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Abstract: Accurate localization of the fovea in fundus images is essential for diagnosing retinal diseases. 

Existing methods often require extensive data and complex processes to achieve high accuracy, posing 

challenges for practical implementation. In this paper, we propose an effective and efficient approach for fovea 

detection using simple image processing operations and a geometric approach based on the optical disc's 

position. A key contribution of this study is the successful determination of the temporal direction by 

leveraging readable asymmetries related to the optical disc and its surroundings. We discuss three methods 

based on asymmetry conditions, including blood vessel distribution, cup disc inclination, and optic disc 

location ratio, for detecting the temporal direction. This enables precise determination of the optimal foveal 

region of interest (ROI). Through this optimized fovea region, fovea detection is achieved using 

straightforward morphological and image processing operations. Extensive testing on popular datasets 

(DRIVE, DiaretDB1, and Messidor) demonstrates outstanding accuracy of 99.04% and a rapid execution time 

of 0.251 seconds per image. The utilization of asymmetrical conditions for temporal direction detection 

provides a significant advantage, offering high accuracy and efficiency while competing with existing methods. 

Keywords: fovea detection; foveal ROI; temporal direction; cup disc; optic disc; morphology  

 

1. Introduction 

Diabetic macular edema (DME) is a manifestation of Diabetic Retinopathy, a condition that can 

lead to vision loss and blindness in affected individuals [1,2]. Consequently, regular eye screenings, 

conveniently conducted on computers, are strongly recommended to reduce the associated risks [3]. 

These screenings play a vital role in monitoring disease progression and identifying any concerning 

lesions. Of particular importance is the accurate detection of essential anatomical structures such as 

the Optic Disk (OD), blood vessels, and fovea. The fovea, situated at the center of the macula, serves 

as a reference point for assessing the severity of DME, particularly in cases where it coincides with 

the presence of hard exudates in the retina [1]. Measuring the distance between the hard exudates 

and the fovea is crucial for evaluating the severity of DME and necessitates precise detection methods 

[4]. Additionally, the computational efficiency of the utilized computer-assisted diagnosis techniques 

significantly impacts the speed of the overall process[5]. 

Detecting the fovea in a retinal image has proven to be a challenging task due to its unique 

characteristics. The macula, which encompasses the fovea, appears as a darker region in the retinal 

image. However, precisely identifying the fovea within this area is complicated because it lacks clear 

boundaries, making it challenging to distinguish it from the surrounding background. Furthermore, 

certain retinal images exhibit uneven illumination, further complicating the detection of the fovea. 

Several approaches have been employed in detecting the fovea in retinal images. For example, 

Deep Learning has been applied recently as a cutting-edge method for this detection. Furthermore, 
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it was observed that Convolutional Neural Network (CNN)-based approaches have achieved good 

results in object detection, including fovea detection [6,8]. Bander et al. [6] used a multistage Deep 

Learning approach to detect optical disk and fovea in retinal images, while Sedai et al. [7] had put 

forth a framework for image segmentation that operates in tpwo stages. In addition, Hasan [8] 

utilized the DR-Net method, an end-to-end encoder-decoder network for fovea detection. Similar to 

traditional methods, several deep learning methods have also used retinal structures, such as the 

blood vessels and optic disc (OD), as boundaries to ascertain the location of the fovea. For instance, 

Song [9] has customized the Bilateral-Vision-Transformer to integrate blood vessel information for 

improved fovea detection. 

It is important to note that the Deep Learning approach requires a large amount of computation, 

especially during training, as well as a huge quantity of data in order to produce a good detection 

model [10,11]. The existing methods are typically employed on datasets comprising a substantial 

number of images. Subsequently, difficulties were also encountered during the development due to 

the black box characteristic of the computation [12,13]. 

On the other hand, the conventional approach is an alternative to identify the fovea in a limited 

amount of data. This approach relies on two conditions: the intensity characteristics of the macula 

and its geometric location. Syed [14] employed the mean intensity to detect the fovea area. Regarding 

fovea detection, the common techniques involve template matching and Gaussian functions, utilizing 

the intensity attributes specific to the foveal area, as exemplified in [15]. Additionally, in [16], the 

incorporation of the average histogram intensity as a template matching feature has been explored 

for fovea detection. Furthermore, [17] implemented feature extraction techniques to locate the center 

of the fovea. In order to enhance effectiveness, other authors employ geometric principles that are 

seamlessly integrated with existing algorithms. 

