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Abstract: Accurate localization of the fovea in fundus images is essential for diagnosing retinal diseases.
Existing methods often require extensive data and complex processes to achieve high accuracy, posing
challenges for practical implementation. In this paper, we propose an effective and efficient approach for fovea
detection using simple image processing operations and a geometric approach based on the optical disc's
position. A key contribution of this study is the successful determination of the temporal direction by
leveraging readable asymmetries related to the optical disc and its surroundings. We discuss three methods
based on asymmetry conditions, including blood vessel distribution, cup disc inclination, and optic disc
location ratio, for detecting the temporal direction. This enables precise determination of the optimal foveal
region of interest (ROI). Through this optimized fovea region, fovea detection is achieved using
straightforward morphological and image processing operations. Extensive testing on popular datasets
(DRIVE, DiaretDB1, and Messidor) demonstrates outstanding accuracy of 99.04% and a rapid execution time
of 0.251 seconds per image. The utilization of asymmetrical conditions for temporal direction detection
provides a significant advantage, offering high accuracy and efficiency while competing with existing methods.

Keywords: fovea detection; foveal ROI; temporal direction; cup disc; optic disc; morphology

1. Introduction

Diabetic macular edema (DME) is a manifestation of Diabetic Retinopathy, a condition that can
lead to vision loss and blindness in affected individuals [1,2]. Consequently, regular eye screenings,
conveniently conducted on computers, are strongly recommended to reduce the associated risks [3].
These screenings play a vital role in monitoring disease progression and identifying any concerning
lesions. Of particular importance is the accurate detection of essential anatomical structures such as
the Optic Disk (OD), blood vessels, and fovea. The fovea, situated at the center of the macula, serves
as a reference point for assessing the severity of DME, particularly in cases where it coincides with
the presence of hard exudates in the retina [1]. Measuring the distance between the hard exudates
and the fovea is crucial for evaluating the severity of DME and necessitates precise detection methods
[4]. Additionally, the computational efficiency of the utilized computer-assisted diagnosis techniques
significantly impacts the speed of the overall process|[5].

Detecting the fovea in a retinal image has proven to be a challenging task due to its unique
characteristics. The macula, which encompasses the fovea, appears as a darker region in the retinal
image. However, precisely identifying the fovea within this area is complicated because it lacks clear
boundaries, making it challenging to distinguish it from the surrounding background. Furthermore,
certain retinal images exhibit uneven illumination, further complicating the detection of the fovea.

Several approaches have been employed in detecting the fovea in retinal images. For example,
Deep Learning has been applied recently as a cutting-edge method for this detection. Furthermore,
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it was observed that Convolutional Neural Network (CNN)-based approaches have achieved good
results in object detection, including fovea detection [6,8]. Bander et al. [6] used a multistage Deep
Learning approach to detect optical disk and fovea in retinal images, while Sedai et al. [7] had put
forth a framework for image segmentation that operates in tpwo stages. In addition, Hasan [8]
utilized the DR-Net method, an end-to-end encoder-decoder network for fovea detection. Similar to
traditional methods, several deep learning methods have also used retinal structures, such as the
blood vessels and optic disc (OD), as boundaries to ascertain the location of the fovea. For instance,
Song [9] has customized the Bilateral-Vision-Transformer to integrate blood vessel information for
improved fovea detection.

It is important to note that the Deep Learning approach requires a large amount of computation,
especially during training, as well as a huge quantity of data in order to produce a good detection
model [10,11]. The existing methods are typically employed on datasets comprising a substantial
number of images. Subsequently, difficulties were also encountered during the development due to
the black box characteristic of the computation [12,13].

On the other hand, the conventional approach is an alternative to identify the fovea in a limited
amount of data. This approach relies on two conditions: the intensity characteristics of the macula
and its geometric location. Syed [14] employed the mean intensity to detect the fovea area. Regarding
fovea detection, the common techniques involve template matching and Gaussian functions, utilizing
the intensity attributes specific to the foveal area, as exemplified in [15]. Additionally, in [16], the
incorporation of the average histogram intensity as a template matching feature has been explored
for fovea detection. Furthermore, [17] implemented feature extraction techniques to locate the center
of the fovea. In order to enhance effectiveness, other authors employ geometric principles that are
seamlessly integrated with existing algorithms.

