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Abstract: To achieve an acceptable level of security on the web, Completely Automatic Public Turing 
test to tell Computer and Human Apart (CAPTCHA) was introduced as a tool to prevent bots from 
doing destructive actions such as downloading or signing up. Mobile devices have small screens, 
and therefore, using the common CAPTCHA methods (e.g. text CAPTCHAs) in these devices raises 
usability issues. To introduce a reliable, secure, and usable CAPTCHA that is suitable for mobile 
devices, this paper introduces a hand gesture recognition CAPTCHA based on applying Genetic 
Algorithm (GA) principles on Multi-Layer Perceptron (MLP). The proposed method improves the 
performance of MLP-based hand gesture recognition. It has been trained and evaluated on 2201 
videos of IPN Hand dataset, and MSE and RMSE benchmarks report the index values of 0.0018 and 
0.0424, respectively. Comparison with the related works shows a minimum of 1.79% fewer errors, 
and experiments produced a sensitivity of 93.42% and accuracy of 92.27% – 10.25% and 6.65% 
improvement compared to the MLP implementation. 

Keywords: CAPTCHA; authentication; hand gesture recognition; genetic algorithm; multilayer 
perceptron; MLP 

 

1. Introduction 

The Internet has turned into an essential requirement of any modern society, and almost 
everybody around the world uses it for daily life activities e.g. communication, shopping, research, 
etc. The growing number of Internet applications, the large volume of the exchanged information, 
and the diversity of the services attract the attention of people wishing to gain unauthorized access 
to these resources, e.g. hackers, attackers, and spammers. These attacks highlight the critical role of 
information security technologies to protect resources and limit access to only authorized users. To 
this end, various preventive and protective security mechanisms, policies, and technologies are 
designed [1,2].  

Approximately a decade ago, Completely Automatic Public Turing test to tell Computers and 
Humans Apart (CAPTCHA) was introduced by Ahn et al. [3] as a challenge-response authentication 
measure. The challenge, as illustrated in Figure 1, is an example of Human Interaction Proofs (HIPs) 
to differentiate between computer programs and human users. The CAPTCHA methods are often 
designed based on open and hard Artificial Intelligence (AI) problems that are easily solvable for 
human users [4]. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.
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Figure 1. The structure of challenge response authentication mechanism. 

As attempts for unauthorized access increase every day, the use of CAPTCHA is needed to 
prevent the bots disrupt the services such as subscription, registration, and account/password 
recovery, running attacks like spamming blogs, search engine attacks, dictionary attacks, email 
worms, and block scrapers. Online polling, survey systems, ticket bookings, and e-commerce 
platforms are the main targets of the bots [5]. 

The critical usability issues of initial CAPTCHA methods pushed the cybersecurity researchers 
to evolve the technology towards alternative solutions that alleviate the intrinsic inconvenience with 
a better user experience, more interesting designs (i.e. gamification), and support disabled users. The 
emergence of powerful mobile devices motivated the researchers to design gesture-based 
CAPTCHAs that are a combination of cognitive, psychomotor, and physical activities within a single 
task. This class is robust, user-friendly, and suitable for people with disabilities such as hearing and 
in some cases vision impairment. A gesture-based CAPTCHA works based on the principles of image 
processing to detect hand motions. It analyzes low-level features such as color and edge to deliver 
human-level capabilities in analysis, classification, and content recognition.  

Recently, outstanding advances have been made in hand gesture recognition. The image 
processing techniques perform segmentation and feature extraction on the input images and detect 
the hand pose, fingertips, and hand palm in real time. During the past twenty years, the researchers 
used color or wired gloves equipped with sensors to detect hand pose. However, the skin-color-based 
analysis does not require a paper cover or sensors in order to detect fingers and works fast, accurately, 
and in real time.  

To detect the hand gesture, the algorithm should first transform the video frames into two-
dimensions images, and then apply segmentation and skin filter functions. In this area, the 
researchers have presented various methods that utilize machine learning techniques such as Support 
Vector Machines (SVM) [6], Artificial Neural Networks (ANN) [7], fuzzy systems [8], Deep Learning 
(DL) [9], and metaheuristic methods [10]. 