In terms of the geometric approach for fovea detection, various studies have focused on the 

fovea's location relative to other anatomical structures. Tobin [18] and Niemeijer [19] utilized the 

main blood vessels in the retina as a reference point for detecting the fovea area. Similarly, Medhi 

[20] achieved comparable results by using the main blood vessels to identify the fovea region of 

interest (ROI). Other investigations have utilized the optic disc (OD) to locate the fovea area [16,17]. 

Chalakkal [16] employed connected component analysis to define the fovea in relation to the OD, 

while still considering the role of blood vessels, particularly in determining the foveal ROI. 

Additionally, aside from the OD's significance as a reference point, other researchers have 

emphasized that the localization of the fovea is influenced by the direction of search required. For 

instance, Zheng [17] and Romero-oraá [21] suggested that the fovea is likely positioned in the 

temporal direction of the OD. The results obtained in this approach can compete with the results from 

the deep learning approach. However, achieving these outcomes involves a complex step that 

adversely affects execution time. Therefore, the quest for a more streamlined solution poses a 

challenge. 

In the retinal fundus image, the optic disc and blood vessels exhibit varying pixel densities, 

resulting in an observable asymmetry. This asymmetry is evident by examining the position of these 

anatomical structures relative to others or by comparing them to the overall retinal image. Exploiting 

this characteristic helps identify the temporal direction, thereby pinpointing the precise location of 

the fovea. This study presents a geometric approach for fovea localization, leveraging the positioning 

of the OD and temporal direction. The proposed method aims to streamline the determination of the 

temporal direction by utilizing the asymmetrical conditions in the OD-related image. The study's 

contributions are as follows: 

• Introducing a feature extraction technique that relies on asymmetries associated with the OD 

and its surrounding area. 

• Presenting a method for determining the temporal direction, which proves highly beneficial 

for foveal ROI detection. 

• Enhancing the effectiveness of fovea detection through the utilization of the temporal direction 

for foveal ROI determination. 
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This study is presented in several sections, the first section is the introduction, then the second 

section is the materials and tools used. The third section contains a detailed description of the 

proposed method, while the fourth presents the results and discussion. Also, the fifth contains 

conclusions from the existing explanation. 

2. Materials and Methods 

2.1. Materials 

2.1.1. Dataset 

This study utilized retinal image data from three publicly available datasets: Digital Retinal 

Images for Vessel Extraction (DRIVE), DiaretDB1, and Messidor. The DRIVE dataset comprises 40 

retinal fundus images with a resolution of 768×584 pixels and three color channels (Red, Green, and 

Blue). These images were captured with a Field of View (FOV) size of 45° [22]. DiaretDB1 consists of 

89 retinal images with a FOV of 50°. This dataset includes color images with dimensions of 1500×1152 

pixels  [23]. The Messidor dataset contains 1200 retinal images, each with a FOV of 45°. This dataset 

offers images with different resolutions, including 1140x960, 2240x1488, and 2304x1536 pixels [24]. 

2.1.2. Environment  

A computer with Intel ® Core ™ i5-10400 CPU @ 2.90GHz 16 GB RAM specification and Matlab 

2018b software was used to conduct this study. 

2.2. Methods 

The macula, characterized by a circular area of low intensity on the retinal image [25], houses 

the fovea at its center. The fovea is positioned 2.5 diameters away from the optic disk in the temporal 

direction [26] and slightly below the optic disk [27]. This study aimed to precisely determine the 

location of the fovea. To achieve this, a geometry-based approach utilizing the optic disk as a 

reference point was employed. The methodology consists of several steps as shown in Figure 1. 

Firstly, a pre-processing stage was conducted to normalize the retinal image. Subsequently, the OD 

localization process was executed. The temporal direction was established by leveraging the 

asymmetry associated with the OD in retinal images. Finally, the fovea's location was determined 

within the foveal ROI. The following section provides a detailed explanation of the procedure 

undertaken in this study. 

 

Figure 1. The flow diagram of fovea detection. 

2.2.1. Pre-processing 

The retinal images captured by the fundus camera exhibit variations in size and lighting 

intensity. To establish a robust recognition method for retinal images obtained through a fundus 

camera, it is crucial to address variations in size and lighting intensity. One approach to achieve this 

is by ensuring the images used possess similar characteristics. Initially, we perform a pre-processing 

step on each dataset to ensure uniformity. This involves standardizing the image size, normalizing 

luminance levels, and accurately detecting the field of view (FOV) for each retinal image. 

• Resizing: The retinal images in different datasets vary in size and proportions, depending on 

the conditions during image capture. In this study, we aim to establish consistency by resizing 

the images. To maintain the original shape of objects within each retinal image, we preserve 

the proportions of the image during resizing. The initial result is achieved by setting the height 
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of each image to 564 pixels, while adjusting the width according to the original aspect ratio. 