In terms of the geometric approach for fovea detection, various studies have focused on the
fovea's location relative to other anatomical structures. Tobin [18] and Niemeijer [19] utilized the
main blood vessels in the retina as a reference point for detecting the fovea area. Similarly, Medhi
[20] achieved comparable results by using the main blood vessels to identify the fovea region of
interest (ROI). Other investigations have utilized the optic disc (OD) to locate the fovea area [16,17].
Chalakkal [16] employed connected component analysis to define the fovea in relation to the OD,
while still considering the role of blood vessels, particularly in determining the foveal ROL
Additionally, aside from the OD's significance as a reference point, other researchers have
emphasized that the localization of the fovea is influenced by the direction of search required. For
instance, Zheng [17] and Romero-oraa [21] suggested that the fovea is likely positioned in the
temporal direction of the OD. The results obtained in this approach can compete with the results from
the deep learning approach. However, achieving these outcomes involves a complex step that
adversely affects execution time. Therefore, the quest for a more streamlined solution poses a
challenge.

In the retinal fundus image, the optic disc and blood vessels exhibit varying pixel densities,
resulting in an observable asymmetry. This asymmetry is evident by examining the position of these
anatomical structures relative to others or by comparing them to the overall retinal image. Exploiting
this characteristic helps identify the temporal direction, thereby pinpointing the precise location of
the fovea. This study presents a geometric approach for fovea localization, leveraging the positioning
of the OD and temporal direction. The proposed method aims to streamline the determination of the
temporal direction by utilizing the asymmetrical conditions in the OD-related image. The study's
contributions are as follows:

e Introducing a feature extraction technique that relies on asymmetries associated with the OD
and its surrounding area.

e  Presenting a method for determining the temporal direction, which proves highly beneficial
for foveal ROI detection.

e  Enhancing the effectiveness of fovea detection through the utilization of the temporal direction
for foveal ROI determination.
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This study is presented in several sections, the first section is the introduction, then the second
section is the materials and tools used. The third section contains a detailed description of the
proposed method, while the fourth presents the results and discussion. Also, the fifth contains
conclusions from the existing explanation.

2. Materials and Methods
2.1. Materials

2.1.1. Dataset

This study utilized retinal image data from three publicly available datasets: Digital Retinal
Images for Vessel Extraction (DRIVE), DiaretDB1, and Messidor. The DRIVE dataset comprises 40
retinal fundus images with a resolution of 768x584 pixels and three color channels (Red, Green, and
Blue). These images were captured with a Field of View (FOV) size of 45° [22]. DiaretDB1 consists of
89 retinal images with a FOV of 50°. This dataset includes color images with dimensions of 1500x1152
pixels [23]. The Messidor dataset contains 1200 retinal images, each with a FOV of 45°. This dataset
offers images with different resolutions, including 1140x960, 2240x1488, and 2304x1536 pixels [24].

2.1.2. Environment

A computer with Intel ® Core ™ i5-10400 CPU @ 2.90GHz 16 GB RAM specification and Matlab
2018b software was used to conduct this study.

2.2. Methods

The macula, characterized by a circular area of low intensity on the retinal image [25], houses
the fovea at its center. The fovea is positioned 2.5 diameters away from the optic disk in the temporal
direction [26] and slightly below the optic disk [27]. This study aimed to precisely determine the
location of the fovea. To achieve this, a geometry-based approach utilizing the optic disk as a
reference point was employed. The methodology consists of several steps as shown in Figure 1.
Firstly, a pre-processing stage was conducted to normalize the retinal image. Subsequently, the OD
localization process was executed. The temporal direction was established by leveraging the
asymmetry associated with the OD in retinal images. Finally, the fovea's location was determined
within the foveal ROL The following section provides a detailed explanation of the procedure
undertaken in this study.

OD Temporal Direction Foveal ROI Fovea
Localization [ Determination Determination [ Detection

| 1

Figure 1. The flow diagram of fovea detection.

