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Simple Summary: Tracking the movements of chickens is important for understanding their well-being. 

Traditional methods for measuring chicken mobility are time-consuming and can’t provide real-time 

information. In this study, we, the researchers, used a combination of artificial intelligence methods and 

computer algorithms to track individual chickens. Using these methods, it was possible to detect and track 

individual chickens in two pens. We analyzed the data to see how far and how fast each chicken moved every 

hour and every day. Compared to manual measurements, the combined model provided more accurate 

measurements of the mobility of each chicken and the entire group, even when some chickens were hidden, or 

the detection wasn’t perfect. This study may serve effectively to track indicators critical for broiler production 

performance and welfare. 

Abstract: Mobility is a vital welfare indicator which may influence broilers’ daily activities. Classical broiler 

mobility assessment methods are laborious and cannot provide timely insights into their conditions. Here, we 

proposed a semi-supervised Deep Learning (DL) model, YOLOv5, combined with Deep Sort algorithm 

conjoined with our newly proposed algorithm, Neo-Deep Sort, for individual broiler mobility tracking. 

Initially, 1,650 labeled images from five days were employed to train the YOLOv5 model. Through semi-

supervised learning (SSL), this narrowly trained model was then used for pseudo-labeling 2,160 images, of 

which 2,153 were successfully labeled. Thereafter, the YOLOv5 model was fine-tuned on the newly labeled 

images. Lastly, the trained YOLOv5 and the Neo-Deep Sort algorithm were applied to detect and track 28 

broilers in two pens and categorized them in terms of hourly and daily traveled distances and speeds. SSL 

helped in increasing the YOLOv5 model’s mean Average Precision (mAP), in detecting birds, from 81% to 98%. 

As compared with the manually measured covered distances of broilers, the combined model provided 

individual broiler’s hourly moved distances with a validation accuracy of about 80%. Eventually, individual 

and flock level mobilities were quantified while overcoming the occlusion, false and miss detection issues. 

Keywords: broiler; welfare; mobility; YOLOv5; semi-supervised learning; neo-deepsort 

 

1. Introduction 

The poultry industry growth continues skyrocketing globally, concurrent to the world 

population surge and the resultant overwhelming demands for ample, nutritious, and affordable 

protein sources. Meanwhile, this industry is struggling to create an ecosystem that would ensure 

sustainability and growth by reducing poultry production losses due to health and welfare issues, 

create feasible livestock environments through precision technologies, and alleviate labor shortages 

in giant poultry markets such as the USA [1]. 

Welfare plays a commendable role in rendering qualitatively healthy and quantitatively 

superior poultry productions [2]. Fundamentally, it is a multifaceted phenomenon which 

demonstrates chickens’ physical conditions, living habitat feasibility, and mental situations. Birds 
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require spacious environments to move with ease, access freely feed and water sources, and socialize, 

while inhibiting infections, lameness, and stress throughout the rearing period. In this context, 

mobility tremendously affects individual birds’ welfare level [3]. Impaired or zero locomotion in 

birds may indicate issues such as insufficient nutrient consumption needed for growth, possible 

existing pain or stress, lameness, housing constraints, or even mortality. Hence, impaired locomotion 

has been highly identified in about 15-28% of birds in poultry farms [4]. Hence, mobility or 

locomotion studies play an important role in shedding light on the conditions which are effective 

factors for determining individual and flock level welfare in birds. 

The traditional Gait Scoring (GS) and Kinematics (GK) methods have been widely applied to 

assess locomotion status in individual chickens [5]. While the former method needs to be carried out 

by an expert tasked to observe and determine gait level one chicken at a time, the latter methods 

utilize statistical and algorithmic approaches to extract locomotion features, like walking ability, 

sitting, and standing postures, and correlate with the predefined GS levels. As in the works of [6–8] 

such features of individual birds are studied and correlated with their predetermined GS levels. Their 

results are influential in determining major lameness and locomotion problems in individual broilers, 

though generally due to the welfare management urgencies, it is more effective to provide timely, 

conclusive, subjective, and economical insights into the overall activities of individual and flock day 

in and day out. 