2. Background and Related Works 

The increasing popularity of the web has made it an attractive ground for hackers and 
spammers, especially where there are financial transactions or user information [1]. CAPTCHAs are 
used to prevent bots from accessing the resources designed for human use e.g. login/sign-up 
procedures, online forms, and even user authentication [11]. The general applications of CAPTCHAs 
include preventing comment spamming, accessing email addresses in plaintext format, dictionary 
attacks, and protecting website registration, online polls, e-commerce, and social network interactions 
[1]. 

Based on the background technologies, CAPTCHAs can be broadly classified into three classes: 
visual, non-visual, and miscellaneous [1]. Each class then may divide into several sub-classes, as 
illustrated in Figure 2.  
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Figure 2. CAPTCHA classification. 

The first class is visual CAPTCHA which challenges the user on its ability to recognize the 
content. Despite the usability issues for visually impaired people, this class is easy to implement and 
straightforward.  

Text-based or Optic Character Recognition (OCR) based CAPTCHA is the first sub-class of visual 
CAPTCHAs. While the task is easy for a human, it challenges the automatic character recognition 
programs by distorting the combination of numbers and alphabets. Division, deformation, rotation, 
color variation, size variation, and distortion are some examples of techniques used for making the 
text unrecognizable for the machine [12]. BaffleText [12], Pessimal Print [13], GIMPY and Ez—Gimpy 
[14], and ScatterType [15] are some of the proposed methods in this area. Google reCHAPTCHA v2 
[16], Microsoft Office, and Yahoo! Mail are famous examples of industry-designed CAPTCHAs [17]. 
Bursztein et al. [18] designed a model to measure the security of text-based CAPTCHAs. They 
identified several areas of improvement and designed a generic solution.  

Due to the complexity of object recognition tasks, the second sub-class of visual CAPTCHAs is 
designed on the principles of semantic gap [19] – people can understand more from a picture than a 
computer. Among the various designed image-based CAPTCHAs, ESP-Pix [3], Imagination [20], 
Bongo [3], ARTiFACIAL [21], and Asirra [22] are the more advanced ones. The image-based 
CAPTCHAs have two variations: 2D and 3D [23]. In fact, the general design of the methods in this 
sub-class is 2D; however, some methods utilize 3D images (of characters) as a human is better in 
recognition of 3D images. Another type of image-based CAPTCHA is a puzzle game designed by 
Gao et al. [24]. The authors used variants in color, orientation, and size, and they could successfully 
enhance the security. They prove that puzzle-based CAPTCHAs need less time than text-based ones. 
An extended version of [24] that uses animation effects was later developed in [25]. 

Moving object CAPTCHA is a relatively new trend that shows a video and asks the users to type 
what they have perceived or seen [26]. Despite being secure, this method is very complicated and 
expensive compared to the other solutions.  

The last sub-class of visual CAPTCHAs, interactive CAPTCHA, tries to increase the user 
interactions to enhance security. This method requires more mouse click, drag, and similar activities. 
Some variations request the user to type the perceived or identified response. Except the users that 
have some sorts of disabilities, solving the challenges are easy for human but hard for computers. 
The methods designed by Winter-Hjelm et al. [27] and Shirali-Shahreza et al. [28] are two interactive 
CAPTCHA examples. 

The second CAPTCHA class contains non-visual methods in which the user is assessed based 
on audio and semantic tests. The audio-based methods are subject to speech recognition attacks while 
the semantic-based methods are very secure and much harder to be cracked by computers. Moreover, 
semantic-based methods are relatively easy for users, even the ones with hearing or visual 
impairment. However, the semantic methods might be very challenging for users with cognitive 
deficiencies [1]. 
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The first audio-based CAPTCHA method was introduced by Chan [29], and later other 
researchers such as Holman et al. [30] and Schlaikjer [31] proposed more enhanced methods. A 
relatively advanced approach in this area is to ask the user to repeat the played sentence. The 
recorded response is then analyzed by a computer to check if the recorded speech is made by a human 
or a speech synthesis system [28]. Limitations of this method include requiring equipment such as a 
microphone and speaker and being difficult for people with hearing and speech disabilities. 

Semantic CAPTCHAs are relatively a secure CAPTCHA sub-class as computers are far behind 
the capabilities of humans in answering semantic questions. However, still they are vulnerable to 
attacks that use computational knowledge engines, i.e. search engines or Wolfram Alpha. The 
implementation cost of semantic methods is very low as they are normally presented in a plaintext 
format [1]. The works by Lupkowski et al. [32] and Yamamoto et al. [33] are examples of a semantic 
CAPTCHA. 