The resized image is denoted as 𝐼𝑟  in our study. 

• Illumination normalization: In order to detect the OD and fovea, a thresholding approach was 

employed. However, it was observed that uneven illumination, as illustrated in Figure 2(a), 

negatively impacted the detection accuracy. To address this issue, a normalization step was 

performed prior to the detection process. In the initial phase, the resized images were 

subjected to contrast enhancement using Clip Limited Adaptive Histogram Equalization 

(CLAHE), resulting in the creation of an enhanced image denoted as 𝐼𝑐. This enhancement 

process specifically utilized the green layer, known for its superior contrast properties (Figure 

2(b)). Furthermore, intensity normalization was conducted following the approach described 

in a previous study [27]. The resulting normalized image, denoted as 𝐼𝑛, is illustrated in Figure 

2(c). 

• The FOV represents the visible area of the retina captured in an image. The size of the FOV 

plays a crucial role in estimating the dimensions of retinal objects, particularly the OD. This is 

particularly valuable in addressing variations in the proportion of retinal area displayed across 

different datasets. By defining the area, the search location for objects on the retina can be 

constrained. Additionally, the FOV size is utilized to estimate the location of the fovea through 

a geometric approach. Segmentation of the FOV area was accomplished by applying Otsu 

thresholding to the grayscale image, utilizing a threshold value of 0.2 times the Otsu threshold 

obtained. The segmented FOV is illustrated in Figure 2(d). 

 

Figure 2. Pre-processing (a) original color image (b) the green layer of image (c) normalized image (d) 

FOV of the image. 

2.2.2. Optic Disk Localization 

The OD is a distinctive anatomical structure within retinal images, known for its high intensity 

compared to other features. Due to its prominent characteristics, OD localization is relatively 

straightforward. It is worth noting that the OD location is often associated with the position of the 

fovea [27,28]. In this study, the OD serves as a reference point for determining the center of the fovea 

ROI. Additionally, certain features, such as blood vessels and bright areas on the cup disk, are 

leveraged to determine the temporal direction. To detect the OD, a thresholding method based on 

[29] was applied to the pre-processed images 𝐼𝑛 . Equation (1) was employed to obtain the OD 

candidate areas (𝐼𝑂𝐷𝑐𝑎𝑛𝑑). The OD candidates are shown in Figure 3(b). 𝐼𝑂𝐷𝑐𝑎𝑛𝑑(𝑥, 𝑦) =  {1 𝑖𝑓 𝐼𝑛(𝑥, 𝑦) ≥ 𝑡ℎ𝑂𝐷0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒        (1) 

where 𝑡ℎ𝑂𝐷 is the threshold value used, which is 0.85 from the maximum value of 𝐼𝑛. 

Occasionally, bright retinal images with high luminance are found at the edge of the FOV, which 

corresponds to the area around the OD. It was observed that the luminance normalization process 

conducted during pre-processing does not adequately affect these areas. This can potentially result 

in the misidentification of the optic disc candidate region. Therefore, this study introduced FOV edge 

detection as an additional step to mitigate such effects. To encompass a wider range, the edges were 

subjected to morphological dilation using a disk-shaped structuring element with a radius of 50 

pixels. The resulting edge area is denoted as 𝐼𝑡 (Figure 3(c)). Equation (2) was employed to obtain 

the refined optic disc candidate area (𝐼𝑂𝐷𝑐𝑎𝑛𝑑2) [29]: 
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𝐼𝑂𝐷𝑐𝑎𝑛𝑑2 =  𝐼𝑂𝐷𝑐𝑎𝑛𝑑 − (𝐼𝑂𝐷𝑐𝑎𝑛𝑑 ∩  𝐼𝑡)       (2) 

The center point of the blob within 𝐼𝑂𝐷𝑐𝑎𝑛𝑑2 (Figure 3(e)) is estimated to correspond to the cup 

disk area of the optic disc. Based on this center point, the subsequent step involves cropping the OD 

ROI to one-quarter the size of the image. The resulting OD ROI is illustrated in Figure 3(f). 

Furthermore, optic disc segmentation is performed through several additional steps. Initially, 

contrast enhancement is applied using CLAHE with a clip limit of 0.03 and multiple tiles [2]. This 

process specifically focuses on the red channel, which is least affected by blood vessels, as indicated 

by Zheng [17]. Subsequently, a morphological opening operation is employed to remove blood 

vessels in the region, utilizing a disk-shaped structuring element with a radius of 20 pixels. 