On the other hand, several alternative Artificial Intelligence (AI) and Deep Learning (DL) 

methods have been proposed to tackle the locomotion problem and provide further information on 

other activities of chickens. The authors in [9–11] have developed very effective pose estimation and 

speed-based lameness and behavior detection methodologies using DL models. They have achieved 

high accuracies in correlating lameness GS levels and behavior classifications with broilers skeletal 

positions and visual analysis, but we still need highly generalizable and practical methods in labs 

and commercial poultry farms; for instance, cameras used here capture lateral images of flocks which 

greatly reduces the analyzability of individual chickens. [12,13] have applied a Convolutional Neural 

Network (CNN) based DL model to detect individual chickens in a shallow setup; consequently, their 

movements were calculated manually matching consecutive frames. In the work of [14], a CNN based 

YOLOv5 model along with Deep Sort algorithm were applied to track individual birds’ trajectories 

and provide periodical movements. Although the study provided flock level movement orientations, 

a detailed approach is more helpful in solving the occlusion problem and the consequent individual 

bird movement and identification issues. These studies are hardly generalizable to broiler farms 

where constant occlusions happen and continuously tracking individual bird trajectories and flock 

level commotions are thoroughly complicated. 

Generally, the inadequacies in the quantity of data for developing DL models and the persistence 

of the occlusion related identification problems greatly inhibit clear calculations of the individual 

birds’ trajectories. On the other hand, to achieve economically beneficial and effective applications, 

one needs to consider the processing time, human resource requirement and the inherent objectivity 

of the results. Henceforth, we aimed to tackle the mobility estimation of broilers while handling the 

occlusion instances, developing a more generalizable and robust model for large poultry farms while 

utilizing large datasets for DL model development. Specifically, the objectives of this study were to 

utilize SSL for bringing more data into DL model development, to add a new algorithm on top of the 

Deep Sort algorithm for solving the trajectory estimation and activity levels of individual broilers and 

to estimate flock level mobility. 

2. Materials and Methods 

The experiment was carried out in the Animal Science Department labs located in the Johnson 

Animal Research and Teaching Unit (JARTU), the University of Tennessee Knoxville, USA. It 

consisted of 28 chickens (Cobb 700, with a 1:1 male-female ratio) which were reared for a period of 

54 days between October 18- December 10, 2021. Day-old chicks were divided into two pens with 12 

and 16 birds, respectively. We used birds at two growth rates, slow growing (<50g/day) and standard 

(>65g/day). Both groups of birds were reared under typical stocking densities, i.e., 24 kg/m2 for slow-

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2023                   doi:10.20944/preprints202307.1950.v1

https://doi.org/10.20944/preprints202307.1950.v1


 3 

 

growing and 32 kg/m2 for standard which translated into 12 birds/pen for slow-growing and 16 

birds/pen for standard birds. 

Each pen had a 110 cm × 150 cm pen with a standard camera (Amcrest UltraHD 5MP Outdoor 

POE Camera 2592 × 1944p) mounted at a 3m height overlooking the pen, as depicted in Figure 1. The 

cameras recorded broiler movements continuously for 15 min per hour for 24 h. The 15-min period 

was deemed statistically significant to represent the total mobility level of birds in an hour [15]. 

Additionally, it helped in effectively using computer storage while acquiring ample data for DL 

model development and mobility analysis. This setup collected data for 54 days continuously, 

encompassing the total life span of broilers before they were being moved to slaughterhouses at 

around 3kg weights. The video recordings were stored in standard hard drives for future analysis. 

 

Figure 1. Pen dimensions, broilers, feeders, and camera positions. 

2.1. Semi-Supervised Learning 

With time and human resource constraints, Semi-Supervised Learning (SSL) is an influential 

method in tackling big datasets for DL model development. It lies between the Supervised and 

Unsupervised learning counterparts, benefiting from their respective strengths. The SSL utilizes the 

guided learning procedure, i.e., learning from labelled datasets, of the former method and the 

unguided methodology, i.e., predicting and learning simultaneously from unlabeled datasets, of the 

latter one [16,17]. 

In this study, firstly, to develop the initial YOLOv5 model, we employed a dataset with 1,650 

labelled images extracted from the recordings of 5 random days. The video recordings when the 

broilers were 7, 17, 26, 36, and 41 days of age, have been used to build this dataset. These dates were 

selected highly dispersed throughout the experimental period to utilize recordings that provided 

unique and less correlated information of broilers in their different rearing phases. Consequently, 

with a ratio of 1-frame per minute, images were extracted from them; this ratio was chosen so that 

we get images temporally further away from one another to reflect different possible positions of the 

broilers in the pens. 