The third CAPTCHA class utilizes diverse technologies, sometimes in conjunction with visual 
or audio methods, to present techniques with novel ideas and extended features. Google's 
reCAPTCHA is a free service [16] for safeguarding websites from spam or unauthorized access. The 
method works based on adaptive challenges and an advanced risk analysis system to prevent bots 
access web resources. In reCAPTCHA, the user first needs to click on a checkbox. If it fails, the user 
then needs to select specific images from the set of given images. Google, in 2018, released the third 
version i.e. reCAPTCHA v3 or NoCAPTCHA [34]. This version monitors the user's activities and 
reports the probability of being human or robot without needing the user to click the “I'm not a robot” 
checkbox. However, NoCAPTCHA is vulnerable to some technical issues such as erasing cookies, 
blocking JavaScript, and using incognito web browsing. 

Yadava et al. [35] designed a method that displays the CAPTCHA for a fixed time and refreshes 
it until the user enters the correct answer. The refreshment only changes the CAPTCHA, not the page, 
and the defined time makes cracking it harder for the bots. 

Wang et al. [36] put forward a graphical password scheme based on CAPTCHAs. The authors 
claimed it can strengthen security by enhancing the capability to resist brute force attacks, withstand 
spyware, and reduce the size of password space. 

Solved Media presented an advertisement CAPTCHA method in which the user should enter a 
response to the shown advertisement to pass the challenge. This idea can be extended to different 
areas, e.g. education or culture [1]. 

A recent trend is to design personalized CAPTCHAs that are specific to the users based on their 
conditions and characteristics. In this approach, an important aspect is identifying the cognitive 
capabilities of the user that must be integrated into the process of designing the CAPTCHA [37]. 
Another aspect is personalizing the content by considering factors such as geographical location to 
prevent third-party attacks. As an example, Wei et al. [38] developed a geographic scene image 
CAPTCHA that combines Google Map information and an image-based CAPTCHA to challenge the 
user with information that is privately known. 

Solving a CAPTCHA on a small screen of a smartphone might be a hassle for the users. Jiang et 
al. [39] found that wrong touches on the screen of a mobile phone decrease the CAPTCHA 
performance. Analysis of the user's finger movements in the back end of the application can help in 
differentiating between a bot and a human [40]. For example, by analyzing the sub-image dragging 
pattern, their method can detect whether the action is “BOTish” or “HUMANish”. Some similar 
approaches like [41,42] challenge the user for finding segmentation points in cursive words. 

In the area of Hand Gesture Recognition (HGR), the early solutions were using a data glove, 
hand belt, and camera. Luzhnica et al. [43] used a hand belt equipped with a gyroscope, 
accelerometer, and Bluetooth for HGR. Hung et al. [44] acquired the input required data from hand 
gloves. Another research has used Euclidean distance for analyzing twenty-five different hand 
gestures and employed an SVM for classification and controlling tasks [45]. In another effort [46], the 
researchers converted the Red, Green, and Blue (RGB) captured images to grayscale, applied a 
Gaussian filter for noise reduction, and fed the results to a classifier to detect the hand gesture.  
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Chaudhary et al. [47] used a normal Windows-based webcam for recording user gestures. Their 
proposed method extracts the Region of Interest (ROI) from frames and applies a Hue, Saturation, 
Value (HSV)-based skin filter on RGB images in particular illumination conditions. To help the 
fingertip detection process, the method analyzes hand direction according to pixel density in the 
image. It also detects the palm hand based on the number of pixels located in a 30×30-pixel mask on 
the cropped ROI image. The method has been implemented by a supervised neural network based 
on Levenberg–Marquardt algorithm and uses eight thousand samples for all fingers. The architecture 
of the method has five input layers for five input finger poses, and five output layers for the bent 
angle of the fingers. Marium et al. [48] extracted the hand gesture, palms, fingers, and fingertips from 
webcam videos using the functions and connectors in OpenCV.  

Simion et al. [49] researched finger pose detection for mouse control. Their method, in the first 
step, detects the fingertips (except the thumb) and palm hand. Its second step is to calculate the 
distances between the pointing and middle fingers to the centre of the palm, and the distance between 
the tips of the pointing and middle fingers. The third step computes the angles between the two 
fingers, between the pointing finger and the x-axis, and between the middle finger and the x-axis. The 
researchers used six hand poses for mouse movements including right/left click, double click, and 
right/left movement. 

