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Abstract: To describe the hysteresis nonlinearities in smart actuators, numerous models have been
presented in the literature, among which the Preisach operator would be the most effective one due
to its capability in capturing multi-loop or sophisticated hysteresis curves. When such an operator
is coupled with uncertain nonlinear dynamics, especially in noncanonical form, it is a challenging
problem to develop techniques to cancel out the hysteresis effects, and at the same time achieve
asymptotic tracking performance. To resolve this problem, in this paper, we investigate the problem
of iterative inverse-based adaptive control for an uncertain noncanonical nonlinear systems with
unknown input Preiasch hysteresis, and a new adaptive version of the closest match algorithm is
proposed to compensate for the Preisach hysteresis. With our scheme, the stability and convergence
of the closed-loop system can be established. The effectiveness of the proposed control scheme is
illustrated by simulation and experiment results.

Keywords: adaptive control; neural networks; stability analysis; piezoactuators; noncanonical
nonlinear systems

1. Introduction

Hysteresis widely occurs in the smart material-based actuators [1–3], such as electromagnetic
actuators [4] and piezoelectric actuators [5]. Experiments show the system with hysteresis would
perform poor tracking performance when the feedback control without explicitly considering hysteresis
[6]. In order to compensate for the hysteresis nonlinearity in control design, a mathematical operator
that can describe the characteristics of the hysteresis nonlinearity is needed. In the literature, the
commonly used hysteresis models include the Preisach operator [7,8], the Duhem operator [9], the
PrandtI-Ishlinskii (PI) operator [10], etc, among which the Preisach operator would be the most
effective one due to its general and well-established mathematical structure and the ability in capturing
multi-loop hysteresis curves and asymmetric hysteresis curves, where the hysteresis nonlinearity is
modeled by a superposition of infinity weighted elementary relays. Then, the question naturally arises
that how to compensate for the Preisach-type hysteresis nonlinearity.

It is well known that the traditional robust control methods are effective to accommodate the
nonlinearities in the controlled system [11–13]. However, such control approaches cannot compensate
for the hysteresis nonlinearity well and would lead to a significant degradation in the tracking
performance of the system when the effects of hysteresis nonlinearity are considerable. Therefore, it
becomes needed to employ some advanced methods for compensating the hysteresis nonlinearity. ln
this regard, one of the fundamental approaches in effectively addressing hysteresis nonlinearity is
inverse compensation[14–18], which aims to reduce or eliminate the hysteresis effects by constructing
an approximate or right inverse hysteresis model. However, different from some certain hysteresis
models, such as the PI operator (as a special case of the Preisach operator) and the Duhem operator, it
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is challenging to compute the analytical inverse of the Preisach operator. This difficulty arises due to
the implicit involvement of the input signal within the operator [19].

To overcome the above challenge, Tan, Venkataraman, and Krishnaprasad propose the closest
match algorithm [20], which is a classical iterative approximation algorithm for the Preisach inverse.
In such an algorithm, the number of iterations does not exceed the discretization degree of the input,
and the state of the thermostat relay operator (1) changes only once for each solution, which greatly
saves the computation time [20,21]. By requiring the piecewise monotonicity and Lipschitz continuity
of the Preisach operator and letting the density function be nonnegative and constant, the approximate
inverse model based on the closest match algorithm is proposed in [22], for calculating the inverse
of the Prerisach operator iteratively, and the convergence of the algorithm is proved. When the
density function of the Preisach operator is unknown or not available for measurement, the previously
mentioned open-loop inverse control is not available. In this case, the feedback information obtained
from the hysteresis output can be utilized to estimate the density function of the Preisach operator by
developing an iterative algorithm with an adaptive estimator, and ultimately reducing the inversion
error. The above-mentioned iterative adaptive inverse control framework has been established in
[21,23]. For an individual Preisach operator, the compensation scheme has been studied in great
depth. However, these results only consider the hysteresis nonlinearity while neglecting the influence
of the plant. When the Preisach operator couples with some system dynamics (for example, smart
material-based actuators can be modeled as a Preisach operator precedes linear dynamics [24] or when
the hysteretic actuator modeled by Preisach operator drives linear or nonlinear dynamics [21,25]),
it is an unsolved and challenging problem to develop a new adaptive version of the closest match
algorithm for compensating the Preisach hysteresis with complete convergence proof and stability
analysis, especially when the dynamics of system are described as the noncanonical nonlinear system
with parametric uncertainties [26].

The work of this paper is to develop an adaptive inverse control scheme for uncertain noncanonical
nonlinear system with unknown input Preisach hysteresis. In scenarios where the Preisach operator
precedes the dynamics of an uncertain noncanonical nonlinear systems, the hysteresis parameters, the
hysteresis output, and the system parameters are all unknown and also the relative degree structure is
implicit. In this situation, we propose an iterative adaptive inverse algorithm for the Preisach operator
to effectively compensate for the hysteresis nonlinearity, where the adaptive estimator in the iterative
algorithm is updated online. In summary, the work of this study has the following contributions:

1) A Lyapunov-based adaptive control scheme is proposed for uncertain noncanonical nonlinear
systems with Preisach hysteresis inputs, with which all closed-loop signals can be ensured bounded,
and the tracking error is steered into zero.