This dataset helped in providing a CNN model with a descent accuracy level, between 50%-80%; 

later, it was applied on the next batch of 2,160 unlabeled images extracted from the recordings 

corresponding to broilers being 4, 18, 30, 44, and 47 days of age. Eventually, the new successfully 

predicted images were fetched to the partially developed YOLOv5 model and made it learn further 
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and increase its accuracy. Henceforth, we expected that it would help in creating a more robust and 

highly accurate model with minimal time and labor mobilization. 

2.2. YOLOv5 DL Model 

The You-Only-Look-Once version 5, (YOLOv5), is a vastly applied object detection DL model 

for computer vision. It is one of the most advanced versions of the YOLO family, surpassing older 

YOLO versions in terms of object detection precision. The YOLO models are primarily designed to 

perform object localization and classification in a single-stage regression process, thus outperforming 

counterpart CNN based models, such as Faster Region based or Mask CNN, in terms of inference 

speed and memory efficiency, as well as providing comparable precision levels. Therefore, it is 

deemed one of the most effective models for real time applications [18]. The novelty of the YOLOv5 

model lies in its architecture; it is comprised of Backbone, Neck, and Head sections. The Backbone 

section focuses on distinguishing the receptive or feature fields in an image and tries to reduce the 

number of model parameters to achieve agility and lower memory requirement [19]. Meanwhile, the 

Neck section classifies important image features which improves localization success rate. The Head 

section combines low- and high-level features to increase precision rates and provides the final losses 

of the model [20]. 

We used three YOLOv5 model performance metrics, namely, mean Average Precision (mAP), 

Precision, and Regression Coefficient of Determination (R2), as depicted in the formulas 1-3, 

respectively [21]. The mAP metric demonstrates the effectivity of the DL model by taking the mean 

of Average Precision for each class under scrutiny. In this study, however, there was only one class, 

i.e., broiler, so class number (Q) is equal to 1. Meanwhile, the Precision metric is a measure of object 

detection and classification by the model; True Positive is the successful detection of an object and 

False Positive shows misleading detections by the model. On the other hand, the R2 value shows how 

efficiently the model predicts, (y ̂_i), instances of actual data (y_i) [20]. 𝐦𝐀𝐏 = ∑ 𝐀𝐏(𝐪) 𝐐ൗ𝐐𝐪ୀ𝟏    (1)

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧 = 𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞𝐓𝐫𝐮𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞ା𝐅𝐚𝐥𝐬𝐞 𝐏𝐨𝐬𝐢𝐭𝐢𝐯𝐞  (2)

𝐑𝟐 = 𝟏 − ∑(𝐲𝐢ି𝐲ො𝐢)∑(𝐲𝐢ି𝐲ො)   (3)

2.3. Deep Sort Algorithm 

Deep Sort (Simple Online and Realtime) algorithm has been widely applied for continuous 

tracking of detected objects. It is a robust algorithm that is convenient for real-time applications 

thanks to its fast run time speed of 20-30 frames per second (FPS) [22]. It is comprised of Hungarian 

algorithm and Kalman filter and the utilization of bounding box, confidence, and deep features of 

frames detected by the CNN model. The Hungarian algorithm and the Kalman filter are applied for 

position and velocity parameters tracking and to predict and update their future status accordingly. 

The integration of deep features extracted from the detected frames increases the likelihood of 

tracking objects effectively even when they are located very near or are occluded [23,24]. As a result 

of consecutive frame association, motion prediction and deep features, the tracking algorithm can 

attach identification (ID) numbers to each detected object and track them if it can differentiate them 

effectively. One problem arises during dense occlusion instances where this algorithm would not be 

able to associate objects in newer frames. Hence, it counts them as new objects and assigns new IDs. 

Here, we developed and applied a new algorithm integrated with the Deep Sort algorithm (Neo-

Deep Sort) that resolved or mitigated this problem. 

2.4. Neo-Deep Sort Algorithm 

The problem of occlusion or lost detection instances poses a major hinderance for calculating 

overall individual broiler mobilities. The YOLOv5-Deep Sort Algorithm would resolve this issue for 
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the most part. Although, as the broiler mobility and stocking density increase, it becomes a 

monumental task to overcome this issue. Hence, here we tested the following algorithm to correlate 

new and old IDs assigned on detected objects by the Deep Sort algorithm. Essentially, the algorithm 

would detect when a previously detected ID is lost and consequently it tries to identify when 

one/more new IDs appear in the Deep Sort algorithm results. It then processes several steps to 

correlate the new ID with the lost ID or delete those instances which are falsely detected; the 

algorithm flowchart is shown in Figure 2, and it was implemented using Python. The algorithm 

utilized the position of these lost and new objects to correlate them. If they were located at a distance 

smaller than threshold distance, then the two IDs would be considered the same. This limit would be 

selected based on trial-and-error process. We validated this approach with manual ID correlation 

and/or deletion and the Neo-Deep Sort results. 

