.5%, 

97.7%, 98.9%, 97.5%, 97.1%, and 96.3% for precision, recall, DSC, specificity, accuracy, MAP from 0.0 

to 0.5, and MAP from 0.5 to 0.95, respectively. With the help of the settings in Table 4 for the first 

experiment run, Table 5 displays the metrics findings for the HAM10000 dataset. 

Table 4. Training guidelines for the first and second experiments with 640 image size. 

Parameter First run Second run Definition 

Epoch 300 100 
The frequency with which the learning 

algorithm 

Batch_size 16 32 
how many training instances are used in a 

single iteration 

lr0 0.001 0.001 
Initial learning rate (SGD=1E-2, Adam=1E-

3) 

Lrf 0.2 0.2 Final OneCycleLR learning rate (lr0 * lrf) 

Momentum 0.937 0.937 SGD momentum/Adam beta1 

warmup_epochs 3.0 3.0 Warmup epochs (fractions ok) 

weight_decay 0.0005 0.0005 Optimizer weight decay 5e-4 

warmup_momentu

m 
0.8 0.8 Warmup initial momentum 

warmup_bias_lr 0.1 0.1 Warmup initial bias learning rate 

Box 0.05 0.05 Box loss gain 

Cls 0.5 0.5 Class loss gain 

cls_pw 1.0 1.0 Cls BCELoss positive_weight 

Obj 1.0 1.0 Obj loss gain (scale with pixels) 

obj_pw 1.0 1.0 Obj BCELoss positive_weight 

anchor_t 4.0 4.0 Anchor-multiple threshold 

iou_t 0.20 0.20 IOU training threshold 

Scale 0.5 0.5 Image scale (+/- gain) 

Shear 0.0 0.0 Image shear (+/- deg) 

Perspective 0.0 0.0 
Image perspective (+/- fraction), range 0-

0.001 

Table 5. Utilizing 300 epochs, the model YOLOv5s' results on the HAM10000 dataset. 

 
Precision 

(%) 

Recall 

(%) 
DSC (%) MAP 0.0:0.5 (%) MAP 0.5:0.95 (%) Accuracy (%) 

AKIEC 99.1 94.9 96.9 99.7 95.2 95.2 

BKL 95.3 96.8 96.0 95.3 94.5 96.1 

VASC 97.0 95.6 96.2 98.7 95.5 97.2 

BCC 97.1 97.6 97.3 97.5 96.4 97.3 

DF 98.7 99.5 99.0 94.3 94.8 98.8 

NV 100.0 98.6 99.2 96.4 99.5 98.1 

MEL 98.8 100.0 99.3 98.2 98.6 100.0 
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Average 98.1 97.5 97.7 97.1 96.3 97.5 

The same splitting ratio of 80% training and 20% testing is used for the second run, which uses 

new parameters. The new parameters are 100, 32, and 0.0001 for epochs, batch size, and learning rate, 

respectively. The greatest results are achieved with a batch size of 32. So, the performance metrics 

average is 99.0%, 98.6%, 98.8%, 99.5%, 99.8%, 98.3%, and 98.7% for precision, recall, DSC, accuracy, 

specificity, MAP from 0.0 to 0.5, and MAP from 0.5 to 0.95, respectively as in Table 6. 

Table 6. Results of the model YOLOv5s for HAM10000 dataset utilizing 100 epochs. 

 Precision (%) Recall (%) DSC (%) 
MAP 0.0:0.5 

(%) 

MAP 0.5:0.95 

(%) 
Accuracy(%) 

AKIEC 100.0 96.7 98.3 98.9 99.7 98.8 

BKL 98.2 98.2 98.2 97.6 94.9 98.9 

VASC 98.8 99.6 99.1 97.9 97.9 99.4 

BCC 97.1 96.9 96.9 99.5 99.1 99.7 

DF 99.6 98.9 99.2 98.6 96.2 100.0 

MV 100.0 100.0 100.0 96.2 100.0 99.8 

MEL 99.9 100.0 99.9 99.8 98.9 100.0 

Average 99.0 98.6 98.8 98.3 98.7 99.5 

It is possible to determine the sensitivity of the neural network in Figure 5 using the MAP to 

summarize the study's findings.  