 

Figure 3. Results of the OD detection process, (a) image 𝑰𝒏 (b) thresholding results (c) image FOV 

edges 𝑰𝒏  (d) crop image (e) the OD candidate blob location (f) initial OD detection (g) final OD 

detection result. 

The OD obtained through Otsu thresholding is then refined using morphological closing and 

opening operations with disk-shaped structuring elements of sizes 10 and 15, respectively. The 

largest blob is selected to determine the OD, and the result is obtained by cropping the area according 

to the bounding box, as depicted in the Figure 3(g). Notably, the center of this area serves as a 

reference for determining the foveal ROI. It is important to mention that the diameter of the optic 

disc (𝐷𝑂𝐷) is not calculated directly from this obtained area. Instead, 𝐷𝑂𝐷  is computed as 
𝑤11, where 

w represents the width of the FOV. 

2.2.3. Temporal Direction Determination 

In this paper, our objective is to utilize the OD appearance in retinal images to detect the fovea 

and determine the temporal direction. The OD, being present in the retinal image, provides crucial 

information for locating the fovea, which is typically positioned in the temporal direction relative to 

the OD. Moreover, the OD itself can act as an indicator of the temporal direction. 

To achieve this, we concentrate on exploiting the observed asymmetry in the OD's appearance 

(Figure 4), including the brightest area of cup disk and major blood vessels, as distinctive features for 

identifying the temporal direction in interlaced retinal images. We propose three distinct methods 

that make use of these existing asymmetrical conditions for temporal direction determination: 

• The convergence pattern of blood vessels in the OD: We examine the convergence pattern of 

blood vessels within the OD. The direction of convergence can provide valuable clues regarding 

the temporal direction. 
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• The location of the brightest area of cup disk in the OD: We analyze the OD to identify the cup 

disk with the highest brightness. By assessing its position within the OD, we can infer the 

temporal direction. 

• The location of the OD in the retinal image: We investigate the position of the OD within the 

retinal image. Its relative location can offer insights into the temporal direction. 

These methods aim to leverage the inherent asymmetry of the OD and its associated features to 

improve the accuracy and efficiency of determining the temporal direction in retinal images. By 

employing these approaches, we anticipate significant advancements in retinal imaging analysis. 

 
 

Figure 4. Illustration of the retinal image and temporal/nasal direction. 

Convergence pattern of blood vessels in the OD 

The blood vessels in the retina exhibit a parabolic shape and converge on the OD, resulting in 

an asymmetry where the blood vessels cluster predominantly on one side of the OD, as illustrated in 

Figure 5. This inherent asymmetry was leveraged in our proposed method to determine the temporal 

direction. The comparison of the number of blood vessel pixels on both sides was performed, taking 

into account their tendency to cluster on one side of the optic disc. To facilitate this comparison, we 

focused on the green layer of the retinal image, as it offers better contrast compared to the other two 

layers. 

 

Figure 5. Appearance of blood vessels converging on a single side of the OD. 

The blood vessels in the retina exhibit a parabolic shape and converge on the OD, resulting in 

an asymmetry where the blood vessels cluster predominantly on one side of the OD (Figure 5). This 

inherent asymmetry was leveraged in our proposed method to determine the temporal direction. The 

comparison of the number of blood vessel pixels on both sides was performed, taking into account 

their tendency to cluster on one side of the optic disc. To facilitate this comparison, we focused on 

the green layer of the retinal image, as it offers better contrast compared to the other two layers. 

Once the location of the optic disc was successfully detected, its area was cropped to identify the 

side corresponding to the temporal direction. At the initial stage of the process, we employed an 
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adaptive operation using the CLAHE method to enhance image contrast. This contrast enhancement 

was effectively enhanced the visibility of blood vessels against the background image. 

Next, the blood vessels within the OD are extracted using a bottom-hat morphological operation 

and adaptive binarization with Otsu's method. This involves utilizing a 'disk'-shaped structuring 

element of size 5 pixels. The result is an image called IOV. However, it is observed that the blood 

vessels in the IOV still retain vertical and horizontal orientations, which can introduce false 

information. To address this, the orientation direction of the blood vessels is selectively considered. 