A 4

Pre-processing |—»

2.2.1. Pre-processing

The retinal images captured by the fundus camera exhibit variations in size and lighting
intensity. To establish a robust recognition method for retinal images obtained through a fundus
camera, it is crucial to address variations in size and lighting intensity. One approach to achieve this
is by ensuring the images used possess similar characteristics. Initially, we perform a pre-processing
step on each dataset to ensure uniformity. This involves standardizing the image size, normalizing
luminance levels, and accurately detecting the field of view (FOV) for each retinal image.

e  Resizing: The retinal images in different datasets vary in size and proportions, depending on
the conditions during image capture. In this study, we aim to establish consistency by resizing
the images. To maintain the original shape of objects within each retinal image, we preserve
the proportions of the image during resizing. The initial result is achieved by setting the height
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of each image to 564 pixels, while adjusting the width according to the original aspect ratio.
The resized image is denoted as I, in our study.

e  [llumination normalization: In order to detect the OD and fovea, a thresholding approach was
employed. However, it was observed that uneven illumination, as illustrated in Figure 2(a),
negatively impacted the detection accuracy. To address this issue, a normalization step was
performed prior to the detection process. In the initial phase, the resized images were
subjected to contrast enhancement using Clip Limited Adaptive Histogram Equalization
(CLAHE), resulting in the creation of an enhanced image denoted as I.. This enhancement
process specifically utilized the green layer, known for its superior contrast properties (Figure
2(b)). Furthermore, intensity normalization was conducted following the approach described
in a previous study [27]. The resulting normalized image, denoted as I,,, is illustrated in Figure
2(c).

e  The FOV represents the visible area of the retina captured in an image. The size of the FOV
plays a crucial role in estimating the dimensions of retinal objects, particularly the OD. This is
particularly valuable in addressing variations in the proportion of retinal area displayed across
different datasets. By defining the area, the search location for objects on the retina can be
constrained. Additionally, the FOV size is utilized to estimate the location of the fovea through
a geometric approach. Segmentation of the FOV area was accomplished by applying Otsu
thresholding to the grayscale image, utilizing a threshold value of 0.2 times the Otsu threshold
obtained. The segmented FOV is illustrated in Figure 2(d).

(a) (b) (©) (d)

Figure 2. Pre-processing (a) original color image (b) the green layer of image (c) normalized image (d)
FOV of the image.

2.2.2. Optic Disk Localization

The OD is a distinctive anatomical structure within retinal images, known for its high intensity
compared to other features. Due to its prominent characteristics, OD localization is relatively
straightforward. It is worth noting that the OD location is often associated with the position of the
fovea [27,28]. In this study, the OD serves as a reference point for determining the center of the fovea
ROI. Additionally, certain features, such as blood vessels and bright areas on the cup disk, are
leveraged to determine the temporal direction. To detect the OD, a thresholding method based on
[29] was applied to the pre-processed images I,,. Equation (1) was employed to obtain the OD
candidate areas (Ippcqng)- The OD candidates are shown in Figure 3(b).

lopeana(x,y) = {5 G ) = tho M)
where th,p, is the threshold value used, which is 0.85 from the maximum value of I,.

Occasionally, bright retinal images with high luminance are found at the edge of the FOV, which
corresponds to the area around the OD. It was observed that the luminance normalization process
conducted during pre-processing does not adequately affect these areas. This can potentially result
in the misidentification of the optic disc candidate region. Therefore, this study introduced FOV edge
detection as an additional step to mitigate such effects. To encompass a wider range, the edges were
subjected to morphological dilation using a disk-shaped structuring element with a radius of 50
pixels. The resulting edge area is denoted as I; (Figure 3(c)). Equation (2) was employed to obtain
the refined optic disc candidate area (Ippcanaz) [29]:
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lopcanaz = lopcana = Uopcana N 1) 2)
The center point of the blob within Iypcang. (Figure 3(e)) is estimated to correspond to the cup
disk area of the optic disc. Based on this center point, the subsequent step involves cropping the OD
ROI to one-quarter the size of the image. The resulting OD ROl is illustrated in Figure 3(f).
Furthermore, optic disc segmentation is performed through several additional steps. Initially,
contrast enhancement is applied using CLAHE with a clip limit of 0.03 and multiple tiles [2]. This
process specifically focuses on the red channel, which is least affected by blood vessels, as indicated
by Zheng [17]. Subsequently, a morphological opening operation is employed to remove blood
vessels in the region, utilizing a disk-shaped structuring element with a radius of 20 pixels.