 

Figure 2. Neo-deep sort algorithm flowchart. 

2.5. Final Model 

The final model consists of the YOLOv5 model for object detection, Deep Sort tracking 

algorithm, and the new algorithm to correlate and/or delete ID instances for solving the occlusion 

problem. As we got the results after these 3 steps, then the flock level and individual broiler’s 

displacements and their respective speeds were extracted and hence categorized accordingly. 

The results of the final model consisted of individual broiler’s position in consecutive frames of 

a video. The model detected and tracked frames at an interval of about 1/100 s. Hence, even minuscule 

positional displacements of broilers were recorded. This can be an advantage of DL models as well 

as rendering challenging calculation burdens. Afterwards, the coordinates of all the detected chickens 

in each frame were provided by the model in terms of maximum (x,y) values with the corresponding 

frame width and heights. These values were used to assign a centroid coordinate (xc,yc) for each 

detected frame by the formula (4). The centroid values for consecutive frames were used to get a 

displacement value by the respective broiler. Eventually, the incremental displacement values would 

be added to get total displacements or moved distance of a broiler as well as the flock mobility levels. 

Broiler mobility determination was not a straightforward summation of displacements. We 

anticipated that small perturbations in body movements would result in the model reading the 

frames as a potential displacement. Therefore, we would try to validate the model’s results with 

respect to baseline manual measurements as well. This might lead us to some degree of calibration 

of the model that would eradicate the misleading results. (𝐱𝐜, 𝐲𝐜) = ቀ𝐱 + 𝐱𝐰𝐢𝐝𝐭𝐡 𝟐ൗ  , 𝐲 + 𝐲𝐡𝐞𝐢𝐠𝐡𝐭 𝟐ൗ ቁ   (4)

3. Results and Discussion 

3.1. Broiler Pens and Data Collection 

The broilers mobility was recorded for 15 min per hour daily for 54 days, rendering a total of 

1268 recordings. This data was utilized for training and development of the YOLOv5 model through 

the SSL approach. Eventually, broiler mobility analysis was carried out with the proposed YOLOv5 

- Neo-DeepSort model. 
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3.2. Semi-Supervised YOLOv5 Training 

3.2.1. Primary YOLOv5 Model Training 

The initial training of the model with the manually labelled images resulted in the validation 

mAP, Precision, and R2 levels shown in Figure 3. The graphs demonstrate a considerable increase in 

the success rates of the three metrics, though mAP, with an 81% success rate, may have more room 

for improvement. In other words, the Precision and R2 values might be high since the model predicts 

only one class of object, i.e., chicken, while the mAP may require more training data to achieve a 

success rate above 90% with higher confidence levels. Overall, the primary trained YOLOv5 model 

could be considered effective enough to be employed on the unlabeled dataset to achieve one of our 

objectives. 

 

Figure 3. Training results of the primary YOLOv5 model. 

3.2.2. Labelling Images with the Primary YOLOv5 Model 

The primary trained YOLOv5 model was used to predict labels for these images, which 

successfully predicted broilers in 2153 of them. A sample of detected images and the corresponding 

labels are depicted in Figure 4. It can be deduced that, while the SSL does provide highly reliable 

results by pseudo labeling images, it introduces some level of error to the model as well. But it is safe 

to say that the advantage of this method far outweighs its misleading results. Additionally, manual 

labeling of the first dataset took days to complete, while the pseudo labeling of the images took less 

than an hour to complete. The SSL method was truly effective to provide ample labeled training data 

to further enhance the object detection success rate of the DL model. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2023                   doi:10.20944/preprints202307.1950.v1

https://doi.org/10.20944/preprints202307.1950.v1


 7 

 

 

 

(a) (b) 

Figure 4. (a) a manually labelled image (b) an image labelled by the YOLOv5 model. 

3.2.3. Final YOLOv5 Model Training 

Finally, the model-labeled dataset was used to further train the existing trained YOLOv5 model. 

The newly labelled 2153 images were split into 80:20 sets for training and testing purposes, 

respectively. As a result of the second training, the YOLOv5 model’s predictive capabilities did 

enhance, as shown in Figure 5. It can be clearly seen that the mAP level has increased to 98% from 

the previous value of 81%. Hence, it was now ready to be applied along with the Neo-DeepSort 

algorithm to analyze broiler hourly mobility levels. 