Comparisons between the left and right sides of the OD were performed using vertically 

oriented vessel pixels. To facilitate the comparison process, it is essential to optimize the vertically 

oriented blood vessels and eliminate the horizontally oriented ones prior to the analysis of the left 

and right sides of the OD. This is accomplished through the sequential application of morphological 

operations, specifically opening and closing operations. By performing these operations 

consecutively, the vertically oriented blood vessels are enhanced, while the horizontally oriented 

ones are attenuated. The resulting image, denoted as 𝐼𝑣 , is obtained using rectangular structuring 

elements with dimensions of 6×3 and 10×3. 

Suppose 𝑆𝑣1 is the number of white pixels on the left side of the 𝐼𝑣  image and 𝑆𝑣2 is the number 

of white pixels on the right side 𝐼𝑣 . The following rules were adopted when determining the temporal 

direction: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  { 𝐿𝐸𝐹𝑇 , 𝑆𝑣1 <  𝑆𝑣2 𝑅𝐼𝐺𝐻𝑇 𝑆𝑣1 ≥  𝑆𝑣2  

Location of the brightest area of cup disk area in an optic disk 

The OD serves as the origin for blood vessels in the retina and exhibits a cup disk structure. The 

brightest area within the OD corresponds to the cup disk, partially obscured by blood vessels on one 

side. The remaining cup disk area is situated on the temporal side of the OD. By comparing the 

position of the cup disk area with that of the vertically oriented blood vessels, we can determine the 

temporal direction of the retinal image. This is achieved by analyzing the center coordinates of the 

cup disk area and the vertical vessel center coordinates, which serve as defining features for the 

temporal direction. 

To detect the temporal direction, the OD area must first be segmented as shown in Figure 6(a). 

Initially, we identify the visible cup disk area and a curve representing the vertical vessels within the 

OD. To simplify the process, we focus on the brightest part of the cup disk, avoiding the need for 

precise segmentation. The segmentation is performed on the brightest portion of the cup disk by 

applying a binary operation with a threshold of 80% of the maximum pixel value within the OD area. 

This binary operation is conducted on the green layer, which offers optimal contrast. Subsequently, 

a closing operation is applied to refine the bright area. A circular structuring element (SE) with a 

diameter of 10 pixels is used for this purpose. The segmentation results are depicted in Figure 6(b). 

The midpoint coordinates of the bright cup disk area (𝑥𝐶𝑂𝐷, 𝑦𝐶𝑂𝐷) are then used as reference values 

for determining the temporal direction. 

The curve representing the vertical vessels in the OD are extracted using a combination of 

morphological operations. Initially, the contrast of the OD image is enhanced using CLAHE, followed 

by emphasizing the blood vessels using bottom-hat operation. Figure 6(c) shows the results of the 

extraction of blood vessels in OD. This operation employs a circular SE with a radius of 5 pixels. The 

lines representing the vertical vessels are obtained through a combination of opening and closing 

operations. The SE used has a rectangular shape with a vertical orientation. The first combination 

employs an SE of size 6×3 for opening and 10×3 for closing. In the second combination, an SE of size 

13×1 and 50×15 is used. The resulting curve are illustrated in Figure 6(d). Finally, the coordinates of 

the blood vessel center (𝑥𝑣𝑒𝑠, 𝑦𝑣𝑒𝑠) are extracted from the last obtained blob. An illustration of the 

relative location of the cup disc's brightest area to the curve representing the vertical vessels in OD is 

shown in Figure 6(e).  
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Figure 6. Results of the extraction process for the bright parts of the cup disk and blood vessels,  (a) 

the segmented OD, (b) the brightest area of the cup disk, (c) the blood vessels in OD, (d) the curve 

representing the vertical vessels in OD, (e) location of the brightest area of cup disk vs. the curve. 

Once the coordinates of the cup disk center and the vertical blood vessel center within the OD 

are determined, the temporal location on the retinal image can be established. In general, the 

temporal area on the retinal image is determined based on the location of the cup disk with respect 

to the vertical vessels, as shown in Figure 7. To simplify the search process, this study compares the 

x-axis values of each coordinate point. The temporal area is defined according to the following rules: 

If   𝑥𝐶𝑂𝐷 <  𝑥𝑣𝑒𝑠   {the cup vessel area on the left of the vertical vessel OD} 

temporal direction = LEFT 

Else            {the cup vessel area on the right of the vertical vessel OD} 

temporal direction = RIGHT 

 

Figure 7. The determining process result of the temporal area, (a) initial image with OD on the right 

side, (b) comparison of the location of the cup disk bright area and vertical blood vessels of the image 

(a), (c) the temporal area of the image (a). (d) initial image with OD on the left side, (e) comparison of 

the locations of the cup disk bright areas and vertical blood vessels OD of the image (a), (f) the 

temporal area of the image (d). 