2) For our scheme, an adaptive version of the closest-matching is newly proposed to solve
the inversion problem of the Preisach operator with unknown density function, and based on the
piecewise-monotonicity and Lipschitz-continuity properties of the adaptive Preisach operator, the
convergence of the iteration algorithm for inverting the Preisach operator is successfully established.

3) Besides theoretical analysis, the obtained results are also verified by simulation and experiment
tests.

The rest of the paper is organized as follows. In Section 2, we introduce the Preisach operator
and formulate the control problem. In Section 3, by utilizing the feedback linearization technique,
we derive a certain condition to define the relative degree of neural-network approximation system
in noncanonical form. In Section 4, we propose an adaptive tracking control scheme containing an
iterative adaptive inverse algorithm for an uncertain neural-network approximation system with
unknown input Preisach hysteresis, which is the main work of this paper. In Section 5, we give a
simulation example with the corresponding results, which validate that the control scheme is effective.
Finally, We give the conclusion in Section 6.
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2. Background And System Modelling

This section provides a concise review of the Preisach operator and applies it to effectively capture
the complex hysteresis nonlinearity discussed in this paper, and the control problem is formulated
later.

2.1. The Hysteresis Model

The Preisach operator stands out among various hysteresis models due to its capability to
accurately represent complex hysteresis curves, including multi-loop and asymmetric hysteresis
curves, and it is constructed by the weighted superposition of infinity basic relay operators. Typically,
the thermostat relay operators [21] are chosen as the fundamental components for constructing the
Preisach operator as shown in Figure 1.

 

Figure 1. A thermostat relay operator γ∗
αβ(·, ·).

Thermostat relay operator: We first consider the Preisach plane as

T0 = {(β, α) ∈ |β ≥ β0, α ≤ α0, α ≥ β} ,

which is a right triangle area and is consisted of a vertex coordinate (β0, α0) and a part of line α = β.
For a visual representation, we present the geometric interpretation of the Preisach plane T0 in Figure 2.
For any given point (β, α) on the Preisach plane T0, there is a corresponding thermostat relay operator

γ∗
αβ (v(t), τ0(β, α))

=











+1, if v(t) > α

−1, if v(t) < β

remain unchanged, if v(t) ∈ [β, α],

(1)

where v(t) ∈ [0, tm] is the input of the thermostat relay operator with continuity and piecewise
monotonicity and τ0(β, α) represents the initial value of the thermostat relay operator γ∗

αβ(v(0), ·). For
example, τ0(β, α) = 1 while ∀(β, α) ∈ T0 and v(0) > α0.

Preisach operator: The Preisach operator is constructed by the weighted superposition of infinity
thermostat relay operators on the Preisach plane T0, which is presented as follows

u(t) = H(v(t), τ0(β, α))

=
∫∫

T0

µ(β, α)γ∗
αβ (v(t), τ0(β, α)) dβdα,

(2)
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where the weighting function µ(β, α) also referred to the density function, and according to the
definition of the Preisach operator, all points (β, α) ∈ T0 have the corresponding density function
µ(β, α) 6= 0 and when (β, α) /∈ T0, the density function µ(β, α) = 0 as shown in Figure 2.

 

Figure 2. The Preisach plane T0 and memory curve.

Memory curve: The memory effects of the Preisach operator can be captured by the memory curve
in the Preisach plane T0 (as illustrated in [21]). When the Preisach input increases monotonically,
the output of the thermostat relay operator above the α threshold switches to +1 and forms an
upward-shifting curve. Similarly, when the Preisach input decreases monotonically, the output of the
thermostat relay operator below the β threshold switches to −1 and forms a leftward-shifting curve.
Then, in the Preisach plane T0, a piecewise monotone input signal v(t) can create the memory curve
Φ(β, v(t)) as shown in Figure 2, where the memory curve divides the plane T0 into two parts:

S+(t) =
{

(β, α) ∈ T0 | γ∗
αβ(v(t), ·) = +1

}

,

S−(t) =
{

(β, α) ∈ T0 | γ∗
αβ(v(t), ·) = −1

}

,
(3)

and we can rewrite the integral (2) as

u(t) = H(v(t), τ0(β, α))

=
∫∫

S+(t)
µ(β, α)dβdα −

∫∫

S−(t)
µ(β, α)dβdα

= 2
∫∫

S+(t)
µ(β, α)dβdα −

∫∫

T0

µ(β, α)dβdα,

(4)

which is an essential form to analyze the output range of the Preisach operator and to prove the
piecewise monotonicity of the adaptive Preisach operator.