 

Figure 5. Second training results of theYOLOv5 model. 
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3.3. Final Model: YOLOv5-Neo-DeepSort Application 

The final model was applied on the video recordings of the broilers from two separate cameras 

overlooking respective Pen#1 (12 broilers) and Pen#2 (16 broilers). As discussed earlier, the data 

under study consisted of recordings of when broilers were 11, 18, 24, 30, 36, 41, and 47 days old. 

Therefore, we were able to see the broiler mobility levels at different ages throughout the rearing 

process. It is worth mentioning that the model was trained by the data from Pen #2 and the resultant 

trained model was applied on one familiar environment, Pen #2, and a completely new environment, 

Pen #1. This would show the ability of the trained model to generalize and perform a completely new 

dataset. 

3.3.1. Broiler Detection Levels 

The final model was able to detect broilers at different stages of their lifetime with reasonably 

high success rates. The general performance of our model is depicted in the distribution and box-plot 

graphs in Figure 6a–c. Overall, the number of broilers successfully detected in a frame shows a little 

skewed normal distribution with varying means of 9 and 14 for Pen #1 and 2, respectively. On 

average, the model was proportionately, 9/12 and 14/16, almost equally successful in detecting the 

number of broilers in both pens. But in general, it performed better in Pen #2 over the course of 7 

weeks. As seen in Figure 6c. boxplots, the model was consistently performing better in detecting 

broilers in Pen #2 as compared to Pen #1. Although, it falters to provide a higher success rate in the 

first batch of data from Pen #2, i.e., when the birds are 11 days old, it rendered better results in the 

consequent datapoints. On the other hand, in Pen#1 where the broiler stocking density is lower and 

the environment is newer to the model, the performance is comparatively less successful but still 

consistent and with reasonably high success rates. 

  
(a) (b) 

 
(c) 
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Figure 6. Broiler detection results by the final model (a) Pen#1 frame success rate distribution (b) 

Pen#2 frame success rate distribution (c) Broiler success rate variation over different age periods. 

3.3.2. Broiler Tracking Performance 

After the broiler detection process, the tracking step, i.e., DeepSort algorithm, tried to extract the 

movement coordinates of the broilers from consequent frames. In some instances, the tracking 

sequence of a particular broiler might be lost for a short time due to occlusions, broilers gliding over 

or mixing closely with each other. After reappearing, the model would start tracking those birds 

again but would deem them as a new bird and hence assign a new ID. Here, the final model’s 

continuous tracking ability of a broiler before losing it, is shown in Figure 7a. On average, the model 

has tracked birds in different pens with varying success rates; it has tracked the birds better in Pen #2 

as compared to the results in Pen #1. In general, the model has tracked the broilers increasingly better 

as their ages grew. In other words, as broiler’s weight and volume increased, it was relatively easier 

for the model to continuously track them. On average, the broilers were tracked at least 3 min (20% 

of the 15 min) into the monitoring period. This may provide enough information on the speed, 

displacement and hence mobility levels of a particular broiler even if we do not try to associate 

different IDs of a particular broiler. 

 
(a) 
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(b) 

 
(c) 

Figure 7. (a) Average broiler tracking level per hour (b) Daily average displacement levels (c) Average 

weight change in broilers as they grew. 

3.3.3. Broiler Flock Mobility Level 

The final model was utilized to track birds using the displacements between consecutive frames, 

from video recordings, separated by 1 s. This period was selected to decrease computation complexity 

by ignoring broiler perturbations that might have happened in less than a second. Consequently, the 
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broilers total mobility, including moved distances and speed, were calculated. On the other hand, 

our proposed algorithm was used to associate different broiler IDs, as discussed in the previous 

sections. Henceforth, we were able to categorize broilers mobility comparatively efficiently in each 

hour of day. This crucial result paved the way to have continuous insights enabling timely and 

effective interventions on birds with low or no mobility. 

3.3.3.1. Total Displacement of Broilers at Flock Level 

The average daily covered distance by all the broilers and the corresponding average broiler 

weights in each pen are demonstrated in Figure 7b,c. As the broilers grew, their weights increased 

constantly until the saturation point at the end of the second month. But the total displacement level 

had a different trend in both pens. The average daily displacements are highest when broilers are of 

age 18 d. Comparatively, Pen #2 has had a higher displacement level as compared to Pen #1. It can be 

safely pointed out that higher stocking densities, such as in Pen #2, do cause higher levels of mobility 

as going from a point to another may require more walking and cause disturbance to the surrounding 

broilers. 