Location of the OD in the retinal image 

In diabetic retinopathy examination, it is essential for the retinal image used in screening to have 

a visible macular condition at the center. This recommendation is supported by The Health 

Technology Board for Scotland [30,31]. In this context, the OD is situated at the edges of the retinal 
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area, both on the left and right sides. This indicates that the temporal direction can be determined by 

comparing its location with the center coordinates of the retinal image.  

It has been observed that when the OD is on the right side of the image, the abscissa center is 

greater than the retinal image center, indicating a temporal direction towards the left. Conversely, 

when the OD is on the left side, the abscissa is smaller than the image center, and the temporal 

direction points to the right, as depicted in Figure 8. 

 

Figure 8. Illustration of the relationship between OD locations and center coordinates of the retinal 

image. 

The temporal direction is determined with the following rule: 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 =  { 𝐿𝐸𝐹𝑇 , 𝑤 2⁄  <  𝑥𝑂𝐷 𝑅𝐼𝐺𝐻𝑇 , 𝑜𝑡ℎ𝑒𝑟    

where w denotes the retinal image width, and 𝑥𝑂𝐷  is the abscissa value of the OD center obtained 

during OD detection. 

2.2.4. The Fovea Detection 

According to established medical definitions, the macula, with the fovea as its center, is situated 

in the temporal area, and the fovea is approximately 2.5 times the diameter of the OD. This implies 

that a comprehensive search for the fovea should be conducted within a restricted area aligned with 

this definition. In the detection process, a geometric approach is employed, with the OD location 

serving as a reference. The effectiveness of the proposed method relies on accurately determining the 

size and location of the ROI corresponding to the fovea. 

To initiate the detection process and minimize errors, the determination of the foveal ROI occurs 

after obtaining the OD location and temporal direction. This allows for the limitation of the detection 

area and reduces the likelihood of errors. Moreover, the location is obtained by utilizing the OD as a 

reference based on the gathered information. Figure 9 visually depicts the construction of the foveal 

ROI, which takes the form of a square with dimensions of 2 times the OD diameter (2×𝐷𝑂𝐷), where 𝐷𝑂𝐷 represents the OD diameter. This size is chosen to account for potential inaccuracies in the ROI 

location, aiming to minimize errors. The selection of the multiplier parameter is performed through 

experimentation with three estimated values: 2.0, 2.25, and 2.5. 

Furthermore, the center location of the fovea ROI is determined using Equations (3) and (4). 𝑥𝑓 =  {𝑥𝑂𝐷 − 3.8 ×  𝐷𝑂𝐷 , 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐿𝐸𝐹𝑇𝑥𝑂𝐷 + 3.8 ×  𝐷𝑂𝐷 , 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑅𝐼𝐺𝐻𝑇     (3) 𝑦𝑓 =  𝑦𝑂𝐷 + 0.25 × 𝐷𝑂𝐷          (4) 
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where (𝑥𝑓 , 𝑦𝑓)  represents the coordinates of the foveal  ROI center and (𝑥𝑂𝐷 , 𝑦𝑂𝐷)  are the 

coordinates of the OD center location. 

 

Figure 9. Illustration of the foveal ROI (shown in blue squares). 

The subsequent step involves detecting the fovea within the foveal ROI. This process utilizes a 

combination of thresholding techniques and morphological operations. Initially, the contrast within 

the foveal ROI (Figure 10(a)) is enhanced using CLAHE with a clip limit of 1. This results in an 

improved foveal ROI image with enhanced contrast (Figure 10(b)), revealing darker areas and clearer 

edges. To facilitate the recognition process, the resulting image is negated, generating the 

complement of the image (𝐼𝑚𝑐) as shown in Figure 10(c). 

The thresholding process is then applied to obtain a binary foveal image (𝐼𝑚𝑏) by utilizing an 

adaptive threshold value of 77% of the maximum intensity of 𝐼𝑚𝑐. The result of the thresholding 

process is shown in Figure 10(d). It should be noted that I_mb may still contain some degree of noise. 

To mitigate this, a cleaning and repair procedure is conducted using morphological dilation and 

erosion operations, as described in Equation (5): 𝐼𝑚 =  𝜀𝛼(𝛿𝛽(𝐼𝑚𝑏))         (5) 

Where 𝐼𝑚 is the obtained macular image, 𝜀𝛼 is the erosion morphology operation with a disc-

shaped α-element structure measuring 15, and 𝛿𝛽  represents the dilation operation with a disc-

shaped 𝛽 measuring 5, and then the fovea is extracted from the area containing 𝐼𝑚 (Figure 10(e)). 