(b) (¢) (d)
®

(2

(e)

Figure 3. Results of the OD detection process, (a) image I,, (b) thresholding results (c) image FOV
edges I, (d) crop image (e) the OD candidate blob location (f) initial OD detection (g) final OD
detection result.

The OD obtained through Otsu thresholding is then refined using morphological closing and
opening operations with disk-shaped structuring elements of sizes 10 and 15, respectively. The
largest blob is selected to determine the OD, and the result is obtained by cropping the area according
to the bounding box, as depicted in the Figure 3(g). Notably, the center of this area serves as a
reference for determining the foveal ROL. It is important to mention that the diameter of the optic
disc (Dgp) is not calculated directly from this obtained area. Instead, Dy, is computed as r]_1’ where
w represents the width of the FOV.

2.2.3. Temporal Direction Determination

In this paper, our objective is to utilize the OD appearance in retinal images to detect the fovea
and determine the temporal direction. The OD, being present in the retinal image, provides crucial
information for locating the fovea, which is typically positioned in the temporal direction relative to
the OD. Moreover, the OD itself can act as an indicator of the temporal direction.

To achieve this, we concentrate on exploiting the observed asymmetry in the OD's appearance
(Figure 4), including the brightest area of cup disk and major blood vessels, as distinctive features for
identifying the temporal direction in interlaced retinal images. We propose three distinct methods
that make use of these existing asymmetrical conditions for temporal direction determination:

e  The convergence pattern of blood vessels in the OD: We examine the convergence pattern of

blood vessels within the OD. The direction of convergence can provide valuable clues regarding
the temporal direction.
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e  The location of the brightest area of cup disk in the OD: We analyze the OD to identify the cup
disk with the highest brightness. By assessing its position within the OD, we can infer the
temporal direction.

e  The location of the OD in the retinal image: We investigate the position of the OD within the
retinal image. Its relative location can offer insights into the temporal direction.

These methods aim to leverage the inherent asymmetry of the OD and its associated features to
improve the accuracy and efficiency of determining the temporal direction in retinal images. By
employing these approaches, we anticipate significant advancements in retinal imaging analysis.

Temporal | Nasal Nasal | Temporal

Figure 4. Illustration of the retinal image and temporal/nasal direction.

Convergence pattern of blood vessels in the OD

The blood vessels in the retina exhibit a parabolic shape and converge on the OD, resulting in
an asymmetry where the blood vessels cluster predominantly on one side of the OD, as illustrated in
Figure 5. This inherent asymmetry was leveraged in our proposed method to determine the temporal
direction. The comparison of the number of blood vessel pixels on both sides was performed, taking
into account their tendency to cluster on one side of the optic disc. To facilitate this comparison, we
focused on the green layer of the retinal image, as it offers better contrast compared to the other two
layers.

TemporalfNasal

Figure 5. Appearance of blood vessels converging on a single side of the OD.

The blood vessels in the retina exhibit a parabolic shape and converge on the OD, resulting in
an asymmetry where the blood vessels cluster predominantly on one side of the OD (Figure 5). This
inherent asymmetry was leveraged in our proposed method to determine the temporal direction. The
comparison of the number of blood vessel pixels on both sides was performed, taking into account
their tendency to cluster on one side of the optic disc. To facilitate this comparison, we focused on
the green layer of the retinal image, as it offers better contrast compared to the other two layers.

Once the location of the optic disc was successfully detected, its area was cropped to identify the
side corresponding to the temporal direction. At the initial stage of the process, we employed an
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adaptive operation using the CLAHE method to enhance image contrast. This contrast enhancement
was effectively enhanced the visibility of blood vessels against the background image.

Next, the blood vessels within the OD are extracted using a bottom-hat morphological operation
and adaptive binarization with Otsu's method. This involves utilizing a 'disk'-shaped structuring
element of size 5 pixels. The result is an image called Iov. However, it is observed that the blood
vessels in the Jov still retain vertical and horizontal orientations, which can introduce false
information. To address this, the orientation direction of the blood vessels is selectively considered.