Following the description of the Preisach operator, we proceed to introduce the considered plant
model and formulate the adaptive control problem.

2.2. System Modeling

Consider the following uncertain noncanonical nonlinear system with unknown input Preiasch
hysteresis:

ẋ(t) = N (x(t)) + Bu(t),

y(t) = Cx(t), u(t) = H(v(t), τ0(β, α)),
(5)
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where the N (x(t)) ∈ R
n represent the unknown unparametrizable system nonlinearities, x(t) ∈

R
n denotes the system state vector, y(t) ∈ R denotes the system output, B ∈ R

n, C ∈ R
1×n are

the unknown system parameters, the control input v(t) ∈ R
n contains in the Preisach operator

implicitly and u(t) is the Preisach output, which applies to the system directly. Since the Preisach
hysteresis parameters µ(β, α) are unknown, the output of the Preisach operator u(t) is not available
for measurement, which poses a difficulty in compensating for hysteresis nonlinearity.

An approximation system: In our research, the system nonlinearities N (·) in (5) cannot be fully
parameterized and are considered to be unknown, which poses a challenge in designing the control
scheme for the original system (5) due to the lack of explicit characterization of these nonlinearities.
To overcome such a challenge, we construct a parametrizable neural-network approximation system,
which serves as an equivalent representation of the original system (5) over any desired compact set
Ψ ∈ R

n [26], which has the form as follows

ẋ(t) = Ax(t) +W∗S(x(t)) + Bu(t),

y(t) = Cx(t), u(t) = H(v(t), τ0(β, α)),
(6)

where A ∈ R
n×n is a stable martrix, W∗ ∈ R

n×l , S(x(t)) ∈ R
l is an unknown connection weigth

martrix and a known activation functions vector, respectively.

Remark 1. The nonlinear term W∗S(·) in (6) is considered as the parameterizable uncertainties, which is

capable to approximate unparametrizable uncertainties with arbitrary accuracy on a desired compact set. Hence,

the proposed control scheme for the approximation system (6) in this paper is valid for the general noncanonical

nonlinear system (5) with unparametrizable nonlinearities. By leveraging the neural-network approximation

system as an equivalent representation, our control scheme provides a practical and viable solution for achieving

desired control performance with unknown input Preisach hysteresis.

Considering the constructed approximation system (6), our control objective is to design a
control input signal v(t) by cooperating the Lyapunov method with the iterative algorithm to ensure
that the signals within the closed-loop system are bounded, and to achieve the asymptotic tracking
performance.

3. Relative Degree Conditions and Stability of Zero Dynamics Subsystem

In this paper, our main focus is on dealing with the control problem for noncanonical nonlinear
systems with input hysteresis by adaptive control techniques, specifically in the relative-degree-one
case. It should be pointed out that the relative degree greater than one case remains an open area for
future research and will be considered in our future work. This noncanonical neural network system
can be considered as a general nonlinear system so that the feedback linearization theory can be used
to define its relative degree and later we will give the certain condition of the relative-degree-one case.

Relative Degree Conditions: By combining the definition of relative degree [27] with the noncanonical
nonlinear system (6), we establish the following necessary condition for the cases where the system
has a relative degree of one.

Lemma 1. The approximation system (6) preceded by the Preisach operator has relative degree ̺ = 1 if and

only if

CB 6= 0. (7)

The approximation system (6) can be equivalently transformed into the general nonlinear system
ẋ(t) = f0(t) + g0(t)u(t), y(t) = Cx(t), and from the feedback linearization conclusions, Lemma 1 can
be proved straightforwardly.
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Lemma 2. Suppose the approximation system (6) has relative degree ̺ on the compact set Ψ. To facilitate

analysis and control design, we employ a diffeomorphism Ω(x) = [TT
c (x), TT

z (x)]T ∈ R
n where

Tc(x) = ξ(t) = [ξ1(t), ξ2(t), · · · , ξ̺(t)]
T

= [h0(x), L f0
h0(x), · · · , L

̺−1
f0

h0(x)] ∈ R
̺,

Tz(t) = η(t) ∈ R
n−̺,

which can transform the system into two subsystems [28]. The first subsystem, known as the tracking dynamics

subsystem, is dedicated to achieving accurate tracking of a desired reference signal, and it is defined as follows

ξ̇k(t) = ξk+1(t), k = 1, 2, · · · , ̺ − 1,

ξ̺̇(t) = L
̺
f h(x) + LgL

g−1
f h(x)u(t),

(8)

The second subsystem, referred to as the zero dynamics subsystem, is of great importance to ensure the convergence

and stability of the system’s internal dynamics. It has the form as follows

η̇(t) = Ξ(ξ(t), η(t)). (9)

Stability of the zero dynamics system: By utilizing the feedback linearization technique, the
approximate system (6) can be divided into two subsystems (as illustrated in Lemma 2). The zero
dynamic subsystems among them does not contain control inputs. Therefore, the stability of the
zero dynamic subsystem needs to be guaranteed to ensure that the control scheme developed for
the noncanonical nonlinear system with input hysteresis in this paper is available. The following
Assumption will satisfy our requirement.