 

Figure 10. The fovea extraction process, (a) foveal ROI in the green channel, (b) results of contrast 

enhancement with CLAHE, (c) complement of (b), (d) results of binarization of (c),(e) results of 

dilation + erosion from (d), (f) the fovea detection results. 
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3. Results 

The proposed method was evaluated on three datasets, namely DRIVE, DiaretDB1, and 

Messidor. The appropriated images from the DRIVE were 35. This is because 5 images in this dataset 

do not show the foveal area that was carried out in [17]. Similarly, this test uses 1136 from Messidor 

images in line with [32]. In DiaretDB1, all images were considered in the evaluation. This evaluation 

involved a meticulous comparison of the obtained results with ground truth, with the supervision of 

an ophthalmologist. 

Impressively, the OD detection test achieved remarkable accuracy rates. The method exhibited 

a flawless accuracy of 100% for the DRIVE dataset, while for the DiaretDB1 and Messidor datasets, 

the accuracies were equally impressive, measuring 98.88% and 98.59% respectively. Additionally, 

Table 1 provides an overview of the accuracy rates for determining the temporal direction. Three 

different methods were employed for determining the temporal direction: T1, T2, and T3. T1 involved 

comparing the blood vessel pixels, T2 relied on the location of the cup disk area and the 

perpendicularity of the blood vessels, while T3 utilized the position of the OD relative to the center 

of the image. In order to evaluate the performance of the proposed algorithm in determining the 

temporal direction, an assessment was conducted on the images where the OD has been successfully 

detected. 

Table 1. Performance evaluation of the temporal direction determintion. 

Method 
DRIVE 

(%) 

DiaretDB1 

(%) 

Messidor 

(%) 

T1 100 100 98.66 

T2 100 100 99.29 

T3 100 100 100 

During the evaluation of fovea detection, accuracy was quantitatively assessed by measuring 

the Euclidean distance between the detected fovea and the Ground Truth (GT). This approach 

facilitated a precise quantitative comparison. Furthermore, Figures 11–13 illustrate the performance 

of the three methods used to determine the temporal direction, while Table 2 provides a concise 

summary of their performance metrics. 

Of the three methods, T3 exhibited the highest performance, showcasing its superiority in 

determining the temporal direction. The significance of these variations became particularly evident 

when testing on datasets with a larger number of images, such as the Messidor dataset. Interestingly, 

T3 also demonstrated comparable performance to the DRIVE and DiaretDB1 datasets, despite their 

smaller data sizes. In terms of accuracy, T3 outperformed T1 and T2, achieving accuracies of 98.24%, 

96.83%, and 97.54% respectively. Furthermore, T3 showcased superior computational efficiency, with 

a processing time of 0.291 seconds per image, compared to T1 and T2, which required 0.294 and 0.295 

seconds respectively. 

 

Figure 11. Accuracy comparison of each temporal direction determination method. 
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Figure 12. Comparison of distance to GT of each temporal direction determination method. 

 

Figure 13. Computational time comparison of each temporal direction determination method. 

Table 2. Summary of the fovea detection. 

Temporal determination 

method 

Accuracy  

(%) 
Distance 

Computational time 

(s/image) 

DRIVE    

T1 100 14.1 0.200 

T2 100 14.1 0.202 

T3 100 14.1 0.190 

DiaretDB1    

T1 98.88 10.68 0.277 

T2 98.88 10.68 0.278 

T3 98.88 10.68 0.270 

Messidor    

T1 96.83 8.63 0.294 

T2 97.54 8.60 0.295 

T3 98.24 8.61 0.291 

The average accuracy and computational time for the three datasets are 99.04% and 0.251 

seconds/image. Table 3 shows the comparison results of the performance with other studies. 
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Table 3. Comparison of the fovea detection results with other studies. 

Method Accuracy 
Computational time 

(/image) 

Computational 

time    

improvement 

Zheng [17] DRIVE   : 100% 

DiaretDB1 :  93.3% 

 

  12 seconds 

   12 seconds 

62.2× 

43.4× 

Medhi [20]  DRIVE  : 100% 

DiaretDB1  :  95.51% 

 

- - 

 

Chalakkal [16]  DRIVE  : 100% 

DiaretDB1 :  95.5% 

Messidor  :  98.5% 

 

  25 seconds 

  25 seconds 

25 seconds 

130.6× 

91.6× 

85.2× 

Romero-oraá [21]  DRIVE  : 100% 

DiaretDB1  : 100% 

Messidor   :  99.67% 

 