Comparisons between the left and right sides of the OD were performed using vertically
oriented vessel pixels. To facilitate the comparison process, it is essential to optimize the vertically
oriented blood vessels and eliminate the horizontally oriented ones prior to the analysis of the left
and right sides of the OD. This is accomplished through the sequential application of morphological
operations, specifically opening and closing operations. By performing these operations
consecutively, the vertically oriented blood vessels are enhanced, while the horizontally oriented
ones are attenuated. The resulting image, denoted as I, is obtained using rectangular structuring
elements with dimensions of 6x3 and 10x3.

Suppose S, is the number of white pixels on the left side of the I, image and S, is the number
of white pixels on the right side I,,. The following rules were adopted when determining the temporal
direction:

LEFT S, < Sp»
RIGHT S,, > S,,
Location of the brightest area of cup disk area in an optic disk

The OD serves as the origin for blood vessels in the retina and exhibits a cup disk structure. The
brightest area within the OD corresponds to the cup disk, partially obscured by blood vessels on one
side. The remaining cup disk area is situated on the temporal side of the OD. By comparing the
position of the cup disk area with that of the vertically oriented blood vessels, we can determine the
temporal direction of the retinal image. This is achieved by analyzing the center coordinates of the
cup disk area and the vertical vessel center coordinates, which serve as defining features for the
temporal direction.

To detect the temporal direction, the OD area must first be segmented as shown in Figure 6(a).
Initially, we identify the visible cup disk area and a curve representing the vertical vessels within the
OD. To simplify the process, we focus on the brightest part of the cup disk, avoiding the need for
precise segmentation. The segmentation is performed on the brightest portion of the cup disk by

temporal direction = {

applying a binary operation with a threshold of 80% of the maximum pixel value within the OD area.
This binary operation is conducted on the green layer, which offers optimal contrast. Subsequently,
a closing operation is applied to refine the bright area. A circular structuring element (SE) with a
diameter of 10 pixels is used for this purpose. The segmentation results are depicted in Figure 6(b).
The midpoint coordinates of the bright cup disk area (x¢op, Ycop) are then used as reference values
for determining the temporal direction.

The curve representing the vertical vessels in the OD are extracted using a combination of
morphological operations. Initially, the contrast of the OD image is enhanced using CLAHE, followed
by emphasizing the blood vessels using bottom-hat operation. Figure 6(c) shows the results of the
extraction of blood vessels in OD. This operation employs a circular SE with a radius of 5 pixels. The
lines representing the vertical vessels are obtained through a combination of opening and closing
operations. The SE used has a rectangular shape with a vertical orientation. The first combination
employs an SE of size 6x3 for opening and 10x3 for closing. In the second combination, an SE of size
13x1 and 50x15 is used. The resulting curve are illustrated in Figure 6(d). Finally, the coordinates of
the blood vessel center (x,.5, Yyes) are extracted from the last obtained blob. An illustration of the
relative location of the cup disc's brightest area to the curve representing the vertical vessels in OD is
shown in Figure 6(e).
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Figure 6. Results of the extraction process for the bright parts of the cup disk and blood vessels, (a)
the segmented OD, (b) the brightest area of the cup disk, (c) the blood vessels in OD, (d) the curve
representing the vertical vessels in OD, (e) location of the brightest area of cup disk vs. the curve.

Once the coordinates of the cup disk center and the vertical blood vessel center within the OD
are determined, the temporal location on the retinal image can be established. In general, the
temporal area on the retinal image is determined based on the location of the cup disk with respect
to the vertical vessels, as shown in Figure 7. To simplify the search process, this study compares the
x-axis values of each coordinate point. The temporal area is defined according to the following rules:

If  xcop < xpes  {the cup vessel area on the left of the vertical vessel OD}

temporal direction = LEFT

Else {the cup vessel area on the right of the vertical vessel OD}

temporal direction = RIGHT

(a) (c)
.
(d) ®

(e)

Figure 7. The determining process result of the temporal area, (a) initial image with OD on the right
side, (b) comparison of the location of the cup disk bright area and vertical blood vessels of the image
(a), (c) the temporal area of the image (a). (d) initial image with OD on the left side, (e) comparison of
the locations of the cup disk bright areas and vertical blood vessels OD of the image (a), (f) the
temporal area of the image (d).