Assumption 1. The partial derivatives of the zero dynamics subsystem with respect to ξ(t) (9) are bounded,

and the zero dynamic subsystem satisfies the following inequality:

ηT(t)Ξ(0, η(t)) ≤ −λ0ηT(t)η(t) + λm(t), (10)

where λ0 is a positive constant and λm(t) is a bounded function [29].

Remark 2. Based on Assumption 1, we can establish the following inequality

‖η(t)‖ ≤ K1 ‖ξ(t)‖+K2, (11)

where K1, K2 > 0 are the proper constants. What inequality (11) means is that the state vector η(t) in (9) is

bounded, with the bounded input vector ξ(t). Such a conclusion is called bounded-input bounded-state (BIBS)

stability [30], which indicates that the response of the system remains within a certain range in the presence of

disturbances or external inputs.

4. Adaptive Inverse Control Scheme For Relative-Degree-One Case with Preisach Hysteresis

This section proposes a control scheme for the relative-degree-one case of the uncertain
noncanonical nonlinear neural-network system (6) with input Preisach hysteresis, for which the
necessary condition is given in (7), and the procedure for designing the control scheme is detailed as
follows.
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4.1. System Parameterization

According to Lemma 1, the relative degree of the approximation system (6) is one when it satisfies
CB 6= 0, which leads to the formulation of the tracking control dynamics subsystem that can be
expressed as follows

ẏ(t) = CAx(t) + CW∗S(x(t)) + CBu(t),

u(t) = H(v(t), τ0(β, α)),
(12)

where the system parameters A, B, C,W∗ are all unknown. For the tracking control study, the following
basic Assumption is needed.

Assumption 2. Assuming that the sign of the control gain CB in (12) is known and positive [31].

This assumption guarantees the design procedure of the control scheme is free from any unknown
control direction problems.

For ease of adaptive control scheme design, the system (12) needs to be reparameterized. We
introduce some new parameters to transform the system into a more suitable form for adaptive control
scheme design. Let ϑ∗

1 = [CA, CW∗]T represent a parameter vector, ̟1(t) = [x(t), ST(x(t))]T denote
the state vector, and µ∗(β, α) = CBµ(β, α) represent the modified density function, and then the system
(12) can be expressed as follows

ẏ(t) = ϑ∗T
1 ̟1(t) +H∗(v(t), τ0(β, α)),

H∗(v(t), τ0) =
∫∫

T0

µ∗(β, α)γ∗
αβ (v(t), τ0) dβdα.

(13)

Assumption 3. The modified density function µ∗(β, α) defined on a finite right triangle plane T0 takes values

between two known nonnegative bounded values µa(β, α) and µb(β, α) for ∀(β, α) ∈ T0, which means that

µa(β, α) ≤ µ∗(β, α) ≤ µb(β, α).

Assumption 3 will be used later on in a projection design to equip the adaptive estimate µ̂(β, α, t)

of µ∗(β, α) with nonnegativity and boundedness properties.

4.2. Implicit Controller Equation

To compensate for the input hysteresis nonlinearity H(v(t), τ0) and to construct a tracking error
system with asymptotic convergence property, we develop an adaptive Preisach inverse implicit
controller as follows

∫∫

T0

µ̂(β, α, t)γ∗
αβ (v(t), τ0) dβdα

= −ι(y(t)− ym(t))− ϑT
1 (t)̟1(t) + ẏm(t),

(14)

where µ̂(β, α, ·) and ϑ1(·) are the estimates of µ∗(β, α) and ϑ∗
1 respectively, and ι is a positive constant.

The implicit controller equation (14) consists of an adaptive Preisach operator with µ̂(β, α, t) as the
adaptive estimate of µ∗(β, α) on the left sides and the desired output of the adaptive Preisach operator
on the right sides. Then, we define

Ĥ(v(t), τ0) =
∫∫

T0

µ̂(β, α, t)γ∗
αβ (v(t), τ0) dβdα, (15)

ud(t) = −ι(y(t)− ym(t))− ϑT
1 (t)̟1(t) + ẏm(t), (16)

and the implicit controller equation (14) is rewritten as

Ĥ(v(t), τ0) = ud(t). (17)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 July 2023                   doi:10.20944/preprints202307.1915.v1

https://doi.org/10.20944/preprints202307.1915.v1


8 of 16

The next task is to solve the implicit controller equation (17), so that we can computed the control
input v(t) in real time. This is essentially equivalent to constructing the inverse function v(t) =

Ĥ−1(ud(t), τ0), and we will next propose an inverse iterative algorithm to solve it.