 
     (a) 

 
     (b) 

 
     (c) 

 
     (d) 

Figure 5. The evaluation of precision curve, recall curve, and mean average precision at two 

thresholds for the second run using 100 epochs,. 

The precision and recall curves in Figure 5a and Figure 5b are implemented at network size and 

evaluated at the GIOU threshold range from 0.5 to 0.95. The model worked well throughout, with 

the greatest MAP from 0.5 to 0.95 value of 98.7% occurring for network size 224 with a threshold 

value equal to 0.5. Additionally, the weights produced by YOLOv5 (S-Model) require 14 MB. 
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The MAP determines the area under the precision-recall curve, making it a useful tool for 

comparing various models regardless of confidence level. Figure 5a and Figure 5b illustrate how 

recall and precision grow with increasing epochs. Additionally, when the confidence score for each 

class differs, the effectiveness of the melanoma detection performed by the YOLOv5 models is 

evaluated by looking at the precision-recall curve. When precision retains a considerable contribution 

to growth in the recall, it is easier to evaluate the capacity to predict melanoma. The goal is to find 

the confidence level that maximizes F1 across all classes. In this case, the results are shown in Figure 

6 with a confidence of 70.8%, a precision of 96.0%, and a recall of 91.0%. In the illustration in Figure 

7, batch selections are made from the testing set to display the bounding box for each class with each 

probability. 

 

Figure 6. YOLOv5 precision-recall curves for each class. The average precision for each class is the 

area under each curve for the HAM10000 dataset. 
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Figure 7. An example batch of detection results on some test images using YOLOv5. 

5. Discussion  

In order to assess the performance of the suggested model as a melanoma detection approach 

utilizing modified YOLOv5 and ResNet techniques, a comparison analysis is presented in this 

section. In Table 7, our model is compared with other models. Despite the similarities between 

classes, the suggested YOLOv5 has detected melanoma using adequate coordinates, including the 

bounding box. The comparison results allow us to conclude that the suggested YOLOv5 model is 

reliable for melanoma detection in real-time photos that have been gathered. 

Table 7. The comparison of precision, recall, and DSC over some existing models. 

Reference Year Method 
Precisio

n (%) 

Recall 

(%) 

DSC 

(%) 

Accuracy 

(%) 
Dataset 

Nasiri et al. [24] 2020 

KNN 73.0 55.0 79.0 67.0 
ISIC 

dataset 
SVM 58.0 47.0 66.0 62.0 

CNN 77.0 73.0 78.0 75.0 

Alsaade et al. [37] 2021 CNN 81.2 92.9 87.5 97.5 PH2 

Ali et al. [38] 2021 CNN 96.5 93.6 95.0 91.9 HAM10000 

Khaledyan et al. 

[39] 
2021 

Ensemble 

Bayesian 

Networks 

88.6 73.4 90.7 83.6 HAM10000 

Chang et al. [40] 2022 XGB classifier 97.4 87.8 90.5 94.1 ISIC 

Kawahara et al. 

[41] 
2019 FCNN 97.6 81.3 93.0 98.0 ISIC 

Khan et al. [42] 2021 Mask RCNN  88.5% 88.5% 88.6% 93.6 ISIC 

Chaturvedi et al. 

[43] 
2020 Mobile Net  83.0% 83.0% 89.0% 83.1 HAM10000 

Proposed model 2022 
YOLOv5+ResN

et 
99.0 98.6 98.8 99.5 HAM10000 

The results show that our model achieves more accuracy, better performance, and a more 

accurate network. In the comparison, studies used different methods with different and the same 

dataset. For the HAM1000 dataset, Ali et al. [38] achieved 91.9% using CNN, and Khaledyan et al. [39] 
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achieved 83.6% using Ensemble Bayesian Networks for the precision measure. In addition to these 

references, Alsaade et al. [37] produced a model using CNN based on the PH2 dataset, which contains 

40 melanomas, 80 normal nevi, and 80 abnormal nevi as in Table 8. The model achieves 97.5% for 

accuracy. Chang et al. [40] accomplished 94.1% using the XBG classifier using 10-fold cross validation. 