  0.54 seconds 

  14.55 seconds 

27.04 seconds 

1.8× 

52.8× 

92.2× 

Al Bander [6]  Messidor  :  96.6% 

 

- - 

Song [9] Messidor  :  100% 

 

- - 

Proposed method DRIVE  : 100% 

DiaretDB1 :  98.87% 

Messidor  :  98.24% 

  0.19 seconds 

  0.27 seconds 

  0.29 seconds 

- 

- 

- 

4. Discussion 

Upon analysis, it was observed that the method using the comparison of the OD location and 

the image center for determining the temporal direction exhibited the highest performance among 

the three methods. The performance differences were particularly noticeable when testing on datasets 

with a large number of images, such as the Messidor dataset. However, in the DRIVE and DiaretDB1 

datasets with a smaller number of images, the three methods showed no significant difference in 

performance. It was found that using the bright area on the cup disc as a feature for determining the 

temporal direction becomes problematic when the distribution of bright areas is not concentrated on 

one side as expected. In cases where the bright area is distributed circularly around the blood vessels, 

the expected asymmetry does not appear, causing the center point of this bright area to sometimes 

shift to the opposite side and resulting in incorrect temporal direction determination. 

Similarly, using blood vessels in OD as a feature is disturbed when the distribution of these 

blood vessels is evenly spread within the OD. Consequently, when applying morphological 

operations to the vascular pixels in the OD, there are several images that do not exhibit the expected 

asymmetry and provide an incorrect temporal direction. Overall, the evaluation results indicate that 

all three methods of determining the temporal direction perform well. 

This suggests that all the methods are capable of providing good temporal direction results for 

generating an optimal foveal region of interest (ROI). The use of a small rectangular foveal ROI, based 

on the geometric location of the fovea, enhances the effectiveness of the proposed method. By limiting 

the detection area to the foveal region only, the ROI prevents other objects from being covered, 

leading to a higher accuracy in fovea detection, averaging 99.04%. These findings demonstrate that 

the proposed method is stable and accurate, despite relying on simple image processing operations 

such as binaryization and morphology. Additionally, the use of these straightforward image 

processing operations has contributed to reducing the computational time to 0.251 seconds per 

image. 
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When compared to other studies, the proposed method exhibits competitive accuracy and 

computation time. In comparison to classical approaches, it outperforms the accuracy achieved by 

Zheng [17] and Medhi [15]. Although it slightly trails behind the performance of Chalakkal [16] and 

Romero-oraá [18], it surpasses both methods significantly in terms of computational time. Test results 

on large-sized images indicate that the proposed method is 85.2× faster than Chalakkal [16] and 92.2× 

faster than Romero-oraá [18]. This improved performance is attributed to the efficient detection 

process, where an effective temporal direction detection plays a crucial role in determining the 

optimal foveal ROI. With an optimal ROI, the detection process can be executed efficiently through 

simple binary and morphological operations. 

Furthermore, the accuracy of the proposed method surpasses that of Al-Bander [5] and slightly 

below Song [9], which employs a deep learning approach, achieving an accuracy of 98.24% compared 

to 96.6% and 100% respectively. However, it is important to note that the computational time required 

for Al-Bander is the fastest at approximately 0.007 seconds per image. Nonetheless, a direct 

comparison of the computation time between the proposed method and the deep learning approach 

is not feasible due to the significantly different computing devices used [16]. Deep learning 

approaches generally demand high computing power, especially during model development.  

Most of the detection errors encountered in the proposed method can be attributed to imperfect 

OD detection. As explained earlier, the accurate detection of the OD is crucial for determining the 

temporal direction and the location of the foveal region of interest (ROI). When an error occurs during 

the OD detection process, it can lead to errors in determining the temporal direction and the reference 

point for the foveal ROI. Consequently, this can result in inaccurate foveal ROI determination and 

ultimately lead to erroneous fovea detection. 

5. Conclusions 

The methods used to determine the temporal direction based on the OD yielded impressive 

results. Among the three methods tested, the one comparing the OD position with the image center 

showed the best performance. Although there were challenges with using bright areas and blood 

vessels as features, overall, all three methods performed well. The proposed methods effectively 

generated ROIs for the fovea by utilizing a small rectangular ROI based on the fovea's geometric 

location.  

It demonstrated stability, accuracy, and computational efficiency, surpassing traditional 

approaches in terms of accuracy and computation time. While it slightly lagged behind certain 

methods in accuracy, it excelled in computational speed. Imperfect OD detection was the main cause 

of detection errors, affecting the determination of the temporal direction and fovea detection. 
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