A closest match algorithm for solving the implicit controller equation (17) and its convergence

proof: Given that the desired output of the adaptive Preisach operator ud(t) has a continuous,
piecewise monotone behavior over the defined time interval [0, tE], where the partition is

0 = t0 < t1 < · · · < tN−1 < tN = tE, (18)

for a positive integer N ≥ 1, and during each sub-interval (ti, ti+1], i = 0, 1, 2, · · · , N − 1, ud(t) is
monotone. Then, the implicit controller equation (17) will be solved on each sub-interval (ti, ti+1]. It
will be shown on the analysis of Remark 4 that the adaptive estimate density function µ̂(β, α, t) changes
slowly with time. In this sense, we can assume that µ̂(β, α, t) = µ̂(β, α, ti) during each sub-intervals
(ti, ti+1], i = 0, 1, 2, · · · , N − 1. With this in mind, the adaptive Preisach operator Ĥ(v(t), τ0) can be
expressed as

Ĥ(v(t), τ0) =
∫∫

T0

µ̂(β, α, ti)γ
∗
αβ (v(t), τ0) dβdα,

t ∈ (ti, ti+1], i = 0, 1, 2, · · · , N − 1.
(19)

With a projection design latter, µ̂(β, α, t) is ensured boundedness as µa(β, α) ≤ µ̂(β, α, t) ≤ µb(β, α)

and nonnegativity for ∀t > 0 and ∀(β, α) ∈ T0. Then, from the third equality of (4), it is not hard to
prove that the adaptive Preisach operator Ĥ(v(t), τ0) has monotonicity on each sub-interval (ti, ti+1],
and the output range of Ĥ(v(t), τ0) can be obtained from the following equation during (ti, ti+1]:

Hi,min = −
∫∫

T0

µ̂(·)dβdα, Hi,max =
∫∫

T0

µ̂(·)dβdα.

For the implicit controller equation (17) to have a solution, the following constructed saturation
condition is necessary:

Hi,min ≤ ud(t) ≤ Hi,max for ∀t ∈ (ti, ti+1], (20)

where i = 0, 1, 2, · · · , N − 1. The limitation of the output range (20) stems from the fact that the Preisach
operator H(v(t), τ0) is a saturated hysteresis model and the saturation occurs when the control input
v(t) above the upper threshold α0 or below the lower threshold β0.

Suppose that the condition (20) is satisfied. There are two discretization steps involved, the
discretization of the time interval [0, tE] has been described in (18) and the discretization range
R = [vmin, vmax] of the adaptive Preisach operator (15) input v(t) is uniformly divided into L segments
as VL =

{

v̄j, j = 1, 2, · · · , L + 1
}

where v̄j = vmin + (j − 1)∆v, ∆v = (vmax − vmin)/L, and L is called
the discretization level. The result of discretizing the input range R is that the Preisach plane T0 is
divided into cells. Considering the plane T0 with discretization degree L, and within each discretization
cell, assuming the density function µ̂(β, α, t) on (15) be nonnegative and remains constant. The
inversion problem is, given the desired instaneous value of ud(t), and the memory curve Φ(β, v(td))

generated by the previous input, to find the corresponding input signal v∗(t) such that the equality
ud(t) = Ĥ(v∗(t), τ0) is satisfied, which can be calculated by the following algorithm [22]:
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[H] Algorithm 1 Closest Match Algorithm For Adaptive Preisach Operator.

Input: The memory curve Φ(β, v(td)) and the desired value of ud(t)
Output: Control input v∗L(t)

Step 1) Set m = 0, v(m) = vmin
Step 2)
if v(m) = v̄L+1 then

go to Step 5.
else

v(m+1) = v(m) + ∆v;
Φ̃ = Φ(β, v(m)) (backup the memory curve);
m = m + 1;
go to Step 3.

end if
Step 3) Calculate u

(m)
d = Ĥ(v(m), τ0), and update the memory curve to Φ(β, v(m)).

if u
(m)
d = ud(t) then
go to Step 5.

else if u
(m)
d < ud(t) then

go to Step 2.
else

go to Step 4.
end if
Step 4)
if |u

(m)
d − ud(t)| ≤ |u

(m−1)
d − ud(t)| then

go to Step 5.
else

v∗L(t) = v(m−1);
Φ(β, v∗L(t)) = Φ̃;
Exit.

end if
Step 5)

v∗L(t) = v(m);
Φ(β, v∗L(t)) = Φ(β, v(m));
Exit.

The algorithm is based on the piecewise monotonicity property of the adaptive Preisach operator
Ĥ(v(t), τ0), and it is not hard to see that the algorithm obtains the solution v∗L(t) in at most L times.
The convergence of the above iterative algorithm is given below.

Proposition 1. Under Assumption 1-3, suppose that condition (20) is satisfied. Then, the iterative algorithm

can find a solution v∗L(t) = v̄j ∈ VL such that

|Ĥ(v∗L(t), τ0)− ud(t)| = min
v̄j∈VL

|Ĥ(v̄j, τ0)− ud(t)|. (21)

Besides, as the discretization degree goes to infinity, we can find the exact solution of the inverse problem, i.e.,

limL→∞ v∗L(t) = v∗(t).