Location of the OD in the retinal image

In diabetic retinopathy examination, it is essential for the retinal image used in screening to have
a visible macular condition at the center. This recommendation is supported by The Health
Technology Board for Scotland [30,31]. In this context, the OD is situated at the edges of the retinal
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area, both on the left and right sides. This indicates that the temporal direction can be determined by
comparing its location with the center coordinates of the retinal image.

It has been observed that when the OD is on the right side of the image, the abscissa center is
greater than the retinal image center, indicating a temporal direction towards the left. Conversely,
when the OD is on the left side, the abscissa is smaller than the image center, and the temporal
direction points to the right, as depicted in Figure 8.

Xop

Temporal

e
Temporal

=

3

(xop, Yon)
(Xop» Yob)

right eye left eye

Figure 8. [llustration of the relationship between OD locations and center coordinates of the retinal
image.

The temporal direction is determined with the following rule:
LEFT , W/5 < xop

RIGHT ,other
where w denotes the retinal image width, and x,p is the abscissa value of the OD center obtained

during OD detection.

temporal direction = {

2.2.4. The Fovea Detection

According to established medical definitions, the macula, with the fovea as its center, is situated
in the temporal area, and the fovea is approximately 2.5 times the diameter of the OD. This implies
that a comprehensive search for the fovea should be conducted within a restricted area aligned with
this definition. In the detection process, a geometric approach is employed, with the OD location
serving as a reference. The effectiveness of the proposed method relies on accurately determining the
size and location of the ROI corresponding to the fovea.

To initiate the detection process and minimize errors, the determination of the foveal ROI occurs
after obtaining the OD location and temporal direction. This allows for the limitation of the detection
area and reduces the likelihood of errors. Moreover, the location is obtained by utilizing the OD as a
reference based on the gathered information. Figure 9 visually depicts the construction of the foveal
RO, which takes the form of a square with dimensions of 2 times the OD diameter (2xD,p), where
Dop represents the OD diameter. This size is chosen to account for potential inaccuracies in the ROI
location, aiming to minimize errors. The selection of the multiplier parameter is performed through
experimentation with three estimated values: 2.0, 2.25, and 2.5.

Furthermore, the center location of the fovea ROI is determined using Equations (3) and (4).
_ {xOD —3.8% Dyp ,temporal direction = LEFT 3

I~ \xop + 3.8 % Dyp ,temporal direction = RIGHT 3)

Y = Yop +0.25 X Dyp 4)
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where (x7,yr) represents the coordinates of the foveal ROI center and (xqp,yop) are the
coordinates of the OD center location.

Foveal ROI

Figure 9. Illustration of the foveal ROI (shown in blue squares).

The subsequent step involves detecting the fovea within the foveal ROI This process utilizes a
combination of thresholding techniques and morphological operations. Initially, the contrast within
the foveal ROI (Figure 10(a)) is enhanced using CLAHE with a clip limit of 1. This results in an
improved foveal ROl image with enhanced contrast (Figure 10(b)), revealing darker areas and clearer
edges. To facilitate the recognition process, the resulting image is negated, generating the
complement of the image (/,,,.) as shown in Figure 10(c).

The thresholding process is then applied to obtain a binary foveal image (I,,,) by utilizing an
adaptive threshold value of 77% of the maximum intensity of I,,,.. The result of the thresholding
process is shown in Figure 10(d). It should be noted that I_mb may still contain some degree of noise.
To mitigate this, a cleaning and repair procedure is conducted using morphological dilation and
erosion operations, as described in Equation (5):

Ly = ga((sﬁ(lmb)) 6)

Where I, is the obtained macular image, £

is the erosion morphology operation with a disc-
shaped a-element structure measuring 15, and 67 represents the dilation operation with a disc-

shaped f measuring 5, and then the fovea is extracted from the area containing I, (Figure 10(e)).