The main contribution of this paper is the development of a novel hand-gesture-controlled 
CAPTCHA for mobile devices that is easy to use even for people with visual challenges. Choosing a 
set of easy-to-imitate hand gestures enhances the usability of the method and minimizes the number 
of reattempts. The originality of the method is extended by detecting the bending angle of human 
fingers through applying Genetic Algorithm (GA) principles on a Multi-Layer Perceptron (MLP). The 
steps include detecting the palm center and fingertips in real time, defining the distance between the 
palm center and each fingertip, and calculating the bending degree of fingers based on the detected 
distances. It then detects the bending degree of human fingers and accordingly the hand gesture. 

In what followed next, in section 3, we first review the structure of the proposed method 
including the processes of hand detection based on skin color, detecting hand pose, palm, fingertips 
and fingers' bend angle. Section 4 covers implementation and experiments. Analysis, comparison, 
and discussion are located in section 5, and the work is concluded in section 6. 

3. The Proposed Method 

Gestural CAPTCHA, hereafter called GAPTCHA, shows a set of simple hand poses to the user 
and then requests the user to imitate these gestures in front of the camera. As illustrated in Figure 3, 
in this method, the essence of recognizing the gestures is calculating the fingers' bent angles. The 
method preprocesses and applies a skin filter on the input 2D image. The employed segmentation 
method extracts the hand pose from an image, even if the background contains skin-colored objects. 
It focuses only on the extracted areas of interest in the image for faster and more accurate analysis. 
The method first detects the fingertips and palm in the segmented image and then calculates the 
distance between the center of the palm and each fingertip. It calculates the bending angle of fingers 
based on the distances and detects fingers, palm, and angles with no errors. The proposed method 
can work with a normal quality webcam for capturing the user's hand movements, and no marked 
gloves, wearable sensors, or even a long sleeve is required. It also has no limitation for the camera 
angle. 
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Figure 3. The GAPTCHA process. 

The most famous segmentation method in HGR systems is skin color, as it is invariant to the 
changes like size, rotation, and movements. The captured webcam images are in an RGB color system 
and the involved parameters in this format are highly correlated and sensitive to illumination. 
However, the HSV system separates the color and illumination information. Therefore, in skin-color-
based HGR systems, the captured RGB images are first converted to the HSV system and then 
segmented to generate the binary version of the image. Each pixel of a binary image is stored in one 
bit, and due to the skin-colored pixels in the background, these images normally carry some noise. 
As shown in Figure 4, this noise creates unwanted spots in the image. A median filter then removes 
the isolated spots and a dilation operator fills the regions. 

 

Figure 4. An example of producing a binary image: (A) original images, (B) HSV conversion, (C) 
filtered image, (D) smooth image, (E) binary image, and (F) noise-free image [50]. 
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The proposed method supports freedom of angle for the camera and user, and the only 
limitation is to face the palm hand to the camera. The method uses contours to extract the hand image 
from the binary image. A contour is a list of the points that represent a curve in the image and its 
main application is in the analysis and detection of shapes. Here, FindContours in OpenCV is used 
to find the largest contour in the binary image – the hand shape shown in Figure 5 section A. Finding 
the center of the contour helps in finding the center of the palm hand (Figure 5, section B). To this 
end, using the BoundingRect function in OpenCV, a bounding box is applied on the hand shape to 
find the palm hand center. 

 

Figure 5. (A) hand contour, (B) palm hand, (C) ConvexHull polygon, (D) ConvexityDefects, (E) 
fingertips, (F) palm hand and fingertips. 

The ConvexHull algorithm is employed to identify fingertips. It returns a set of polygons in 
which the corners of the largest one represents the fingertips – Figure 5 section C. To automate the 
process, ConvexityDefects function approximates the gaps between the contour and the polygon by 
straight lines. The output of this function is multiple records of four fields: (i) the starting defect point, 
(ii) the ending defect point, (iii) the middle (farthest) defect point that connects starting and ending 
points, and (iv) the approximate distance to the farthest point. A sample output of this step is shown 
in Figure 5 section D. Each record results in two lines: a line from starting point to the middle point, 
and a line from the middle point to the endpoint. However, the function may return more points than 
the number of fingertips. The steps for filtering the detected points and finding the correct location 
of fingertips include (i) calculating the internal angle between two defect areas in a certain period, (ii) 
calculating the angle between the starting point and contour center in a certain period, and (iii) 
measuring the line length to remain below the defined threshold. The green points in section E of 
Figure 5 represent the results of this step. 