Proof. Our task is to prove the piecewise monotonicity and Lipschitz continuity of the adaptive
Preisach operator (15), based on this property we can follow the arguments as Proposition 5.1 in [22]
to prove Proposition 1.

As previously demonstrated, it has been established that the adaptive Preisach operator (15) can
be represented in the form of (19) during the sub-intervals (ti, ti+1] with the adaptive density function
µ̂(β, α, ti) is nonnegative. Then, from the third equality of (4), the following inequality holds

(

Ĥ(v(t2), τ0)− Ĥ(v(t1), τ0)
)

(v(t2)− v(t1)) ≥ 0, (22)

for ∀t1, t2 ∈ (ti, ti+1]. Hence, the adaptive Preisach operator (15) is piecewise monotone on [0, tE] for
the continuous, piecewise monotone control input signal v(t) on (0, tE]. Besides, with the projection
design later, the adaptive density function µ̂(β, α, ti) is guaranteed to be nonnegative and bounded for
∀ti ≥ 0, and ∀(β, α) ∈ T0. Then, based on the piecewise expression (19), we can obtain the following
Lipschitz continuity property:

∥

∥Ĥ(v(T2), τ0)− Ĥ(v(T1), τ0)
∥

∥ ≤ KL ‖v(T2)− v(T1)‖ , (23)
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for ∀T1, T2 ∈ [0, tE], where KL is a Lipschitz constant.
Based on the piecewise monotonicity (22) and Lipschitz continuity (23) of the adaptive Preisach

operator (15), we can follow the arguments as Proposition 5.1 in [22] to prove Proposition 1.

Up to now, we have provided an iterative algorithm that the control input signal v(t) in the
implicit controller equation (17) can be computed iteratively, and finally, the convergence of this
iterative algorithm is proved. Next, we will analyze the performances of the adaptive control scheme.

4.3. Performance Analysis

Since the limitations of computation time and the efficiency of the iterative algorithm, obtaining
an exact solution within a finite number of iterations is challenging. Therefore, the implicit control
equation (14) can be reformulated as follows

∫∫

T0

µ̂(β, α, t)γ∗
αβ(v

∗
L(t), τ0)dβdα + δ(t)

= −ι(y(t)− ym(t))− ϑT
1 (t)̟1(t) + ẏm(t),

(24)

where δ(t) is the bounded iteration error. With the iteration results v∗L(t) as the control input,
substituting (13) into (24), we have the tracking error equation as follows

ė(t) =−
∫∫

T0

µ̃(β, α, t)γ∗
αβ (v

∗
L(t), τ0) dβdα

− δ(t)− ιe(t)− ϑ̃T
1 (t)̟1(t),

(25)

where e(t) = y(t) − ym(t), and the adaptive parameters error µ̃(β, α, ·) = µ̂(β, α, ·) − µ∗(β, α) and
ϑ̃T

1 (·) = ϑ1(·)− ϑ∗
1 .

Remark 3. In practical engineering applications, a proper bounded discretization degree L ensures that |δ(t)| ≤

ǫ, where ǫ is an acceptable minor positive constant in engineering applications. Hence, we consider the iterative

error δ(t) as an external disturbance and use the following tracking error equation (26) for the next analysis in

this paper.

ė(t) =−
∫∫

T0

µ̃(β, α, t)γ∗
αβ (v

∗
L(t), τ0) dβdα

− ιe(t)− ϑ̃T
1 (t)̟1(t).

(26)

By considering the tracking error equation (26), we choose the positive definite function as

V(e, µ̃) =
1

2φ

∫∫

T
µ̃2(β, α, ·)dβdα +

1
2

e2 +
1
2

ϑ̃T
1 Γ

−1
1 ϑ̃1, (27)

where Γ1 = Γ
T
1 > 0 and φ > 0 are the adaptive parameters for adaptive laws. Then, the time derivation

of V(e, µ̃) is

V̇ = −
1
φ

∫∫

T
µ̃(β, α, t)

(

φγ∗
αβ (v

∗
L(t), τ0) e(t)−

∂

∂t
µ̂(β, α, t)

)

dβdα

− ιe2(t)− ϑ̃T
1 Γ

−1
1 (Γ1̟1(t)e(t)− ϑ̇1(t)).