(a) (b)

(d) (e) ®

Figure 10. The fovea extraction process, (a) foveal ROI in the green channel, (b) results of contrast
enhancement with CLAHE, (c¢) complement of (b), (d) results of binarization of (c),(e) results of
dilation + erosion from (d), (f) the fovea detection results.
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3. Results

The proposed method was evaluated on three datasets, namely DRIVE, DiaretDB1, and
Messidor. The appropriated images from the DRIVE were 35. This is because 5 images in this dataset
do not show the foveal area that was carried out in [17]. Similarly, this test uses 1136 from Messidor
images in line with [32]. In DiaretDB1, all images were considered in the evaluation. This evaluation
involved a meticulous comparison of the obtained results with ground truth, with the supervision of
an ophthalmologist.

Impressively, the OD detection test achieved remarkable accuracy rates. The method exhibited
a flawless accuracy of 100% for the DRIVE dataset, while for the DiaretDB1 and Messidor datasets,
the accuracies were equally impressive, measuring 98.88% and 98.59% respectively. Additionally,
Table 1 provides an overview of the accuracy rates for determining the temporal direction. Three
different methods were employed for determining the temporal direction: T1, T2, and T3. T1 involved
comparing the blood vessel pixels, T2 relied on the location of the cup disk area and the
perpendicularity of the blood vessels, while T3 utilized the position of the OD relative to the center
of the image. In order to evaluate the performance of the proposed algorithm in determining the
temporal direction, an assessment was conducted on the images where the OD has been successfully
detected.

Table 1. Performance evaluation of the temporal direction determintion.

DRIVE DiaretDB1 Messidor
Method (%) (%) (%)
T1 100 100 98.66
T2 100 100 99.29
T3 100 100 100

During the evaluation of fovea detection, accuracy was quantitatively assessed by measuring
the Euclidean distance between the detected fovea and the Ground Truth (GT). This approach
facilitated a precise quantitative comparison. Furthermore, Figures 11-13 illustrate the performance
of the three methods used to determine the temporal direction, while Table 2 provides a concise
summary of their performance metrics.

Of the three methods, T3 exhibited the highest performance, showcasing its superiority in
determining the temporal direction. The significance of these variations became particularly evident
when testing on datasets with a larger number of images, such as the Messidor dataset. Interestingly,
T3 also demonstrated comparable performance to the DRIVE and DiaretDB1 datasets, despite their
smaller data sizes. In terms of accuracy, T3 outperformed T1 and T2, achieving accuracies of 98.24%,
96.83%, and 97.54% respectively. Furthermore, T3 showcased superior computational efficiency, with
a processing time of 0.291 seconds per image, compared to T1 and T2, which required 0.294 and 0.295
seconds respectively.
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Figure 11. Accuracy comparison of each temporal direction determination method.
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Figure 12. Comparison of distance to GT of each temporal direction determination method.
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Figure 13. Computational time comparison of each temporal direction determination method.

Table 2. Summary of the fovea detection.

Temporal determination Accuracy Computational time

Distance

method (%) (s/image)

DRIVE

T1 100 14.1 0.200

T2 100 14.1 0.202

T3 100 14.1 0.190
DiaretDB1

T1 98.88 10.68 0.277

T2 98.88 10.68 0.278

T3 98.88 10.68 0.270
Messidor

T1 96.83 8.63 0.294

T2 97.54 8.60 0.295

T3 98.24 8.61 0.291

The average accuracy and computational time for the three datasets are 99.04% and 0.251
seconds/image. Table 3 shows the comparison results of the performance with other studies.


https://doi.org/10.20944/preprints202307.1863.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 July 2023 do0i:10.20944/preprints202307.1863.v1

13

Table 3. Comparison of the fovea detection results with other studies.

Computational time Computational
Method Accuracy P time
(/image) .
improvement

Zheng [17] DRIVE : 100% 12 seconds 62.2x
DiaretDB1  : 93.3% 12 seconds 43.4x

Medhi [20] DRIVE : 100% - -
DiaretDB1 : 95.51%

Chalakkal [16] DRIVE : 100% 25 seconds 130.6x
DiaretDB1 : 95.5% 25 seconds 91.6x
Messidor 1 98.5% 25 seconds 85.2x

Romero-oraa [21] DRIVE : 100% 0.54 seconds 1.8x
DiaretDB1  :100% 14.55 seconds 52.8x
Messidor 1 99.67% 27.04 seconds 92.2x