Eq. 1, 2, and 3 are utilized to calculate the length of the produced vectors from start (point 𝑝1), 
middle (point 𝑝2), and end (point 𝑝3) points, and Eq. 4 computes the angle. 𝑝1,2, 𝑝1,3, and 𝑝2,3 are 
length of the vectors calculated by convexityDefects function. 𝑝1,2 = √(𝑝1. 𝑥 − 𝑝2. 𝑥 )2 +  (𝑝1. 𝑦 − 𝑝2. 𝑦)2 (1) 𝑝1,3 = √(𝑝1. 𝑥 − 𝑝3. 𝑥 )2 +  (𝑝1. 𝑦 − 𝑝3. 𝑦)2 (2) 𝑝2,3 = √(𝑝2. 𝑥 − 𝑝3. 𝑥 )2 +  (𝑝2. 𝑦 − 𝑝3. 𝑦)2 (3) 
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𝜃 = arccos (𝑝1,22 +  𝑝1,32 +  𝑝2,322 ×  𝑝1,2  ×  𝑝1,3 ) (4) 

Calculating the angle between the first point of defect area and the center of the contour is an 
essential step for removing the non-fingertips areas. The consequent step is to filter the points to the 
ones between -30 to +160 degrees. Eq. 5 returns the degree between the first point of the defect area 
and center of the contour, and Eq. 6 calculates the Euclidean distance – the vector length – between 
first to middle points. The whole process from finding the hand contour until detecting palm hand 
and fingertips is illustrated in Figure 5. In this equation, the word center represents the center of the 
contour i.e. center of the palm hand. 𝜃 =  𝑎𝑟𝑐𝑡𝑎𝑛 (𝑐𝑒𝑛𝑡𝑒𝑟. 𝑦 –  𝑝2. 𝑦, 𝑐𝑒𝑛𝑡𝑒𝑟. 𝑥 –  𝑝2 . 𝑥) (5) 

𝑙𝑒𝑛𝑔𝑡ℎ = √(𝑝2. 𝑥 − 𝑝1. 𝑥)2 +  (𝑝2. 𝑦 − 𝑝1. 𝑦)2 (6) 

As already explained, this research uses a combination of MLP and GA for predicting the bent 
angle of fingers. The used MLP has a flexible structure in which neurons are located in hidden layers 
and each neuron can influence its input and produce the desired output. To this end, a weight applies 
to the input value of each neuron and the result passes into an activation function together with a 
bias value. Reducing classification errors and correct prediction of the pose in an artificial neural 
network depends on selecting optimum weight and bias values. Figure 6 illustrates the detailed 
structure of the proposed method for applying GA principles on MLP to accurately detect the finger's 
bent angle, and accordingly recognize the hand gesture. 
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Figure 6. The overall designed process for hand gesture recognition by applying GA principles on 
MLP. 

In GAPTCHA, the structure of each chromosome is its weight and bias in the neural network. 
This can be shown in the format of [𝑤1,1, … , 𝑤3,4, … , 𝑤1,0, … , 𝑤4,0, … , 𝑏1, 𝑏2] in which 𝑤𝑖,𝑗is weight of 
the ith entry into the jth neurone of the hidden layer, 𝑤𝑗,0is the output, and 𝑏1and 𝑏2 are the threshold 
values of the hidden and output layers, respectively. Upon defining the encoding system and the 
method of converting each answer to a chromosome, the next step is to produce the initial 
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chromosome population. Normally, generating the initial population is a random process, however, 
heuristic algorithms can accelerate and optimize it. GAPTCHA uses a roulette wheel mechanism for 
selecting parents in mutation and crossover processes. In this mechanism, the probability of selecting 
a chromosome depends on how suitable it is for the evaluation function. In other words, the higher 
quality of the chromosome, the higher chance to be selected for producing the next generation, and 
vice versa. Eq. 7 calculates the chance of selecting a chromosome in the roulette wheel. 𝑝 = 𝑓𝑖∑ 𝑓𝑗𝑛𝑗=1  (7) 

In the above equation, the probability (p) of selecting the ith chromosome is the proportion of the 
fitness function (𝑓) value of chromosome i to the sum of fitness function values of all chromosomes. 
Single-point crossover is used to apply crossover in this method. It chooses a random point in the 
chromosomes and swaps the information in the remaining parts. The steps to apply single-point 
crossover are: 
i. Choose a random chromosome value between 0 and 1, 
ii. Go to the next step and mutate if the number is bigger than the mutation threshold (a value 

between 0 and 1), otherwise skip mutation, 

iii. Choose a random number that indicates one of the chromosome genes and makes a numerical 

mutation. 