(28)
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Lyapunov-based adaptive control scheme: To make V̇ ≤ 0, the update laws for the estimates ϑ(t)

and µ̂(β, α, t) are chosen as

ϑ̇1(t) = Γ1̟1(t)e(t), (29)

∂

∂t
µ̂(β, α, t) =



























φγ∗(t)e(t) if µ̂ ∈ (µa, µb), or

if µ̂ = µa, γ∗(t)e(t) ≥ 0, or

if µ̂ = µb, γ∗(t)e(t) ≤ 0,

0, otherwise,

(30)

where γ∗(t), µ̂, µa and µb are the brief representations of γ∗
αβ (v

∗
L(t), τ0), µ̂(β, α, t), µa(β, α)

and µb(β, α), respectively. By choosing the initial value of µ̂(β, α, t) within the range
[µa(β, α), µb(β, α)], the projection design (30) ensures that µa(β, α) ≤ µ̂(β, α, t) ≤ µb(β, α) and

µ̃(β, α, t)
(

φγ∗
αβ (v

∗
L(t), τ0) e(t) − ∂

∂t µ̂(β, α, t)
)

≥ 0 for ∀t ≥ 0. Therefore, we have the following results

for the limt→∞ e(t) = 0.

Theorem 1. Under Assumptions 1-3 and Proposition 1, all signals in the closed-loop system consisted of the

noncanonical nonlinear system (6), the Preisach operator (2), the iterative inverse algorithm, and the implicit

controller (14) which is updated by the adaptive laws (29)-(30), are bounded, and the tracking error e(t) satisfies

lim
t→∞

e(t) = 0.

Proof. Substitute the adaptive laws (29)-(30) into the derivation of V (28), we can derive that

V̇ ≤ −ιe2(t). (31)

Since ι is a positive constant, we have V̇ ≤ 0. Then, e(t), ϑ1(t), and µ̂(β, α, t) are bounded, which implies
that y(t) is bounded. From Assumption 1, we can establish the inequality that ‖η(t)‖ ≤ K ‖y(t)‖+K

for a proper constant K, thus η(t) and x(t) are bounded. From the desired output of the adaptive
Preisach operator (16), we can derive the boundedness of ud(t), then, the boundedness of all the
closed-loop signals is established. Next, we will show the properties that e(t) ∈ L2 and limt→∞ e(t) = 0.
Integrating both sides of the first inequality in the derivation of V in (31) yields that

∫

∞

0 e2(t)dt < ∞,
so e(t) ∈ L2. From the tracking error equation (26), it clearly shows that ė(t) is bounded. Therefore,
using Barbalat’s Lemma, we can obtain that limt→∞ e(t) = 0.

Remark 4. Since e(t) ∈ L2 ∩ L∞ and limt→∞ e(t) = 0, with the projection design in (30), it is not hard to

derive that

∂

∂t
µ̂(β, α, t) ∈ L2 ∩ L∞, and lim

t→∞

∂

∂t
µ̂(β, α, t) = 0, (32)

which means that µ̂(β, α, t), the adaptive estimate of µ∗(β, α), changes very slowly and eventually converges

to a time-independent value µ̂∗(β, α). Besides, the adaptive estimate µ̂(β, α, t) is limited to a compact set

[µa(β, α), µb(β, α)] by the projection design (30), which means that the µ̂(β, α, t) would not be large. Then,

during on each sub-interval (ti, ti+1], i = 0, 1, 2, · · · , N − 1, we can consider µ̂(β, α, t) = µ̂(β, α, ti) on the

iterative algorithm for ∀t ∈ (ti, ti+1], and would not affect the performance of the system.

5. Simulation Study

This section presents the simulation results for the relative-degree-one case of noncanonical
nonlinear approximation system (6) with unknown parameters and preceded by the Preisach hysteresis
operator. The purpose in this section is to provide strong evidence for the proposed adaptive control
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scheme in achieving the desired tracking performance as illustrated in Theorem 1, which guarantees
the tracking error converges to zero as time goes to infinity.

5.1. Experimental Equipment

We developed a piezoactuator-driven stage as the experimental platform, which mainly consists
of four parts: 1) an E01 piezoelectric ceramic controller including a communication module E18.i3, a
sensor control module E09.S3/L3 and a power amplifier module E03.00, which has a voltage output
range of 0-150 V; 2) a piezoelectric actuator, which has a displacement output of 0-40 µm; 3) a vibration
isolation table, which serves the purpose of isolating the experiment equipment from external vibration;
4) a computer with MATLAB R2020a (see Figure 3).

 

Figure 3. Experimental platform

5.2. Hysteresis Identification

As the only parameter of the Preisach operator, the upper and lower bounds of the density function
µ(β, α) play an important role in ensuring the convergence of the iterative algorithm. Unreasonable
settings of these bounds can seriously affect output accuracy. Therefore, it is necessary to perform
systematic identification of the actual piezoelectric actuator, and then determine the upper and lower
bounds of the estimator µ̂(β, α, t) based on the identification result. With this in mind, we employ a
gradient descent algorithm to identify the density function. In this experiment, a triangular wave is
chosen as the voltage input signal v(t) at 5 Hz with a range from 0 V to 115 V and we set the sampling
rate as 1 kHz. Then, the identified density function is shown in Figure 4a. To evaluate the hysteresis
curve matching degree between the one generated by the Preisach operator with identified density
function and the experiment measurement, the voltage input is chosen as a triangular wave signal at
5 Hz within the range of −55V to 55V and the result is shown in Figure 4b, which provides a close
resemblance between the two curves.