Despite this, our model achieves its best performance using two-fold cross-validation. Kawahara et 

al.  [41] used 1700 photos from the ISIC-ISBI 2017 skin analysis challenge, which were used to train 

our network, and 300 images were utilized to assess the network's efficiency using various 

hyperparameters. It exhibited a fully convolutional neural network that could extract clinical 

dermoscopic features from photos of dermoscopy skin lesions. It redefined the segmentation process 

for categorizing clinical dermoscopic characteristics within super pixels. This model achieved 98.0% 

for accuracy. 

Table 8. The details of datasets that are used for performance evaluation. 

Database Description 

PH2 

• It contains the medical assessment, manual segmentation, and 

identification of a number of dermoscopic lesions. 

• In a collection of 200 dermoscopic photos, it was completed by 

dermatologists with expertise. 

• The photos have an 8-bit RGB color depth and a 768x560 pixel 

resolution. 

• It has 40 melanomas, 80 atypical nevi, and 80 normal nevi. 

ISIC 

• 2,000 dermoscopic pictures of cancers. 

• It contains malignant and harmless oncological illnesses. 

• 1,372 benign nevi, 254 seborrheic keratoses, and 374 

melanomas. 

A mask RCNN-based model was proposed by Khan et al. [42]. The decorrelation formulation 

algorithm was used to perform the initial preprocessing of the dermoscopy images. Following that, 

it forwarded the obtained pictures to the MASK-RCNN for lesion segmentation. In this step, the 

segmented RGB pictures are produced from the ground truth images of the ISIC datasets, the MASK 

RCNN model was trained. The DenseNet deep model was given the segmented images as a response 

to extract features from [43]. It used a Mobile Net model that was transfer-learned and fine-tuned on 

10,015 dermoscopy pictures from the HAM10000 dataset after being pre-trained on roughly 1,280,000 

images from the 2014 ImageNet Challenge. In Figure 8, the outcomes of the proposed model and 

various models based on the same dataset (HAM10000) are displayed. These comparisons 

demonstrate that, in performance matrices, the proposed model outperforms CNN, Ensemble 

Bayesian, and Mobile Net approaches. 
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Figure 8. A comparison between the proposed model and other techniques based on the HAM10000 

dataset. 

6. Conclusion 

Early detection and drastic treatment of melanoma are challenging for professionals, and 

sometimes, even when presented with identical dermoscopy photos, different experts may reach 

different results. As a result, the study of skin cancer classification significantly impacts skin cancer 

secondary diagnosis. In order to analyze the skin lesion image data, this paper primarily examined 

the categorization of skin lesion images using the HAM10000 database. It contains many challenges, 

such as the similarity between classes of skin lesions, low contrast, and hair, which appears in some 

images. The proposed model is based on a small model from the YOLOv5 and Resnet networks. To 

classify seven skin lesions and detect melanoma using a bounding box provided with probability. 

The model consists of three stages to get the best categorization accuracy possible: preprocessing, 

hyperparameters, additional layers, previewing, and annotating images. The third stage assigns 

labels with probability classes to each image for diagnosis. Finally, the average performance metrics 

are 99.0%, 98.6%, 98.8%, 98.3%, and 98.7% for precision, recall, DSC, MAP from 0.0 to 0.5, and MAP 

from 0.5 to 0.95, respectively. Along with the recent studies for skin cancer diagnosis, the researchers 

hope to increase their success in future work by enhancing the model with patients' individualized 

data like genes and color. Additional melanoma types and bigger datasets are desperately needed. 

Additionally, generalizable outcomes are required to test the model against a broader range of skin 

conditions and make the application practical in most health organizations. It helps doctors, 

especially undertrained doctors, with guidelines to determine which classes are found and each 

probability to determine the degree of disease. It also saves time compared with traditional methods. 

It assists patients in making self-examinations for guidance and follows their status and treatment.  
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