4. Implementation and Experiments 

This research uses OpenCV functions and C++ for preprocessing, segmentation, and feature 
extraction from video. The functions help to detect the center of the palm hand, fingertips, and bent 
angle of fingers. Matlab is the chosen platform due to having rich programming interface and 
metaheuristic libraries. Applying GA principles to MLP helps the method to enhance predicting 
fingers' bent angles. The followings are the steps taken for implementing the proposed method:  

i. Defining the initial parameters such as population, number of iterations, mutation rate, and 

crossover rate of GA, 

ii. Preprocessing and normalizing part of input data to reduce learning errors and enhance 

performance in hand movement detection, 

iii. Dividing the dataset into training and evaluation parts, 

iv. Producing chromosomes for MLP and applying mutation and crossover on the chromosomes to 

find optimum weight and bias and reduce the error rate, 

v. Evaluating the method according to the metrics in section 4.2. 

4.1. Dataset 

The selected dataset for training and evaluation of the proposed method is “IPN Hand”, 
produced by Benitez et al [51], that consists 5649 RGB videos recorded in the resolution of 640×480 at 
30 fps. The dataset has two parts: 1431 non-gestural and 4218 gestural videos. Since the gestural 
section contains gesture categories that are not easy to imitate, considering the usability requirement 
of GAPTCHA, some video categories removed from the selected dataset.  

After filtering the videos, the resulting subset contains 200 click with one finger, 200 click with 
two fingers, 200 throw up, 201 throw down, 200 throw left, 200 throw right, 200 open twice, 200 
double click with one finger, 200 double click with two fingers, 200 zoom in, and 200 zoom out videos 
– a total of 2201. 

4.2. Evaluation Metrics 

In the proposed method, each hand pose is considered as a class and is defined by a set of 
features. Therefore, this research challenges a multiclass optimization problem. The proposed 
method classifies each given sample in its corresponding class and tries to minimize the average 
learning and classification errors. The Mean Square Error (MSE) and Root Mean Square Error (RMSE) 
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are the chosen goal test measures and can be calculated using Eq. 8 and 9. In these equations, n 
represents the number of the samples, and real and predicted values of an instance, e.g. index i, are 
shown by 𝑜𝑖  and 𝑜𝑖̂, respectively. 𝑀𝑆𝐸 = ∑ (𝑜𝑖̂ − 𝑜𝑖)2𝑛𝑖=1 𝑛  (8) 

𝑅𝑀𝑆𝐸 = √∑ (𝑜𝑖̂ − 𝑜𝑖)2𝑛𝑖=1 𝑛  (9) 

Two other important parameters for evaluating the applicability of the proposed algorithm are 
sensitivity and accuracy. Sensitivity is the proportion of true positive detections to the sum of true 
positives and false negatives (Eq. 10), and accuracy is the ratio of truly detected positives and 
negatives to all detections (Eq. 11). 

𝑅𝑀𝑆𝐸 = √∑ (𝑜𝑖̂ − 𝑜𝑖)2𝑛𝑖=1 𝑛  (10) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (11) 

4.3. Error Analysis by Increasing Population and Iterations 

The experiments were conducted by two populations of 5 and 10. The number of iterations was 
set to 20, and mutation and crossover ratios were defined as 0.15 and 0.5, respectively. A chromosome 
is a two-layer MLP in which each layer has four neurons. MSE prediction errors of both populations 
are reported in Figures 7 and 8. 

 

Figure 7. Prediction error rate with 5 chromosomes in the proposed method. 
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Figure 8. Prediction error rate with 10 chromosomes in the proposed method. 

The reported values in Figures 7 and 8 prove that increasing the number of chromosomes results 
in reducing MSE for hand pose detection. It happens due to the following reasons: 
I. Increasing the number of chromosomes increases the number of neural networks for prediction, 

and results in a more accurate classification, 

II. Increasing population produces more and diverse test ratios in GA, and accordingly increases 

the chance of finding a final and accurate answer, 

III. Increasing chromosomes in GA increases problem search space that normally results in reaching 

optimum answers and reducing error, 

IV. Increasing the population increases the number of elite members and enhances the probability 

of mutation and crossover. This leads to increasing the chance of having a more accurate MLP 

for hand pose prediction. 