3.3.3.2. Flock Speed Levels 

The average daily broiler speed levels show a similar distribution as that of displacements 

explained in Section 3.3.3.1. As indicated in Figure 8a., broilers in both pens have shown very similar 

speed levels although the mean speed in Pen #2 (with 16 broilers) is higher than the Pen #1 (with 12 

broilers). The lowest average speed happened when broilers were of 24 to 25 days of age in both pens. 

Meanwhile, the highest broiler speeds were recorded when the broilers were very young, around the 

age of 18 d. In both pens, the speed levels have increased steadily upwards from the age of 25 d to 

the age of 45 d. On the other hand, the average speed changes as compared to the increase in the 

weights of the birds demonstrate a similar trend. The average speed in both pens decreases to a 

minimum with birds having an average weight of 1200 g–1400 g. As the weights continue to increase, 

so does the speed of the birds as they reach a 3000 g weight, the Pen #1 birds seemed to move with 

lesser speeds while the other pen’s birds continued moving faster. 

 
(a) 
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(b) 

Figure 8. (a) Average speed change vs. broiler age (b) Average speed change vs. weigh. 

3.3.3.3. New Algorithm Application 

The proposed algorithm was applied to associate different IDs that were assigned to the same 

broiler during the tracking. Figure 9a, shows a sample hourly displacement tracking of the birds on 

a specific day. For example, at 6:00AM, as per preliminary results, 

 
(a) 
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(b) 

Figure 9. (a) Broilers’ ID association process and the respective changes in displacement and % 

appearance (b) Individual broilers with their hourly mobility levels. 

most of the broilers have moved moderately but bird #12, 14, and 16 have shown no or very low 

mobility. But after the algorithm was applied, it was able to associate different broiler instances to 

give a final picture of the mobility of birds. In this hour in Figure 9a, the ID#6, 9, 10, 12, 14, and 16 

were associated with ID#126, 118, 108, 87, 115, and 146, respectively. The DeepSort tracking algorithm 

had tracked the broilers with the former IDs and had lost their track due to occlusion instances. After 

resuming the tracking when the respective birds had reappeared, the new IDs, in the former list, were 

attributed to these broilers. Hence, with the proposed algorithm we associated these lost instances. 

As a result, the final mobility level of the broilers is calculated by adding the individual displacements 

of the associated IDs. As seen in Figure 9b, the above-mentioned birds’ final displacement levels have 

changed after this process. For example, bird # 6 had displacement of about 10cm, which increased 

to about 20cm after ID association. As in the case of bird # 14, even after the ID association, the 

resultant mobility level and tracking appearance percentage still falls below 100%. Hence, we can 

conclude that even after the ID association process, we might not get a very high percentage of some 

broiler’s appearances. But even a 50% appearance level can give us a statistically sound indication on 

how much a broiler is mobile. Additionally, we can further investigate the sequential videos of that 

day and get a bigger picture of that broiler. 

5. Conclusions 

Broilers’ daily mobility levels significantly impact their health conditions and lower welfare is 

detrimental in rendering high quality meat to the market. In this study, we have utilized semi-

supervised YOLOv5 DL model alongside DeepSort algorithm for object detection and tracking, 

respectively. Additionally, we proposed a new algorithm that tackled DeepSort tracking losses due 

to bird occlusion instances. A total of 7 days’ hourly videos, corresponding to 7 consecutive weeks, 

were studied. The SSL method paved the way to train the YOLOv5 model with considerably less 

human and time resources. It helped in increasing the YOLOv5 detection accuracy from 81% to 98%. 

The final YOLOv5-DeepSort model was influential in tracking broilers continuously at least around 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 28 July 2023                   doi:10.20944/preprints202307.1950.v1

https://doi.org/10.20944/preprints202307.1950.v1


 14 

 

20% of the time, but it had limitations in doing so during occlusion periods. Our proposed algorithm 

lessened this problem to some extent but was incapable of fully solving the tracking lost instances 

problem. Henceforth, in general, individual broiler and flock level displacements and speeds were 

computed throughout their growth period. This helped in understanding their mobility trends, 

categorize accordingly. This vision-based study of mobility indicators could be further developed by 

incorporating more effective algorithms to solve the lost information problem due to occlusions. 
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