Al Bander [6] Messidor 1 96.6% - -

Song [9] Messidor : 100% - -

Proposed method DRIVE :100% 0.19 seconds -
DiaretDB1 : 98.87% 0.27 seconds -
Messidor : 98.24% 0.29 seconds -

4. Discussion

Upon analysis, it was observed that the method using the comparison of the OD location and
the image center for determining the temporal direction exhibited the highest performance among
the three methods. The performance differences were particularly noticeable when testing on datasets
with a large number of images, such as the Messidor dataset. However, in the DRIVE and DiaretDB1
datasets with a smaller number of images, the three methods showed no significant difference in
performance. It was found that using the bright area on the cup disc as a feature for determining the
temporal direction becomes problematic when the distribution of bright areas is not concentrated on
one side as expected. In cases where the bright area is distributed circularly around the blood vessels,
the expected asymmetry does not appear, causing the center point of this bright area to sometimes
shift to the opposite side and resulting in incorrect temporal direction determination.

Similarly, using blood vessels in OD as a feature is disturbed when the distribution of these
blood vessels is evenly spread within the OD. Consequently, when applying morphological
operations to the vascular pixels in the OD, there are several images that do not exhibit the expected
asymmetry and provide an incorrect temporal direction. Overall, the evaluation results indicate that
all three methods of determining the temporal direction perform well.

This suggests that all the methods are capable of providing good temporal direction results for
generating an optimal foveal region of interest (ROI). The use of a small rectangular foveal ROI, based
on the geometric location of the fovea, enhances the effectiveness of the proposed method. By limiting
the detection area to the foveal region only, the ROI prevents other objects from being covered,
leading to a higher accuracy in fovea detection, averaging 99.04%. These findings demonstrate that
the proposed method is stable and accurate, despite relying on simple image processing operations
such as binaryization and morphology. Additionally, the use of these straightforward image
processing operations has contributed to reducing the computational time to 0.251 seconds per
image.
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When compared to other studies, the proposed method exhibits competitive accuracy and
computation time. In comparison to classical approaches, it outperforms the accuracy achieved by
Zheng [17] and Medhi [15]. Although it slightly trails behind the performance of Chalakkal [16] and
Romero-oraa [18], it surpasses both methods significantly in terms of computational time. Test results
on large-sized images indicate that the proposed method is 85.2x faster than Chalakkal [16] and 92.2x
faster than Romero-orad [18]. This improved performance is attributed to the efficient detection
process, where an effective temporal direction detection plays a crucial role in determining the
optimal foveal ROI. With an optimal ROI, the detection process can be executed efficiently through
simple binary and morphological operations.

Furthermore, the accuracy of the proposed method surpasses that of Al-Bander [5] and slightly
below Song [9], which employs a deep learning approach, achieving an accuracy of 98.24% compared
t096.6% and 100% respectively. However, it is important to note that the computational time required
for Al-Bander is the fastest at approximately 0.007 seconds per image. Nonetheless, a direct
comparison of the computation time between the proposed method and the deep learning approach
is not feasible due to the significantly different computing devices used [16]. Deep learning
approaches generally demand high computing power, especially during model development.

Most of the detection errors encountered in the proposed method can be attributed to imperfect
OD detection. As explained earlier, the accurate detection of the OD is crucial for determining the
temporal direction and the location of the foveal region of interest (ROI). When an error occurs during
the OD detection process, it can lead to errors in determining the temporal direction and the reference
point for the foveal ROI. Consequently, this can result in inaccurate foveal ROI determination and
ultimately lead to erroneous fovea detection.

5. Conclusions

The methods used to determine the temporal direction based on the OD yielded impressive
results. Among the three methods tested, the one comparing the OD position with the image center
showed the best performance. Although there were challenges with using bright areas and blood
vessels as features, overall, all three methods performed well. The proposed methods effectively
generated ROIs for the fovea by utilizing a small rectangular ROI based on the fovea's geometric
location.

It demonstrated stability, accuracy, and computational efficiency, surpassing traditional
approaches in terms of accuracy and computation time. While it slightly lagged behind certain
methods in accuracy, it excelled in computational speed. Imperfect OD detection was the main cause
of detection errors, affecting the determination of the temporal direction and fovea detection.
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