In addition to the population, the number of iterations can help in reducing hand gesture 
detection errors. Behavioral analysis of Figures 8 and 9 reveals that MSE and the number of iterations 
have a reverse correlation. In other words, increasing iterations give more chance to the chromosomes 
to choose optimum ratios in the MLP that leads to lower MSE. 

 

Figure 9. Comparing MSE of the proposed method and MLP implementation. 

5. Comparison and Discussion 

To analyze and compare, the proposed GA-based MLP method has been compared with a 
standard MLP implementation. They both have four hidden neurons, a sigmoid activation function, 
a population of 15, 30 iterations, 0.15 mutation, and 0.5 crossover. Also, 75% of the dataset is dedicated 
to training and 25% to testing. Figure 9 demonstrates the MSE difference between the proposed 
method and the standard MLP, and Figure 10 compares them in terms of the RMSE benchmark. 
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Figure 10. Comparing RMSE of the proposed method and MLP implementation. 

The experiments and analysis of MSE and RMSE results demonstrate that the proposed method 
has a higher accuracy compared to MLP, as the index values of the proposed method are 0.0018 and 
0.0424 while for MLP they increase to 0.0043 and 0.0655, respectively. In other words, applying GA 
in the proposed method reduces MSE by 58.13% and RMSE by 35.26%. These lower error rates prove 
that using GA decreases the hand gesture detection errors and boosts the learning process.  

To evaluate sensitivity and accuracy, 50 experiments were conducted with the aforementioned 
configurations. As demonstrated in Figure 11, the sensitivity of the proposed method and MLP are 
93.42% and 83.17%, respectively. In terms of accuracy, the proposed method has a 6.65% higher 
performance – 92.27% compared to 85.62%. These results prove that the proposed combination of GA 
and MLP delivers more reliable results for detecting human hand gestures. 

 

Figure 11. Comparing sensitivity and accuracy of the proposed method and MLP implementationTo 
the best of our knowledge, there is no other video CAPTCHA algorithm based on hand gesture 
detection. Therefore, to compare our work with the related ones, the hand gesture detection section 
of GAPTCHA is compared with the similar algorithms in [52] and [53]. Referring to the RMSE results 
in Table 1, GAPTCHA outperforms the Redmon et al. [52] work by a big distance. Compared to Li et 
al. [53] work, our algorithm produces less 1.79% errors and is more efficient. 

Table 1. RMSE comparison in hand gesture detection. 

Algorithm RMSE 

Redmon et al. (YOLOv3) [52] 0.3894 

Li et al. [53] 0.0603 

GAPTCHA 0.0424 

6. Conclusion 

The expansion the Internet created a wider surface for the malicious automated programs (i.e. 
bots) to run attacks such as Denial of Service (DoS) on the web services. Completely Automated Public 
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Turing test to tell Computers and Humans Apart (CAPTCHA) in an authentication mechanism that 
is able to distinguish human users from malicious computer programs.  

Various types of CAPTCHAs are designed for different applications; for example, helping 
people with disabilities, or using on specific platforms. Using the common types of CAPTCHAs (e.g. 
text-based) may not be a convenient choice for mobile devices due to using them in mobility and 
small size of screen. In this situation, a hand gesture recognition CAPTCHA can facilitate the use of 
the device to pass a human authentication challenge. 

This research proposes a novel hand gesture recognition CAPTCHA that applies genetic 
algorithm principles on MLP to develop a reliable method called Gestural CAPTCHA i.e. GAPTCHA. 
The method shows a set of hand gestures to the user for imitating. GAPTCHA then recognizes the 
user hand gestures utilizing a set of hand pose features based on the distances between fingertips and 
center of the hand palm. Genetic algorithm principles such as concentrating on elite population, 
mutation, and crossover have been used to reduce the detection error rates. The experiments show 
less 58.13% MSE and 35.26% RMSE hand gesture recognition errors compared to the standard MLP 
implementation. It also outdoes the related compared algorithms by at least 1.79%. In terms of 
sensitivity and accuracy, the proposed method reports the values of 93.42% and 92.27%, while for 
MLP these values are 83.17% and 85.62%, respectively.  
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