5.3. Simulation System Modeling

In the simulation experiments, we follow the noncanonical nonlinear approximation system (6)
for the system parameter design, where B = [2, 1]T , C = [1,−1],

A =

[

2 1
0 1

]

, W∗ =

[

2.0 −0.6
1.2 0.2

]

, (33)
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and the activation functions vector S(x) = [S1(x), S2(x)]T with

S1(x) =
3

1 + e−2x2
− 1.5, S2(x) =

(

4
1 + e−2x2

− 2
)(

3
1 + e−2x1

− 1.5
)

. (34)

The Preisach operator plane is defined by the thresholds β0 = −59 and α0 = 59.
The initial control input is chosen as v(0) = 0, with the definition of memory curve, we have

Φ(β, 0) = 0. The initial output of Preisach operator is H(v(0), τ0(β, α)) = 0.558 with the density
function µ(β, α) obtained from identification. The initial value of the state vector is chosen as x(0) =
[0.6, 0]T , and a basic sinusoidal function ym(t) = 2 sin(t) + 2.5 is chosen as the reference signal.

(a) (b)

Figure 4. The identification results of piezoelectric actuator. (a) The identified density function µ(β, α)

of the Preisach operator. (b) Matching degree of Preisach operator with identified density function to
the experimental measurement of the hysteresis curve.

5.4. Simulation Results

Initial parameters and design parameters: It is not hard to derive that the simulation system
satisfies the condition: CB 6= 0, and then the adaptive scheme for relative-degree-one case in Section 4
can be used to control this system. With the diffeomorphism Ω(x) = [ξ, η]T = [x1 − x2,−x1 + 2x2]

T ,
the noncanonical nonlinear approximation system (6) can be transformed into a tracking dynamics
subsystem and a zero dynamics subsystem with BIBS stability, and satisfies the Assumption 1. By
a simple calculation, the norminal parameters are ϑ∗

1 = [2, 0, 0, 0.8]T , µ∗(β, α) = CBµ(β, α), which
are unknown for the control design and estimated by ϑ1(t) and µ̂(β, α, t), respectively. The lower
and upper bounds of µ∗(β, α) are chosen as µa(β, α) = 0 and µb(β, α) = 1.1µ(β, α) for the projection
design, where µ(β, α) is obtained from the identification result. The initial parameters are chosen as
ϑ1(0) = 0.5ϑ∗

1 and µ̂(β, α, 0) = 0.7µ(β, α). Other design parameters are chosen as ι = 4, φ = 0.08 and
Γ1 = diag {1, 0.8, 0.8, 1.2}.

Simulation results and analysis: By employing the proposed adaptive control scheme in the
simulation system, the tracking performance is depicted in Figure 5a which confirms the desired
behavior of the control scheme and shows that the output y(t) converges to the reference signal
ym(t) over time. Figure 5b shows that the tracking error e(t) gradually diminishes and eventually
converges to zero over time. Furthermore, Figure 5c shows the boundedness of the system input u(t)

and control input v(t). As an example to confirm that the estimate µ̂(β, α, t) changes very slow and
eventually converge to a time-independent value µ̂∗(β, α) as illustrated in Remark 4, Figure 5d shows
the trajectories of µ̂(30, 50) and µ̂(−50,−30) vs. time. With the discretization level L = 118, Figure 6a
shows that the iteration error Ĥ(v∗L(t), τ0)− ud(t) is within the range of ±0.2µm, where the control
input v∗L(t) is calculated using the iterative algorithm in the implicit control equation (17). The results
confirm the convergence of the iterative algorithm established in Proposition 1. The effectiveness of
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iterative algorithm is shown in Figure 6b, we can see that the desired one ud(t) is well achieved by the
adaptive operator Ĥ(v(t), τ0).

(a) (b)

(c) (d)

Figure 5. System response with ym(t) = 2sin(t) + 2.5. (a) Tracking performance y(t) and ym(t) versus
time(s). (b) Tracking error e(t) versus time(s). (c) Control input v(t) and system input u(t) versus
time(s). (d) Estimators µ̂(30, 50) and µ̂(−50,−30) versus time(s).

(a) (b)

Figure 6. Iterative algorithm performance.

6. Conclusion

We have developed an iterative inverse-based adaptive control scheme for the uncertain nonlinear
system in the noncanonical form with unknown input Preisach hysteresis. The control scheme utilizes
a new adaptive version of the closest match algorithm to effectively compensate for the unknown
hysteresis effects. The convergence of the iterative algorithm was established by demonstrating
the piecewise monotonicity and Lipschitz continuity of the adaptive Preisach operator Ĥ(v(t), τ0).
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Furthermore, we conducted the complete stability analysis of the closed-loop system. The simulation
results serve as strong evidence for the proposed control scheme in achieving desired tracking
performance.
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